/- Copyright (c) 2018 Mitchell Rowett. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mitchell Rowett, Scott Morrison -/ import algebra.quotient import group_theory.group_action.basic import tactic.group /-! # Cosets This file develops the basic theory of left and right cosets. ## Main definitions * `left_coset a s`: the left coset `a * s` for an element `a : α` and a subset `s ⊆ α`, for an `add_group` this is `left_add_coset a s`. * `right_coset s a`: the right coset `s * a` for an element `a : α` and a subset `s ⊆ α`, for an `add_group` this is `right_add_coset s a`. * `quotient_group.quotient s`: the quotient type representing the left cosets with respect to a subgroup `s`, for an `add_group` this is `quotient_add_group.quotient s`. * `quotient_group.mk`: the canonical map from `α` to `α/s` for a subgroup `s` of `α`, for an `add_group` this is `quotient_add_group.mk`. * `subgroup.left_coset_equiv_subgroup`: the natural bijection between a left coset and the subgroup, for an `add_group` this is `add_subgroup.left_coset_equiv_add_subgroup`. ## Notation * `a *l s`: for `left_coset a s`. * `a +l s`: for `left_add_coset a s`. * `s *r a`: for `right_coset s a`. * `s +r a`: for `right_add_coset s a`. * `G ⧸ H` is the quotient of the (additive) group `G` by the (additive) subgroup `H` ## TODO Add `to_additive` to `preimage_mk_equiv_subgroup_times_set`. -/ open set function variable {α : Type*} /-- The left coset `a * s` for an element `a : α` and a subset `s : set α` -/ @[to_additive left_add_coset "The left coset `a+s` for an element `a : α` and a subset `s : set α`"] def left_coset [has_mul α] (a : α) (s : set α) : set α := (λ x, a * x) '' s /-- The right coset `s * a` for an element `a : α` and a subset `s : set α` -/ @[to_additive right_add_coset "The right coset `s+a` for an element `a : α` and a subset `s : set α`"] def right_coset [has_mul α] (s : set α) (a : α) : set α := (λ x, x * a) '' s localized "infix ` *l `:70 := left_coset" in coset localized "infix ` +l `:70 := left_add_coset" in coset localized "infix ` *r `:70 := right_coset" in coset localized "infix ` +r `:70 := right_add_coset" in coset section coset_mul variable [has_mul α] @[to_additive mem_left_add_coset] lemma mem_left_coset {s : set α} {x : α} (a : α) (hxS : x ∈ s) : a * x ∈ a *l s := mem_image_of_mem (λ b : α, a * b) hxS @[to_additive mem_right_add_coset] lemma mem_right_coset {s : set α} {x : α} (a : α) (hxS : x ∈ s) : x * a ∈ s *r a := mem_image_of_mem (λ b : α, b * a) hxS /-- Equality of two left cosets `a * s` and `b * s`. -/ @[to_additive left_add_coset_equivalence "Equality of two left cosets `a + s` and `b + s`."] def left_coset_equivalence (s : set α) (a b : α) := a *l s = b *l s @[to_additive left_add_coset_equivalence_rel] lemma left_coset_equivalence_rel (s : set α) : equivalence (left_coset_equivalence s) := mk_equivalence (left_coset_equivalence s) (λ a, rfl) (λ a b, eq.symm) (λ a b c, eq.trans) /-- Equality of two right cosets `s * a` and `s * b`. -/ @[to_additive right_add_coset_equivalence "Equality of two right cosets `s + a` and `s + b`."] def right_coset_equivalence (s : set α) (a b : α) := s *r a = s *r b @[to_additive right_add_coset_equivalence_rel] lemma right_coset_equivalence_rel (s : set α) : equivalence (right_coset_equivalence s) := mk_equivalence (right_coset_equivalence s) (λ a, rfl) (λ a b, eq.symm) (λ a b c, eq.trans) end coset_mul section coset_semigroup variable [semigroup α] @[simp, to_additive left_add_coset_assoc] lemma left_coset_assoc (s : set α) (a b : α) : a *l (b *l s) = (a * b) *l s := by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc] @[simp, to_additive right_add_coset_assoc] lemma right_coset_assoc (s : set α) (a b : α) : s *r a *r b = s *r (a * b) := by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc] @[to_additive left_add_coset_right_add_coset] lemma left_coset_right_coset (s : set α) (a b : α) : a *l s *r b = a *l (s *r b) := by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc] end coset_semigroup section coset_monoid variables [monoid α] (s : set α) @[simp, to_additive zero_left_add_coset] lemma one_left_coset : 1 *l s = s := set.ext $ by simp [left_coset] @[simp, to_additive right_add_coset_zero] lemma right_coset_one : s *r 1 = s := set.ext $ by simp [right_coset] end coset_monoid section coset_submonoid open submonoid variables [monoid α] (s : submonoid α) @[to_additive mem_own_left_add_coset] lemma mem_own_left_coset (a : α) : a ∈ a *l s := suffices a * 1 ∈ a *l s, by simpa, mem_left_coset a (one_mem s : 1 ∈ s) @[to_additive mem_own_right_add_coset] lemma mem_own_right_coset (a : α) : a ∈ (s : set α) *r a := suffices 1 * a ∈ (s : set α) *r a, by simpa, mem_right_coset a (one_mem s : 1 ∈ s) @[to_additive mem_left_add_coset_left_add_coset] lemma mem_left_coset_left_coset {a : α} (ha : a *l s = s) : a ∈ s := by rw [←set_like.mem_coe, ←ha]; exact mem_own_left_coset s a @[to_additive mem_right_add_coset_right_add_coset] lemma mem_right_coset_right_coset {a : α} (ha : (s : set α) *r a = s) : a ∈ s := by rw [←set_like.mem_coe, ←ha]; exact mem_own_right_coset s a end coset_submonoid section coset_group variables [group α] {s : set α} {x : α} @[to_additive mem_left_add_coset_iff] lemma mem_left_coset_iff (a : α) : x ∈ a *l s ↔ a⁻¹ * x ∈ s := iff.intro (assume ⟨b, hb, eq⟩, by simp [eq.symm, hb]) (assume h, ⟨a⁻¹ * x, h, by simp⟩) @[to_additive mem_right_add_coset_iff] lemma mem_right_coset_iff (a : α) : x ∈ s *r a ↔ x * a⁻¹ ∈ s := iff.intro (assume ⟨b, hb, eq⟩, by simp [eq.symm, hb]) (assume h, ⟨x * a⁻¹, h, by simp⟩) end coset_group section coset_subgroup open subgroup variables [group α] (s : subgroup α) @[to_additive left_add_coset_mem_left_add_coset] lemma left_coset_mem_left_coset {a : α} (ha : a ∈ s) : a *l s = s := set.ext $ by simp [mem_left_coset_iff, mul_mem_cancel_left (s.inv_mem ha)] @[to_additive right_add_coset_mem_right_add_coset] lemma right_coset_mem_right_coset {a : α} (ha : a ∈ s) : (s : set α) *r a = s := set.ext $ assume b, by simp [mem_right_coset_iff, mul_mem_cancel_right (s.inv_mem ha)] @[to_additive eq_add_cosets_of_normal] theorem eq_cosets_of_normal (N : s.normal) (g : α) : g *l s = s *r g := set.ext $ assume a, by simp [mem_left_coset_iff, mem_right_coset_iff]; rw [N.mem_comm_iff] @[to_additive normal_of_eq_add_cosets] theorem normal_of_eq_cosets (h : ∀ g : α, g *l s = s *r g) : s.normal := ⟨assume a ha g, show g * a * g⁻¹ ∈ (s : set α), by rw [← mem_right_coset_iff, ← h]; exact mem_left_coset g ha⟩ @[to_additive normal_iff_eq_add_cosets] theorem normal_iff_eq_cosets : s.normal ↔ ∀ g : α, g *l s = s *r g := ⟨@eq_cosets_of_normal _ _ s, normal_of_eq_cosets s⟩ @[to_additive left_add_coset_eq_iff] lemma left_coset_eq_iff {x y : α} : left_coset x s = left_coset y s ↔ x⁻¹ * y ∈ s := begin rw set.ext_iff, simp_rw [mem_left_coset_iff, set_like.mem_coe], split, { intro h, apply (h y).mpr, rw mul_left_inv, exact s.one_mem }, { intros h z, rw ←mul_inv_cancel_right x⁻¹ y, rw mul_assoc, exact s.mul_mem_cancel_left h }, end @[to_additive right_add_coset_eq_iff] lemma right_coset_eq_iff {x y : α} : right_coset ↑s x = right_coset s y ↔ y * x⁻¹ ∈ s := begin rw set.ext_iff, simp_rw [mem_right_coset_iff, set_like.mem_coe], split, { intro h, apply (h y).mpr, rw mul_right_inv, exact s.one_mem }, { intros h z, rw ←inv_mul_cancel_left y x⁻¹, rw ←mul_assoc, exact s.mul_mem_cancel_right h }, end end coset_subgroup run_cmd to_additive.map_namespace `quotient_group `quotient_add_group namespace quotient_group variables [group α] (s : subgroup α) /-- The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.-/ @[to_additive "The equivalence relation corresponding to the partition of a group by left cosets of a subgroup."] def left_rel : setoid α := mul_action.orbit_rel s.opposite α variables {s} @[to_additive] lemma left_rel_apply {x y : α} : @setoid.r _ (left_rel s) x y ↔ (x⁻¹ * y ∈ s) := calc (∃ a : s.opposite, y * mul_opposite.unop a = x) ↔ ∃ a : s, y * a = x : s.opposite_equiv.symm.exists_congr_left ... ↔ ∃ a : s, x⁻¹ * y = a⁻¹ : by simp only [inv_mul_eq_iff_eq_mul, eq_mul_inv_iff_mul_eq] ... ↔ x⁻¹ * y ∈ s : by simp [set_like.exists] variables (s) @[to_additive] lemma left_rel_eq : @setoid.r _ (left_rel s) = λ x y, x⁻¹ * y ∈ s := funext₂ $ by { simp only [eq_iff_iff], apply left_rel_apply } lemma left_rel_r_eq_left_coset_equivalence : @setoid.r _ (quotient_group.left_rel s) = left_coset_equivalence s := by { ext, rw left_rel_eq, exact (left_coset_eq_iff s).symm } @[to_additive] instance left_rel_decidable [decidable_pred (∈ s)] : decidable_rel (left_rel s).r := λ x y, by { rw left_rel_eq, exact ‹decidable_pred (∈ s)› _ } /-- `α ⧸ s` is the quotient type representing the left cosets of `s`. If `s` is a normal subgroup, `α ⧸ s` is a group -/ @[to_additive "`α ⧸ s` is the quotient type representing the left cosets of `s`. If `s` is a normal subgroup, `α ⧸ s` is a group"] instance : has_quotient α (subgroup α) := ⟨λ s, quotient (left_rel s)⟩ /-- The equivalence relation corresponding to the partition of a group by right cosets of a subgroup. -/ @[to_additive "The equivalence relation corresponding to the partition of a group by right cosets of a subgroup."] def right_rel : setoid α := mul_action.orbit_rel s α variables {s} @[to_additive] lemma