(* ========================================================================= *) (* Simple formulation of rings (commutative, with 1) as type "(A)ring". *) (* ========================================================================= *) needs "Library/binomial.ml";; needs "Library/pocklington.ml";; needs "Library/card.ml";; (* ------------------------------------------------------------------------- *) (* The basic type of rings. *) (* ------------------------------------------------------------------------- *) let ring_tybij = let eth = prove (`?s (z:A) w n a m. z IN s /\ w IN s /\ (!x. x IN s ==> n x IN s) /\ (!x y. x IN s /\ y IN s ==> a x y IN s) /\ (!x y. x IN s /\ y IN s ==> m x y IN s) /\ (!x y. x IN s /\ y IN s ==> a x y = a y x) /\ (!x y z. x IN s /\ y IN s /\ z IN s ==> a x (a y z) = a (a x y) z) /\ (!x. x IN s ==> a z x = x) /\ (!x. x IN s ==> a (n x) x = z) /\ (!x y. x IN s /\ y IN s ==> m x y = m y x) /\ (!x y z. x IN s /\ y IN s /\ z IN s ==> m x (m y z) = m (m x y) z) /\ (!x. x IN s ==> m w x = x) /\ (!x y z. x IN s /\ y IN s /\ z IN s ==> m x (a y z) = a (m x y) (m x z))`, MAP_EVERY EXISTS_TAC [`{ARB:A}`; `ARB:A`; `ARB:A`; `(\x. ARB):A->A`; `(\x y. ARB):A->A->A`; `(\x y. ARB):A->A->A`] THEN REWRITE_TAC[IN_SING] THEN MESON_TAC[]) in new_type_definition "ring" ("ring","ring_operations") (GEN_REWRITE_RULE DEPTH_CONV [EXISTS_UNPAIR_THM] eth);; (* ------------------------------------------------------------------------- *) (* The ring operations, primitive plus subtraction as a derived operation. *) (* ------------------------------------------------------------------------- *) let ring_carrier = new_definition `(ring_carrier:(A)ring->A->bool) = \r. FST(ring_operations r)`;; let ring_0 = new_definition `(ring_0:(A)ring->A) = \r. FST(SND(ring_operations r))`;; let ring_1 = new_definition `(ring_1:(A)ring->A) = \r. FST(SND(SND(ring_operations r)))`;; let ring_neg = new_definition `(ring_neg:(A)ring->A->A) = \r. FST(SND(SND(SND(ring_operations r))))`;; let ring_add = new_definition `(ring_add:(A)ring->A->A->A) = \r. FST(SND(SND(SND(SND(ring_operations r)))))`;; let ring_mul = new_definition `(ring_mul:(A)ring->A->A->A) = \r. SND(SND(SND(SND(SND(ring_operations r)))))`;; let ring_sub = new_definition `ring_sub r x y = ring_add r x (ring_neg r y)`;; let RINGS_EQ = prove (`!r r':A ring. r = r' <=> ring_carrier r = ring_carrier r' /\ ring_0 r = ring_0 r' /\ ring_1 r = ring_1 r' /\ ring_neg r = ring_neg r' /\ ring_add r = ring_add r' /\ ring_mul r = ring_mul r'`, REWRITE_TAC[GSYM PAIR_EQ] THEN REWRITE_TAC[ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul] THEN MESON_TAC[CONJUNCT1 ring_tybij]);; (* ------------------------------------------------------------------------- *) (* Ring properties and other elementary consequences. *) (* ------------------------------------------------------------------------- *) let RING_PROPERTIES = MATCH_MP (MESON[] `(!x. f(g x) = x) /\ (!y. P y <=> g(f y) = y) ==> !x. P(g x)`) ring_tybij;; let RING_0 = prove (`!r:A ring. ring_0 r IN ring_carrier r`, REWRITE_TAC[ring_carrier; ring_0] THEN MESON_TAC[RING_PROPERTIES]);; let RING_1 = prove (`!r:A ring. ring_1 r IN ring_carrier r`, REWRITE_TAC[ring_carrier; ring_1] THEN MESON_TAC[RING_PROPERTIES]);; let RING_NEG = prove (`!r x:A. x IN ring_carrier r ==> ring_neg r x IN ring_carrier r`, REWRITE_TAC[ring_neg; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_add r x y IN ring_carrier r`, REWRITE_TAC[ring_add; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_SUB = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_sub r x y IN ring_carrier r`, SIMP_TAC[ring_sub; RING_ADD; RING_NEG]);; let RING_MUL = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r x y IN ring_carrier r`, REWRITE_TAC[ring_mul; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD_SYM = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_add r x y = ring_add r y x`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_add; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_MUL_SYM = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r x y = ring_mul r y x`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_mul; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD_ASSOC = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_add r x (ring_add r y z) = ring_add r (ring_add r x y) z`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_add; ring_0; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_MUL_ASSOC = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r x (ring_mul r y z) = ring_mul r (ring_mul r x y) z`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_mul; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD_LDISTRIB = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r x (ring_add r y z) = ring_add r (ring_mul r x y) (ring_mul r x z)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_add; ring_mul; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD_RDISTRIB = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r (ring_add r x y) z = ring_add r (ring_mul r x z) (ring_mul r y z)`, MESON_TAC[RING_MUL_SYM; RING_ADD; RING_ADD_LDISTRIB]);; let RING_ADD_LZERO = prove (`!r x:A. x IN ring_carrier r ==> ring_add r (ring_0 r) x = x`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_add; ring_0; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD_RZERO = prove (`!r x:A. x IN ring_carrier r ==> ring_add r x (ring_0 r) = x`, MESON_TAC[RING_ADD_SYM; RING_0; RING_ADD_LZERO]);; let RING_MUL_LID = prove (`!r x:A. x IN ring_carrier r ==> ring_mul r (ring_1 r) x = x`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_mul; ring_1; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_MUL_RID = prove (`!r x:A. x IN ring_carrier r ==> ring_mul r x (ring_1 r) = x`, MESON_TAC[RING_MUL_SYM; RING_1; RING_MUL_LID]);; let RING_ADD_LNEG = prove (`!r x:A. x IN ring_carrier r ==> ring_add r (ring_neg r x) x = ring_0 r`, REWRITE_TAC[ring_add; ring_neg; ring_0; ring_carrier] THEN MESON_TAC[RING_PROPERTIES]);; let RING_ADD_RNEG = prove (`!r x:A. x IN ring_carrier r ==> ring_add r x (ring_neg r x) = ring_0 r`, MESON_TAC[RING_ADD_SYM; RING_NEG; RING_ADD_LNEG]);; let RING_ADD_AC = prove (`!r:A ring. (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_add r x y = ring_add r y x) /\ (!x y z. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_add r (ring_add r x y) z = ring_add r x (ring_add r y z)) /\ (!x y z. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_add r x (ring_add r y z) = ring_add r y (ring_add r x z))`, MESON_TAC[RING_ADD_SYM; RING_ADD_ASSOC; RING_ADD]);; let RING_MUL_AC = prove (`!r:A ring. (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r x y = ring_mul r y x) /\ (!x y z. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r (ring_mul r x y) z = ring_mul r x (ring_mul r y z)) /\ (!x y z. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r x (ring_mul r y z) = ring_mul r y (ring_mul r x z))`, MESON_TAC[RING_MUL_SYM; RING_MUL_ASSOC; RING_MUL]);; let RING_ADD_LCANCEL = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> (ring_add r x y = ring_add r x z <=> y = z)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(MP_TAC o AP_TERM `\y:A. ring_add r (ring_neg r x) y`) THEN ASM_SIMP_TAC[RING_ADD_ASSOC; RING_NEG; RING_ADD_LNEG; RING_ADD_LZERO]);; let RING_ADD_RCANCEL = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> (ring_add r x z = ring_add r y z <=> x = y)`, MESON_TAC[RING_ADD_SYM; RING_ADD_LCANCEL]);; let RING_ADD_LCANCEL_IMP = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r /\ ring_add r x y = ring_add r x z ==> y = z`, MESON_TAC[RING_ADD_LCANCEL]);; let RING_ADD_RCANCEL_IMP = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r /\ ring_add r x z = ring_add r y z ==> x = y`, MESON_TAC[RING_ADD_RCANCEL]);; let RING_ADD_EQ_RIGHT = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_add r x y = y <=> x = ring_0 r)`, MESON_TAC[RING_ADD_RCANCEL; RING_NEG; RING_0; RING_ADD_LZERO]);; let RING_ADD_EQ_LEFT = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_add r x y = x <=> y = ring_0 r)`, MESON_TAC[RING_ADD_EQ_RIGHT; RING_ADD_SYM]);; let RING_LZERO_UNIQUE = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r x y = y ==> x = ring_0 r`, MESON_TAC[RING_ADD_EQ_RIGHT]);; let RING_RZERO_UNIQUE = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r x y = x ==> y = ring_0 r`, MESON_TAC[RING_ADD_EQ_LEFT]);; let RING_ADD_EQ_0 = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_add r x y = ring_0 r <=> ring_neg r x = y)`, MESON_TAC[RING_ADD_LCANCEL; RING_NEG; RING_0; RING_ADD_RNEG]);; let RING_LNEG_UNIQUE = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r x y = ring_0 r ==> ring_neg r x = y`, MESON_TAC[RING_ADD_EQ_0]);; let RING_RNEG_UNIQUE = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r x y = ring_0 r ==> ring_neg r y = x`, MESON_TAC[RING_ADD_EQ_0; RING_ADD_SYM]);; let RING_NEG_NEG = prove (`!r x:A. x IN ring_carrier r ==> ring_neg r (ring_neg r x) = x`, ASM_MESON_TAC[RING_LNEG_UNIQUE; RING_NEG; RING_ADD_LNEG]);; let RING_NEG_EQ_SWAP = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_neg r x = y <=> ring_neg r y = x)`, MESON_TAC[RING_NEG_NEG]);; let RING_NEG_EQ = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_neg r x = ring_neg r y <=> x = y)`, MESON_TAC[RING_NEG_NEG]);; let RING_NEG_0 = prove (`!r:A ring. ring_neg r (ring_0 r) = ring_0 r`, MESON_TAC[RING_LNEG_UNIQUE; RING_0; RING_ADD_RZERO]);; let RING_NEG_EQ_0 = prove (`!r x:A. x IN ring_carrier r ==> (ring_neg r x = ring_0 r <=> x = ring_0 r)`, MESON_TAC[RING_NEG_NEG; RING_NEG_0]);; let RING_MUL_LZERO = prove (`!r x:A. x IN ring_carrier r ==> ring_mul r (ring_0 r) x = ring_0 r`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[RING_LZERO_UNIQUE] `(x:A) IN ring_carrier r /\ ring_add r x x = x ==> x = ring_0 r`) THEN ASM_SIMP_TAC[GSYM RING_ADD_RDISTRIB; RING_0; RING_MUL; RING_ADD_LZERO]);; let RING_MUL_RZERO = prove (`!r x:A. x IN ring_carrier r ==> ring_mul r x (ring_0 r) = ring_0 r`, MESON_TAC[RING_MUL_LZERO; RING_MUL_SYM; RING_0]);; let RING_MUL_LNEG = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r (ring_neg r x) y = ring_neg r (ring_mul r x y)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_LNEG_UNIQUE THEN ASM_SIMP_TAC[GSYM RING_ADD_RDISTRIB; RING_NEG; RING_MUL; RING_ADD_RNEG; RING_MUL_LZERO]);; let RING_MUL_RNEG = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r x (ring_neg r y) = ring_neg r (ring_mul r x y)`, MESON_TAC[RING_MUL_LNEG; RING_MUL_SYM; RING_NEG]);; let RING_NEG_ADD = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_neg r (ring_add r x y) = ring_add r (ring_neg r x) (ring_neg r y)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_LNEG_UNIQUE THEN ASM_SIMP_TAC[RING_ADD; RING_NEG] THEN TRANS_TAC EQ_TRANS `ring_add r (ring_add r y (ring_add r x (ring_neg r x))) (ring_neg r y):A` THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_ADD_ASSOC; RING_ADD_SYM; RING_NEG; RING_ADD]; ASM_SIMP_TAC[RING_ADD_RNEG; RING_ADD_RZERO]]);; let RING_SUB_REFL = prove (`!r x:A. x IN ring_carrier r ==> ring_sub r x x = ring_0 r`, SIMP_TAC[ring_sub; RING_ADD_RNEG]);; let RING_SUB_LZERO = prove (`!r x:A. x IN ring_carrier r ==> ring_sub r (ring_0 r) x = ring_neg r x`, MESON_TAC[ring_sub; RING_0; RING_NEG; RING_ADD_LZERO]);; let RING_SUB_RZERO = prove (`!r x:A. x IN ring_carrier r ==> ring_sub r x (ring_0 r) = x`, MESON_TAC[ring_sub; RING_NEG_0; RING_ADD_RZERO]);; let RING_SUB_EQ_0 = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_sub r x y = ring_0 r <=> x = y)`, SIMP_TAC[ring_sub; RING_ADD_EQ_0; RING_NEG; RING_NEG_EQ]);; let RING_SUB_LDISTRIB = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r x (ring_sub r y z) = ring_sub r (ring_mul r x y) (ring_mul r x z)`, SIMP_TAC[ring_sub; RING_MUL_RNEG; RING_ADD_LDISTRIB; RING_NEG]);; let RING_SUB_RDISTRIB = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> ring_mul r (ring_sub r x y) z = ring_sub r (ring_mul r x z) (ring_mul r y z)`, MESON_TAC[RING_SUB_LDISTRIB; RING_MUL_SYM; RING_MUL; RING_SUB]);; let RING_EQ_SUB_LADD = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> (x = ring_sub r y z <=> ring_add r x z = y)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN SUBST1_TAC; DISCH_THEN(SUBST1_TAC o SYM)] THEN ASM_SIMP_TAC[ring_sub; GSYM RING_ADD_ASSOC; RING_NEG; RING_NEG_ADD; RING_ADD; RING_ADD_LNEG; RING_ADD_RNEG; RING_ADD_RZERO]);; let RING_EQ_SUB_RADD = prove (`!r x y z:A. x IN ring_carrier r /\ y IN ring_carrier r /\ z IN ring_carrier r ==> (ring_sub r x y = z <=> x = ring_add r z y)`, MESON_TAC[RING_EQ_SUB_LADD]);; let RING_CARRIER_NONEMPTY = prove (`!r:A ring. ~(ring_carrier r = {})`, MESON_TAC[MEMBER_NOT_EMPTY; RING_0]);; (* ------------------------------------------------------------------------- *) (* Charaterizing trivial (zero) rings. *) (* ------------------------------------------------------------------------- *) let trivial_ring = new_definition `trivial_ring r <=> ring_carrier r = {ring_0 r}`;; let TRIVIAL_IMP_FINITE_RING = prove (`!r:A