/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import data.fintype.basic import group_theory.subgroup.basic /-! # Free groups This file defines free groups over a type. Furthermore, it is shown that the free group construction is an instance of a monad. For the result that `free_group` is the left adjoint to the forgetful functor from groups to types, see `algebra/category/Group/adjunctions`. ## Main definitions * `free_group`: the free group associated to a type `α` defined as the words over `a : α × bool` modulo the relation `a * x * x⁻¹ * b = a * b`. * `free_group.mk`: the canonical quotient map `list (α × bool) → free_group α`. * `free_group.of`: the canoical injection `α → free_group α`. * `free_group.lift f`: the canonical group homomorphism `free_group α →* G` given a group `G` and a function `f : α → G`. ## Main statements * `free_group.church_rosser`: The Church-Rosser theorem for word reduction (also known as Newman's diamond lemma). * `free_group.free_group_unit_equiv_int`: The free group over the one-point type is isomorphic to the integers. * The free group construction is an instance of a monad. ## Implementation details First we introduce the one step reduction relation `free_group.red.step`: `w * x * x⁻¹ * v ~> w * v`, its reflexive transitive closure `free_group.red.trans` and prove that its join is an equivalence relation. Then we introduce `free_group α` as a quotient over `free_group.red.step`. ## Tags free group, Newman's diamond lemma, Church-Rosser theorem -/ open relation universes u v w variables {α : Type u} local attribute [simp] list.append_eq_has_append namespace free_group variables {L L₁ L₂ L₃ L₄ : list (α × bool)} /-- Reduction step: `w * x * x⁻¹ * v ~> w * v` -/ inductive red.step : list (α × bool) → list (α × bool) → Prop | bnot {L₁ L₂ x b} : red.step (L₁ ++ (x, b) :: (x, bnot b) :: L₂) (L₁ ++ L₂) attribute [simp] red.step.bnot /-- Reflexive-transitive closure of red.step -/ def red : list (α × bool) → list (α × bool) → Prop := refl_trans_gen red.step @[refl] lemma red.refl : red L L := refl_trans_gen.refl @[trans] lemma red.trans : red L₁ L₂ → red L₂ L₃ → red L₁ L₃ := refl_trans_gen.trans namespace red /-- Predicate asserting that word `w₁` can be reduced to `w₂` in one step, i.e. there are words `w₃ w₄` and letter `x` such that `w₁ = w₃xx⁻¹w₄` and `w₂ = w₃w₄` -/ theorem step.length : ∀ {L₁ L₂ : list (α × bool)}, step L₁ L₂ → L₂.length + 2 = L₁.length | _ _ (@red.step.bnot _ L1 L2 x b) := by rw [list.length_append, list.length_append]; refl @[simp] lemma step.bnot_rev {x b} : step (L₁ ++ (x, bnot b) :: (x, b) :: L₂) (L₁ ++ L₂) := by cases b; from step.bnot @[simp] lemma step.cons_bnot {x b} : red.step ((x, b) :: (x, bnot b) :: L) L := @step.bnot _ [] _ _ _ @[simp] lemma step.cons_bnot_rev {x b} : red.step ((x, bnot b) :: (x, b) :: L) L := @red.step.bnot_rev _ [] _ _ _ theorem step.append_left : ∀ {L₁ L₂ L₃ : list (α × bool)}, step L₂ L₃ → step (L₁ ++ L₂) (L₁ ++ L₃) | _ _ _ red.step.bnot := by rw [← list.append_assoc, ← list.append_assoc]; constructor theorem step.cons {x} (H : red.step L₁ L₂) : red.step (x :: L₁) (x :: L₂) := @step.append_left _ [x] _ _ H theorem step.append_right : ∀ {L₁ L₂ L₃ : list (α × bool)}, step L₁ L₂ → step (L₁ ++ L₃) (L₂ ++ L₃) | _ _ _ red.step.bnot := by simp lemma not_step_nil : ¬ step [] L := begin generalize h' : [] = L', assume h, cases h with L₁ L₂, simp [list.nil_eq_append_iff] at h', contradiction end lemma step.cons_left_iff {a : α} {b : bool} : step ((a, b) :: L₁) L₂ ↔ (∃L, step L₁ L ∧ L₂ = (a, b) :: L) ∨ (L₁ = (a, bnot b)::L₂) := begin split, { generalize hL : ((a, b) :: L₁ : list _) = L, assume h, rcases h with ⟨_ | ⟨p, s'⟩, e, a', b'⟩, { simp at hL, simp [*] }, { simp at hL, rcases hL with ⟨rfl, rfl⟩, refine or.inl ⟨s' ++ e, step.bnot, _⟩, simp } }, { assume h, rcases h with ⟨L, h, rfl⟩ | rfl, { exact step.cons h }, { exact step.cons_bnot } } end lemma not_step_singleton : ∀ {p : α × bool}, ¬ step [p] L | (a, b) := by simp [step.cons_left_iff, not_step_nil] lemma step.cons_cons_iff : ∀{p : α × bool}, step (p :: L₁) (p :: L₂) ↔ step L₁ L₂ := by simp [step.cons_left_iff, iff_def, or_imp_distrib] {contextual := tt} lemma step.append_left_iff : ∀L, step (L ++ L₁) (L ++ L₂) ↔ step L₁ L₂ | [] := by simp | (p :: l) := by simp [step.append_left_iff l, step.cons_cons_iff] private theorem step.diamond_aux : ∀ {L₁ L₂ L₃ L₄ : list (α × bool)} {x1 b1 x2 b2}, L₁ ++ (x1, b1) :: (x1, bnot b1) :: L₂ = L₃ ++ (x2, b2) :: (x2, bnot b2) :: L₄ → L₁ ++ L₂ = L₃ ++ L₄ ∨ ∃ L₅, red.step (L₁ ++ L₂) L₅ ∧ red.step (L₃ ++ L₄) L₅ | [] _ [] _ _ _ _ _ H := by injections; subst_vars; simp | [] _ [(x3,b3)] _ _ _ _ _ H := by injections; subst_vars; simp | [(x3,b3)] _ [] _ _ _ _ _ H := by injections; subst_vars; simp | [] _ ((x3,b3)::(x4,b4)::tl) _ _ _ _ _ H := by injections; subst_vars; simp; right; exact ⟨_, red.step.bnot, red.step.cons_bnot⟩ | ((x3,b3)::(x4,b4)::tl) _ [] _ _ _ _ _ H := by injections; subst_vars; simp; right; exact ⟨_, red.step.cons_bnot, red.step.bnot⟩ | ((x3,b3)::tl) _ ((x4,b4)::tl2) _ _ _ _ _ H := let ⟨H1, H2⟩ := list.cons.inj H in match step.diamond_aux H2 with | or.inl H3 := or.inl $ by simp [H1, H3] | or.inr ⟨L₅, H3, H4⟩ := or.inr ⟨_, step.cons H3, by simpa [H1] using step.cons H4⟩ end theorem step.diamond : ∀ {L₁ L₂ L₃ L₄ : list (α × bool)}, red.step L₁ L₃ → red.step L₂ L₄ → L₁ = L₂ → L₃ = L₄ ∨ ∃ L₅, red.step L₃ L₅ ∧ red.step L₄ L₅ | _ _ _ _ red.step.bnot red.step.bnot H := step.diamond_aux H lemma step.to_red : step L₁ L₂ → red L₁ L₂ := refl_trans_gen.single /-- **Church-Rosser theorem** for word reduction: If `w1 w2 w3` are words such that `w1` reduces to `w2` and `w3` respectively, then there is a word `w4` such that `w2` and `w3` reduce to `w4` respectively. This is also known as Newman's diamond lemma. -/ theorem church_rosser : red L₁ L₂ → red L₁ L₃ → join red L₂ L₃ := relation.church_rosser (assume a b c hab hac, match b, c, red.step.diamond hab hac rfl with | b, _, or.inl rfl := ⟨b, by refl, by refl⟩ | b, c, or.inr ⟨d, hbd, hcd⟩ := ⟨d, refl_gen.single hbd, hcd.to_red⟩ end) lemma cons_cons {p} : red L₁ L₂ → red (p :: L₁) (p :: L₂) := refl_trans_gen.lift (list.cons p) (assume a b, step.cons) lemma cons_cons_iff (p) : red (p :: L₁) (p :: L₂) ↔ red L₁ L₂ := iff.intro begin generalize eq₁ : (p :: L₁ : list _) = LL₁, generalize eq₂ : (p :: L₂ : list _) = LL₂, assume h, induction h using relation.refl_trans_gen.head_induction_on with L₁ L₂ h₁₂ h ih generalizing L₁ L₂, { subst_vars, cases eq₂, constructor }, { subst_vars, cases p with a b, rw [step.cons_left_iff] at h₁₂, rcases h₁₂ with ⟨L, h₁₂, rfl⟩ | rfl, { exact (ih rfl rfl).head h₁₂ }, { exact (cons_cons h).tail step.cons_bnot_rev } } end cons_cons lemma append_append_left_iff : ∀L, red (L ++ L₁) (L ++ L₂) ↔ red L₁ L₂ | [] := iff.rfl | (p :: L) := by simp [append_append_left_iff L, cons_cons_iff] lemma append_append (h₁ : red L₁ L₃) (h₂ : red L₂ L₄) : red (L₁ ++ L₂) (L₃ ++ L₄) := (h₁.lift (λL, L ++ L₂) (assume a b, step.append_right)).trans ((append_append_left_iff _).2 h₂) lemma to_append_iff : red L (L₁ ++ L₂) ↔ (∃L₃ L₄, L = L₃ ++ L₄ ∧ red L₃ L₁ ∧ red L₄ L₂) := iff.intro begin generalize eq : L₁ ++ L₂ = L₁₂, assume h, induction h with L' L₁₂ hLL' h ih generalizing L₁ L₂, { exact ⟨_, _, eq.symm, by refl, by refl⟩ }, { cases h with s e a b, rcases list.append_eq_append_iff.1 