right_rel_apply {x y : α} : @setoid.r _ (right_rel s) x y ↔ (y * x⁻¹ ∈ s) := calc (∃ a : s, (a:α) * y = x) ↔ ∃ a : s, y * x⁻¹ = a⁻¹ : by simp only [mul_inv_eq_iff_eq_mul, eq_inv_mul_iff_mul_eq] ... ↔ y * x⁻¹ ∈ s : by simp [set_like.exists] variables (s) @[to_additive] lemma right_rel_eq : @setoid.r _ (right_rel s) = λ x y, y * x⁻¹ ∈ s := funext₂ $ by { simp only [eq_iff_iff], apply right_rel_apply } lemma right_rel_r_eq_right_coset_equivalence : @setoid.r _ (quotient_group.right_rel s) = right_coset_equivalence s := by { ext, rw right_rel_eq, exact (right_coset_eq_iff s).symm } @[to_additive] instance right_rel_decidable [decidable_pred (∈ s)] : decidable_rel (right_rel s).r := λ x y, by { rw right_rel_eq, exact ‹decidable_pred (∈ s)› _ } /-- Right cosets are in bijection with left cosets. -/ @[to_additive "Right cosets are in bijection with left cosets."] def quotient_right_rel_equiv_quotient_left_rel : quotient (quotient_group.right_rel s) ≃ α ⧸ s := { to_fun := quotient.map' (λ g, g⁻¹) (λ a b, by { rw [left_rel_apply, right_rel_apply], exact λ h, (congr_arg (∈ s) (by group)).mp (s.inv_mem h) }), inv_fun := quotient.map' (λ g, g⁻¹) (λ a b, by { rw [left_rel_apply, right_rel_apply], exact λ h, (congr_arg (∈ s) (by group)).mp (s.inv_mem h) }), left_inv := λ g, quotient.induction_on' g (λ g, quotient.sound' (by { simp only [inv_inv], exact quotient.exact' rfl })), right_inv := λ g, quotient.induction_on' g (λ g, quotient.sound' (by { simp only [inv_inv], exact quotient.exact' rfl })) } @[to_additive] instance fintype_quotient_right_rel [fintype (α ⧸ s)] : fintype (quotient (quotient_group.right_rel s)) := fintype.of_equiv (α ⧸ s) (quotient_group.quotient_right_rel_equiv_quotient_left_rel s).symm @[to_additive] lemma card_quotient_right_rel [fintype (α ⧸ s)] : fintype.card (quotient (quotient_group.right_rel s)) = fintype.card (α ⧸ s) := fintype.of_equiv_card (quotient_group.quotient_right_rel_equiv_quotient_left_rel s).symm end quotient_group namespace quotient_group variables [group α] {s : subgroup α} @[to_additive] instance fintype [fintype α] (s : subgroup α) [decidable_rel (left_rel s).r] : fintype (α ⧸ s) := quotient.fintype (left_rel s) /-- The canonical map from a group `α` to the quotient `α ⧸ s`. -/ @[to_additive "The canonical map from an `add_group` `α` to the quotient `α ⧸ s`."] abbreviation mk (a : α) : α ⧸ s := quotient.mk' a @[to_additive] lemma mk_surjective : function.surjective $ @mk _ _ s := quotient.surjective_quotient_mk' @[elab_as_eliminator, to_additive] lemma induction_on {C : α ⧸ s → Prop} (x : α ⧸ s) (H : ∀ z, C (quotient_group.mk z)) : C x := quotient.induction_on' x H @[to_additive] instance : has_coe_t α (α ⧸ s) := ⟨mk⟩ -- note [use has_coe_t] @[elab_as_eliminator, to_additive] lemma induction_on' {C : α ⧸ s → Prop} (x : α ⧸ s) (H : ∀ z : α, C z) : C x := quotient.induction_on' x H @[simp, to_additive] lemma quotient_lift_on_coe {β} (f : α → β) (h) (x : α) : quotient.lift_on' (x : α ⧸ s) f h = f x := rfl @[to_additive] lemma forall_coe {C : α ⧸ s → Prop} : (∀ x : α ⧸ s, C x) ↔ ∀ x : α, C x := ⟨λ hx x, hx _, quot.ind⟩ @[to_additive] instance (s : subgroup α) : inhabited (α ⧸ s) := ⟨((1 : α) : α ⧸ s)⟩ @[to_additive quotient_add_group.eq] protected lemma eq {a b : α} : (a : α ⧸ s) = b ↔ a⁻¹ * b ∈ s := calc _ ↔ @setoid.r _ (left_rel s) a b : quotient.eq' ... ↔ _ : by rw left_rel_apply @[to_additive quotient_add_group.eq'] lemma eq' {a b : α} : (mk a : α ⧸ s) = mk b ↔ a⁻¹ * b ∈ s := quotient_group.eq @[to_additive quotient_add_group.out_eq'] lemma out_eq' (a : α ⧸ s) : mk a.out' = a := quotient.out_eq' a variables (s) /- It can be useful to write `obtain ⟨h, H⟩ := mk_out'_eq_mul ...`, and then `rw [H]` or `simp_rw [H]` or `simp only [H]`. In order for `simp_rw` and `simp only` to work, this lemma is stated in terms of an arbitrary `h : s`, rathern that the specific `h = g⁻¹ * (mk g).out'`. -/ @[to_additive quotient_add_group.mk_out'_eq_mul] lemma mk_out'_eq_mul (g : α) : ∃ h : s, (mk g : α ⧸ s).out' = g * h := ⟨⟨g⁻¹ * (mk g).out', eq'.mp (mk g).out_eq'.symm⟩, by rw [set_like.coe_mk, mul_inv_cancel_left]⟩ variables {s} @[to_additive quotient_add_group.mk_mul_of_mem] lemma mk_mul_of_mem (g₁ g₂ : α) (hg₂ : g₂ ∈ s) : (mk (g₁ * g₂) : α ⧸ s) = mk g₁ := by rwa [eq', mul_inv_rev, inv_mul_cancel_right, s.inv_mem_iff] @[to_additive] lemma eq_class_eq_left_coset (s : subgroup α) (g : α) : {x : α | (x : α ⧸ s) = g} = left_coset g s := set.ext $ λ z, by rw [mem_left_coset_iff, set.mem_set_of_eq, eq_comm, quotient_group.eq, set_like.mem_coe] @[to_additive] lemma preimage_image_coe (N : subgroup α) (s : set α) : coe ⁻¹' ((coe : α → α ⧸ N) '' s) = ⋃ x : N, (λ y : α, y * x) ⁻¹' s := begin ext x, simp only [quotient_group.eq, set_like.exists, exists_prop, set.mem_preimage, set.mem_Union, set.mem_image, set_like.coe_mk, ← eq_inv_mul_iff_mul_eq], exact ⟨λ ⟨y, hs, hN⟩, ⟨_, N.inv_mem hN, by simpa using hs⟩, λ ⟨z, hz, hxz⟩, ⟨x*z, hxz, by simpa using hz⟩⟩, end end quotient_group namespace subgroup open quotient_group variables [group α] {s : subgroup α} /-- The natural bijection between a left coset `g * s` and `s`. -/ @[to_additive "The natural bijection between the cosets `g + s` and `s`."] def left_coset_equiv_subgroup (g : α) : left_coset g s ≃ s := ⟨λ x, ⟨g⁻¹ * x.1, (mem_left_coset_iff _).1 x.2⟩, λ x, ⟨g * x.1, x.1, x.2, rfl⟩, λ ⟨x, hx⟩, subtype.eq $ by simp, λ ⟨g, hg⟩, subtype.eq $ by simp⟩ /-- The natural bijection between a right coset `s * g` and `s`. -/ @[to_additive "The natural bijection between the cosets `s + g` and `s`."] def right_coset_equiv_subgroup (g : α) : right_coset ↑s g ≃ s := ⟨λ x, ⟨x.1 * g⁻¹, (mem_right_coset_iff _).1 x.2⟩, λ x, ⟨x.1 * g, x.1, x.2, rfl⟩, λ ⟨x, hx⟩, subtype.eq $ by simp, λ ⟨g, hg⟩, subtype.eq $ by simp⟩ /-- A (non-canonical) bijection between a group `α` and the product `(α/s) × s` -/ @[to_additive "A (non-canonical) bijection between an add_group `α` and the product `(α/s) × s`"] noncomputable def group_equiv_quotient_times_subgroup : α ≃ (α ⧸ s) × s := calc α ≃ Σ L : α ⧸ s, {x : α // (x : α ⧸ s) = L} : (equiv.sigma_fiber_equiv quotient_group.mk).symm ... ≃ Σ L : α ⧸ s, left_coset (quotient.out' L) s : equiv.sigma_congr_right (λ L, begin rw ← eq_class_eq_left_coset, show _root_.subtype (λ x : α, quotient.mk' x = L) ≃ _root_.subtype (λ x : α, quotient.mk' x = quotient.mk' _), simp [-quotient.eq'], end) ... ≃ Σ L : α ⧸ s, s : equiv.sigma_congr_right (λ L, left_coset_equiv_subgroup _) ... ≃ (α ⧸ s) × s : equiv.sigma_equiv_prod _ _ variables {t : subgroup α} /-- If `H ≤ K`, then `G/H ≃ G/K × K/H` constructively, using the provided right inverse of the quotient map `G → G/K`. The classical version is `quotient_equiv_prod_of_le`. -/ @[to_additive "If `H ≤ K`, then `G/H ≃ G/K × K/H` constructively, using the provided right inverse of the quotient map `G → G/K`. The classical version is `quotient_equiv_prod_of_le`.", simps] def quotient_equiv_prod_of_le' (h_le : s ≤ t) (f : α ⧸ t → α) (hf : function.right_inverse f quotient_group.mk) : α ⧸ s ≃ (α ⧸ t) × (t ⧸ s.subgroup_of t) := { to_fun := λ a, ⟨a.map' id (λ b c h, left_rel_apply.mpr (h_le (left_rel_apply.mp h))), a.map' (λ g : α, ⟨(f (quotient.mk' g))⁻¹ * g, left_rel_apply.mp (quotient.exact' (hf g))⟩) (λ b c h, by { rw left_rel_apply, change ((f b)⁻¹ * b)⁻¹ * ((f c)⁻¹ * c) ∈ s, have key : f b = f c := congr_arg f (quotient.sound' (left_rel_apply.mpr (h_le (left_rel_apply.mp h)))), rwa [key, mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_left, ← left_rel_apply] })⟩, inv_fun := λ a, a.2.map' (λ b, f a.1 * b) (λ b c h, by { rw left_rel_apply at ⊢ h, change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s, rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left] }), left_inv := by { refine quotient.ind' (λ a, _), simp_rw [quotient.map'_mk', id.def, set_like.coe_mk, mul_inv_cancel_left] }, right_inv := by { refine prod.rec _, refine quotient.ind' (λ a, _), refine quotient.ind' (λ b, _), have key : quotient.mk' (f (quotient.mk' a) * b) = quotient.mk' a := (quotient_group.mk_mul_of_mem (f a) ↑b b.2).trans (hf a), simp_rw [quotient.map'_mk', id.def, key, inv_mul_cancel_left, subtype.coe_eta] } } /-- If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively. The constructive version is `quotient_equiv_prod_of_le'`. -/ @[to_additive "If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively. The constructive version is `quotient_equiv_prod_of_le'`.", simps] noncomputable def quotient_equiv_prod_of_le (h_le : s ≤ t) : α ⧸ s ≃ (α ⧸ t) × (t ⧸ s.subgroup_of t) := quotient_equiv_prod_of_le' h_le quotient.out' quotient.out_eq' /-- If `K ≤ L`, then there is an embedding `K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L)`. -/ @[to_additive "If `K ≤ L`, then there is an embedding `K ⧸ (H.add_subgroup_of K) ↪ L ⧸ (H.add_subgroup_of L)`."] def quotient_subgroup_of_embedding_of_le (H : subgroup α) {K L : subgroup α} (h : K ≤ L) : K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L) := { to_fun := quotient.map' (set.inclusion h) (λ a b, by { simp [left_rel_apply], exact id }), inj' := begin refine quotient.ind₂' (λ a b, _), refine λ h, (quotient.eq'.mpr ∘ left_rel_apply.mpr) _, have := left_rel_apply.mp (quotient.eq'.mp h), exact this, end } @[to_additive] lemma