ring. trivial_ring r ==> FINITE(ring_carrier r)`, SIMP_TAC[trivial_ring; FINITE_SING]);; let TRIVIAL_RING_SUBSET = prove (`!r:A ring. trivial_ring r <=> ring_carrier r SUBSET {ring_0 r}`, SIMP_TAC[trivial_ring; GSYM SUBSET_ANTISYM_EQ; SING_SUBSET; RING_0]);; let TRIVIAL_RING = prove (`!r:A ring. trivial_ring r <=> ?a. ring_carrier r = {a}`, GEN_TAC THEN REWRITE_TAC[trivial_ring] THEN MATCH_MP_TAC(SET_RULE `c IN s ==> (s = {c} <=> ?a. s = {a})`) THEN REWRITE_TAC[RING_0]);; let TRIVIAL_RING_ALT = prove (`!r:A ring. trivial_ring r <=> ?a. ring_carrier r SUBSET {a}`, REWRITE_TAC[TRIVIAL_RING; RING_CARRIER_NONEMPTY; SET_RULE `(?a. s = {a}) <=> (?a. s SUBSET {a}) /\ ~(s = {})`]);; let TRIVIAL_RING_10 = prove (`!r:A ring. trivial_ring r <=> ring_1 r = ring_0 r`, REWRITE_TAC[trivial_ring; EXTENSION; IN_SING] THEN MESON_TAC[RING_1; RING_0; RING_MUL_LID; RING_MUL_LZERO]);; let RING_CARRIER_HAS_SIZE_1 = prove (`!r:A ring. ring_carrier r HAS_SIZE 1 <=> trivial_ring r`, GEN_TAC THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[TRIVIAL_RING]);; let TRIVIAL_RING_HAS_SIZE_1 = prove (`!G:A ring. trivial_ring G <=> ring_carrier(G) HAS_SIZE 1`, REWRITE_TAC[RING_CARRIER_HAS_SIZE_1]);; let RING_CARRIER_HAS_SIZE_2 = prove (`!r:A ring. ring_carrier r HAS_SIZE 2 <=> ~(trivial_ring r) /\ ring_carrier r = {ring_0 r,ring_1 r}`, GEN_TAC THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM]; ASM_MESON_TAC[TRIVIAL_RING_10]] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[TRIVIAL_RING] THEN ASM SET_TAC[]; REWRITE_TAC[TRIVIAL_RING_10] THEN MP_TAC(ISPEC `r:A ring` RING_1) THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN ASM_REWRITE_TAC[] THEN SET_TAC[]]);; (* ------------------------------------------------------------------------- *) (* The singleton ring, the trivial ring containing a given object. *) (* ------------------------------------------------------------------------- *) let singleton_ring = new_definition `singleton_ring (a:A) = ring({a},a,a,(\x. a),(\x y. a),(\x y. a))`;; let SINGLETON_RING = prove (`(!a:A. ring_carrier(singleton_ring a) = {a}) /\ (!a:A. ring_0(singleton_ring a) = a) /\ (!a:A. ring_1(singleton_ring a) = a) /\ (!a:A. ring_neg(singleton_ring a) = \x. a) /\ (!a:A. ring_add(singleton_ring a) = \x y. a) /\ (!a:A. ring_mul(singleton_ring a) = \x y. a)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl singleton_ring))))) (CONJUNCT2 ring_tybij)))) THEN REWRITE_TAC[GSYM singleton_ring] THEN SIMP_TAC[IN_SING] THEN SIMP_TAC[ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul]);; let TRIVIAL_RING_SINGLETON_RING = prove (`!a:A. trivial_ring(singleton_ring a)`, REWRITE_TAC[trivial_ring; SINGLETON_RING]);; let FINITE_SINGLETON_RING = prove (`!a:A. FINITE(ring_carrier(singleton_ring a))`, SIMP_TAC[TRIVIAL_IMP_FINITE_RING; TRIVIAL_RING_SINGLETON_RING]);; (* ------------------------------------------------------------------------- *) (* Mapping natural numbers and integers into a ring in the obvious way. *) (* ------------------------------------------------------------------------- *) let ring_of_num = new_recursive_definition num_RECURSION `ring_of_num r 0 = ring_0 r /\ ring_of_num r (SUC n) = ring_add r (ring_of_num r n) (ring_1 r)`;; let ring_of_int = new_definition `ring_of_int (r:A ring) n = if &0 <= n then ring_of_num r (num_of_int n) else ring_neg r (ring_of_num r (num_of_int(--n)))`;; let RING_OF_NUM = prove (`!(r:A ring) n. ring_of_num r n IN ring_carrier r`, GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_of_num; RING_0; RING_1; RING_ADD]);; let RING_OF_INT = prove (`!(r:A ring) n. ring_of_int r n IN ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_of_int] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_NEG; RING_OF_NUM]);; let RING_OF_INT_OF_NUM = prove (`!(r:A ring) n. ring_of_int r (&n) = ring_of_num r n`, REWRITE_TAC[ring_of_int; INT_POS; NUM_OF_INT_OF_NUM]);; let RING_OF_NUM_0 = prove (`!r:A ring. ring_of_num r 0 = ring_0 r`, REWRITE_TAC[ring_of_num]);; let RING_OF_NUM_1 = prove (`!r:A ring. ring_of_num r 1 = ring_1 r`, SIMP_TAC[num_CONV `1`; ring_of_num; RING_ADD_LZERO; RING_1]);; let RING_OF_NUM_ADD = prove (`!(r:A ring) m n. ring_of_num r (m + n) = ring_add r (ring_of_num r m) (ring_of_num r n)`, GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ADD_CLAUSES; ring_of_num; RING_ADD_LZERO; RING_OF_NUM] THEN ASM_SIMP_TAC[RING_ADD_AC; RING_OF_NUM; RING_ADD; RING_0; RING_1]);; let RING_OF_NUM_MUL = prove (`!(r:A ring) m n. ring_of_num r (m * n) = ring_mul r (ring_of_num r m) (ring_of_num r n)`, GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[MULT_CLAUSES; RING_OF_NUM_0; RING_MUL_LZERO; RING_OF_NUM] THEN ASM_REWRITE_TAC[RING_OF_NUM_ADD; ring_of_num] THEN SIMP_TAC[RING_ADD_RDISTRIB; RING_1; RING_OF_NUM; RING_MUL_LID]);; let RING_OF_INT_0 = prove (`!r:A ring. ring_of_int r (&0) = ring_0 r`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_0]);; let RING_OF_INT_1 = prove (`!r:A ring. ring_of_int r (&1) = ring_1 r`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_1]);; let RING_OF_INT_CLAUSES = prove (`(!(r:A ring) n. ring_of_int r (&n) = ring_of_num r n) /\ (!(r:A ring) n. ring_of_int r (-- &n) = ring_neg r (ring_of_num r n))`, REPEAT STRIP_TAC THEN REWRITE_TAC[RING_OF_INT_OF_NUM] THEN REWRITE_TAC[ring_of_int; INT_ARITH `&0:int <= -- &n <=> &n:int = &0`] THEN SIMP_TAC[INT_NEG_NEG; INT_OF_NUM_EQ; INT_NEG_0; NUM_OF_INT_OF_NUM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ring_of_num; RING_NEG_0]);; let RING_OF_INT_NEG = prove (`!(r:A ring) n. ring_of_int r (--n) = ring_neg r (ring_of_int r n)`, SIMP_TAC[FORALL_INT_CASES; RING_OF_INT_CLAUSES; INT_NEG_NEG; RING_NEG_NEG; RING_OF_NUM]);; let RING_OF_INT_ADD = prove (`!(r:A ring) m n. ring_of_int r (m + n) = ring_add r (ring_of_int r m) (ring_of_int r n)`, SUBGOAL_THEN `!(r:A ring) m n p. m + n = p ==> ring_of_int r p = ring_add r (ring_of_int r m) (ring_of_int r n)` (fun th -> MESON_TAC[th]) THEN GEN_TAC THEN REWRITE_TAC[FORALL_INT_CASES; RING_OF_INT_CLAUSES] THEN ONCE_REWRITE_TAC[INT_ARITH `--b + a:int = a + --b`] THEN REWRITE_TAC[GSYM INT_NEG_ADD; INT_NEG_EQ; INT_NEG_NEG] THEN REWRITE_TAC[INT_ARITH `(&a + &b:int = -- &c <=> &a:int = &0 /\ &b:int = &0 /\ &c:int = &0) /\ (!m n p. m + --n:int = &p <=> m = n + &p) /\ (!m n p. m + --n:int = -- &p <=> m + &p = n)`] THEN REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(SUBST1_TAC o check (is_var o lhand o concl))) THEN REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN REWRITE_TAC[RING_OF_NUM_ADD; RING_OF_NUM_0] THEN SIMP_TAC[RING_NEG_0; RING_ADD_LZERO; RING_ADD_RZERO; RING_0] THEN SIMP_TAC[GSYM RING_NEG_ADD; RING_OF_NUM] THEN SIMP_TAC [RING_ADD; RING_OF_NUM; MESON[RING_ADD_SYM; RING_NEG] `!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_add r (ring_neg r x) y = ring_add r y (ring_neg r x)`] THEN REWRITE_TAC[GSYM ring_sub] THEN SIMP_TAC[RING_EQ_SUB_LADD; RING_OF_NUM; RING_ADD; RING_NEG] THEN TRY(SIMP_TAC[RING_ADD_AC; RING_OF_NUM] THEN NO_TAC) THEN MATCH_MP_TAC(MESON[RING_ADD_SYM] `x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r x y = z ==> ring_add r y x = z`) THEN SIMP_TAC[RING_NEG; RING_OF_NUM; RING_ADD] THEN SIMP_TAC[GSYM RING_ADD_ASSOC; RING_ADD; RING_NEG; RING_OF_NUM; RING_ADD_RNEG; RING_ADD_RZERO]);; let RING_OF_INT_MUL = prove (`!(r:A ring) m n. ring_of_int r (m * n) = ring_mul r (ring_of_int r m) (ring_of_int r n)`, REWRITE_TAC[FORALL_INT_CASES; INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN REWRITE_TAC[RING_OF_INT_CLAUSES; INT_OF_NUM_MUL; RING_OF_NUM_MUL] THEN SIMP_TAC[RING_MUL_LNEG; RING_MUL_RNEG; RING_OF_NUM; RING_NEG; RING_NEG_NEG; RING_MUL]);; let RING_OF_INT_SUB = prove (`!(r:A ring) m n. ring_of_int r (m - n) = ring_sub r (ring_of_int r m) (ring_of_int r n)`, SIMP_TAC[INT_SUB; ring_sub; RING_OF_INT_ADD; RING_OF_INT_NEG; RING_NEG; RING_OF_INT]);; (* ------------------------------------------------------------------------- *) (* Characteristic of a ring, characterized by RING_OF_NUM_EQ_0. *) (* ------------------------------------------------------------------------- *) let RING_OF_NUM_EQ_0 = let eth = prove (`!r:A ring. ?p. !n. ring_of_num r n = ring_0 r <=> p divides n`, GEN_TAC THEN MATCH_MP_TAC(MESON[] `(~P 0 ==> ?n. ~(n = 0) /\ P n) ==> ?n. P n`) THEN REWRITE_TAC[NUMBER_RULE `0 divides n <=> n = 0`] THEN SIMP_TAC[NOT_FORALL_THM; RING_OF_NUM_0; TAUT `~(p <=> q) <=> ~q /\ p \/ ~(q ==> p)`] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN REWRITE_TAC[TAUT `p ==> ~(q /\ r) <=> q /\ p ==> ~r`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN EQ_TAC THEN SIMP_TAC[divides; LEFT_IMP_EXISTS_THM; RING_OF_NUM_MUL] THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_OF_NUM] THEN SUBST1_TAC(SYM(SPECL [`m:num`; `p:num`] (CONJUNCT2 DIVISION_SIMP))) THEN ASM_SIMP_TAC[RING_OF_NUM_ADD; RING_OF_NUM_MUL; RING_MUL_LZERO; RING_OF_NUM; RING_ADD_LZERO] THEN DISCH_TAC THEN EXISTS_TAC `m DIV p` THEN REWRITE_TAC[EQ_ADD_LCANCEL_0] THEN ASM_MESON_TAC[DIVISION]) in new_specification ["ring_char"] (REWRITE_RULE[SKOLEM_THM] eth);; let RING_CHAR_EQ_0 = prove (`!r:A ring. ring_char r = 0 <=> !n. ring_of_num r n = ring_0 r <=> n = 0`, REWRITE_TAC[RING_OF_NUM_EQ_0] THEN MESON_TAC[NUMBER_RULE `(!n:num. n divides n) /\ (!n. 0 divides n <=> n = 0)`]);; let RING_CHAR_EQ_1 = prove (`!r:A ring. ring_char r = 1 <=> trivial_ring r`, REWRITE_TAC[TRIVIAL_RING_10; GSYM RING_OF_NUM_1; RING_OF_NUM_EQ_0] THEN NUMBER_TAC);; let RING_OF_INT_EQ_0 = prove (`!(r:A ring) n. ring_of_int r n = ring_0 r <=> &(ring_char r) divides n`, REWRITE_TAC[FORALL_INT_CASES; RING_OF_INT_CLAUSES] THEN SIMP_TAC[RING_NEG_EQ_0; RING_OF_NUM; RING_OF_NUM_EQ_0] THEN REWRITE_TAC[num_divides] THEN REPEAT STRIP_TAC THEN CONV_TAC INTEGER_RULE);; let RING_OF_INT_EQ = prove (`!(r:A ring) m n. ring_of_int r m = ring_of_int r n <=> (m == n) (mod &(ring_char r))`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) RING_SUB_EQ_0 o lhand o snd) THEN REWRITE_TAC[RING_OF_INT; GSYM RING_OF_INT_SUB] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[RING_OF_INT_EQ_0] THEN CONV_TAC INTEGER_RULE);; let RING_OF_NUM_EQ = prove (`!(r:A ring) m n. ring_of_num r m = ring_of_num r n <=> (m == n) (mod (ring_char r))`, REWRITE_TAC[GSYM RING_OF_INT_OF_NUM; RING_OF_INT_EQ; num_congruent]);; let RING_CHAR_INFINITE = prove (`!r:A ring. ring_char r = 0 ==> INFINITE(ring_carrier r)`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `ring_of_num r:num->A` INFINITE_IMAGE_INJ) THEN ASM_REWRITE_TAC[RING_OF_NUM_EQ] THEN ANTS_TAC THENL [CONV_TAC NUMBER_RULE; DISCH_THEN(MP_TAC o SPEC `(:num)`)] THEN REWRITE_TAC[num_INFINITE] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ_ALT] INFINITE_SUPERSET) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RING_OF_NUM]);; let RING_CHAR_FINITE = prove (`!r:A ring. FINITE(ring_carrier r) ==> ~(ring_char r = 0)`, MESON_TAC[RING_CHAR_INFINITE; INFINITE]);; let RING_CHAR_UNIQUE = prove (`!(r:A ring) p. ring_char r = p <=> !n. ring_of_num r n = ring_0 r <=> p divides n`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_OF_NUM_EQ_0] THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN MESON_TAC[NUMBER_RULE `!n:num. n divides n`; NUMBER_RULE `!m n p:num. m divides n /\ n divides p ==> m divides p`]);; (* ------------------------------------------------------------------------- *) (* Natural number powers of a ring element. *) (* ------------------------------------------------------------------------- *) let ring_pow = new_recursive_definition num_RECURSION `ring_pow r x 0 = ring_1 r /\ ring_pow r x (SUC n) = ring_mul r x (ring_pow r x n)`;; let RING_POW = prove (`!r (x:A) n. x IN ring_carrier r ==> ring_pow r x n IN ring_carrier r`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_1; RING_MUL]);; let RING_POW_ZERO = prove (`!r k. ring_pow r (ring_0 r) k = if k = 0 then ring_1 r else ring_0 r`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; NOT_SUC] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_0; RING_1]);; let RING_POW_0 = prove (`!r (x:A). ring_pow r x 0 = ring_1 r`, REWRITE_TAC[ring_pow]);; let RING_POW_1 = prove (`!r x:A. x IN ring_carrier r ==> ring_pow r x 1 = x`, SIMP_TAC[num_CONV `1`; ring_pow; RING_MUL_RID]);; let RING_POW_2 = prove (`!r x:A. x IN ring_carrier r ==> ring_pow r x 2 = ring_mul r x x`, SIMP_TAC[num_CONV `2`; num_CONV `1`; ring_pow; RING_MUL_RID]);; let RING_POW_ONE = prove (`!n. ring_pow r (ring_1 r) n = ring_1 r`, INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_1; RING_MUL_LID]);; let RING_POW_ADD = prove (`!r (x:A) m n. x IN ring_carrier r ==> ring_pow r x (m + n) = ring_mul r (ring_pow r x m) (ring_pow r x n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; ADD_CLAUSES; RING_POW; RING_MUL_LID] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_POW]);; let RING_POW_MUL = prove (`!r (x:A) m n. x IN ring_carrier r ==> ring_pow r x (m * n) = ring_pow r (ring_pow r x m) n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[RING_POW_0; MULT_CLAUSES] THEN ASM_SIMP_TAC[RING_POW_ADD; CONJUNCT2 ring_pow]);; let RING_POW_POW = prove (`!G (x:A) m n. x IN ring_carrier G ==> ring_pow G (ring_pow G x m) n = ring_pow G x (m * n)`, SIMP_TAC[RING_POW_MUL]);; let RING_MUL_POW = prove (`!r (x:A) (y:A) n. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_pow r (ring_mul r x y) n = ring_mul r (ring_pow r x n) (ring_pow r y n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_MUL_LID; RING_1] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL; RING_POW] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 ring_pow)] THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; RING_MUL; RING_POW] THEN ASM_SIMP_TAC[ring_pow; RING_MUL_AC; RING_POW; RING_MUL]);; let RING_OF_NUM_EXP = prove (`!(r:A ring) m n. ring_of_num r (m EXP n) = ring_pow r (ring_of_num r m) n`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; EXP; RING_OF_NUM_1] THEN ASM_REWRITE_TAC[RING_OF_NUM_MUL]);; let RING_OF_INT_POW = prove (`!(r:A ring) x n. ring_of_int r (x pow n) = ring_pow r (ring_of_int r x) n`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; INT_POW; RING_OF_INT_1] THEN ASM_REWRITE_TAC[RING_OF_INT_MUL]);; let RING_POW_NEG = prove (`!r (x:A) n. x IN ring_carrier r ==> ring_pow r (ring_neg r x) n = if EVEN n then ring_pow r x n else ring_neg r (ring_pow r x n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[EVEN; ring_pow; COND_SWAP] THEN X_GEN_TAC `n:num` THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL_LNEG; RING_MUL_RNEG; RING_POW; RING_NEG; RING_MUL; RING_NEG_NEG]);; let RING_POW_IDEMPOTENT = prove (`!r (x:A) n. x IN ring_carrier r /\ ring_mul r x x = x ==> ring_pow r x n = if n = 0 then ring_1 r else x`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; NOT_SUC] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL_RID]);; (* ------------------------------------------------------------------------- *) (* Sum in a ring. The instantiation required is a little ugly since all *) (* the ITSET/iterate stuff is really designed for total operators. *) (* ------------------------------------------------------------------------- *) let ring_sum = new_definition `ring_sum r s (f:K->A) = iterate (\x y. if x IN ring_carrier r /\ y IN ring_carrier r then ring_add r x y else if x IN ring_carrier r then y else if y IN ring_carrier r then x else @z:A. ~(z IN ring_carrier r)) {x | x IN s /\ f(x) IN ring_carrier r} f`;; let NEUTRAL_RING_ADD = prove (`!r:A ring. neutral (\x y. if x IN ring_carrier r /\ y IN ring_carrier r then ring_add r x y else if x IN ring_carrier r then y else if y IN ring_carrier r then x else @z. ~(z IN ring_carrier r)) = ring_0 r`, GEN_TAC THEN REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `ring_0 r:A`); DISCH_THEN SUBST1_TAC] THEN SIMP_TAC[RING_0; RING_ADD_LZERO; RING_ADD_RZERO; COND_ID]);; let MONOIDAL_RING_ADD = prove (`!r:A ring. monoidal (\x y. if x IN ring_carrier r /\ y IN ring_carrier r then ring_add r x y else if x IN ring_carrier r then y else if y IN ring_carrier r then x else @z. ~(z IN ring_carrier r))`, REWRITE_TAC[monoidal; NEUTRAL_RING_ADD] THEN SIMP_TAC[RING_0; RING_ADD_LZERO; COND_ID] THEN GEN_TAC THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN TRY(X_GEN_TAC `z:A`) THEN MAP_EVERY ASM_CASES_TAC [`(x:A) IN ring_carrier r`; `(y:A) IN ring_carrier r`; `(z:A) IN ring_carrier r`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[RING_ADD] THEN ASM_SIMP_TAC[RING_ADD_AC; RING_ADD] THEN ASM_MESON_TAC[]);; let RING_SUM = prove (`!r s (f:K->A). ring_sum r s f IN ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_sum] THEN MATCH_MP_TAC (SIMP_RULE[NEUTRAL_RING_ADD; RING_0; RING_ADD] (ISPEC `\x:B. x IN ring_carrier r` (MATCH_MP ITERATE_CLOSED (ISPEC `r:C ring` MONOIDAL_RING_ADD)))) THEN SIMP_TAC[IN_ELIM_THM]);; let RING_SUM_RESTRICT = prove (`!s f. ring_sum r {a | a IN s /\ f a IN ring_carrier r} f = ring_sum r s f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_sum] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let RING_SUM_SUPPORT = prove (`!s (f:K->A). ring_sum r {a | a IN s /\ ~(f a = ring_0 r)} f = ring_sum r s f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_sum] THEN GEN_REWRITE_TAC RAND_CONV [GSYM ITERATE_SUPPORT] THEN REWRITE_TAC[support; NEUTRAL_RING_ADD] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let RING_SUM_TRIVIAL = prove (`!r k (f:K->A). INFINITE {i | i IN k /\ f i IN ring_carrier r /\ ~(f i = ring_0 r)} ==> ring_sum r k f = ring_0 r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_SUM_SUPPORT] THEN REWRITE_TAC[ring_sum] THEN ONCE_REWRITE_TAC[iterate] THEN REWRITE_TAC[NEUTRAL_RING_ADD; support] THEN ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN REWRITE_TAC[GSYM INFINITE; IN_ELIM_THM] THEN ASM_REWRITE_TAC[TAUT `((p /\ q) /\ r) /\ q <=> p /\ r /\ q`]);; let RING_SUM_CLAUSES = prove (`(!r f:K->A. ring_sum r {} f = ring_0 r) /\ (!r x (f:K->A) s. FINITE s ==> ring_sum r (x INSERT s) f = (if f(x) IN ring_carrier r ==> x IN s then ring_sum r s f else ring_add r (f x) (ring_sum r s f)))`, REWRITE_TAC[ring_sum; SET_RULE `{x | x IN {} /\ P x} = {}`] THEN REWRITE_TAC[INSERT_RESTRICT] THEN REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN ASM_SIMP_TAC[MATCH_MP ITERATE_CLAUSES (ISPEC `r:A ring` MONOIDAL_RING_ADD); NOT_IN_EMPTY; EMPTY_GSPEC; FINITE_RESTRICT] THEN ASM_REWRITE_TAC[NEUTRAL_RING_ADD; GSYM ring_sum; IN_ELIM_THM; RING_SUM]);; let RING_SUM_SING = prove (`!r (f:K->A) a. ring_sum r {a} f = if f a IN ring_carrier r then f a else ring_0 r`, SIMP_TAC[RING_SUM_CLAUSES; FINITE_EMPTY; NOT_IN_EMPTY; COND_SWAP] THEN MESON_TAC[RING_ADD_RZERO]);; let RING_SUM_CLAUSES_NUMSEG_ALT = prove (`(!r m f:num->A. ring_sum r (m..0) f = if m = 0 /\ f 0 IN ring_carrier r then f 0 else ring_0 r) /\ (!r m n f:num->A. ring_sum r (m..SUC n) f = if m <= SUC n /\ f(SUC n) IN ring_carrier r then ring_add r (f(SUC n)) (ring_sum r (m..n) f) else ring_sum r (m..n) f)`, REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THENL [ASM_CASES_TAC `m = 0`; ASM_CASES_TAC `m <= SUC n`] THEN ASM_REWRITE_TAC[RING_SUM_SING; CONJUNCT1 RING_SUM_CLAUSES] THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; FINITE_NUMSEG] THEN REWRITE_TAC[IN_NUMSEG; ARITH_RULE `~(SUC n <= n)`; COND_SWAP]);; let RING_SUM_CLAUSES_NUMSEG = prove (`(!r m f:num->A. ring_sum r (m..0) f = if m = 0 /\ f 0 IN ring_carrier r then f 0 else ring_0 r) /\ (!r m n f:num->A. ring_sum r (m..SUC n) f = if m <= SUC n /\ f(SUC n) IN ring_carrier r then ring_add r (ring_sum r (m..n) f) (f(SUC n)) else ring_sum r (m..n) f)`, REWRITE_TAC[RING_SUM_CLAUSES_NUMSEG_ALT] THEN MESON_TAC[RING_SUM; RING_ADD_SYM]);; let RING_SUM_CLAUSES_LEFT = prove (`!r (f:num->A) m n. m <= n ==> ring_sum r (m..n) f = if f m IN ring_carrier r then ring_add r (f m) (ring_sum r (m+1..n) f) else ring_sum r (m+1..n) f`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC; RING_SUM_CLAUSES; FINITE_NUMSEG] THEN REWRITE_TAC[IN_NUMSEG; ARITH_RULE `~(n + 1 <= n)`; COND_SWAP]);; let RING_SUM_UNION = prove (`!r (f:K->A) s t. FINITE s /\ FINITE t /\ DISJOINT s t ==> ring_sum r (s UNION t) f = ring_add r (ring_sum r s f) (ring_sum r t f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum; UNION_RESTRICT] THEN W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP ITERATE_UNION (ISPEC `r:C ring` MONOIDAL_RING_ADD)) o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RESTRICT] THEN ASM SET_TAC[]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]] THEN REWRITE_TAC[GSYM ring_sum; RING_SUM]);; let RING_SUM_DIFF = prove (`!r (f:K->A) s t. FINITE s /\ t SUBSET s ==> ring_sum r (s DIFF t) f = ring_sub r (ring_sum r s f) (ring_sum r t f)`, REPEAT STRIP_TAC THEN SIMP_TAC[RING_EQ_SUB_LADD; RING_SUM] THEN SIMP_TAC[ring_sum; DIFF_RESTRICT] THEN W(MP_TAC o PART_MATCH (lhand o lhand o rand) (MATCH_MP ITERATE_DIFF (ISPEC `r:C ring` MONOIDAL_RING_ADD)) o lhand o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RESTRICT] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM ring_sum; RING_SUM; GSYM DIFF_RESTRICT]);; let RING_SUM_INCL_EXCL = prove (`!r (f:K->A) s t. FINITE s /\ FINITE t ==> ring_add r (ring_sum r s f) (ring_sum r t f) = ring_add r (ring_sum r (s UNION t) f) (ring_sum r (s INTER t) f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum; INTER_RESTRICT; UNION_RESTRICT] THEN W(MP_TAC o PART_MATCH (funpow 3 rand) (MATCH_MP ITERATE_INCL_EXCL (ISPEC `r:C ring` MONOIDAL_RING_ADD)) o rand o rand o snd) THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN REWRITE_TAC[GSYM INTER_RESTRICT; GSYM UNION_RESTRICT] THEN REWRITE_TAC[GSYM ring_sum; RING_SUM]);; let RING_SUM_CLOSED = prove (`!r P (f:K->A) s. P(ring_0 r) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ P x /\ P y ==> P(ring_add r x y)) /\ (!a. a IN s ==> P(f a)) ==> P(ring_sum r s f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum] THEN MP_TAC(ISPECL [`\x:A. x IN ring_carrier r /\ P x`; `f:K->A`; `{a | a IN s /\ (f:K->A) a IN ring_carrier r}`] (MATCH_MP (REWRITE_RULE[RIGHT_IMP_FORALL_THM] ITERATE_CLOSED) (ISPEC `r:C ring` MONOIDAL_RING_ADD))) THEN ASM_SIMP_TAC[NEUTRAL_RING_ADD; IMP_IMP; RING_0; RING_ADD; IN_ELIM_THM]);; let RING_SUM_RELATED = prove (`!r R (f:K->A) g s. R (ring_0 r) (ring_0 r)/\ (!x y x' y'. x IN ring_carrier r /\ y IN ring_carrier r /\ x' IN ring_carrier r /\ y' IN ring_carrier r /\ R x y /\ R x' y' ==> R (ring_add r x x') (ring_add r y y')) /\ FINITE s /\ (!a. a IN s ==> (f a IN ring_carrier r <=> g a IN ring_carrier r) /\ R (f a) (g a)) ==> R (ring_sum r s f) (ring_sum r s g)`, REPLICATE_TAC 4 GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> p /\ q ==> r ==> s`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[FORALL_IN_INSERT; RING_SUM_CLAUSES] THEN REPEAT GEN_TAC THEN REWRITE_TAC[COND_SWAP] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_SUM]);; let RING_SUM_EQ_0 = prove (`!r (f:K->A) s. (!a. a IN s /\ f a IN ring_carrier r ==> f a = ring_0 r) ==> ring_sum r s f = ring_0 r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_SUM_RESTRICT] THEN ONCE_REWRITE_TAC[GSYM RING_SUM_SUPPORT] THEN MATCH_MP_TAC(MESON[RING_SUM_CLAUSES] `s = {} ==> ring_sum r s f = ring_0 r`) THEN ASM SET_TAC[]);; let RING_SUM_0 = prove (`!r s. ring_sum r s (\i:K. ring_0 r):A = ring_0 r`, SIMP_TAC[RING_SUM_EQ_0]);; let RING_SUM_DELETE = prove (`!r (f:K->A) s a. FINITE s /\ a IN s /\ f a IN ring_carrier r ==> ring_sum r (s DELETE a) f = ring_sub r (ring_sum r s f) (f a)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:K) IN s` THEN ASM_REWRITE_TAC[] THEN ABBREV_TAC `t = s DELETE (a:K)` THEN SUBGOAL_THEN `s = (a:K) INSERT t` SUBST1_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[FINITE_INSERT] THEN STRIP_TAC] THEN ASM_SIMP_TAC[RING_SUM_CLAUSES] THEN EXPAND_TAC "t" THEN REWRITE_TAC[IN_DELETE] THEN ASM_SIMP_TAC[RING_EQ_SUB_LADD; RING_SUM; RING_ADD] THEN ASM_SIMP_TAC[RING_ADD_SYM; RING_SUM]);; let RING_SUM_NEG = prove (`!r (f:K->A) s. FINITE s /\ (!a. a IN s ==> f a IN ring_carrier r) ==> ring_sum r s (\x. ring_neg r (f x)) = ring_neg r (ring_sum r s f)`, REPLICATE_TAC 2 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; RING_NEG] THEN SIMP_TAC[RING_NEG_ADD; RING_SUM; RING_NEG_0]);; let RING_SUM_ADD = prove (`!r (f:K->A) (g:K->A) s. FINITE s /\ (!a. a IN s ==> f a IN ring_carrier r /\ g a IN ring_carrier r) ==> ring_sum r s (\x. ring_add r (f x) (g x)) = ring_add r (ring_sum r s f) (ring_sum r s g)`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; RING_ADD] THEN ASM_SIMP_TAC[RING_ADD_AC; RING_SUM; RING_ADD] THEN SIMP_TAC[RING_ADD_LZERO; RING_0]);; let RING_SUM_EQ = prove (`!r (f:K->A) g s. (!a. a IN s ==> f a = g a) ==> ring_sum r s f = ring_sum r s g`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum] THEN SUBGOAL_THEN `{a | a IN s /\ (g:K->A) a IN ring_carrier r} = {a | a IN s /\ (f:K->A) a IN ring_carrier r}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MATCH_MP ITERATE_EQ (ISPEC `r:C ring` MONOIDAL_RING_ADD)) THEN ASM SET_TAC[]);; let RING_SUM_DELTA = prove (`!r s (i:K) (a:A). ring_sum r s (\j. if j = i then a else ring_0 r) = if i IN s /\ a IN ring_carrier r then a else ring_0 r`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM RING_SUM_SUPPORT] THEN ONCE_REWRITE_TAC[GSYM RING_SUM_RESTRICT] THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN REWRITE_TAC[RING_0; NOT_IMP; TAUT `(if p then q else T) <=> p ==> q`] THEN ASM_CASES_TAC `(i:K) IN s` THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; SET_RULE `~(i IN s) ==> {j | (j IN s /\ j = i /\ P j) /\ Q j} = {}`] THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_REWRITE_TAC[COND_ID; EMPTY_GSPEC; RING_SUM_CLAUSES] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_SIMP_TAC[TAUT `~((p /\ q) /\ ~q)`; EMPTY_GSPEC; RING_SUM_CLAUSES] THEN ASM_SIMP_TAC[SET_RULE `i IN s ==> {j | j IN s /\ j = i} = {i}`] THEN ASM_REWRITE_TAC[RING_SUM_SING]);; let RING_SUM_LMUL = prove (`!r (f:K->A) c s. c IN ring_carrier r /\ FINITE s /\ (!a. a IN s ==> f a IN ring_carrier r) ==> ring_sum r s (\x. ring_mul r c (f x)) = ring_mul r c (ring_sum r s f)`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; RING_MUL; RING_ADD_LDISTRIB; RING_MUL_RZERO; RING_SUM]);; let