/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov -/ import algebra.module.submodule.basic import algebra.punit_instances /-! # The lattice structure on `submodule`s This file defines the lattice structure on submodules, `submodule.complete_lattice`, with `⊥` defined as `{0}` and `⊓` defined as intersection of the underlying carrier. If `p` and `q` are submodules of a module, `p ≤ q` means that `p ⊆ q`. Many results about operations on this lattice structure are defined in `linear_algebra/basic.lean`, most notably those which use `span`. ## Implementation notes This structure should match the `add_submonoid.complete_lattice` structure, and we should try to unify the APIs where possible. -/ variables {R S M : Type*} section add_comm_monoid variables [semiring R] [semiring S] [add_comm_monoid M] [module R M] [module S M] variables [has_smul S R] [is_scalar_tower S R M] variables {p q : submodule R M} namespace submodule /-- The set `{0}` is the bottom element of the lattice of submodules. -/ instance : has_bot (submodule R M) := ⟨{ carrier := {0}, smul_mem' := by simp { contextual := tt }, .. (⊥ : add_submonoid M)}⟩ instance inhabited' : inhabited (submodule R M) := ⟨⊥⟩ @[simp] lemma bot_coe : ((⊥ : submodule R M) : set M) = {0} := rfl @[simp] lemma bot_to_add_submonoid : (⊥ : submodule R M).to_add_submonoid = ⊥ := rfl section variables (R) @[simp] lemma restrict_scalars_bot : restrict_scalars S (⊥ : submodule R M) = ⊥ := rfl @[simp] lemma mem_bot {x : M} : x ∈ (⊥ : submodule R M) ↔ x = 0 := set.mem_singleton_iff end @[simp] lemma restrict_scalars_eq_bot_iff {p : submodule R M} : restrict_scalars S p = ⊥ ↔ p = ⊥ := by simp [set_like.ext_iff] instance unique_bot : unique (⊥ : submodule R M) := ⟨infer_instance, λ x, subtype.ext $ (mem_bot R).1 x.mem⟩ instance : order_bot (submodule R M) := { bot := ⊥, bot_le := λ p x, by simp [zero_mem] {contextual := tt} } protected lemma eq_bot_iff (p : submodule R M) : p = ⊥ ↔ ∀ x ∈ p, x = (0 : M) := ⟨ λ h, h.symm ▸ λ x hx, (mem_bot R).mp hx, λ h, eq_bot_iff.mpr (λ x hx, (mem_bot R).mpr (h x hx)) ⟩ @[ext] protected lemma bot_ext (x y : (⊥ : submodule R M)) : x = y := begin rcases x with ⟨x, xm⟩, rcases y with ⟨y, ym⟩, congr, rw (submodule.eq_bot_iff _).mp rfl x xm, rw (submodule.eq_bot_iff _).mp rfl y ym, end protected lemma ne_bot_iff (p : submodule R M) : p ≠ ⊥ ↔ ∃ x ∈ p, x ≠ (0 : M) := by { haveI := classical.prop_decidable, simp_rw [ne.def, p.eq_bot_iff, not_forall] } lemma nonzero_mem_of_bot_lt {p : submodule R M} (bot_lt : ⊥ < p) : ∃ a : p, a ≠ 0 := let ⟨b, hb₁, hb₂⟩ := p.ne_bot_iff.mp bot_lt.ne' in ⟨⟨b, hb₁⟩, hb₂ ∘ (congr_arg coe)⟩ lemma exists_mem_ne_zero_of_ne_bot {p : submodule R M} (h : p ≠ ⊥) : ∃ b : M, b ∈ p ∧ b ≠ 0 := let ⟨b, hb₁, hb₂⟩ := p.ne_bot_iff.mp h in ⟨b, hb₁, hb₂⟩ /-- The bottom submodule is linearly equivalent to punit as an `R`-module. -/ @[simps] def bot_equiv_punit : (⊥ : submodule R M) ≃ₗ[R] punit := { to_fun := λ x, punit.star, inv_fun := λ x, 0, map_add' := by { intros, ext, }, map_smul' := by { intros, ext, }, left_inv := by { intro x, ext, }, right_inv := by { intro x, ext, }, } lemma eq_bot_of_subsingleton (p : submodule R M) [subsingleton p] : p = ⊥ := begin rw eq_bot_iff, intros v hv, exact congr_arg coe (subsingleton.elim (⟨v, hv⟩ : p) 0) end /-- The universal set is the top element of the lattice of submodules. -/ instance : has_top (submodule R M) := ⟨{ carrier := set.univ, smul_mem' := λ _ _ _, trivial, .. (⊤ : add_submonoid M)}⟩ @[simp] lemma top_coe : ((⊤ : submodule R M) : set M) = set.univ := rfl @[simp] lemma top_to_add_submonoid : (⊤ : submodule R M).to_add_submonoid = ⊤ := rfl @[simp] lemma mem_top {x : M} : x ∈ (⊤ : submodule R M) := trivial section variables (R) @[simp] lemma restrict_scalars_top : restrict_scalars S (⊤ : submodule R M) = ⊤ := rfl end @[simp] lemma restrict_scalars_eq_top_iff {p : submodule R M} : restrict_scalars S p = ⊤ ↔ p = ⊤ := by simp [set_like.ext_iff] instance : order_top (submodule R M) := { top := ⊤, le_top := λ p x _, trivial } lemma eq_top_iff' {p : submodule R M} : p = ⊤ ↔ ∀ x, x ∈ p := eq_top_iff.trans ⟨λ h x, h trivial, λ h x _, h x⟩ /-- The top submodule is linearly equivalent to the module. This is the module version of `add_submonoid.top_equiv`. -/ @[simps] def top_equiv : (⊤ : submodule R M) ≃ₗ[R] M := { to_fun := λ x, x, inv_fun := λ x, ⟨x, by simp⟩, map_add' := by { intros, refl, }, map_smul' := by { intros, refl, }, left_inv := by { intro x, ext, refl, }, right_inv := by { intro x, refl, }, } instance : has_Inf (submodule R M) := ⟨λ S, { carrier := ⋂ s ∈ S, (s : set M), zero_mem' := by simp [zero_mem], add_mem' := by simp [add_mem] {contextual := tt}, smul_mem' := by simp [smul_mem] {contextual := tt} }⟩ private lemma Inf_le' {S : set (submodule R M)} {p} : p ∈ S → Inf S ≤ p := set.bInter_subset_of_mem private lemma le_Inf' {S : set (submodule R M)} {p} : (∀q ∈ S, p ≤ q) → p ≤ Inf S := set.subset_Inter₂ instance : has_inf (submodule R M) := ⟨λ p q, { carrier := p ∩ q, zero_mem' := by simp [zero_mem], add_mem' := by simp [add_mem] {contextual := tt}, smul_mem' := by simp [smul_mem] {contextual := tt} }⟩ instance : complete_lattice (submodule R M) := { sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x}, le_sup_left := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, ha, le_sup_right := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, hb, sup_le := λ a b c h₁ h₂, Inf_le' ⟨h₁, h₂⟩, inf := (⊓), le_inf := λ a b c, set.subset_inter, inf_le_left := λ a b, set.inter_subset_left _ _, inf_le_right := λ a b, set.inter_subset_right _ _, Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t}, le_Sup := λ s p hs, le_Inf' $ λ q hq, hq _ hs, Sup_le := λ s p hs, Inf_le' hs, Inf := Inf, le_Inf := λ s a, le_Inf', Inf_le := λ s a, Inf_le', ..submodule.order_top, ..submodule.order_bot, ..set_like.partial_order } @[simp] theorem inf_coe : ↑(p ⊓ q) = (p ∩ q : set M) := rfl @[simp] theorem mem_inf {p q : submodule R M} {x : M} : x ∈ p ⊓ q ↔ x ∈ p ∧ x ∈ q := iff.rfl @[simp] theorem Inf_coe (P : set (submodule R M)) : (↑(Inf P) : set M) = ⋂ p ∈ P, ↑p := rfl @[simp] theorem finset_inf_coe {ι} (s : finset ι) (p : ι → submodule R M) : (↑(s.inf p) : set M) = ⋂ i ∈ s, ↑(p i) := begin letI := classical.dec_eq ι, refine s.induction_on _ (λ i s hi ih, _), { simp }, { rw [finset.inf_insert, inf_coe, ih], simp }, end @[simp] theorem infi_coe {ι} (p : ι → submodule R M) : (↑⨅ i, p i : set M) = ⋂ i, ↑(p i) := by rw [infi, Inf_coe]; ext a; simp; exact ⟨λ h i, h _ i rfl, λ h i x e, e ▸ h _⟩ @[simp] lemma mem_Inf {S : set (submodule R M)} {x : M} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p := set.mem_Inter₂ @[simp] theorem mem_infi {ι} (p : ι → submodule R M) {x} : x ∈ (⨅ i, p i) ↔ ∀ i, x ∈ p i := by rw [← set_like.mem_coe, infi_coe, set.mem_Inter]; refl @[simp] theorem mem_finset_inf {ι} {s : finset ι} {p : ι → submodule R M} {x : M} : x ∈ s.inf p ↔ ∀ i ∈ s, x ∈ p i := by simp only [← set_like.mem_coe, finset_inf_coe, set.mem_Inter] lemma mem_sup_left {S T : submodule R M} : ∀ {x : M}, x ∈ S → x ∈ S ⊔ T := show S ≤ S ⊔ T, from le_sup_left lemma mem_sup_right {S T : submodule R M} : ∀ {x : M}, x ∈ T → x ∈ S ⊔ T := show T ≤ S ⊔ T, from le_sup_right lemma add_mem_sup {S T : submodule R M} {s t : M} (hs : s ∈ S) (ht : t ∈ T) : s + t ∈ S ⊔ T := add_mem (mem_sup_left hs) (mem_sup_right ht) lemma sub_mem_sup {R' M' : Type*} [ring R'] [add_comm_group M'] [module R' M'] {S T : submodule R' M'} {s t : M'} (hs : s ∈ S) (ht : t ∈ T) : s - t ∈ S ⊔ T := begin rw sub_eq_add_neg, exact add_mem_sup hs (neg_mem ht), end lemma mem_supr_of_mem {ι : Sort*} {b : M} {p : ι → submodule R M} (i : ι) (h : b ∈ p i) : b ∈ (⨆i, p i) := have p i ≤ (⨆i, p i) := le_supr p i, @this b h open_locale big_operators lemma sum_mem_supr {ι : Type*} [fintype ι] {f : ι → M} {p : ι → submodule R M} (h : ∀ i, f i ∈ p i) : ∑ i, f i ∈ ⨆ i, p i := sum_mem $ λ i hi, mem_supr_of_mem i (h i) lemma sum_mem_bsupr {ι : Type*} {s : finset ι} {f : ι → M} {p : ι → submodule R M} (h : ∀ i ∈ s, f i ∈ p i) : ∑ i in s, f i ∈ ⨆ i ∈ s, p i := sum_mem $ λ i hi, mem_supr_of_mem i $ mem_supr_of_mem hi (h i hi) /-! Note that `submodule.mem_supr` is provided in `linear_algebra/basic.lean`. -/ lemma mem_Sup_of_mem {S : set (submodule R M)} {s : submodule R M} (hs : s ∈ S) : ∀ {x : M}, x ∈ s → x ∈ Sup S := show s ≤ Sup S, from le_Sup hs theorem disjoint_def {p p' : submodule R M} : disjoint p p' ↔ ∀ x ∈ p, x ∈ p' → x = (0:M) := show (∀ x, x ∈ p ∧ x ∈ p' → x ∈ ({0} : set M)) ↔ _, by simp theorem disjoint_def' {p p' : submodule R M} : disjoint p p' ↔ ∀ (x ∈ p) (y ∈ p'), x = y → x = (0:M) := disjoint_def.trans ⟨λ h x hx y hy hxy, h x hx $ hxy.symm ▸ hy, λ h x hx hx', h _ hx x hx' rfl⟩ lemma eq_zero_of_coe_mem_of_disjoint (hpq : disjoint p q) {a : p} (ha : (a : M) ∈ q) : a = 0 := by exact_mod_cast disjoint_def.mp hpq a (coe_mem a) ha end submodule section nat_submodule /-- An additive submonoid is equivalent to a ℕ-submodule. -/ def add_submonoid.to_nat_submodule : add_submonoid M ≃o submodule ℕ M := { to_fun := λ S, { smul_mem' := λ r s hs, show r • s ∈ S, from nsmul_mem hs _, ..S }, inv_fun := submodule.to_add_submonoid, left_inv := λ ⟨S, _, _⟩, rfl, right_inv := λ ⟨S, _, _, _⟩, rfl, map_rel_iff' := λ a b, iff.rfl } @[simp] lemma add_submonoid.to_nat_submodule_symm : ⇑(add_submonoid.to_nat_submodule.symm : _ ≃o add_submonoid M) = submodule.to_add_submonoid := rfl @[simp] lemma add_submonoid.coe_to_nat_submodule (S : add_submonoid M) : (S.to_nat_submodule : set M) = S := rfl @[simp] lemma add_submonoid.to_nat_submodule_to_add_submonoid (S : add_submonoid M) : S.to_nat_submodule.to_add_submonoid = S := add_submonoid.to_nat_submodule.symm_apply_apply S @[simp] lemma submodule.to_add_submonoid_to_nat_submodule (S : submodule ℕ M) : S.to_add_submonoid.to_nat_submodule = S := add_submonoid.to_nat_submodule.apply_symm_apply S end nat_submodule end add_comm_monoid section int_submodule variables [add_comm_group M] /-- An additive subgroup is equivalent to a ℤ-submodule. -/ def add_subgroup.to_int_submodule : add_subgroup M ≃o submodule ℤ M := { to_fun := λ S, { smul_mem' := λ r s hs, S.zsmul_mem hs _, ..S}, inv_fun := submodule.to_add_subgroup, left_inv := λ ⟨S, _, _, _⟩, rfl, right_inv := λ ⟨S, _, _, _⟩, rfl, map_rel_iff' := λ a b, iff.rfl } @[simp] lemma add_subgroup.to_int_submodule_symm : ⇑(add_subgroup.to_int_submodule.symm : _ ≃o add_subgroup M) = submodule.to_add_subgroup := rfl @[simp] lemma add_subgroup.coe_to_int_submodule (S : add_subgroup M) : (S.to_int_submodule : set M) = S := rfl @[simp] lemma add_subgroup.to_int_submodule_to_add_subgroup (S : add_subgroup M) : S.to_int_submodule.to_add_subgroup = S := add_subgroup.to_int_submodule.symm_apply_apply S @[simp] lemma submodule.to_add_subgroup_to_int_submodule (S : submodule ℤ M) : S.to_add_subgroup.to_int_submodule = S := add_subgroup.to_int_submodule.apply_symm_apply S end int_submodule