card_eq_card_quotient_mul_card_subgroup [fintype α] (s : subgroup α) [fintype s] [decidable_pred (λ a, a ∈ s)] : fintype.card α = fintype.card (α ⧸ s) * fintype.card s := by rw ← fintype.card_prod; exact fintype.card_congr (subgroup.group_equiv_quotient_times_subgroup) /-- **Lagrange's Theorem**: The order of a subgroup divides the order of its ambient group. -/ @[to_additive] lemma card_subgroup_dvd_card [fintype α] (s : subgroup α) [fintype s] : fintype.card s ∣ fintype.card α := by classical; simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ] @[to_additive] lemma card_quotient_dvd_card [fintype α] (s : subgroup α) [decidable_pred (λ a, a ∈ s)] [fintype s] : fintype.card (α ⧸ s) ∣ fintype.card α := by simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_right ℕ] open fintype variables {H : Type*} [group H] @[to_additive] lemma card_dvd_of_injective [fintype α] [fintype H] (f : α →* H) (hf : function.injective f) : card α ∣ card H := by classical; calc card α = card (f.range : subgroup H) : card_congr (equiv.of_injective f hf) ...∣ card H : card_subgroup_dvd_card _ @[to_additive] lemma card_dvd_of_le {H K : subgroup α} [fintype H] [fintype K] (hHK : H ≤ K) : card H ∣ card K := card_dvd_of_injective (inclusion hHK) (inclusion_injective hHK) @[to_additive] lemma card_comap_dvd_of_injective (K : subgroup H) [fintype K] (f : α →* H) [fintype (K.comap f)] (hf : function.injective f) : fintype.card (K.comap f) ∣ fintype.card K := by haveI : fintype ((K.comap f).map f) := fintype.of_equiv _ (equiv_map_of_injective _ _ hf).to_equiv; calc fintype.card (K.comap f) = fintype.card ((K.comap f).map f) : fintype.card_congr (equiv_map_of_injective _ _ hf).to_equiv ... ∣ fintype.card K : card_dvd_of_le (map_comap_le _ _) end subgroup namespace quotient_group variables [group α] -- FIXME -- why is there no `to_additive`? /-- If `s` is a subgroup of the group `α`, and `t` is a subset of `α/s`, then there is a (typically non-canonical) bijection between the preimage of `t` in `α` and the product `s × t`. -/ noncomputable def preimage_mk_equiv_subgroup_times_set (s : subgroup α) (t : set (α ⧸ s)) : quotient_group.mk ⁻¹' t ≃ s × t := have h : ∀ {x : α ⧸ s} {a : α}, x ∈ t → a ∈ s → (quotient.mk' (quotient.out' x * a) : α ⧸ s) = quotient.mk' (quotient.out' x) := λ x a hx ha, quotient.sound' $ by rwa [left_rel_apply, ← s.inv_mem_iff, mul_inv_rev, inv_inv, ← mul_assoc, inv_mul_self, one_mul], { to_fun := λ ⟨a, ha⟩, ⟨⟨(quotient.out' (quotient.mk' a))⁻¹ * a, left_rel_apply.mp (@quotient.exact' _ (left_rel s) _ _ $ (quotient.out_eq' _))⟩, ⟨quotient.mk' a, ha⟩⟩, inv_fun := λ ⟨⟨a, ha⟩, ⟨x, hx⟩⟩, ⟨quotient.out' x * a, show quotient.mk' _ ∈ t, by simp [h hx ha, hx]⟩, left_inv := λ ⟨a, ha⟩, subtype.eq $ show _ * _ = a, by simp, right_inv := λ ⟨⟨a, ha⟩, ⟨x, hx⟩⟩, show (_, _) = _, by simp [h hx ha] } end quotient_group /-- We use the class `has_coe_t` instead of `has_coe` if the first argument is a variable, or if the second argument is a variable not occurring in the first. Using `has_coe` would cause looping of type-class inference. See -/ library_note "use has_coe_t"