RING_SUM_RMUL = prove (`!r (f:K->A) c s. c IN ring_carrier r /\ FINITE s /\ (!a. a IN s ==> f a IN ring_carrier r) ==> ring_sum r s (\x. ring_mul r (f x) c) = ring_mul r (ring_sum r s f) c`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; RING_MUL; RING_ADD_RDISTRIB; RING_MUL_LZERO; RING_SUM]);; let RING_SUM_SWAP = prove (`!r (f:K->L->A) s t. FINITE s /\ FINITE t /\ (!i j. i IN s /\ j IN t ==> f i j IN ring_carrier r) ==> ring_sum r s (\i. ring_sum r t (f i)) = ring_sum r t (\j. ring_sum r s (\i. f i j))`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[FORALL_IN_INSERT; RING_SUM_CLAUSES; RING_SUM; RING_SUM_0; GSYM RING_SUM_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_SUM_EQ THEN ASM_SIMP_TAC[]);; let RING_SUM_REFLECT = prove (`!r (x:num->A) m n. (!i. m <= i /\ i <= n ==> x i IN ring_carrier r) ==> ring_sum r (m..n) x = if n < m then ring_0 r else ring_sum r (0..n-m) (\i. x(n - i))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(n < m) ==> !j. 0 <= j /\ j <= n - m ==> (x:num->A) (n - j) IN ring_carrier r` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[ring_sum; IN_NUMSEG] THEN ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ f x IN s} = {x | P x /\ (P x ==> f x IN s)}`] THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[GSYM numseg] THEN MP_TAC(ISPECL [`x:num->A`; `m:num`; `n:num`] (MATCH_MP ITERATE_REFLECT (ISPEC `r:C ring` MONOIDAL_RING_ADD))) THEN ASM_REWRITE_TAC[NEUTRAL_RING_ADD]);; let RING_SUM_SUM_PRODUCT = prove (`!r s t (x:K->L->A). FINITE s /\ (!i. i IN s ==> FINITE(t i)) /\ (!i j. i IN s /\ j IN t i ==> x i j IN ring_carrier r) ==> ring_sum r s (\i. ring_sum r (t i) (x i)) = ring_sum r {i,j | i IN s /\ j IN t i} (\(i,j). x i j)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum] THEN MP_TAC(ISPECL [`s:K->bool`; `t:K->L->bool`; `x:K->L->A`] (MATCH_MP ITERATE_ITERATE_PRODUCT (ISPEC `r:D ring` MONOIDAL_RING_ADD))) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `t' = t /\ s' = s ==> s = t ==> s' = t'`) THEN CONJ_TAC THENL [AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[ITERATE_EQ] `monoidal op /\ s = t /\ (!i. i IN s ==> f i = g i) ==> iterate op s f = iterate op t g`) THEN REWRITE_TAC[MONOIDAL_RING_ADD] THEN REWRITE_TAC[GSYM ring_sum; RING_SUM; IN_GSPEC] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[ring_sum] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN ASM_MESON_TAC[]);; let RING_SUM_SUPERSET = prove (`!r (f:K->A) u v. u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f x = ring_0 r) ==> ring_sum r v f = ring_sum r u f`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_SUM_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let RING_SUM_RESTRICT_SET = prove (`!P r s (f:K->A). ring_sum r {x | x IN s /\ P x} f = ring_sum r s (\x. if P x then f x else ring_0 r)`, REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `ring_sum r s' f = ring_sum r s' f' /\ ring_sum r s f' = ring_sum r s' f' ==> ring_sum r s' f = ring_sum r s f'`) THEN CONJ_TAC THENL [MATCH_MP_TAC RING_SUM_EQ THEN SET_TAC[]; MATCH_MP_TAC RING_SUM_SUPERSET THEN SIMP_TAC[IN_ELIM_THM; SUBSET_RESTRICT] THEN MESON_TAC[]]);; let RING_SUM_IMAGE = prove (`!r (f:K->L) (g:L->A) s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> ring_sum r (IMAGE f s) g = ring_sum r s (g o f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum] THEN W(MP_TAC o PART_MATCH (rand o rand) (MATCH_MP ITERATE_IMAGE(ISPEC `r:C ring` MONOIDAL_RING_ADD)) o rand o snd) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[o_THM] THEN ASM SET_TAC[]);; let RING_SUM_EQ_GENERAL_INVERSES = prove (`!r s t (f:K->A) (g:L->A) h k. (!y. y IN t ==> k y IN s /\ h (k y) = y) /\ (!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x) ==> ring_sum r s f = ring_sum r t g`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `ring_sum r s ((g:L->A) o (h:K->L))` THEN CONJ_TAC THENL [MATCH_MP_TAC RING_SUM_EQ THEN ASM_SIMP_TAC[o_THM]; W(MP_TAC o PART_MATCH (rand o rand) RING_SUM_IMAGE o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]]);; let RING_SUM_OFFSET = prove (`!p r (f:num->A) m n. ring_sum r (m+p..n+p) f = ring_sum r (m..n) (\i. f(i + p))`, REPEAT GEN_TAC THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE] THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] RING_SUM_IMAGE) THEN SIMP_TAC[EQ_ADD_RCANCEL]);; let RING_SUM_IMAGE_GEN = prove (`!r (f:K->B) (g:K->A) s. FINITE s ==> ring_sum r s g = ring_sum r (IMAGE f s) (\y. ring_sum r {x | x IN s /\ f x = y} g)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_sum] THEN MP_TAC(ISPECL [`f:K->B`; `g:K->A`; `{x | x IN s /\ (g:K->A) x IN ring_carrier r}`] (MATCH_MP ITERATE_IMAGE_GEN(ISPEC `r:C ring` MONOIDAL_RING_ADD))) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RESTRICT]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[IN_ELIM_THM; TAUT `(x IN s /\ y IN t) /\ a = b <=> (x IN s /\ a = b) /\ y IN t`] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] ITERATE_SUPERSET) THEN REWRITE_TAC[MONOIDAL_RING_ADD] THEN REWRITE_TAC[SET_RULE `(x IN s /\ f x = a) /\ P x <=> x IN {x | x IN s /\ f x = a} /\ P x`] THEN REWRITE_TAC[GSYM ring_sum; RING_SUM; NEUTRAL_RING_ADD] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN SIMP_TAC[FUN_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN ASM SET_TAC[]);; let RING_BINOMIAL_THEOREM = prove (`!r n x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_pow r (ring_add r x y) n = ring_sum r (0..n) (\k. ring_mul r (ring_of_num r (binom(n,k))) (ring_mul r (ring_pow r x k) (ring_pow r y (n - k))))`, GEN_TAC THEN INDUCT_TAC THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[NUMSEG_SING; RING_SUM_SING; binom; SUB_REFL; ring_pow; RING_MUL_LID; RING_OF_NUM_1; RING_1] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_SUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; RING_SUM_OFFSET; RING_POW; RING_MUL; RING_1; RING_OF_NUM] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [ring_pow; binom; GSYM ADD1; GSYM RING_SUM_LMUL; FINITE_NUMSEG; RING_POW; RING_MUL; RING_1; RING_OF_NUM; RING_ADD] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [RING_OF_NUM_ADD; RING_MUL_LID; SUB_0; RING_ADD_RDISTRIB; RING_SUM_ADD; RING_POW; RING_MUL; RING_1; RING_OF_NUM; RING_ADD; FINITE_NUMSEG; RING_OF_NUM_1] THEN MATCH_MP_TAC(MESON[RING_ADD_AC] `a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r /\ d IN ring_carrier r /\ e IN ring_carrier r /\ a = e /\ b = ring_add r c d ==> ring_add r a b = ring_add r c (ring_add r d e)`) THEN ASM_SIMP_TAC[RING_SUM; RING_MUL; RING_POW; RING_OF_NUM] THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUB_SUC; RING_MUL_AC; RING_MUL; RING_OF_NUM; RING_POW]; REWRITE_TAC[GSYM ring_pow]] THEN ASM_SIMP_TAC[ADD1; SYM(REWRITE_CONV [RING_SUM_OFFSET] `ring_sum r (m+1..n+1) (\i. f i)`)] THEN ASM_SIMP_TAC[RING_SUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0; RING_MUL; RING_POW; RING_OF_NUM] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [RING_SUM_CLAUSES_LEFT; LE_0; BINOM_LT; LT; RING_MUL_LID; SUB_0; RING_OF_NUM_1; ring_pow; binom; RING_MUL_LZERO; RING_ADD_RZERO; RING_OF_NUM_0; RING_ADD_LZERO; RING_SUM; RING_MUL; RING_POW; RING_OF_NUM] THEN REWRITE_TAC[ARITH] THEN AP_TERM_TAC THEN MATCH_MP_TAC RING_SUM_EQ THEN SIMP_TAC[IN_NUMSEG; ARITH_RULE`k <= n ==> SUC n - k = SUC(n - k)`] THEN ASM_SIMP_TAC[ring_pow; RING_MUL_AC; RING_POW; RING_MUL; RING_OF_NUM]);; let th = prove (`!r (f:K->A) g s. (!a. a IN s ==> f a = g a) ==> ring_sum r s (\i. f i) = ring_sum r s g`, REWRITE_TAC[ETA_AX; RING_SUM_EQ]) in extend_basic_congs [SPEC_ALL th];; (* ------------------------------------------------------------------------- *) (* Very closely analogous: products in a ring. *) (* ------------------------------------------------------------------------- *) let ring_product = new_definition `ring_product r s (f:K->A) = iterate (\x y. if x IN ring_carrier r /\ y IN ring_carrier r then ring_mul r x y else if x IN ring_carrier r then y else if y IN ring_carrier r then x else @z:A. ~(z IN ring_carrier r)) {x | x IN s /\ f(x) IN ring_carrier r} f`;; let NEUTRAL_RING_MUL = prove (`!r:A ring. neutral (\x y. if x IN ring_carrier r /\ y IN ring_carrier r then ring_mul r x y else if x IN ring_carrier r then y else if y IN ring_carrier r then x else @z. ~(z IN ring_carrier r)) = ring_1 r`, GEN_TAC THEN REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `ring_1 r:A`); DISCH_THEN SUBST1_TAC] THEN SIMP_TAC[RING_1; RING_MUL_LID; RING_MUL_RID; COND_ID]);; let MONOIDAL_RING_MUL = prove (`!r:A ring. monoidal (\x y. if x IN ring_carrier r /\ y IN ring_carrier r then ring_mul r x y else if x IN ring_carrier r then y else if y IN ring_carrier r then x else @z. ~(z IN ring_carrier r))`, REWRITE_TAC[monoidal; NEUTRAL_RING_MUL] THEN SIMP_TAC[RING_1; RING_MUL_LID; COND_ID] THEN GEN_TAC THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN TRY(X_GEN_TAC `z:A`) THEN MAP_EVERY ASM_CASES_TAC [`(x:A) IN ring_carrier r`; `(y:A) IN ring_carrier r`; `(z:A) IN ring_carrier r`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[RING_MUL] THEN ASM_SIMP_TAC[RING_MUL_AC; RING_MUL] THEN ASM_MESON_TAC[]);; let RING_PRODUCT = prove (`!r s (f:K->A). ring_product r s f IN ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_product] THEN MATCH_MP_TAC (SIMP_RULE[NEUTRAL_RING_MUL; RING_1; RING_MUL] (ISPEC `\x:B. x IN ring_carrier r` (MATCH_MP ITERATE_CLOSED (ISPEC `r:C ring` MONOIDAL_RING_MUL)))) THEN SIMP_TAC[IN_ELIM_THM]);; let RING_PRODUCT_RESTRICT = prove (`!s f. ring_product r {a | a IN s /\ f a IN ring_carrier r} f = ring_product r s f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_product] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let RING_PRODUCT_SUPPORT = prove (`!s (f:K->A). ring_product r {a | a IN s /\ ~(f a = ring_1 r)} f = ring_product r s f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_product] THEN GEN_REWRITE_TAC RAND_CONV [GSYM ITERATE_SUPPORT] THEN REWRITE_TAC[support; NEUTRAL_RING_MUL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let RING_PRODUCT_TRIVIAL = prove (`!r k (f:K->A). INFINITE {i | i IN k /\ f i IN ring_carrier r /\ ~(f i = ring_1 r)} ==> ring_product r k f = ring_1 r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_SUPPORT] THEN REWRITE_TAC[ring_product] THEN ONCE_REWRITE_TAC[iterate] THEN REWRITE_TAC[NEUTRAL_RING_MUL; support] THEN ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN REWRITE_TAC[GSYM INFINITE; IN_ELIM_THM] THEN ASM_REWRITE_TAC[TAUT `((p /\ q) /\ r) /\ q <=> p /\ r /\ q`]);; let RING_PRODUCT_CLAUSES = prove (`(!r f:K->A. ring_product r {} f = ring_1 r) /\ (!r x (f:K->A) s. FINITE s ==> ring_product r (x INSERT s) f = (if f(x) IN ring_carrier r ==> x IN s then ring_product r s f else ring_mul r (f x) (ring_product r s f)))`, REWRITE_TAC[ring_product; SET_RULE `{x | x IN {} /\ P x} = {}`] THEN REWRITE_TAC[INSERT_RESTRICT] THEN REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN ASM_SIMP_TAC[MATCH_MP ITERATE_CLAUSES (ISPEC `r:A ring` MONOIDAL_RING_MUL); NOT_IN_EMPTY; EMPTY_GSPEC; FINITE_RESTRICT] THEN ASM_REWRITE_TAC[NEUTRAL_RING_MUL; GSYM ring_product; IN_ELIM_THM; RING_PRODUCT]);; let RING_PRODUCT_SING = prove (`!r (f:K->A) a. ring_product r {a} f = if f a IN ring_carrier r then f a else ring_1 r`, SIMP_TAC[RING_PRODUCT_CLAUSES; FINITE_EMPTY; NOT_IN_EMPTY; COND_SWAP] THEN MESON_TAC[RING_MUL_RID]);; let RING_PRODUCT_CLAUSES_NUMSEG_ALT = prove (`(!r m f:num->A. ring_product r (m..0) f = if m = 0 /\ f 0 IN ring_carrier r then f 0 else ring_1 r) /\ (!r m n f:num->A. ring_product r (m..SUC n) f = if m <= SUC n /\ f(SUC n) IN ring_carrier r then ring_mul r (f(SUC n)) (ring_product r (m..n) f) else ring_product r (m..n) f)`, REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THENL [ASM_CASES_TAC `m = 0`; ASM_CASES_TAC `m <= SUC n`] THEN ASM_REWRITE_TAC[RING_PRODUCT_SING; CONJUNCT1 RING_PRODUCT_CLAUSES] THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; FINITE_NUMSEG] THEN REWRITE_TAC[IN_NUMSEG; ARITH_RULE `~(SUC n <= n)`; COND_SWAP]);; let RING_PRODUCT_CLAUSES_NUMSEG = prove (`(!r m f:num->A. ring_product r (m..0) f = if m = 0 /\ f 0 IN ring_carrier r then f 0 else ring_1 r) /\ (!r m n f:num->A. ring_product r (m..SUC n) f = if m <= SUC n /\ f(SUC n) IN ring_carrier r then ring_mul r (ring_product r (m..n) f) (f(SUC n)) else ring_product r (m..n) f)`, REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT] THEN MESON_TAC[RING_MUL_SYM; RING_PRODUCT]);; let RING_PRODUCT_CLAUSES_LEFT = prove (`!r (f:num->A) m n. m <= n ==> ring_product r (m..n) f = if f m IN ring_carrier r then ring_mul r (f m) (ring_product r (m+1..n) f) else ring_product r (m+1..n) f`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC; RING_PRODUCT_CLAUSES; FINITE_NUMSEG] THEN REWRITE_TAC[IN_NUMSEG; ARITH_RULE `~(n + 1 <= n)`; COND_SWAP]);; let RING_PRODUCT_UNION = prove (`!r (f:K->A) s t. FINITE s /\ FINITE t /\ DISJOINT s t ==> ring_product r (s UNION t) f = ring_mul r (ring_product r s f) (ring_product r t f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_product; UNION_RESTRICT] THEN W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP ITERATE_UNION (ISPEC `r:C ring` MONOIDAL_RING_MUL)) o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RESTRICT] THEN ASM SET_TAC[]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]] THEN REWRITE_TAC[GSYM ring_product; RING_PRODUCT]);; let RING_PRODUCT_INCL_EXCL = prove (`!r (f:K->A) s t. FINITE s /\ FINITE t ==> ring_mul r (ring_product r s f) (ring_product r t f) = ring_mul r (ring_product r (s UNION t) f) (ring_product r (s INTER t) f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_product; INTER_RESTRICT; UNION_RESTRICT] THEN W(MP_TAC o PART_MATCH (funpow 3 rand) (MATCH_MP ITERATE_INCL_EXCL (ISPEC `r:C ring` MONOIDAL_RING_MUL)) o rand o rand o snd) THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN REWRITE_TAC[GSYM INTER_RESTRICT; GSYM UNION_RESTRICT] THEN REWRITE_TAC[GSYM ring_product; RING_PRODUCT]);; let RING_PRODUCT_CLOSED = prove (`!r P (f:K->A) s. P(ring_1 r) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ P x /\ P y ==> P(ring_mul r x y)) /\ (!a. a IN s ==> P(f a)) ==> P(ring_product r s f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_product] THEN MP_TAC(ISPECL [`\x:A. x IN ring_carrier r /\ P x`; `f:K->A`; `{a | a IN s /\ (f:K->A) a IN ring_carrier r}`] (MATCH_MP (REWRITE_RULE[RIGHT_IMP_FORALL_THM] ITERATE_CLOSED) (ISPEC `r:C ring` MONOIDAL_RING_MUL))) THEN ASM_SIMP_TAC[NEUTRAL_RING_MUL; IMP_IMP; RING_1; RING_MUL; IN_ELIM_THM]);; let RING_PRODUCT_RELATED = prove (`!r R (f:K->A) g s. R (ring_1 r) (ring_1 r)/\ (!x y x' y'. x IN ring_carrier r /\ y IN ring_carrier r /\ x' IN ring_carrier r /\ y' IN ring_carrier r /\ R x y /\ R x' y' ==> R (ring_mul r x x') (ring_mul r y y')) /\ FINITE s /\ (!a. a IN s ==> (f a IN ring_carrier r <=> g a IN ring_carrier r) /\ R (f a) (g a)) ==> R (ring_product r s f) (ring_product r s g)`, REPLICATE_TAC 4 GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> p /\ q ==> r ==> s`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[FORALL_IN_INSERT; RING_PRODUCT_CLAUSES] THEN REPEAT GEN_TAC THEN REWRITE_TAC[COND_SWAP] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_PRODUCT]);; let RING_PRODUCT_EQ_1 = prove (`!r (f:K->A) s. (!a. a IN s /\ f a IN ring_carrier r ==> f a = ring_1 r) ==> ring_product r s f = ring_1 r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_RESTRICT] THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_SUPPORT] THEN MATCH_MP_TAC(MESON[RING_PRODUCT_CLAUSES] `s = {} ==> ring_product r s f = ring_1 r`) THEN ASM SET_TAC[]);; let RING_PRODUCT_1 = prove (`!r s. ring_product r s (\i:K. ring_1 r):A = ring_1 r`, SIMP_TAC[RING_PRODUCT_EQ_1]);; let RING_PRODUCT_MUL = prove (`!r (f:K->A) (g:K->A) s. FINITE s /\ (!a. a IN s ==> f a IN ring_carrier r /\ g a IN ring_carrier r) ==> ring_product r s (\x. ring_mul r (f x) (g x)) = ring_mul r (ring_product r s f) (ring_product r s g)`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; FORALL_IN_INSERT; RING_MUL] THEN ASM_SIMP_TAC[RING_MUL_AC; RING_PRODUCT; RING_MUL] THEN SIMP_TAC[RING_MUL_LID; RING_1]);; let RING_PRODUCT_EQ = prove (`!r (f:K->A) g s. (!a. a IN s ==> f a = g a) ==> ring_product r s f = ring_product r s g`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_product] THEN SUBGOAL_THEN `{a | a IN s /\ (g:K->A) a IN ring_carrier r} = {a | a IN s /\ (f:K->A) a IN ring_carrier r}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MATCH_MP ITERATE_EQ (ISPEC `r:C ring` MONOIDAL_RING_MUL)) THEN ASM SET_TAC[]);; let RING_PRODUCT_DELTA = prove (`!r s (i:K) (a:A). ring_product r s (\j. if j = i then a else ring_1 r) = if i IN s /\ a IN ring_carrier r then a else ring_1 r`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_SUPPORT] THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_RESTRICT] THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN REWRITE_TAC[RING_1; NOT_IMP; TAUT `(if p then q else T) <=> p ==> q`] THEN ASM_CASES_TAC `(i:K) IN s` THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; SET_RULE `~(i IN s) ==> {j | (j IN s /\ j = i /\ P j) /\ Q j} = {}`] THEN ASM_CASES_TAC `a:A = ring_1 r` THEN ASM_REWRITE_TAC[COND_ID; EMPTY_GSPEC; RING_PRODUCT_CLAUSES] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_SIMP_TAC[TAUT `~((p /\ q) /\ ~q)`; EMPTY_GSPEC; RING_PRODUCT_CLAUSES] THEN ASM_SIMP_TAC[SET_RULE `i IN s ==> {j | j IN s /\ j = i} = {i}`] THEN ASM_REWRITE_TAC[RING_PRODUCT_SING]);; let RING_PRODUCT_SWAP = prove (`!r (f:K->L->A) s t. FINITE s /\ FINITE t /\ (!i j. i IN s /\ j IN t ==> f i j IN ring_carrier r) ==> ring_product r s (\i. ring_product r t (f i)) = ring_product r t (\j. ring_product r s (\i. f i j))`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[FORALL_IN_INSERT; RING_PRODUCT_CLAUSES; RING_PRODUCT; RING_PRODUCT_1; GSYM RING_PRODUCT_MUL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN ASM_SIMP_TAC[]);; let RING_PRODUCT_REFLECT = prove (`!r (x:num->A) m n. (!i. m <= i /\ i <= n ==> x i IN ring_carrier r) ==> ring_product r (m..n) x = if n < m then ring_1 r else ring_product r (0..n-m) (\i. x(n - i))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(n < m) ==> !j. 0 <= j /\ j <= n - m ==> (x:num->A) (n - j) IN ring_carrier r` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[ring_product; IN_NUMSEG] THEN ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ f x IN s} = {x | P x /\ (P x ==> f x IN s)}`] THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[GSYM numseg] THEN MP_TAC(ISPECL [`x:num->A`; `m:num`; `n:num`] (MATCH_MP ITERATE_REFLECT (ISPEC `r:C ring` MONOIDAL_RING_MUL))) THEN ASM_REWRITE_TAC[NEUTRAL_RING_MUL]);; let RING_PRODUCT_SUPERSET = prove (`!r (f:K->A) u v. u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f x = ring_1 r) ==> ring_product r v f = ring_product r u f`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let RING_PRODUCT_RESTRICT_SET = prove (`!P r s (f:K->A). ring_product r {x | x IN s /\ P x} f = ring_product r s (\x. if P x then f x else ring_1 r)`, REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `ring_product r s' f = ring_product r s' f' /\ ring_product r s f' = ring_product r s' f' ==> ring_product r s' f = ring_product r s f'`) THEN CONJ_TAC THENL [MATCH_MP_TAC RING_PRODUCT_EQ THEN SET_TAC[]; MATCH_MP_TAC RING_PRODUCT_SUPERSET THEN SIMP_TAC[IN_ELIM_THM; SUBSET_RESTRICT] THEN MESON_TAC[]]);; let RING_PRODUCT_IMAGE = prove (`!r (f:K->L) (g:L->A) s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> ring_product r (IMAGE f s) g = ring_product r s (g o f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_product] THEN W(MP_TAC o PART_MATCH (rand o rand) (MATCH_MP ITERATE_IMAGE(ISPEC `r:C ring` MONOIDAL_RING_MUL)) o rand o snd) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[o_THM] THEN ASM SET_TAC[]);; let RING_PRODUCT_EQ_GENERAL_INVERSES = prove (`!r s t (f:K->A) (g:L->A) h k. (!y. y IN t ==> k y IN s /\ h (k y) = y) /\ (!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x) ==> ring_product r s f = ring_product r t g`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `ring_product r s ((g:L->A) o (h:K->L))` THEN CONJ_TAC THENL [MATCH_MP_TAC RING_PRODUCT_EQ THEN ASM_SIMP_TAC[o_THM]; W(MP_TAC o PART_MATCH (rand o rand) RING_PRODUCT_IMAGE o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]]);; let RING_PRODUCT_OFFSET = prove (`!p r (f:num->A) m n. ring_product r (m+p..n+p) f = ring_product r (m..n) (\i. f(i + p))`, REPEAT GEN_TAC THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE] THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] RING_PRODUCT_IMAGE) THEN SIMP_TAC[EQ_ADD_RCANCEL]);; let RING_PRODUCT_IMAGE_GEN = prove (`!r (f:K->B) (g:K->A) s. FINITE s ==> ring_product r s g = ring_product r (IMAGE f s) (\y. ring_product r {x | x IN s /\ f x = y} g)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_product] THEN MP_TAC(ISPECL [`f:K->B`; `g:K->A`; `{x | x IN s /\ (g:K->A) x IN ring_carrier r}`] (MATCH_MP ITERATE_IMAGE_GEN(ISPEC `r:C ring` MONOIDAL_RING_MUL))) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RESTRICT]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[IN_ELIM_THM; TAUT `(x IN s /\ y IN t) /\ a = b <=> (x IN s /\ a = b) /\ y IN t`] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] ITERATE_SUPERSET) THEN REWRITE_TAC[MONOIDAL_RING_MUL] THEN REWRITE_TAC[SET_RULE `(x IN s /\ f x = a) /\ P x <=> x IN {x | x IN s /\ f x = a} /\ P x`] THEN REWRITE_TAC[GSYM ring_product; RING_PRODUCT; NEUTRAL_RING_MUL] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN SIMP_TAC[FUN_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_PRODUCT_EQ_1 THEN ASM SET_TAC[]);; let th = prove (`!r (f:K->A) g s. (!a. a IN s ==> f a = g a) ==> ring_product r s (\i. f i) = ring_product r s g`, REWRITE_TAC[ETA_AX; RING_PRODUCT_EQ]) in extend_basic_congs [SPEC_ALL th];; (* ------------------------------------------------------------------------- *) (* Divisibility, zerodivisors, units etc. *) (* *) (* The standard texts and references are a bit divided over how to define *) (* associates, but the two versions are equivalent for integral domains: *) (* See INTEGRAL_DOMAIN_ASSOCIATES for this other possible definition. *) (* ------------------------------------------------------------------------- *) let ring_divides = new_definition `ring_divides r (a:A) b <=> a IN ring_carrier r /\ b IN ring_carrier r /\ ?x. x IN ring_carrier r /\ b = ring_mul r a x`;; let ring_zerodivisor = new_definition `ring_zerodivisor r (a:A) <=> a IN ring_carrier r /\ ?x. x IN ring_carrier r /\ ~(x = ring_0 r) /\ ring_mul r a x = ring_0 r`;; let ring_regular = new_definition `ring_regular r (a:A) <=> a IN ring_carrier r /\ ~(ring_zerodivisor r a)`;; let ring_nilpotent = new_definition `ring_nilpotent r (a:A) <=> a IN ring_carrier r /\ ?n. ~(n = 0) /\ ring_pow r a n = ring_0 r`;; let ring_unit = new_definition `ring_unit r (a:A) <=> a IN ring_carrier r /\ ?x. x IN ring_carrier r /\ ring_mul r a x = ring_1 r`;; let ring_associates = new_definition `ring_associates r (a:A) b <=> ring_divides r a b /\ ring_divides r b a`;; let ring_coprime = new_definition `ring_coprime r (a:A,b) <=> a IN ring_carrier r /\ b IN ring_carrier r /\ !d. ring_divides r d a /\ ring_divides r d b ==> ring_unit r d`;; let ring_inv = new_definition `ring_inv r (a:A) = if ring_unit r a then @x. x IN ring_carrier r /\ ring_mul r a x = ring_1 r else ring_0 r`;; let ring_div = new_definition `ring_div r (a:A) b = ring_mul r a (ring_inv r b)`;; let RING_DIVIDES_IN_CARRIER = prove (`!r a b:A. ring_divides r a b ==> a IN ring_carrier r /\ b IN ring_carrier r`, SIMP_TAC[ring_divides]);; let RING_ZERODIVISOR_IN_CARRIER = prove (`!r a:A. ring_zerodivisor r a ==> a IN ring_carrier r`, SIMP_TAC[ring_zerodivisor]);; let RING_REGULAR_IN_CARRIER = prove (`!r a:A. ring_regular r a ==> a IN ring_carrier r`, SIMP_TAC[ring_regular]);; let RING_NILPOTENT_IN_CARRIER = prove (`!r a:A. ring_nilpotent r a ==> a IN ring_carrier r`, SIMP_TAC[ring_nilpotent]);; let RING_UNIT_IN_CARRIER = prove (`!r a:A. ring_unit r a ==> a IN ring_carrier r`, SIMP_TAC[ring_unit]);; let RING_ASSOCIATES_IN_CARRIER = prove (`!r a a':A. ring_associates r a a' ==> a IN ring_carrier r /\ a' IN ring_carrier r`, SIMP_TAC[ring_associates; ring_divides]);; let RING_COPRIME_IN_CARRIER = prove (`!r a b:A. ring_coprime r (a,b) ==> a IN ring_carrier r /\ b IN ring_carrier r`, SIMP_TAC[ring_coprime]);; let RING_INV,RING_MUL_RINV = (CONJ_PAIR o prove) (`(!r a:A. a IN ring_carrier r ==> (ring_inv r a) IN ring_carrier r) /\ (!r a:A. ring_unit r a ==> ring_mul r a (ring_inv r a) = ring_1 r)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `ring_unit r (a:A)` THEN ASM_REWRITE_TAC[ring_inv] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[ring_unit] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[RING_0] THEN CONV_TAC(RAND_CONV SELECT_CONV) THEN REWRITE_TAC[]);; let RING_MUL_LINV = prove (`!r a:A. ring_unit r a ==> ring_mul r (ring_inv r a) a = ring_1 r`, MESON_TAC[RING_MUL_RINV; RING_INV; RING_MUL_SYM; ring_unit]);; let RING_DIV = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> ring_div r a b IN ring_carrier r`, SIMP_TAC[ring_div; RING_MUL; RING_INV]);; let RING_CLAUSES = prove (`(!(r:A ring). ring_0 r IN ring_carrier r) /\ (!(r:A ring). ring_1 r IN ring_carrier r) /\ (!(r:A ring) n. ring_of_num r n IN ring_carrier r) /\ (!(r:A ring) x. x IN ring_carrier r ==> ring_neg r x IN ring_carrier r) /\ (!(r:A ring) x. x IN ring_carrier r ==> ring_inv r x IN ring_carrier r) /\ (!(r:A ring) x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_add r x y IN ring_carrier r) /\ (!(r:A ring) x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_sub r x y IN ring_carrier r) /\ (!(r:A ring) x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r x y IN ring_carrier r) /\ (!(r:A ring) x y. x IN ring_carrier r /\ y IN ring_carrier r ==> ring_div r x y IN ring_carrier r) /\ (!