/- Copyright (c) 2020 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import algebra.ring.equiv import group_theory.group_action.group import ring_theory.subring.basic /-! # Group action on rings This file defines the typeclass of monoid acting on semirings `mul_semiring_action M R`, and the corresponding typeclass of invariant subrings. Note that `algebra` does not satisfy the axioms of `mul_semiring_action`. ## Implementation notes There is no separate typeclass for group acting on rings, group acting on fields, etc. They are all grouped under `mul_semiring_action`. ## Tags group action, invariant subring -/ universes u v open_locale big_operators /-- Typeclass for multiplicative actions by monoids on semirings. This combines `distrib_mul_action` with `mul_distrib_mul_action`. -/ class mul_semiring_action (M : Type u) (R : Type v) [monoid M] [semiring R] extends distrib_mul_action M R := (smul_one : ∀ (g : M), (g • 1 : R) = 1) (smul_mul : ∀ (g : M) (x y : R), g • (x * y) = (g • x) * (g • y)) section semiring variables (M G : Type u) [monoid M] [group G] variables (A R S F : Type v) [add_monoid A] [semiring R] [comm_semiring S] [division_ring F] -- note we could not use `extends` since these typeclasses are made with `old_structure_cmd` @[priority 100] instance mul_semiring_action.to_mul_distrib_mul_action [h : mul_semiring_action M R] : mul_distrib_mul_action M R := { ..h } /-- Each element of the monoid defines a semiring homomorphism. -/ @[simps] def mul_semiring_action.to_ring_hom [mul_semiring_action M R] (x : M) : R →+* R := { .. mul_distrib_mul_action.to_monoid_hom R x, .. distrib_mul_action.to_add_monoid_hom R x } theorem to_ring_hom_injective [mul_semiring_action M R] [has_faithful_smul M R] : function.injective (mul_semiring_action.to_ring_hom M R) := λ m₁ m₂ h, eq_of_smul_eq_smul $ λ r, ring_hom.ext_iff.1 h r /-- Each element of the group defines a semiring isomorphism. -/ @[simps] def mul_semiring_action.to_ring_equiv [mul_semiring_action G R] (x : G) : R ≃+* R := { .. distrib_mul_action.to_add_equiv R x, .. mul_semiring_action.to_ring_hom G R x } section variables {M G R} /-- A stronger version of `submonoid.distrib_mul_action`. -/ instance submonoid.mul_semiring_action [mul_semiring_action M R] (H : submonoid M) : mul_semiring_action H R := { smul := (•), .. H.mul_distrib_mul_action, .. H.distrib_mul_action } /-- A stronger version of `subgroup.distrib_mul_action`. -/ instance subgroup.mul_semiring_action [mul_semiring_action G R] (H : subgroup G) : mul_semiring_action H R := H.to_submonoid.mul_semiring_action /-- A stronger version of `subsemiring.distrib_mul_action`. -/ instance subsemiring.mul_semiring_action {R'} [semiring R'] [mul_semiring_action R' R] (H : subsemiring R') : mul_semiring_action H R := H.to_submonoid.mul_semiring_action /-- A stronger version of `subring.distrib_mul_action`. -/ instance subring.mul_semiring_action {R'} [ring R'] [mul_semiring_action R' R] (H : subring R') : mul_semiring_action H R := H.to_subsemiring.mul_semiring_action end section simp_lemmas variables {M G A R F} attribute [simp] smul_one smul_mul' smul_zero smul_add /-- Note that `smul_inv'` refers to the group case, and `smul_inv` has an additional inverse on `x`. -/ @[simp] lemma smul_inv'' [mul_semiring_action M F] (x : M) (m : F) : x • m⁻¹ = (x • m)⁻¹ := (mul_semiring_action.to_ring_hom M F x).map_inv _ end simp_lemmas end semiring section ring variables (M : Type u) [monoid M] {R : Type v} [ring R] [mul_semiring_action M R] variables (S : subring R) open mul_action /-- A typeclass for subrings invariant under a `mul_semiring_action`. -/ class is_invariant_subring : Prop := (smul_mem : ∀ (m : M) {x : R}, x ∈ S → m • x ∈ S) instance is_invariant_subring.to_mul_semiring_action [is_invariant_subring M S] : mul_semiring_action M S := { smul := λ m x, ⟨m • x, is_invariant_subring.smul_mem m x.2⟩, one_smul := λ s, subtype.eq $ one_smul M s, mul_smul := λ m₁ m₂ s, subtype.eq $ mul_smul m₁ m₂ s, smul_add := λ m s₁ s₂, subtype.eq $ smul_add m s₁ s₂, smul_zero := λ m, subtype.eq $ smul_zero m, smul_one := λ m, subtype.eq $ smul_one m, smul_mul := λ m s₁ s₂, subtype.eq $ smul_mul' m s₁ s₂ } end ring