eq with ⟨s', rfl, rfl⟩ | ⟨e', rfl, rfl⟩, { have : L₁ ++ (s' ++ ((a, b) :: (a, bnot b) :: e)) = (L₁ ++ s') ++ ((a, b) :: (a, bnot b) :: e), { simp }, rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩, exact ⟨w₁, w₂, rfl, h₁, h₂.tail step.bnot⟩ }, { have : (s ++ ((a, b) :: (a, bnot b) :: e')) ++ L₂ = s ++ ((a, b) :: (a, bnot b) :: (e' ++ L₂)), { simp }, rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩, exact ⟨w₁, w₂, rfl, h₁.tail step.bnot, h₂⟩ }, } end (assume ⟨L₃, L₄, eq, h₃, h₄⟩, eq.symm ▸ append_append h₃ h₄) /-- The empty word `[]` only reduces to itself. -/ theorem nil_iff : red [] L ↔ L = [] := refl_trans_gen_iff_eq (assume l, red.not_step_nil) /-- A letter only reduces to itself. -/ theorem singleton_iff {x} : red [x] L₁ ↔ L₁ = [x] := refl_trans_gen_iff_eq (assume l, not_step_singleton) /-- If `x` is a letter and `w` is a word such that `xw` reduces to the empty word, then `w` reduces to `x⁻¹` -/ theorem cons_nil_iff_singleton {x b} : red ((x, b) :: L) [] ↔ red L [(x, bnot b)] := iff.intro (assume h, have h₁ : red ((x, bnot b) :: (x, b) :: L) [(x, bnot b)], from cons_cons h, have h₂ : red ((x, bnot b) :: (x, b) :: L) L, from refl_trans_gen.single step.cons_bnot_rev, let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂ in by rw [singleton_iff] at h₁; subst L'; assumption) (assume h, (cons_cons h).tail step.cons_bnot) theorem red_iff_irreducible {x1 b1 x2 b2} (h : (x1, b1) ≠ (x2, b2)) : red [(x1, bnot b1), (x2, b2)] L ↔ L = [(x1, bnot b1), (x2, b2)] := begin apply refl_trans_gen_iff_eq, generalize eq : [(x1, bnot b1), (x2, b2)] = L', assume L h', cases h', simp [list.cons_eq_append_iff, list.nil_eq_append_iff] at eq, rcases eq with ⟨rfl, ⟨rfl, rfl⟩, ⟨rfl, rfl⟩, rfl⟩, subst_vars, simp at h, contradiction end /-- If `x` and `y` are distinct letters and `w₁ w₂` are words such that `xw₁` reduces to `yw₂`, then `w₁` reduces to `x⁻¹yw₂`. -/ theorem inv_of_red_of_ne {x1 b1 x2 b2} (H1 : (x1, b1) ≠ (x2, b2)) (H2 : red ((x1, b1) :: L₁) ((x2, b2) :: L₂)) : red L₁ ((x1, bnot b1) :: (x2, b2) :: L₂) := begin have : red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂), from H2, rcases to_append_iff.1 this with ⟨_ | ⟨p, L₃⟩, L₄, eq, h₁, h₂⟩, { simp [nil_iff] at h₁, contradiction }, { cases eq, show red (L₃ ++ L₄) ([(x1, bnot b1), (x2, b2)] ++ L₂), apply append_append _ h₂, have h₁ : red ((x1, bnot b1) :: (x1, b1) :: L₃) [(x1, bnot b1), (x2, b2)], { exact cons_cons h₁ }, have h₂ : red ((x1, bnot b1) :: (x1, b1) :: L₃) L₃, { exact step.cons_bnot_rev.to_red }, rcases church_rosser h₁ h₂ with ⟨L', h₁, h₂⟩, rw [red_iff_irreducible H1] at h₁, rwa [h₁] at h₂ } end theorem step.sublist (H : red.step L₁ L₂) : L₂ <+ L₁ := by cases H; simp; constructor; constructor; refl /-- If `w₁ w₂` are words such that `w₁` reduces to `w₂`, then `w₂` is a sublist of `w₁`. -/ theorem sublist : red L₁ L₂ → L₂ <+ L₁ := refl_trans_gen_of_transitive_reflexive (λl, list.sublist.refl l) (λa b c hab hbc, list.sublist.trans hbc hab) (λa b, red.step.sublist) theorem sizeof_of_step : ∀ {L₁ L₂ : list (α × bool)}, step L₁ L₂ → L₂.sizeof < L₁.sizeof | _ _ (@step.bnot _ L1 L2 x b) := begin induction L1 with hd tl ih, case list.nil { dsimp [list.sizeof], have H : 1 + sizeof (x, b) + (1 + sizeof (x, bnot b) + list.sizeof L2) = (list.sizeof L2 + 1) + (sizeof (x, b) + sizeof (x, bnot b) + 1), { ac_refl }, rw H, exact nat.le_add_right _ _ }, case list.cons { dsimp [list.sizeof], exact nat.add_lt_add_left ih _ } end theorem length (h : red L₁ L₂) : ∃ n, L₁.length = L₂.length + 2 * n := begin induction h with L₂ L₃ h₁₂ h₂₃ ih, { exact ⟨0, rfl⟩ }, { rcases ih with ⟨n, eq⟩, existsi (1 + n), simp [mul_add, eq, (step.length