/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import algebra.group.defs import order.basic import order.monotone /-! # Covariants and contravariants This file contains general lemmas and instances to work with the interactions between a relation and an action on a Type. The intended application is the splitting of the ordering from the algebraic assumptions on the operations in the `ordered_[...]` hierarchy. The strategy is to introduce two more flexible typeclasses, `covariant_class` and `contravariant_class`: * `covariant_class` models the implication `a ≤ b → c * a ≤ c * b` (multiplication is monotone), * `contravariant_class` models the implication `a * b < a * c → b < c`. Since `co(ntra)variant_class` takes as input the operation (typically `(+)` or `(*)`) and the order relation (typically `(≤)` or `(<)`), these are the only two typeclasses that I have used. The general approach is to formulate the lemma that you are interested in and prove it, with the `ordered_[...]` typeclass of your liking. After that, you convert the single typeclass, say `[ordered_cancel_monoid M]`, into three typeclasses, e.g. `[left_cancel_semigroup M] [partial_order M] [covariant_class M M (function.swap (*)) (≤)]` and have a go at seeing if the proof still works! Note that it is possible to combine several co(ntra)variant_class assumptions together. Indeed, the usual ordered typeclasses arise from assuming the pair `[covariant_class M M (*) (≤)] [contravariant_class M M (*) (<)]` on top of order/algebraic assumptions. A formal remark is that normally `covariant_class` uses the `(≤)`-relation, while `contravariant_class` uses the `(<)`-relation. This need not be the case in general, but seems to be the most common usage. In the opposite direction, the implication ```lean [semigroup α] [partial_order α] [contravariant_class α α (*) (≤)] => left_cancel_semigroup α ``` holds -- note the `co*ntra*` assumption on the `(≤)`-relation. # Formalization notes We stick to the convention of using `function.swap (*)` (or `function.swap (+)`), for the typeclass assumptions, since `function.swap` is slightly better behaved than `flip`. However, sometimes as a **non-typeclass** assumption, we prefer `flip (*)` (or `flip (+)`), as it is easier to use. -/ -- TODO: convert `has_exists_mul_of_le`, `has_exists_add_of_le`? -- TODO: relationship with `con/add_con` -- TODO: include equivalence of `left_cancel_semigroup` with -- `semigroup partial_order contravariant_class α α (*) (≤)`? -- TODO : use ⇒, as per Eric's suggestion? See -- https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic/ordered.20stuff/near/236148738 -- for a discussion. open function section variants variables {M N : Type*} (μ : M → N → N) (r : N → N → Prop) variables (M N) /-- `covariant` is useful to formulate succintly statements about the interactions between an action of a Type on another one and a relation on the acted-upon Type. See the `covariant_class` doc-string for its meaning. -/ def covariant : Prop := ∀ (m) {n₁ n₂}, r n₁ n₂ → r (μ m n₁) (μ m n₂) /-- `contravariant` is useful to formulate succintly statements about the interactions between an action of a Type on another one and a relation on the acted-upon Type. See the `contravariant_class` doc-string for its meaning. -/ def contravariant : Prop := ∀ (m) {n₁ n₂}, r (μ m n₁) (μ m n₂) → r n₁ n₂ /-- Given an action `μ` of a Type `M` on a Type `N` and a relation `r` on `N`, informally, the `covariant_class` says that "the action `μ` preserves the relation `r`." More precisely, the `covariant_class` is a class taking two Types `M N`, together with an "action" `μ : M → N → N` and a relation `r : N → N → Prop`. Its unique field `elim` is the assertion that for all `m ∈ M` and all elements `n₁, n₂ ∈ N`, if the relation `r` holds for the pair `(n₁, n₂)`, then, the relation `r` also holds for the pair `(μ m n₁, μ m n₂)`, obtained from `(n₁, n₂)` by acting upon it by `m`. If `m : M` and `h : r n₁ n₂`, then `covariant_class.elim m h : r (μ m n₁) (μ m n₂)`. -/ @[protect_proj] class covariant_class : Prop := (elim : covariant M N μ r) /-- Given an action `μ` of a Type `M` on a Type `N` and a relation `r` on `N`, informally, the `contravariant_class` says that "if the result of the action `μ` on a pair satisfies the relation `r`, then the initial pair satisfied the relation `r`." More precisely, the `contravariant_class` is a class taking two Types `M N`, together with an "action" `μ : M → N → N` and a relation `r : N → N → Prop`. Its unique field `elim` is the assertion that for all `m ∈ M` and all elements `n₁, n₂ ∈ N`, if the relation `r` holds for the pair `(μ m n₁, μ m n₂)` obtained from `(n₁, n₂)` by acting upon it by `m`, then, the relation `r` also holds for the pair `(n₁, n₂)`. If `m : M` and `h : r (μ m n₁) (μ m n₂)`, then `contravariant_class.elim m h : r n₁ n₂`. -/ @[protect_proj] class contravariant_class : Prop := (elim : contravariant M N μ r) lemma rel_iff_cov [covariant_class M N μ r] [contravariant_class M N μ r] (m : M) {a b : N} : r (μ m a) (μ m b) ↔ r a b := ⟨contravariant_class.elim _, covariant_class.elim _⟩ section flip variables {M N μ r} lemma covariant.flip (h : covariant M N μ r) : covariant M N μ (flip r) := λ a b c hbc, h a hbc lemma contravariant.flip (h : contravariant M N μ r) : contravariant M N μ (flip r) := λ a b c hbc, h a hbc end flip section covariant variables {M N μ r} [covariant_class M N μ r] lemma act_rel_act_of_rel (m : M) {a b : N} (ab : r a b) : r (μ m a) (μ m b) := covariant_class.elim _ ab @[to_additive] lemma group.covariant_iff_contravariant [group N] : covariant N N (*) r ↔ contravariant N N (*) r := begin refine ⟨λ h a b c bc, _, λ h a b c bc, _⟩, { rw [← inv_mul_cancel_left a b, ← inv_mul_cancel_left a c], exact h a⁻¹ bc }, { rw [← inv_mul_cancel_left a b, ← inv_mul_cancel_left a c] at bc, exact h a⁻¹ bc } end @[priority 100, to_additive] instance group.covconv [group N] [covariant_class N N (*) r] : contravariant_class N N (*) r := ⟨group.covariant_iff_contravariant.mp covariant_class.elim⟩ @[to_additive] lemma group.covariant_swap_iff_contravariant_swap [group N] : covariant N N (swap (*)) r ↔ contravariant N N (swap (*)) r := begin refine ⟨λ h a b c bc, _, λ h a b c bc, _⟩, { rw [← mul_inv_cancel_right b a, ← mul_inv_cancel_right c a], exact h a⁻¹ bc }, { rw [← mul_inv_cancel_right b a, ← mul_inv_cancel_right c a] at bc, exact h a⁻¹ bc } end @[priority 100, to_additive] instance group.covconv_swap [group N] [covariant_class N N (swap (*)) r] : contravariant_class N N (swap (*)) r := ⟨group.covariant_swap_iff_contravariant_swap.mp covariant_class.elim⟩ section is_trans variables [is_trans N r] (m n : M) {a b c d : N} /- Lemmas with 3 elements. -/ lemma act_rel_of_rel_of_act_rel (ab : r a b) (rl : r (μ m b) c) : r (μ m a) c := trans (act_rel_act_of_rel m ab) rl lemma rel_act_of_rel_of_rel_act (ab : r a b) (rr : r c (μ m a)) : r c (μ m b) := trans rr (act_rel_act_of_rel _ ab) end is_trans end covariant /- Lemma with 4 elements. -/ section M_eq_N variables {M N μ r} {mu : N → N → N} [is_trans N r] [covariant_class N N mu r] [covariant_class N N (swap mu) r] {a b c d : N} lemma act_rel_act_of_rel_of_rel (ab : r a b) (cd : r c d) : r (mu a c) (mu b d) := trans (act_rel_act_of_rel c ab : _) (act_rel_act_of_rel b cd) end M_eq_N section contravariant variables {M N μ r} [contravariant_class M N μ r] lemma rel_of_act_rel_act (m : M) {a b : N} (ab : r (μ m a) (μ m b)) : r a b := contravariant_class.elim _ ab section is_trans variables [is_trans N r] (m n : M) {a b c d : N} /- Lemmas with 3 elements. -/ lemma act_rel_of_act_rel_of_rel_act_rel (ab : r (μ m a) b) (rl : r (μ m b) (μ m c)) : r (μ m a) c := trans ab (rel_of_act_rel_act m rl) lemma rel_act_of_act_rel_act_of_rel_act (ab : r (μ m a) (μ m b)) (rr : r b (μ m c)) : r a (μ m c) := trans (rel_of_act_rel_act m ab) rr end is_trans end contravariant section monotone variables {α : Type*} {M N μ} [preorder α] [preorder N] variable {f : N → α} /-- The partial application of a constant to a covariant operator is monotone. -/ lemma covariant.monotone_of_const [covariant_class M N μ (≤)] (m : M) : monotone (μ m) := λ a b ha, covariant_class.elim m ha /-- A monotone function remains monotone when composed with the partial application of a covariant operator. E.g., `∀ (m : ℕ), monotone f → monotone (λ n, f (m + n))`. -/ lemma monotone.covariant_of_const [covariant_class M N μ (≤)] (hf : monotone f) (m : M) : monotone (λ n, f (μ m n)) := hf.comp $ covariant.monotone_of_const m /-- Same as `monotone.covariant_of_const`, but with the constant on the other side of the operator. E.g., `∀ (m : ℕ), monotone f → monotone (λ n, f (n + m))`. -/ lemma monotone.covariant_of_const' {μ : N → N → N} [covariant_class N N (swap μ) (≤)] (hf : monotone f) (m : N) : monotone (λ n, f (μ n m)) := hf.comp $ covariant.monotone_of_const m /-- Dual of `monotone.covariant_of_const` -/ lemma antitone.covariant_of_const [covariant_class M N μ (≤)] (hf : antitone f) (m : M) : antitone (λ n, f (μ m n)) := hf.comp_monotone $ covariant.monotone_of_const m /-- Dual of `monotone.covariant_of_const'` -/ lemma antitone.covariant_of_const' {μ : N → N → N} [covariant_class N N (swap μ) (≤)] (hf : antitone f) (m : N) : antitone (λ n, f (μ n m)) := hf.comp_monotone $ covariant.monotone_of_const m end monotone lemma covariant_le_of_covariant_lt [partial_order N] : covariant M N μ (<) → covariant M N μ (≤) := begin refine λ h a b c bc, _, rcases le_iff_eq_or_lt.mp bc with rfl | bc, { exact rfl.le }, { exact (h _ bc).le } end lemma contravariant_lt_of_contravariant_le [partial_order N] : contravariant M N μ (≤) → contravariant M N μ (<) := begin refine λ h a b c bc, lt_iff_le_and_ne.mpr ⟨h a bc.le, _⟩, rintro rfl, exact lt_irrefl _ bc, end lemma covariant_le_iff_contravariant_lt [linear_order N] : covariant M N μ (≤) ↔ contravariant M N μ (<) := ⟨ λ h a b c bc, not_le.mp (λ k, not_le.mpr bc (h _ k)), λ h a b c bc, not_lt.mp (λ k, not_lt.mpr bc (h _ k))⟩ lemma covariant_lt_iff_contravariant_le [linear_order N] : covariant M N μ (<) ↔ contravariant M N μ (≤) := ⟨ λ h a b c bc, not_lt.mp (λ k, not_lt.mpr bc (h _ k)), λ h a b c bc, not_le.mp (λ k, not_le.mpr bc (h _ k))⟩ @[to_additive] lemma covariant_flip_mul_iff [comm_semigroup N] : covariant N N (flip (*)) (r) ↔ covariant N N (*) (r) := by rw is_symm_op.flip_eq @[to_additive] lemma contravariant_flip_mul_iff [comm_semigroup N] : contravariant N N (flip (*)) (r) ↔ contravariant N N (*) (r) := by rw is_symm_op.flip_eq @[to_additive] instance contravariant_mul_lt_of_covariant_mul_le [has_mul N] [linear_order N] [covariant_class N N (*) (≤)] : contravariant_class N N (*) (<) := { elim := (covariant_le_iff_contravariant_lt N N (*)).mp covariant_class.elim } @[to_additive] instance covariant_mul_lt_of_contravariant_mul_le [has_mul N] [linear_order N] [contravariant_class N N (*) (≤)] : covariant_class N N (*) (<) := { elim := (covariant_lt_iff_contravariant_le N N (*)).mpr contravariant_class.elim } @[to_additive] instance covariant_swap_mul_le_of_covariant_mul_le [comm_semigroup N] [has_le N] [covariant_class N N (*) (≤)] : covariant_class N N (swap (*)) (≤) := { elim := (covariant_flip_mul_iff N (≤)).mpr covariant_class.elim } @[to_additive] instance contravariant_swap_mul_le_of_contravariant_mul_le [comm_semigroup N] [has_le N] [contravariant_class N N (*) (≤)] : contravariant_class N N (swap (*)) (≤) := { elim := (contravariant_flip_mul_iff N (≤)).mpr contravariant_class.elim } @[to_additive] instance contravariant_swap_mul_lt_of_contravariant_mul_lt [comm_semigroup N] [has_lt N] [contravariant_class N N (*) (<)] : contravariant_class N N (swap (*)) (<) := { elim := (contravariant_flip_mul_iff N (<)).mpr contravariant_class.elim } @[to_additive] instance covariant_swap_mul_lt_of_covariant_mul_lt [comm_semigroup N] [has_lt N] [covariant_class N N (*) (<)] : covariant_class N N (swap (*)) (<) := { elim := (covariant_flip_mul_iff N (<)).mpr covariant_class.elim } @[to_additive] instance left_cancel_semigroup.covariant_mul_lt_of_covariant_mul_le [left_cancel_semigroup N] [partial_order N] [covariant_class N N (*) (≤)] : covariant_class N N (*) (<) := { elim := λ a b c bc, by { cases lt_iff_le_and_ne.mp bc with bc cb, exact lt_iff_le_and_ne.mpr ⟨covariant_class.elim a bc, (mul_ne_mul_right a).mpr cb⟩ } } @[to_additive] instance right_cancel_semigroup.covariant_swap_mul_lt_of_covariant_swap_mul_le [right_cancel_semigroup N] [partial_order N] [covariant_class N N (swap (*)) (≤)] : covariant_class N N (swap (*)) (<) := { elim := λ a b c bc, by { cases lt_iff_le_and_ne.mp bc with bc cb, exact lt_iff_le_and_ne.mpr ⟨covariant_class.elim a bc, (mul_ne_mul_left a).mpr cb⟩ } } @[to_additive] instance left_cancel_semigroup.contravariant_mul_le_of_contravariant_mul_lt [left_cancel_semigroup N] [partial_order N] [contravariant_class N N (*) (<)] : contravariant_class N N (*) (≤) := { elim := λ a b c bc, by { cases le_iff_eq_or_lt.mp bc with h h, { exact ((mul_right_inj a).mp h).le }, { exact (contravariant_class.elim _ h).le } } } @[to_additive] instance right_cancel_semigroup.contravariant_swap_mul_le_of_contravariant_swap_mul_lt [right_cancel_semigroup N] [partial_order N] [contravariant_class N N (swap (*)) (<)] : contravariant_class N N (swap (*)) (≤) := { elim := λ a b c bc, by { cases le_iff_eq_or_lt.mp bc with h h, { exact ((mul_left_inj a).mp h).le }, { exact (contravariant_class.elim _ h).le } } } end variants