(r:A ring) x n. x IN ring_carrier r ==> ring_pow r x n IN ring_carrier r)`, REWRITE_TAC[RING_0; RING_1; RING_OF_NUM; RING_NEG; RING_INV; RING_ADD; RING_SUB; RING_MUL; RING_DIV;RING_POW]);; let RING_RINV_UNIQUE = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r /\ ring_mul r a b = ring_1 r ==> ring_inv r a = b`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_inv] THEN COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[ring_unit]] THEN MATCH_MP_TAC SELECT_UNIQUE THEN X_GEN_TAC `c:A` THEN REWRITE_TAC[] THEN EQ_TAC THENL [STRIP_TAC; ASM_MESON_TAC[]] THEN TRANS_TAC EQ_TRANS `ring_mul r (ring_mul r a b) c:A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_MUL_LID]; ALL_TAC] THEN TRANS_TAC EQ_TRANS `ring_mul r (ring_mul r a c) b:A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_MUL_AC; RING_MUL]; ASM_SIMP_TAC[RING_MUL_LID]]);; let RING_LINV_UNIQUE = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r /\ ring_mul r a b = ring_1 r ==> ring_inv r b = a`, MESON_TAC[RING_RINV_UNIQUE; RING_MUL_SYM]);; let RING_INV_1 = prove (`!r:A ring. ring_inv r (ring_1 r) = ring_1 r`, GEN_TAC THEN MATCH_MP_TAC RING_RINV_UNIQUE THEN SIMP_TAC[RING_MUL_LID; RING_1]);; let RING_DIV_1 = prove (`!r x:A. x IN ring_carrier r ==> ring_div r x (ring_1 r) = x`, SIMP_TAC[ring_div; RING_INV_1; RING_MUL_RID]);; let RING_1_DIV = prove (`!(r:A ring) x. x IN ring_carrier r ==> ring_div r (ring_1 r) x = ring_inv r x`, SIMP_TAC[ring_div; RING_INV; RING_MUL_LID]);; let RING_INV_ZERO = prove (`!r x:A. ~ring_unit r x ==> ring_inv r x = ring_0 r`, SIMP_TAC[ring_inv]);; let RING_INV_MUL = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> ring_inv r (ring_mul r a b) = ring_mul r (ring_inv r a) (ring_inv r b)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `ring_unit r (a:A)` THENL [ALL_TAC; ASM_SIMP_TAC[RING_INV_ZERO; RING_INV; RING_MUL_LZERO] THEN MATCH_MP_TAC RING_INV_ZERO THEN UNDISCH_TAC `~ring_unit r (a:A)` THEN REWRITE_TAC[ring_unit; CONTRAPOS_THM] THEN ASM_MESON_TAC[RING_MUL_AC; RING_MUL]] THEN ASM_CASES_TAC `ring_unit r (b:A)` THENL [ALL_TAC; ASM_SIMP_TAC[RING_INV_ZERO; RING_INV; RING_MUL_RZERO] THEN MATCH_MP_TAC RING_INV_ZERO THEN UNDISCH_TAC `~ring_unit r (b:A)` THEN REWRITE_TAC[ring_unit; CONTRAPOS_THM] THEN ASM_MESON_TAC[RING_MUL_AC; RING_MUL]] THEN MATCH_MP_TAC RING_RINV_UNIQUE THEN ASM_SIMP_TAC[RING_MUL; RING_INV; RING_UNIT_IN_CARRIER] THEN TRANS_TAC EQ_TRANS `ring_mul r (ring_mul r a (ring_inv r a)) (ring_mul r b (ring_inv r b)):A` THEN CONJ_TAC THENL [ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_MUL; RING_INV; RING_MUL_AC; RING_UNIT_IN_CARRIER]; ASM_SIMP_TAC[RING_MUL_RINV; RING_MUL_LID; RING_1; RING_UNIT_IN_CARRIER]]);; let RING_INV_POW = prove (`!r (x:A) n. x IN ring_carrier r ==> ring_inv r (ring_pow r x n) = ring_pow r (ring_inv r x) n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_INV_1] THEN ASM_SIMP_TAC[RING_INV_MUL; RING_POW]);; let RING_POW_INV = prove (`!r (x:A) n. x IN ring_carrier r ==> ring_pow r (ring_inv r x) n = ring_inv r (ring_pow r x n)`, SIMP_TAC[RING_INV_POW]);; let RING_INV_INV = prove (`!r a:A. ring_unit r a ==> ring_inv r (ring_inv r a) = a`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_RINV_UNIQUE THEN ASM_SIMP_TAC[RING_INV; RING_UNIT_IN_CARRIER; RING_MUL_LINV]);; let RING_MUL_RINV_EQ = prove (`!r x:A. x IN ring_carrier r ==> (ring_mul r x (ring_inv r x) = ring_1 r <=> ring_unit r x)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[RING_MUL_RINV] THEN REWRITE_TAC[ring_unit] THEN ASM_MESON_TAC[RING_INV]);; let RING_MUL_LINV_EQ = prove (`!r x:A. x IN ring_carrier r ==> (ring_mul r (ring_inv r x) x = ring_1 r <=> ring_unit r x)`, MESON_TAC[RING_MUL_RINV_EQ; RING_MUL_SYM; RING_INV]);; let RING_UNIT_DIVIDES = prove (`!r a:A. ring_unit r a <=> ring_divides r a (ring_1 r)`, REWRITE_TAC[ring_unit; ring_divides] THEN MESON_TAC[RING_1]);; let RING_UNIT_0 = prove (`!r:A ring. ring_unit r (ring_0 r) <=> trivial_ring r`, REWRITE_TAC[ring_unit; RING_0; TRIVIAL_RING_10] THEN MESON_TAC[RING_MUL_LZERO; RING_0]);; let RING_INV_0 = prove (`!r:A ring. ring_inv r (ring_0 r) = ring_0 r`, GEN_TAC THEN REWRITE_TAC[ring_inv; RING_UNIT_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SELECT_UNIQUE THEN X_GEN_TAC `x:A` THEN EQ_TAC THEN SIMP_TAC[RING_0; RING_MUL_LZERO; IMP_CONJ] THENL [RULE_ASSUM_TAC(REWRITE_RULE[trivial_ring]) THEN ASM SET_TAC[]; ASM_MESON_TAC[TRIVIAL_RING_10]]);; let RING_UNIT_1 = prove (`!r:A ring. ring_unit r (ring_1 r)`, GEN_TAC THEN REWRITE_TAC[ring_unit; RING_1] THEN EXISTS_TAC `ring_1 r:A` THEN SIMP_TAC[RING_1; RING_MUL_LID]);; let RING_UNIT_NEG = prove (`!r x:A. ring_unit r x ==> ring_unit r (ring_neg r x)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_unit] THEN DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `x':A` STRIP_ASSUME_TAC)) THEN ASM_SIMP_TAC[RING_NEG] THEN EXISTS_TAC `ring_neg r x':A` THEN ASM_SIMP_TAC[RING_NEG; RING_MUL_LNEG; RING_MUL_RNEG; RING_NEG_NEG; RING_1]);; let RING_UNIT_NEG_EQ = prove (`!r x:A. x IN ring_carrier r ==> (ring_unit r (ring_neg r x) <=> ring_unit r x)`, MESON_TAC[RING_UNIT_NEG; RING_UNIT_IN_CARRIER; RING_NEG_NEG]);; let RING_UNIT_INV = prove (`!r x:A. ring_unit r x ==> ring_unit r (ring_inv r x)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_unit] THEN DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `x':A` STRIP_ASSUME_TAC)) THEN ASM_SIMP_TAC[RING_INV] THEN EXISTS_TAC `ring_inv r (x':A)` THEN ASM_SIMP_TAC[RING_INV] THEN W(MP_TAC o PART_MATCH (rand o rand) RING_INV_MUL o lhand o snd) THEN ASM_REWRITE_TAC[RING_INV_1; ring_unit] THEN ASM_MESON_TAC[RING_MUL_SYM]);; let RING_UNIT_MUL = prove (`!r x y:A. ring_unit r x /\ ring_unit r y ==> ring_unit r (ring_mul r x y)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_unit] THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `x':A` STRIP_ASSUME_TAC)) (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `y':A` STRIP_ASSUME_TAC))) THEN ASM_SIMP_TAC[RING_MUL] THEN EXISTS_TAC `ring_mul r x' y':A` THEN ASM_SIMP_TAC[RING_MUL] THEN TRANS_TAC EQ_TRANS `ring_mul r (ring_mul r x x') (ring_mul r y y'):A` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_MUL_LID; RING_1]] THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o SYM)) THEN ASM_SIMP_TAC[RING_MUL_AC; RING_MUL]);; let RING_UNIT_DIV = prove (`!r x y:A. ring_unit r x /\ ring_unit r y ==> ring_unit r (ring_div r x y)`, SIMP_TAC[ring_div; RING_UNIT_MUL; RING_UNIT_INV]);; let RING_MUL_IMP_UNITS = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r /\ ring_mul r a b = ring_1 r ==> ring_unit r a /\ ring_unit r b`, REWRITE_TAC[ring_unit] THEN MESON_TAC[RING_MUL_SYM]);; let RING_UNIT_MUL_EQ = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_unit r (ring_mul r x y) <=> ring_unit r x /\ ring_unit r y)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[RING_UNIT_MUL] THEN REWRITE_TAC[ring_unit] THEN ASM_MESON_TAC[RING_MUL; RING_MUL_AC]);; let RING_UNIT_POW = prove (`!r (a:A) n. ring_unit r a ==> ring_unit r (ring_pow r a n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_UNIT_1; RING_UNIT_MUL]);; let RING_UNIT_POW_EQ = prove (`!r (a:A) n. a IN ring_carrier r ==> (ring_unit r (ring_pow r a n) <=> n = 0 \/ ring_unit r a)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_UNIT_1; RING_UNIT_MUL_EQ; RING_POW; NOT_SUC] THEN CONV_TAC TAUT);; let RING_UNIT_DIVIDES_ANY = prove (`!r a b:A. ring_unit r a /\ b IN ring_carrier r ==> ring_divides r a b`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[ring_unit; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[ring_divides] THEN EXISTS_TAC `ring_mul r c b:A` THEN ASM_SIMP_TAC[RING_MUL; RING_MUL_ASSOC; RING_MUL_LID]);; let RING_UNIT_DIVISOR = prove (`!r u v:A. ring_unit r u /\ ring_divides r v u ==> ring_unit r v`, REWRITE_TAC[ring_divides] THEN MESON_TAC[ring_unit; RING_UNIT_MUL_EQ]);; let RING_UNIT_PRODUCT = prove (`!r k (f:K->A). FINITE k ==> (ring_unit r (ring_product r k f) <=> !i. i IN k /\ f i IN ring_carrier r ==> ring_unit r (f i))`, GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN SIMP_TAC[RING_PRODUCT_CLAUSES; RING_UNIT_1; COND_SWAP] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_UNIT_MUL_EQ; RING_PRODUCT]);; let RING_DIVIDES_REFL = prove (`!r a:A. ring_divides r a a <=> a IN ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_divides] THEN MESON_TAC[RING_1; RING_MUL_RID]);; let RING_DIVIDES_TRANS = prove (`!r a b c:A. ring_divides r a b /\ ring_divides r b c ==> ring_divides r a c`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_divides] THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC))) THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `ring_mul r x y:A` THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL]);; let RING_DIVIDES_MORE_DIVISORS = prove (`!r a b:A. ring_divides r a b <=> a IN ring_carrier r /\ b IN ring_carrier r /\ !d. d IN ring_carrier r /\ ring_divides r d a ==> ring_divides r d b`, MESON_TAC[ring_divides; RING_DIVIDES_REFL; RING_DIVIDES_TRANS]);; let RING_DIVIDES_ANTISYM = prove (`!r a b:A. ring_divides r a b /\ ring_divides r b a <=> ring_associates r a b`, REWRITE_TAC[ring_associates]);; let RING_DIVIDES_ASSOCIATES = prove (`!r a b:A. ring_associates r a b ==> ring_divides r a b`, SIMP_TAC[ring_associates]);; let RING_DIVIDES_0 = prove (`!r a:A. ring_divides r a (ring_0 r) <=> a IN ring_carrier r`, REWRITE_TAC[ring_divides] THEN MESON_TAC[RING_0; RING_MUL_RZERO]);; let RING_DIVIDES_ZERO = prove (`!r a:A. ring_divides r (ring_0 r) a <=> a = ring_0 r`, REWRITE_TAC[ring_divides] THEN MESON_TAC[RING_0; RING_MUL_LZERO]);; let RING_DIVIDES_1 = prove (`!r a:A. ring_divides r (ring_1 r) a <=> a IN ring_carrier r`, REWRITE_TAC[ring_divides] THEN MESON_TAC[RING_1; RING_MUL_LID]);; let RING_DIVIDES_ONE = prove (`!r a:A. ring_divides r a (ring_1 r) <=> ring_unit r a`, REWRITE_TAC[ring_divides; ring_unit; RING_1] THEN MESON_TAC[]);; let RING_UNIT_DIVIDES_ALL = prove (`!r a:A. ring_unit r a <=> !b. b IN ring_carrier r ==> ring_divides r a b`, MESON_TAC[RING_UNIT_DIVIDES_ANY; RING_DIVIDES_ONE; RING_1]);; let RING_DIVIDES_ADD = prove (`!r a b d:A. ring_divides r d a /\ ring_divides r d b ==> ring_divides r d (ring_add r a b)`, SIMP_TAC[ring_divides; RING_ADD] THEN MESON_TAC[RING_ADD_LDISTRIB; RING_ADD]);; let RING_DIVIDES_SUB = prove (`!r a b d:A. ring_divides r d a /\ ring_divides r d b ==> ring_divides r d (ring_sub r a b)`, SIMP_TAC[ring_divides; RING_SUB] THEN MESON_TAC[RING_SUB_LDISTRIB; RING_SUB]);; let RING_DIVIDES_LNEG = prove (`!r a d:A. ring_divides r d a ==> ring_divides r (ring_neg r d) a`, REPEAT GEN_TAC THEN SIMP_TAC[ring_divides; RING_NEG] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_neg r x:A` THEN ASM_SIMP_TAC[RING_NEG; RING_MUL_LNEG; RING_MUL_RNEG] THEN ASM_SIMP_TAC[RING_MUL; RING_NEG_NEG]);; let RING_DIVIDES_NEG = prove (`!r a d:A. ring_divides r d a ==> ring_divides r d (ring_neg r a)`, MESON_TAC[RING_SUB_LZERO; RING_DIVIDES_SUB; ring_divides; RING_0; RING_DIVIDES_0]);; let RING_DIVIDES_NEG_EQ = prove (`(!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_divides r (ring_neg r x) y <=> ring_divides r x y)) /\ (!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_divides r x (ring_neg r y) <=> ring_divides r x y))`, MESON_TAC[RING_DIVIDES_NEG; RING_DIVIDES_LNEG; RING_DIVIDES_IN_CARRIER; RING_NEG_NEG]);; let RING_DIVIDES_RMUL = prove (`!r a b d:A. ring_divides r d a /\ b IN ring_carrier r ==> ring_divides r d (ring_mul r a b)`, SIMP_TAC[ring_divides; RING_MUL] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC] THEN ASM_MESON_TAC[RING_MUL]);; let RING_DIVIDES_LMUL = prove (`!r a b d:A. a IN ring_carrier r /\ ring_divides r d b ==> ring_divides r d (ring_mul r a b)`, MESON_TAC[RING_DIVIDES_RMUL; ring_divides; RING_MUL_SYM]);; let RING_DIVIDES_LMUL_REV = prove (`!r d a x:A. x IN ring_carrier r /\ d IN ring_carrier r /\ ring_divides r (ring_mul r x d) a ==> ring_divides r d a`, REWRITE_TAC[ring_divides] THEN MESON_TAC[RING_MUL_AC; RING_MUL]);; let RING_DIVIDES_RMUL_REV = prove (`!r d a x:A. x IN ring_carrier r /\ d IN ring_carrier r /\ ring_divides r (ring_mul r d x) a ==> ring_divides r d a`, REWRITE_TAC[ring_divides] THEN MESON_TAC[RING_MUL_AC; RING_MUL]);; let RING_DIVIDES_MUL2 = prove (`!r a b c d:A. ring_divides r a b /\ ring_divides r c d ==> ring_divides r (ring_mul r a c) (ring_mul r b d)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_divides; RING_MUL] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A`; `v:A`] THEN STRIP_TAC THEN EXISTS_TAC `ring_mul r u v:A` THEN ASM_SIMP_TAC[RING_MUL] THEN ASM_SIMP_TAC[RING_MUL_AC; RING_MUL]);; let RING_DIVIDES_LMUL2 = prove (`!r a b c:A. a IN ring_carrier r /\ ring_divides r b c ==> ring_divides r (ring_mul r a b) (ring_mul r a c)`, SIMP_TAC[RING_DIVIDES_MUL2; RING_DIVIDES_REFL]);; let RING_DIVIDES_RMUL2 = prove (`!r a b c:A. ring_divides r a b /\ c IN ring_carrier r ==> ring_divides r (ring_mul r a c) (ring_mul r b c)`, SIMP_TAC[RING_DIVIDES_MUL2; RING_DIVIDES_REFL]);; let RING_DIVIDES_PRODUCT_SUBSET = prove (`!r (f:K->A) s t. FINITE t /\ s SUBSET t ==> ring_divides r (ring_product r s