h₂₃).symm, add_assoc] } end theorem antisymm (h₁₂ : red L₁ L₂) : red L₂ L₁ → L₁ = L₂ := match L₁, h₁₂.cases_head with | _, or.inl rfl := assume h, rfl | L₁, or.inr ⟨L₃, h₁₃, h₃₂⟩ := assume h₂₁, let ⟨n, eq⟩ := length (h₃₂.trans h₂₁) in have list.length L₃ + 0 = list.length L₃ + (2 * n + 2), by simpa [(step.length h₁₃).symm, add_comm, add_assoc] using eq, (nat.no_confusion $ nat.add_left_cancel this) end end red theorem equivalence_join_red : equivalence (join (@red α)) := equivalence_join_refl_trans_gen $ assume a b c hab hac, (match b, c, red.step.diamond hab hac rfl with | b, _, or.inl rfl := ⟨b, by refl, by refl⟩ | b, c, or.inr ⟨d, hbd, hcd⟩ := ⟨d, refl_gen.single hbd, refl_trans_gen.single hcd⟩ end) theorem join_red_of_step (h : red.step L₁ L₂) : join red L₁ L₂ := join_of_single reflexive_refl_trans_gen h.to_red theorem eqv_gen_step_iff_join_red : eqv_gen red.step L₁ L₂ ↔ join red L₁ L₂ := iff.intro (assume h, have eqv_gen (join red) L₁ L₂ := h.mono (assume a b, join_red_of_step), equivalence_join_red.eqv_gen_iff.1 this) (join_of_equivalence (eqv_gen.is_equivalence _) $ assume a b, refl_trans_gen_of_equivalence (eqv_gen.is_equivalence _) eqv_gen.rel) end free_group /-- The free group over a type, i.e. the words formed by the elements of the type and their formal inverses, quotient by one step reduction. -/ def free_group (α : Type u) : Type u := quot $ @free_group.red.step α namespace free_group variables {α} {L L₁ L₂ L₃ L₄ : list (α × bool)} /-- The canonical map from `list (α × bool)` to the free group on `α`. -/ def mk (L) : free_group α := quot.mk red.step L @[simp] lemma quot_mk_eq_mk : quot.mk red.step L = mk L := rfl @[simp] lemma quot_lift_mk (β : Type v) (f : list (α × bool) → β) (H : ∀ L₁ L₂, red.step L₁ L₂ → f L₁ = f L₂) : quot.lift f H (mk L) = f L := rfl @[simp] lemma quot_lift_on_mk (β : Type v) (f : list (α × bool) → β) (H : ∀ L₁ L₂, red.step L₁ L₂ → f L₁ = f L₂) : quot.lift_on (mk L) f H = f L := rfl @[simp] lemma quot_map_mk (β : Type v) (f : list (α × bool) → list (β × bool)) (H : (red.step ⇒ red.step) f f) : quot.map f H (mk L) = mk (f L) := rfl instance : has_one (free_group α) := ⟨mk []⟩ lemma one_eq_mk : (1 : free_group α) = mk [] := rfl instance : inhabited (free_group α) := ⟨1⟩ instance : has_mul (free_group α) := ⟨λ x y, quot.lift_on x (λ L₁, quot.lift_on y (λ L₂, mk $ L₁ ++ L₂) (λ L₂ L₃ H, quot.sound $ red.step.append_left H)) (λ L₁ L₂ H, quot.induction_on y $ λ L₃, quot.sound $ red.step.append_right H)⟩ @[simp] lemma mul_mk : mk L₁ * mk L₂ = mk (L₁ ++ L₂) := rfl instance : has_inv (free_group α) := ⟨λx, quot.lift_on x (λ L, mk (L.map $ λ x : α × bool, (x.1, bnot x.2)).reverse) (assume a b h, quot.sound $ by cases h; simp)⟩ @[simp] lemma inv_mk : (mk L)⁻¹ = mk (L.map $ λ x : α × bool, (x.1, bnot x.2)).reverse := rfl instance : group (free_group α) := { mul := (*), one := 1, inv := has_inv.inv, mul_assoc := by rintros ⟨L₁⟩ ⟨L₂⟩ ⟨L₃⟩; simp, one_mul := by rintros ⟨L⟩; refl, mul_one := by rintros ⟨L⟩; simp [one_eq_mk], mul_left_inv := by rintros ⟨L⟩; exact (list.rec_on L rfl $ λ ⟨x, b⟩ tl ih, eq.trans (quot.sound $ by simp [one_eq_mk]) ih) } /-- `of` is the canonical injection from the type to the free group over that type by sending each element to the equivalence class of the letter that is the element. -/ def of (x : α) : free_group α := mk [(x, tt)] theorem red.exact : mk L₁ = mk L₂ ↔ join red L₁ L₂ := calc (mk L₁ = mk L₂) ↔ eqv_gen red.step L₁ L₂ : iff.intro (quot.exact _) quot.eqv_gen_sound ... ↔ join red L₁ L₂ : eqv_gen_step_iff_join_red /-- The canonical injection from the type to the free group is an injection. -/ theorem of_injective : function.injective (@of α) := λ _ _ H, let ⟨L₁, hx, hy⟩ := red.exact.1 H in by simp [red.singleton_iff] at hx hy; cc section lift variables {β : Type v} [group β] (f : α → β) {x y : free_group α} /-- Given `f : α → β` with `β` a group, the canonical map `list (α × bool) → β` -/ def lift.aux : list (α × bool) → β := λ L, list.prod $ L.map $ λ x, cond x.2 (f x.1) (f x.1)⁻¹ theorem red.step.lift {f : α → β} (H : red.step L₁ L₂) : lift.aux f L₁ = lift.aux f L₂ := by cases H with _ _ _ b; cases b; simp [lift.aux] /-- If `β` is a group, then any function from `α` to `β` extends uniquely to a group homomorphism from the free group over `α` to `β` -/ @[simps symm_apply] def lift : (α → β) ≃ (free_group α →* β) := { to_fun := λ f, monoid_hom.mk' (quot.lift (lift.aux f) $ λ L₁ L₂, red.step.lift) $ begin rintros ⟨L₁⟩ ⟨L₂⟩, simp [lift.aux], end, inv_fun := λ g, g ∘ of, left_inv := λ f, one_mul _, right_inv := λ g, monoid_hom.ext $ begin rintros ⟨L⟩, apply list.rec_on L, { exact g.map_one.symm, }, { rintros ⟨x, _ | _⟩ t (ih : _ = g (mk t)), { show _ = g ((of x)⁻¹ * mk t), simpa [lift.aux] using ih }, { show _ = g (of x * mk t), simpa [lift.aux] using ih }, }, end } variable {f} @[simp] lemma lift.mk : lift f (mk L) = list.prod (L.map $ λ x, cond x.2 (f x.1) (f x.1)⁻¹) := rfl @[simp] lemma lift.of {x} : lift f (of x) = f x := one_mul _ theorem lift.unique (g : free_group α →* β) (hg : ∀ x, g (of x) = f x) : ∀{x}, g x = lift f x := monoid_hom.congr_fun $ (lift.symm_apply_eq).mp (funext hg : g ∘ of = f) /-- Two homomorphisms out of a free group are equal if they are equal on generators. See note [partially-applied ext lemmas]. -/ @[ext] lemma ext_hom {G : Type*} [group G] (f g : free_group α →* G) (h : ∀ a, f (of a) = g (of a)) : f = g := lift.symm.injective $ funext h theorem lift.of_eq (x : free_group α) : lift of x = x := monoid_hom.congr_fun (lift.apply_symm_apply (monoid_hom.id _)) x theorem lift.range_le {s : subgroup β} (H : set.range f ⊆ s) : (lift f).range ≤ s := by rintros _ ⟨⟨L⟩, rfl⟩; exact list.rec_on L s.one_mem (λ ⟨x, b⟩ tl ih, bool.rec_on b (by simp at ih ⊢; from s.mul_mem (s.inv_mem $ H ⟨x, rfl⟩) ih) (by simp at ih ⊢; from s.mul_mem (H ⟨x, rfl⟩) ih)) theorem lift.range_eq_closure : (lift f).range = subgroup.closure (set.range f) := begin apply le_antisymm (lift.range_le subgroup.subset_closure), rw subgroup.closure_le, rintros _ ⟨a, rfl⟩, exact ⟨of a, by simp only [lift.of]⟩, end end lift section map variables {β : Type v} (f : α → β) {x y : free_group α} /-- Any function from `α` to `β` extends uniquely to a group homomorphism from the free group ver `α` to the free group over `β`. -/ def map : free_group α →* free_group β := monoid_hom.mk' (quot.map (list.map $ λ x, (f x.1, x.2)) $ λ L₁ L₂ H, by cases H; simp) (by { rintros ⟨L₁⟩ ⟨L₂⟩, simp }) variable {f} @[simp] lemma map.mk : map f (mk L) = mk (L.map (λ x, (f x.1, x.2))) := rfl @[simp] lemma map.id (x : free_group α) : map id x = x := by rcases x with ⟨L⟩; simp [list.map_id'] @[simp] lemma map.id' (x : free_group α) : map (λ z, z) x = x := map.id x theorem map.comp {γ : Type w} (f : α → β) (g : β → γ) (x) : map g (map f x) = map (g ∘ f) x := by rcases x with ⟨L⟩; simp @[simp] lemma map.of {x} : map f (of x) = of (f x) := rfl theorem map.unique (g : free_group α →* free_group β) (hg : ∀ x, g (of x) = of (f x)) : ∀{x}, g x = map f x := by rintros ⟨L⟩; exact list.rec_on L g.map_one (λ ⟨x, b⟩ t (ih : g (mk t) = map f (mk t)), bool.rec_on b (show g ((of x)⁻¹ * mk t) = map f ((of x)⁻¹ * mk t), by simp [g.map_mul, g.map_inv, hg, ih]) (show g (of x * mk t) = map f (of x * mk t), by simp [g.map_mul, hg, ih])) theorem map_eq_lift : map f x = lift (of ∘ f) x := eq.symm $ map.unique _ $ λ x, by simp /-- Equivalent types give rise to multiplicatively equivalent free groups. The converse can be found in `group_theory.free_abelian_group_finsupp`, as `equiv.of_free_group_equiv` -/ @[simps apply] def free_group_congr {α β} (e : α ≃ β) : free_group α ≃* free_group β := { to_fun := map e, inv_fun := map e.symm, left_inv := λ x, by simp [function.comp, map.comp], right_inv := λ x, by simp [function.comp, map.comp], map_mul' := monoid_hom.map_mul _ } @[simp] lemma free_group_congr_refl : free_group_congr (equiv.refl α) = mul_equiv.refl _ := mul_equiv.ext map.id @[simp] lemma free_group_congr_symm {α β} (e : α ≃ β) : (free_group_congr e).symm = free_group_congr e.symm := rfl lemma free_group_congr_trans {α β γ} (e : α ≃ β) (f : β ≃ γ) : (free_group_congr e).trans (free_group_congr f) = free_group_congr (e.trans f) := mul_equiv.ext $ map.comp _ _ end map section prod variables [group α] (x y : free_group α) /-- If `α` is a group, then any function from `α` to `α` extends uniquely to a homomorphism from the free group over `α` to `α`. This is the multiplicative version of `sum`. -/ def prod : free_group α →* α := lift id variables {x y} @[simp] lemma prod_mk : prod (mk L) = list.prod (L.map $ λ x, cond x.2 x.1 x.1⁻¹) := rfl @[simp] lemma prod.of {x : α} : prod (of x) = x := lift.of lemma prod.unique (g : free_group α →* α) (hg : ∀ x, g (of x) = x) {x} : g x = prod x := lift.unique g hg end prod theorem lift_eq_prod_map {β : Type v} [group β] {f : α → β} {x} : lift f x = prod (map f x) := begin rw ←lift.unique (prod.comp (map f)), { refl }, { simp } end section sum variables [add_group α] (x y : free_group α) /-- If `α` is a group, then any function from `α` to `α` extends uniquely to a homomorphism from the free group over `α` to `α`. This is the additive version of `prod`. -/ def sum : α := @prod (multiplicative _) _ x variables {x y} @[simp] lemma sum_mk : sum (mk L) = list.sum (L.map $ λ x, cond x.2 x.1 (-x.1)) := rfl @[simp] lemma sum.of {x : α} : sum (of x) = x := prod.of -- note: there are no bundled homs with different notation in the domain and codomain, so we copy -- these manually @[simp] lemma sum.map_mul : sum (x * y) = sum x + sum y := (@prod (multiplicative _) _).map_mul _ _ @[simp] lemma sum.map_one : sum (1:free_group α) = 0 := (@prod (multiplicative _) _).map_one @[simp] lemma sum.map_inv : sum x⁻¹ = -sum x := (prod : free_group (multiplicative α) →* multiplicative α).map_inv _ end sum /-- The bijection between the free group on the empty type, and a type with one element. -/ def free_group_empty_equiv_unit : free_group empty ≃ unit := { to_fun := λ _, (), inv_fun := λ _, 1, left_inv := by rintros ⟨_ | ⟨⟨⟨⟩, _⟩, _⟩⟩; refl, right_inv := λ ⟨⟩, rfl } /-- The bijection between the free group on a singleton, and the integers. -/ def free_group_unit_equiv_int : free_group unit ≃ ℤ := { to_fun := λ x, sum begin revert x, apply monoid_hom.to_fun, apply map (λ _, (1 : ℤ)), end, inv_fun := λ x, of () ^ x, left_inv := begin rintros ⟨L⟩, refine list.rec_on L rfl _, exact (λ ⟨⟨⟩, b⟩ tl ih, by cases b; simp [zpow_add] at ih ⊢; rw ih; refl), end, right_inv := λ x, int.induction_on x (by simp) (λ i ih, by simp at ih; simp [zpow_add, ih]) (λ i ih, by simp at ih; simp [zpow_add, ih, sub_eq_add_neg, -int.add_neg_one]) } section category variables {β : Type u} instance : monad free_group.