/- Copyright (c) 2022 Praneeth Kolichala. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Praneeth Kolichala -/ import algebraic_topology.fundamental_groupoid.induced_maps import category_theory.punit /-! # Fundamental groupoid of punit The fundamental groupoid of punit is naturally isomorphic to `category_theory.discrete punit` -/ noncomputable theory open category_theory universes u v namespace path instance : subsingleton (path punit.star punit.star) := ⟨λ x y, by ext⟩ end path namespace fundamental_groupoid instance {x y : fundamental_groupoid punit} : subsingleton (x ⟶ y) := begin convert_to subsingleton (path.homotopic.quotient punit.star punit.star), { congr; apply punit_eq_star, }, apply quotient.subsingleton, end /-- Equivalence of groupoids between fundamental groupoid of punit and punit -/ def punit_equiv_discrete_punit : fundamental_groupoid punit.{u+1} ≌ discrete punit.{v+1} := equivalence.mk (functor.star _) ((category_theory.functor.const _).obj punit.star) (nat_iso.of_components (λ _, eq_to_iso dec_trivial) (λ _ _ _, dec_trivial)) (functor.punit_ext _ _) end fundamental_groupoid