f) (ring_product r t f)`, REPEAT STRIP_TAC THEN ABBREV_TAC `u:K->bool = t DIFF s` THEN SUBGOAL_THEN `t:K->bool = s UNION u` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_UNION o rand o snd) THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[FINITE_DIFF]; ASM SET_TAC[]]; MESON_TAC[RING_DIVIDES_RMUL; RING_PRODUCT; RING_DIVIDES_REFL]]);; let RING_ASSOCIATES_REFL = prove (`!r a:A. ring_associates r a a <=> a IN ring_carrier r`, REWRITE_TAC[ring_associates; RING_DIVIDES_REFL]);; let RING_ASSOCIATES_SYM = prove (`!r a b:A. ring_associates r a b <=> ring_associates r b a`, REWRITE_TAC[ring_associates] THEN MESON_TAC[]);; let RING_ASSOCIATES_TRANS = prove (`!r a b c:A. ring_associates r a b /\ ring_associates r b c ==> ring_associates r a c`, REWRITE_TAC[ring_associates] THEN MESON_TAC[RING_DIVIDES_TRANS]);; let RING_ASSOCIATES_SAME_DIVISORS = prove (`!r a b:A. ring_associates r a b <=> a IN ring_carrier r /\ b IN ring_carrier r /\ !d. d IN ring_carrier r ==> (ring_divides r d a <=> ring_divides r d b)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_associates] THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [RING_DIVIDES_MORE_DIVISORS] THEN MESON_TAC[]);; let RING_ASSOCIATES_0 = prove (`(!r a:A. ring_associates r a (ring_0 r) <=> a = ring_0 r) /\ (!r a:A. ring_associates r (ring_0 r) a <=> a = ring_0 r)`, REWRITE_TAC[ring_associates; RING_DIVIDES_0; RING_DIVIDES_ZERO] THEN MESON_TAC[RING_0]);; let RING_ASSOCIATES_1 = prove (`(!r a:A. ring_associates r a (ring_1 r) <=> ring_unit r a) /\ (!r a:A. ring_associates r (ring_1 r) a <=> ring_unit r a)`, REWRITE_TAC[ring_associates; RING_DIVIDES_1; RING_DIVIDES_ONE] THEN MESON_TAC[ring_unit]);; let RING_ASSOCIATES_LNEG = prove (`!r a d:A. ring_associates r d a ==> ring_associates r (ring_neg r d) a`, SIMP_TAC[ring_associates; RING_DIVIDES_NEG; RING_DIVIDES_LNEG]);; let RING_ASSOCIATES_NEG = prove (`!r a d:A. ring_associates r d a ==> ring_associates r d (ring_neg r a)`, SIMP_TAC[ring_associates; RING_DIVIDES_NEG; RING_DIVIDES_LNEG]);; let RING_ASSOCIATES_NEG_EQ = prove (`(!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_associates r (ring_neg r x) y <=> ring_associates r x y)) /\ (!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_associates r x (ring_neg r y) <=> ring_associates r x y))`, MESON_TAC[RING_ASSOCIATES_NEG; RING_ASSOCIATES_LNEG; RING_ASSOCIATES_IN_CARRIER; RING_NEG_NEG]);; let RING_ASSOCIATES_MUL = prove (`!r a a' b b'. ring_associates r a a' /\ ring_associates r b b' ==> ring_associates r (ring_mul r a b) (ring_mul r a' b')`, SIMP_TAC[ring_associates; RING_DIVIDES_MUL2]);; let RING_ASSOCIATES_POW = prove (`!r a (a':A) n. ring_associates r a a' ==> ring_associates r (ring_pow r a n) (ring_pow r a' n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_ASSOCIATES_REFL; RING_1; RING_ASSOCIATES_MUL; RING_MUL]);; let RING_ASSOCIATES_PRODUCT = prove (`!r k (f:K->A) g. FINITE k /\ (!i. i IN k ==> ring_associates r (f i) (g i)) ==> ring_associates r (ring_product r k f) (ring_product r k g)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN SIMP_TAC[RING_PRODUCT_CLAUSES; RING_ASSOCIATES_REFL; RING_1; COND_SWAP] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[RING_ASSOCIATES_MUL]) THEN ASM_MESON_TAC[RING_ASSOCIATES_IN_CARRIER]);; let RING_ZERODIVISOR_0 = prove (`!r:A ring. ring_zerodivisor r (ring_0 r) <=> ~trivial_ring r`, REWRITE_TAC[ring_zerodivisor; TRIVIAL_RING_SUBSET; RING_0] THEN REWRITE_TAC[SUBSET; IN_SING] THEN MESON_TAC[RING_MUL_LZERO]);; let RING_REGULAR_0 = prove (`!r:A ring. ring_regular r (ring_0 r) <=> trivial_ring r`, REWRITE_TAC[ring_regular; RING_ZERODIVISOR_0; RING_0]);; let RING_ZERODIVISOR_1 = prove (`!r:A ring. ~(ring_zerodivisor r (ring_1 r))`, REWRITE_TAC[ring_zerodivisor; RING_1] THEN MESON_TAC[RING_MUL_LID]);; let RING_REGULAR_1 = prove (`!r:A ring. ring_regular r (ring_1 r)`, REWRITE_TAC[ring_regular; RING_1; RING_ZERODIVISOR_1]);; let RING_ZERODIVISOR_LMUL = prove (`!r a x:A. a IN ring_carrier r /\ ring_zerodivisor r x ==> ring_zerodivisor r (ring_mul r a x)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_zerodivisor; IMP_CONJ] THEN DISCH_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[RING_MUL] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:A` THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; RING_MUL_RZERO]);; let RING_ZERODIVISOR_RMUL = prove (`!r x a:A. ring_zerodivisor r x /\ a IN ring_carrier r ==> ring_zerodivisor r (ring_mul r x a)`, MESON_TAC[RING_ZERODIVISOR_LMUL; RING_ZERODIVISOR_IN_CARRIER; RING_MUL_SYM]);; let RING_ZERODIVISOR_MUL = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_zerodivisor r (ring_mul r x y) <=> ring_zerodivisor r x \/ ring_zerodivisor r y)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_ZERODIVISOR_LMUL; RING_ZERODIVISOR_RMUL]] THEN ASM_SIMP_TAC[ring_zerodivisor; RING_MUL] THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `ring_mul r x z:A = ring_0 r` THENL [ASM_MESON_TAC[]; DISJ2_TAC] THEN EXISTS_TAC `ring_mul r x z:A` THEN ASM_SIMP_TAC[RING_MUL] THEN ASM_MESON_TAC[RING_MUL_AC]);; let RING_ZERODIVISOR_POW = prove (`!r (x:A) n. x IN ring_carrier r ==> (ring_zerodivisor r (ring_pow r x n) <=> ~(n = 0) /\ ring_zerodivisor r x)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_ZERODIVISOR_1] THEN ASM_SIMP_TAC[NOT_SUC; RING_POW; RING_ZERODIVISOR_MUL] THEN CONV_TAC TAUT);; let RING_REGULAR_MUL_EQ = prove (`!r x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_regular r (ring_mul r x y) <=> ring_regular r x /\ ring_regular r y)`, SIMP_TAC[ring_regular; RING_MUL; RING_ZERODIVISOR_MUL] THEN MESON_TAC[]);; let RING_REGULAR_POW = prove (`!r (x:A) n. x IN ring_carrier r ==> (ring_regular r (ring_pow r x n) <=> n = 0 \/ ring_regular r x)`, SIMP_TAC[ring_regular; RING_POW; RING_ZERODIVISOR_POW] THEN MESON_TAC[]);; let RING_REGULAR_MUL = prove (`!r x y:A. ring_regular r x /\ ring_regular r y ==> ring_regular r (ring_mul r x y)`, SIMP_TAC[RING_REGULAR_MUL_EQ; RING_REGULAR_IN_CARRIER]);; let RING_ZERODIVISOR_NEG = prove (`!r x:A. ring_zerodivisor r x ==> ring_zerodivisor r (ring_neg r x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_ZERODIVISOR_IN_CARRIER) THEN SUBGOAL_THEN `ring_neg r x:A = ring_mul r (ring_neg r (ring_1 r)) x` SUBST1_TAC THENL [ASM_SIMP_TAC[RING_MUL_LNEG; RING_MUL_LID; RING_1]; ASM_SIMP_TAC[RING_ZERODIVISOR_MUL; RING_1; RING_NEG]]);; let RING_ZERODIVISOR_NEG_EQ = prove (`!r x:A. x IN ring_carrier r ==> (ring_zerodivisor r (ring_neg r x) <=> ring_zerodivisor r x)`, MESON_TAC[RING_ZERODIVISOR_NEG; RING_ZERODIVISOR_IN_CARRIER; RING_NEG_NEG]);; let RING_REGULAR_NEG = prove (`!r x:A. ring_regular r x ==> ring_regular r (ring_neg r x)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_regular; IMP_CONJ; RING_NEG] THEN SIMP_TAC[RING_ZERODIVISOR_NEG_EQ]);; let RING_REGULAR_NEG_EQ = prove (`!r x:A. x IN ring_carrier r ==> (ring_regular r (ring_neg r x) <=> ring_regular r x)`, MESON_TAC[RING_REGULAR_NEG; RING_REGULAR_IN_CARRIER; RING_NEG_NEG]);; let RING_ZERODIVISOR_IMP_NONUNIT = prove (`!r x:A. ring_zerodivisor r x ==> ~(ring_unit r x)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_ZERODIVISOR_IN_CARRIER) THEN ASM_REWRITE_TAC[ring_unit] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `ring_zerodivisor (r:A ring)`) THEN ASM_SIMP_TAC[RING_ZERODIVISOR_MUL; RING_ZERODIVISOR_1]);; let RING_UNIT_IMP_REGULAR = prove (`!r a:A. ring_unit r a ==> ring_regular r a`, MESON_TAC[RING_ZERODIVISOR_IMP_NONUNIT; ring_unit; ring_regular]);; let RING_DIVIDES_UNIT = prove (`!r u v:A. ring_unit r u ==> (ring_divides r v u <=> ring_unit r v)`, MESON_TAC[RING_UNIT_DIVISOR; RING_UNIT_DIVIDES_ALL; ring_unit]);; let RING_COPRIME_REFL = prove (`!r a:A. ring_coprime r (a,a) <=> ring_unit r a`, REWRITE_TAC[ring_coprime] THEN MESON_TAC[RING_DIVIDES_UNIT; RING_DIVIDES_REFL]);; let RING_COPRIME_SYM = prove (`!r a b:A. ring_coprime r (a,b) <=> ring_coprime r (b,a)`, REWRITE_TAC[ring_coprime] THEN MESON_TAC[]);; let RING_COPRIME_0 = prove (`(!r a:A. ring_coprime r (ring_0 r,a) <=> ring_unit r a) /\ (!r a:A. ring_coprime r (a,ring_0 r) <=> ring_unit r a)`, REWRITE_TAC[ring_coprime; RING_DIVIDES_0; RING_0] THEN MESON_TAC[RING_UNIT_DIVISOR; ring_unit; RING_DIVIDES_REFL]);; let RING_COPRIME_00 = prove (`!r:A ring. ring_coprime r (ring_0 r,ring_0 r) <=> trivial_ring r`, REWRITE_TAC[RING_COPRIME_0; RING_UNIT_0]);; let RING_ASSOCIATES_RMUL = prove (`!r a u:A. a IN ring_carrier r /\ ring_unit r u ==> ring_associates r a (ring_mul r a u)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_unit; ring_associates] THEN SIMP_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_REFL] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[ring_divides; RING_MUL] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; RING_MUL_RID]);; let RING_ASSOCIATES_LMUL = prove (`!r a u:A. ring_unit r u /\ a IN ring_carrier r ==> ring_associates r a (ring_mul r u a)`, MESON_TAC[RING_ASSOCIATES_RMUL; RING_MUL_SYM; ring_unit]);; let RING_ASSOCIATES_DIVIDES = prove (`!r a b a' b':A. ring_associates r a a' /\ ring_associates r b b' ==> (ring_divides r a b <=> ring_divides r a' b')`, REWRITE_TAC[ring_associates] THEN MESON_TAC[RING_DIVIDES_TRANS]);; let RING_ASSOCIATES_ASSOCIATES = prove (`!r a b a' b':A. ring_associates r a a' /\ ring_associates r b b' ==> (ring_associates r a b <=> ring_associates r a' b')`, ASM_MESON_TAC[RING_ASSOCIATES_SYM; ring_associates; RING_DIVIDES_TRANS]);; let RING_ASSOCIATES_UNIT = prove (`!r a a':A. ring_associates r a a' ==> (ring_unit r a <=> ring_unit r a')`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM RING_DIVIDES_ONE] THEN ASM_MESON_TAC[RING_ASSOCIATES_DIVIDES; RING_ASSOCIATES_REFL; RING_1]);; let RING_ASSOCIATES_EQ_0 = prove (`!r a a':A. ring_associates r a a' ==> (a = ring_0 r <=> a' = ring_0 r)`, MESON_TAC[RING_ASSOCIATES_0; RING_ASSOCIATES_TRANS; RING_0]);; let RING_ASSOCIATES_COPRIME = prove (`!r a b a' b':A. ring_associates r a a' /\ ring_associates r b b' ==> (ring_coprime r (a,b) <=> ring_coprime r (a',b'))`, REWRITE_TAC[ring_coprime] THEN MESON_TAC[RING_ASSOCIATES_DIVIDES; RING_ASSOCIATES_REFL; RING_ASSOCIATES_IN_CARRIER; ring_divides]);; let RING_ASSOCIATES_ZERODIVISOR = prove (`!r a a':A. ring_associates r a a' ==> (ring_zerodivisor r a <=> ring_zerodivisor r a')`, REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP RING_ASSOCIATES_IN_CARRIER) THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_associates]) THEN EQ_TAC THENL [FIRST_X_ASSUM(MP_TAC o CONJUNCT1); FIRST_X_ASSUM(MP_TAC o CONJUNCT2)] THEN ASM_REWRITE_TAC[ring_divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN ASM_SIMP_TAC[ring_zerodivisor; RING_MUL] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[RING_MUL; RING_MUL_AC; RING_MUL_LZERO]);; let RING_ASSOCIATES_REGULAR = prove (`!r a a':A. ring_associates r a a' ==> (ring_regular r a <=> ring_regular r a')`, REWRITE_TAC[ring_regular] THEN MESON_TAC[RING_ASSOCIATES_IN_CARRIER; RING_ASSOCIATES_ZERODIVISOR]);; let RING_ASSOCIATES_NILPOTENT = prove (`!r a a':A. ring_associates r a a' ==> (ring_nilpotent r a <=> ring_nilpotent r a')`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_nilpotent] THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_ASSOCIATES_IN_CARRIER]; ALL_TAC] THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN ASM_MESON_TAC[RING_ASSOCIATES_EQ_0; RING_ASSOCIATES_POW]);; let RING_NILPOTENT_0 = prove (`!r. ring_nilpotent r (ring_0 r)`, REWRITE_TAC[ring_nilpotent] THEN MESON_TAC[RING_0; RING_POW_1; ARITH_RULE `~(1 = 0)`]);; let RING_NILPOTENT_1 = prove (`!r:A ring. ring_nilpotent r (ring_1 r) <=> trivial_ring r`, SIMP_TAC[ring_nilpotent; RING_POW_ONE; RING_1; TRIVIAL_RING_10] THEN MESON_TAC[ARITH_RULE `~(1 = 0)`]);; let RING_NILPOTENT = prove (`!r a:A. ring_nilpotent r a <=> a IN ring_carrier r /\ ?n. ring_pow r a n = ring_0 r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_nilpotent] THEN EQ_TAC THENL [MESON_TAC[]; REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM]] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_REWRITE_TAC[ring_pow; GSYM TRIVIAL_RING_10] THEN REWRITE_TAC[trivial_ring] THEN DISCH_TAC THEN EXISTS_TAC `1` THEN ASM_SIMP_TAC[ARITH_EQ; RING_POW_1] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN ASM SET_TAC[]);; let RING_NILPOTENT_POW = prove (`!r (x:A) n. x IN ring_carrier r /\ ~(n = 0) ==> (ring_nilpotent r (ring_pow r x n) <=> ring_nilpotent r x)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[RING_NILPOTENT; RING_POW] THEN ASM_SIMP_TAC[GSYM RING_POW_MUL] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[RING_POW_MUL; RING_POW_ZERO]);; let RING_NILPOTENT_IMP_ZERODIVISOR = prove (`!r a:A. ~trivial_ring r /\ ring_nilpotent r a ==> ring_zerodivisor r a`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_SIMP_TAC[ring_nilpotent; ring_zerodivisor; LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[ring_pow; NOT_SUC] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `ring_pow r (a:A) n = ring_0 r` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[RING_POW]] THEN