{u} := { pure := λ α, of, map := λ α β f, (map f), bind := λ α β x f, lift f x } @[elab_as_eliminator] protected theorem induction_on {C : free_group α → Prop} (z : free_group α) (C1 : C 1) (Cp : ∀ x, C $ pure x) (Ci : ∀ x, C (pure x) → C (pure x)⁻¹) (Cm : ∀ x y, C x → C y → C (x * y)) : C z := quot.induction_on z $ λ L, list.rec_on L C1 $ λ ⟨x, b⟩ tl ih, bool.rec_on b (Cm _ _ (Ci _ $ Cp x) ih) (Cm _ _ (Cp x) ih) @[simp] lemma map_pure (f : α → β) (x : α) : f <$> (pure x : free_group α) = pure (f x) := map.of @[simp] lemma map_one (f : α → β) : f <$> (1 : free_group α) = 1 := (map f).map_one @[simp] lemma map_mul (f : α → β) (x y : free_group α) : f <$> (x * y) = f <$> x * f <$> y := (map f).map_mul x y @[simp] lemma map_inv (f : α → β) (x : free_group α) : f <$> (x⁻¹) = (f <$> x)⁻¹ := (map f).map_inv x @[simp] lemma pure_bind (f : α → free_group β) (x) : pure x >>= f = f x := lift.of @[simp] lemma one_bind (f : α → free_group β) : 1 >>= f = 1 := (lift f).map_one @[simp] lemma mul_bind (f : α → free_group β) (x y : free_group α) : x * y >>= f = (x >>= f) * (y >>= f) := (lift f).map_mul _ _ @[simp] lemma inv_bind (f : α → free_group β) (x : free_group α) : x⁻¹ >>= f = (x >>= f)⁻¹ := (lift f).map_inv _ instance : is_lawful_monad free_group.{u} := { id_map := λ α x, free_group.induction_on x (map_one id) (λ x, map_pure id x) (λ x ih, by rw [map_inv, ih]) (λ x y ihx ihy, by rw [map_mul, ihx, ihy]), pure_bind := λ α β x f, pure_bind f x, bind_assoc := λ α β γ x f g, free_group.induction_on x (by iterate 3 { rw one_bind }) (λ x, by iterate 2 { rw pure_bind }) (λ x ih, by iterate 3 { rw inv_bind }; rw ih) (λ x y ihx ihy, by iterate 3 { rw mul_bind }; rw [ihx, ihy]), bind_pure_comp_eq_map := λ α β f x, free_group.induction_on x (by rw [one_bind, map_one]) (λ x, by rw [pure_bind, map_pure]) (λ x ih, by rw [inv_bind, map_inv, ih]) (λ x y ihx ihy, by rw [mul_bind, map_mul, ihx, ihy]) } end category section reduce variable [decidable_eq α] /-- The maximal reduction of a word. It is computable iff `α` has decidable equality. -/ def reduce (L : list (α × bool)) : list (α × bool) := list.rec_on L [] $ λ hd1 tl1 ih, list.cases_on ih [hd1] $ λ hd2 tl2, if hd1.1 = hd2.1 ∧ hd1.2 = bnot hd2.2 then tl2 else hd1 :: hd2 :: tl2 @[simp] lemma reduce.cons (x) : reduce (x :: L) = list.cases_on (reduce L) [x] (λ hd tl, if x.1 = hd.1 ∧ x.2 = bnot hd.2 then tl else x :: hd :: tl) := rfl /-- The first theorem that characterises the function `reduce`: a word reduces to its maximal reduction. -/ theorem reduce.red : red L (reduce L) := begin induction L with hd1 tl1 ih, case list.nil { constructor }, case list.cons { dsimp, revert ih, generalize htl : reduce tl1 = TL, intro ih, cases TL with hd2 tl2, case list.nil { exact red.cons_cons ih }, case list.cons { dsimp, by_cases h : hd1.fst = hd2.fst ∧ hd1.snd = bnot (hd2.snd), { rw [if_pos h], transitivity, { exact red.cons_cons ih }, { cases hd1, cases hd2, cases h, dsimp at *, subst_vars, exact red.step.cons_bnot_rev.to_red } }, { rw [if_neg h], exact red.cons_cons ih } } } end theorem reduce.not {p : Prop} : ∀ {L₁ L₂ L₃ : list (α × bool)} {x b}, reduce L₁ = L₂ ++ (x, b) :: (x, bnot b) :: L₃ → p | [] L2 L3 _ _ := λ h, by cases L2; injections | ((x,b)::L1) L2 L3 x' b' := begin dsimp, cases r : reduce L1, { dsimp, intro h, have := congr_arg list.length h, simp [-add_comm] at this, exact absurd this dec_trivial }, cases hd with y c, by_cases x = y ∧ b = bnot c; simp [h]; intro H, { rw H at r, exact @reduce.not L1 ((y,c)::L2) L3 x' b' r }, rcases L2 with _|⟨a, L2⟩, { injections, subst_vars, simp at h, cc }, { refine @reduce.not L1 L2 L3 x' b' _, injection H with _ H, rw [r, H], refl } end /-- The second theorem that characterises the function `reduce`: the maximal reduction of a word only reduces to itself. -/ theorem reduce.min (H : red (reduce L₁) L₂) : reduce L₁ = L₂ := begin induction H with L1 L' L2 H1 H2 ih, { refl }, { cases H1 with L4 L5 x b, exact reduce.not H2 } end /-- `reduce` is idempotent, i.e. the maximal reduction of the maximal reduction of a word is the maximal reduction of the word. -/ theorem reduce.idem : reduce (reduce L) = reduce L := eq.symm $ reduce.min reduce.red theorem reduce.step.eq (H : red.step L₁ L₂) : reduce L₁ = reduce L₂ := let ⟨L₃, HR13, HR23⟩ := red.church_rosser reduce.red (reduce.red.head H) in (reduce.min HR13).trans (reduce.min HR23).symm /-- If a word reduces to another word, then they have a common maximal reduction. -/ theorem reduce.eq_of_red (H : red L₁ L₂) : reduce L₁ = reduce L₂ := let ⟨L₃, HR13, HR23⟩ := red.church_rosser reduce.red (red.trans H reduce.red) in (reduce.min HR13).trans (reduce.min HR23).symm /-- If two words correspond to the same element in the free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined. -/ theorem reduce.sound (H : mk L₁ = mk L₂) : reduce L₁ = reduce L₂ := let ⟨L₃, H13, H23⟩ := red.exact.1 H in (reduce.eq_of_red H13).trans (reduce.eq_of_red H23).symm /-- If two words have a common maximal reduction, then they correspond to the same element in the free group. -/ theorem reduce.exact (H : reduce L₁ = reduce L₂) : mk L₁ = mk L₂ := red.exact.2 ⟨reduce L₂, H ▸ reduce.red, reduce.red⟩ /-- A word and its maximal reduction correspond to the same element of the free group. -/ theorem reduce.self : mk (reduce L) = mk L := reduce.exact reduce.idem /-- If words `w₁ w₂` are such that `w₁` reduces to `w₂`, then `w₂` reduces to the maximal reduction of `w₁`. -/ theorem reduce.rev (H : red L₁ L₂) : red L₂ (reduce L₁) := (reduce.eq_of_red H).symm ▸ reduce.red /-- The function that sends an element of the free group to its maximal reduction. -/ def to_word : free_group α → list (α × bool) := quot.lift reduce $ λ L₁ L₂ H, reduce.step.eq H lemma to_word.mk : ∀{x : free_group α}, mk (to_word x) = x := by rintros ⟨L⟩; exact reduce.self lemma to_word.inj : ∀(x y : free_group α), to_word x = to_word y → x = y := by rintros ⟨L₁⟩ ⟨L₂⟩; exact reduce.exact /-- Constructive Church-Rosser theorem (compare `church_rosser`). -/ def reduce.church_rosser (H12 : red L₁ L₂) (H13 : red L₁ L₃) : { L₄ // red L₂ L₄ ∧ red L₃ L₄ } := ⟨reduce L₁, reduce.rev H12, reduce.rev H13⟩ instance : decidable_eq (free_group α) := function.injective.decidable_eq to_word.inj instance red.decidable_rel : decidable_rel (@red α) | [] [] := is_true red.refl | [] (hd2::tl2) := is_false $ λ H, list.no_confusion (red.nil_iff.1 H) | ((x,b)::tl) [] := match red.decidable_rel tl [(x, bnot b)] with | is_true H := is_true $ red.trans (red.cons_cons H) $ (@red.step.bnot _ [] [] _ _).to_red | is_false H := is_false $ λ H2, H $ red.cons_nil_iff_singleton.1 H2 end | ((x1,b1)::tl1) ((x2,b2)::tl2) := if h : (x1, b1) = (x2, b2) then match red.decidable_rel tl1 tl2 with | is_true H := is_true $ h ▸ red.cons_cons H | is_false H := is_false $ λ H2, H $ h ▸ (red.cons_cons_iff _).1 $ H2 end else match red.decidable_rel tl1 ((x1,bnot b1)::(x2,b2)::tl2) with | is_true H := is_true $ (red.cons_cons H).tail red.step.cons_bnot | is_false H := is_false $ λ H2, H $ red.inv_of_red_of_ne h H2 end /-- A list containing every word that `w₁` reduces to. -/ def red.enum (L₁ : list (α × bool)) : list (list (α × bool)) := list.filter (λ L₂, red L₁ L₂) (list.sublists L₁) theorem red.enum.sound (H : L₂ ∈ red.enum L₁) : red L₁ L₂ := list.of_mem_filter H theorem red.enum.complete (H : red L₁ L₂) : L₂ ∈ red.enum L₁ := list.mem_filter_of_mem (list.mem_sublists.2 $ red.sublist H) H instance : fintype { L₂ // red L₁ L₂ } := fintype.subtype (list.to_finset $ red.enum L₁) $ λ L₂, ⟨λ H, red.enum.sound $ list.mem_to_finset.1 H, λ H, list.mem_to_finset.2 $ red.enum.complete H⟩ end reduce end free_group