ASM_CASES_TAC `n = 0` THENL [ASM_MESON_TAC[TRIVIAL_RING_10; ring_pow]; ASM_SIMP_TAC[]]);; let RING_NILPOTENT_NEG = prove (`!r x:A. ring_nilpotent r x ==> ring_nilpotent r (ring_neg r x)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_nilpotent; RING_NEG; IMP_CONJ] THEN DISCH_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[RING_POW_NEG; RING_NEG_0; COND_ID]);; let RING_NILPOTENT_NEG_EQ = prove (`!r x:A. x IN ring_carrier r ==> (ring_nilpotent r (ring_neg r x) <=> ring_nilpotent r x)`, MESON_TAC[RING_NILPOTENT_NEG; RING_NILPOTENT_IN_CARRIER; RING_NEG_NEG]);; (* ------------------------------------------------------------------------- *) (* Subrings. We treat them as *sets* which seems to be a common convention. *) (* And "subring_generated" can be used in the degenerate case where the set *) (* is closed under the operations to cast from "subset" to "ring". *) (* ------------------------------------------------------------------------- *) parse_as_infix ("subring_of",(12,"right"));; let subring_of = new_definition `(s:A->bool) subring_of (r:A ring) <=> s SUBSET ring_carrier r /\ ring_0 r IN s /\ ring_1 r IN s /\ (!x. x IN s ==> ring_neg r x IN s) /\ (!x y. x IN s /\ y IN s ==> ring_add r x y IN s) /\ (!x y. x IN s /\ y IN s ==> ring_mul r x y IN s)`;; let subring_generated = new_definition `subring_generated r (s:A->bool) = ring(INTERS {h | h subring_of r /\ (ring_carrier r INTER s) SUBSET h}, ring_0 r,ring_1 r,ring_neg r,ring_add r,ring_mul r)`;; let IN_SUBRING_0 = prove (`!r h:A->bool. h subring_of r ==> ring_0 r IN h`, SIMP_TAC[subring_of]);; let IN_SUBRING_1 = prove (`!r h:A->bool. h subring_of r ==> ring_1 r IN h`, SIMP_TAC[subring_of]);; let IN_SUBRING_NEG = prove (`!r h x:A. h subring_of r /\ x IN h ==> ring_neg r x IN h`, SIMP_TAC[subring_of]);; let IN_SUBRING_ADD = prove (`!r h x y:A. h subring_of r /\ x IN h /\ y IN h ==> ring_add r x y IN h`, SIMP_TAC[subring_of]);; let IN_SUBRING_MUL = prove (`!r h x y:A. h subring_of r /\ x IN h /\ y IN h ==> ring_mul r x y IN h`, SIMP_TAC[subring_of]);; let IN_SUBRING_SUB = prove (`!r h x y:A. h subring_of r /\ x IN h /\ y IN h ==> ring_sub r x y IN h`, SIMP_TAC[ring_sub; IN_SUBRING_ADD; IN_SUBRING_NEG]);; let IN_SUBRING_POW = prove (`!r h (x:A) n. h subring_of r /\ x IN h ==> ring_pow r x n IN h`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; IN_SUBRING_1; IN_SUBRING_MUL]);; let SUBRING_OF_INTERS = prove (`!r (gs:(A->bool)->bool). (!g. g IN gs ==> g subring_of r) /\ ~(gs = {}) ==> (INTERS gs) subring_of r`, REWRITE_TAC[subring_of; SUBSET; IN_INTERS] THEN SET_TAC[]);; let SUBRING_OF_INTER = prove (`!r g h:A->bool. g subring_of r /\ h subring_of r ==> (g INTER h) subring_of r`, REWRITE_TAC[subring_of; SUBSET; IN_INTER] THEN SET_TAC[]);; let SUBRING_OF_UNIONS = prove (`!r (u:(A->bool)->bool). ~(u = {}) /\ (!h. h IN u ==> h subring_of r) /\ (!g h. g IN u /\ h IN u ==> g SUBSET h \/ h SUBSET g) ==> (UNIONS u) subring_of r`, REWRITE_TAC[subring_of] THEN SET_TAC[]);; let SUBRING_OF_IMP_SUBSET = prove (`!r s:A->bool. s subring_of r ==> s SUBSET ring_carrier r`, SIMP_TAC[subring_of]);; let SUBRING_OF_IMP_NONEMPTY = prove (`!r s:A->bool. s subring_of r ==> ~(s = {})`, REWRITE_TAC[subring_of] THEN SET_TAC[]);; let CARRIER_SUBRING_OF = prove (`!r:A ring. (ring_carrier r) subring_of r`, REWRITE_TAC[subring_of; SUBSET_REFL] THEN REWRITE_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let SUBRING_GENERATED = prove (`(!r s:A->bool. ring_carrier (subring_generated r s) = INTERS {h | h subring_of r /\ (ring_carrier r INTER s) SUBSET h}) /\ (!r s:A->bool. ring_0 (subring_generated r s) = ring_0 r) /\ (!r s:A->bool. ring_1 (subring_generated r s) = ring_1 r) /\ (!r s:A->bool. ring_neg (subring_generated r s) = ring_neg r) /\ (!r s:A->bool. ring_add (subring_generated r s) = ring_add r) /\ (!r s:A->bool. ring_mul (subring_generated r s) = ring_mul r)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl subring_generated))))) (CONJUNCT2 ring_tybij)))) THEN REWRITE_TAC[GSYM subring_generated] THEN ANTS_TAC THENL [REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM] THEN REPLICATE_TAC 4 (GEN_REWRITE_TAC I [CONJ_ASSOC]) THEN CONJ_TAC THENL [MESON_TAC[subring_of]; ALL_TAC] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `ring_carrier r:A->bool`)) THEN REWRITE_TAC[INTER_SUBSET; SUBSET_REFL; CARRIER_SUBRING_OF] THEN ASM_SIMP_TAC[RING_ADD_LZERO; RING_ADD_LNEG; RING_MUL_LID] THEN ASM_SIMP_TAC[RING_ADD_LDISTRIB] THEN ASM_SIMP_TAC[RING_ADD_AC; RING_MUL_AC; RING_ADD; RING_MUL]; DISCH_TAC THEN ASM_REWRITE_TAC[ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul]]);; let SUBRING_GENERATED_EQ = prove (`!G s:A->bool. subring_generated G s = G <=> ring_carrier(subring_generated G s) = ring_carrier G`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [RINGS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED]);; let RING_SUB_SUBRING_GENERATED = prove (`!r s:A->bool. ring_sub (subring_generated r s) = ring_sub r`, REWRITE_TAC[FUN_EQ_THM; ring_sub; SUBRING_GENERATED]);; let RING_POW_SUBRING_GENERATED = prove (`!r s:A->bool. ring_pow (subring_generated r s) = ring_pow r`, REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; SUBRING_GENERATED]);; let RING_OF_NUM_SUBRING_GENERATED = prove (`!r s:A->bool. ring_of_num (subring_generated r s) = ring_of_num r`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_of_num; SUBRING_GENERATED]);; let RING_OF_INT_SUBRING_GENERATED = prove (`!r s:A->bool. ring_of_int (subring_generated r s) = ring_of_int r`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN REWRITE_TAC[ring_of_int; RING_OF_NUM_SUBRING_GENERATED] THEN REWRITE_TAC[SUBRING_GENERATED]);; let SUBRING_GENERATED_RESTRICT = prove (`!r s:A->bool. subring_generated r s = subring_generated r (ring_carrier r INTER s)`, REWRITE_TAC[subring_generated; SET_RULE `g INTER g INTER s = g INTER s`]);; let SUBRING_SUBRING_GENERATED = prove (`!r s:A->bool. ring_carrier(subring_generated r s) subring_of r`, REPEAT GEN_TAC THEN REWRITE_TAC[SUBRING_GENERATED] THEN MATCH_MP_TAC SUBRING_OF_INTERS THEN SIMP_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN EXISTS_TAC `ring_carrier r:A->bool` THEN REWRITE_TAC[CARRIER_SUBRING_OF; INTER_SUBSET]);; let SUBRING_GENERATED_MONO = prove (`!r s t:A->bool. s SUBSET t ==> ring_carrier(subring_generated r s) SUBSET ring_carrier(subring_generated r t)`, REWRITE_TAC[SUBRING_GENERATED] THEN SET_TAC[]);; let SUBRING_GENERATED_MINIMAL = prove (`!r h s:A->bool. s SUBSET h /\ h subring_of r ==> ring_carrier(subring_generated r s) SUBSET h`, REWRITE_TAC[SUBRING_GENERATED; INTERS_GSPEC] THEN SET_TAC[]);; let SUBRINGS_GENERATED_EQ = prove (`!r s t:A->bool. s SUBSET ring_carrier(subring_generated r t) /\ t SUBSET ring_carrier(subring_generated r s) ==> subring_generated r s = subring_generated r t`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [RINGS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[SUBRING_GENERATED_MINIMAL; SUBRING_SUBRING_GENERATED]);; let SUBRING_GENERATED_INDUCT = prove (`!r P s:A->bool. (!x. x IN ring_carrier r /\ x IN s ==> P x) /\ P(ring_0 r) /\ P(ring_1 r) /\ (!x. P x ==> P(ring_neg r x)) /\ (!x y. P x /\ P y ==> P(ring_add r x y)) /\ (!x y. P x /\ P y ==> P(ring_mul r x y)) ==> !x. x IN ring_carrier(subring_generated r s) ==> P x`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IN_INTER] THEN ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN MP_TAC(SET_RULE `ring_carrier r INTER (s:A->bool) SUBSET ring_carrier r`) THEN SPEC_TAC(`ring_carrier r INTER (s:A->bool)`,`s:A->bool`) THEN GEN_TAC THEN DISCH_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `{x:A | x IN ring_carrier r /\ P x}`; `s:A->bool`] SUBRING_GENERATED_MINIMAL) THEN ANTS_TAC THENL [ALL_TAC; SET_TAC[]] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[subring_of; IN_ELIM_THM; SUBSET; RING_ADD; RING_NEG; RING_0; RING_1; RING_MUL]);; let SUBRING_GENERATED_INDUCT_STRONG = prove (`!r P s:A->bool. (!x. x IN ring_carrier r /\ x IN s ==> P x) /\ P(ring_0 r) /\ P(ring_1 r) /\ (!x. x IN ring_carrier r /\ P x ==> P(ring_neg r x)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ P x /\ P y ==> P(ring_add r x y)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ P x /\ P y ==> P(ring_mul r x y)) ==> !x. x IN ring_carrier(subring_generated r s) ==> P x`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x. x IN ring_carrier (subring_generated r s) ==> (x:A) IN ring_carrier r /\ P x` MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC SUBRING_GENERATED_INDUCT THEN ASM_SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let RING_CARRIER_SUBRING_GENERATED_SUBSET = prove (`!r h:A->bool. ring_carrier (subring_generated r h) SUBSET ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[SUBRING_GENERATED] THEN MATCH_MP_TAC(SET_RULE `a IN s ==> INTERS s SUBSET a`) THEN REWRITE_TAC[IN_ELIM_THM; CARRIER_SUBRING_OF; INTER_SUBSET]);; let SUBRING_OF_SUBRING_GENERATED_EQ = prove (`!r h k:A->bool. h subring_of (subring_generated r k) <=> h subring_of r /\ h SUBSET ring_carrier(subring_generated r k)`, REWRITE_TAC[subring_of; CONJUNCT2 SUBRING_GENERATED] THEN MESON_TAC[RING_CARRIER_SUBRING_GENERATED_SUBSET; SUBSET_TRANS]);; let SUBRING_GENERATED_SUPERSET = prove (`!r s:A->bool. subring_generated r s = r <=> ring_carrier r SUBSET ring_carrier(subring_generated r s)`, REWRITE_TAC[SUBRING_GENERATED_EQ; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[RING_CARRIER_SUBRING_GENERATED_SUBSET]);; let FINITE_SUBRING_GENERATED = prove (`!r s:A->bool. FINITE(ring_carrier r) ==> FINITE(ring_carrier(subring_generated r s))`, MESON_TAC[FINITE_SUBSET; RING_CARRIER_SUBRING_GENERATED_SUBSET]);; let SUBRING_GENERATED_SUBSET_CARRIER = prove (`!r h:A->bool. ring_carrier r INTER h SUBSET ring_carrier(subring_generated r h)`, REWRITE_TAC[subring_of; SUBRING_GENERATED; SUBSET_INTERS] THEN SET_TAC[]);; let SUBSET_CARRIER_SUBRING_GENERATED = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ s SUBSET t ==> s SUBSET ring_carrier(subring_generated r t)`, MESON_TAC[SUBSET_TRANS; SUBSET_INTER; SUBRING_GENERATED_SUBSET_CARRIER]);; let CARRIER_SUBRING_GENERATED_SUBRING = prove (`!r h:A->bool. h subring_of r ==> ring_carrier (subring_generated r h) = h`, REWRITE_TAC[subring_of; SUBRING_GENERATED; INTERS_GSPEC] THEN REPEAT GEN_TAC THEN SIMP_TAC[SET_RULE `h SUBSET g ==> g INTER h = h`] THEN STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [SUBSET]; ASM SET_TAC[]] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `h:A->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL]);; let SUBRING_GENERATED_MINIMAL_EQ = prove (`!r h s:A->bool. h subring_of r ==> (ring_carrier(subring_generated r s) SUBSET h <=> ring_carrier r INTER s SUBSET h)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN REWRITE_TAC[SUBRING_GENERATED_SUBSET_CARRIER]; ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SUBRING_GENERATED_MINIMAL]]);; let SUBRING_OF_SUBRING_GENERATED_SUBRING_EQ = prove (`!r h k:A->bool. k subring_of r ==> (h subring_of (subring_generated r k) <=> h subring_of r /\ h SUBSET k)`, REWRITE_TAC[SUBRING_OF_SUBRING_GENERATED_EQ] THEN SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING]);; let SUBRING_GENERATED_RING_CARRIER = prove (`!r:A ring. subring_generated r (ring_carrier r) = r`, GEN_TAC THEN REWRITE_TAC[RINGS_EQ] THEN SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; CARRIER_SUBRING_OF] THEN REWRITE_TAC[SUBRING_GENERATED]);; let SUBRING_OF_SUBRING_GENERATED = prove (`!r g h:A->bool. g subring_of r /\ g SUBSET h ==> g subring_of (subring_generated r h)`, SIMP_TAC[subring_of; SUBRING_GENERATED; SUBSET_INTERS] THEN SET_TAC[]);; let SUBRING_GENERATED_SUBSET_CARRIER_SUBSET = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> s SUBSET ring_carrier(subring_generated r s)`, MESON_TAC[SUBRING_GENERATED_SUBSET_CARRIER; SET_RULE `s SUBSET t <=> t INTER s = s`]);; let SUBRING_GENERATED_REFL = prove (`!r s:A->bool. ring_carrier r SUBSET s ==> subring_generated r s = r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `u SUBSET s ==> u INTER s = u`] THEN REWRITE_TAC[SUBRING_GENERATED_RING_CARRIER]);; let SUBRING_GENERATED_INC = prove (`!r s x:A. s SUBSET ring_carrier r /\ x IN s ==> x IN ring_carrier(subring_generated r s)`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; GSYM SUBSET] THEN REWRITE_TAC[SUBRING_GENERATED_SUBSET_CARRIER_SUBSET]);; let SUBRING_OF_SUBRING_GENERATED_REV = prove (`!r g h:A->bool. g subring_of (subring_generated r h) ==> g subring_of r`, SIMP_TAC[subring_of; CONJUNCT2 SUBRING_GENERATED] THEN MESON_TAC[RING_CARRIER_SUBRING_GENERATED_SUBSET; SUBSET_TRANS]);; let TRIVIAL_RING_SUBRING_GENERATED = prove (`!r s:A->bool. trivial_ring(subring_generated r s) <=> trivial_ring r`, REWRITE_TAC[TRIVIAL_RING_10; CONJUNCT2 SUBRING_GENERATED]);; let SUBRING_GENERATED_BY_SUBRING_GENERATED = prove (`!r s:A->bool. subring_generated r (ring_carrier(subring_generated r s)) = subring_generated r s`, REPEAT GEN_TAC THEN REWRITE_TAC[RINGS_EQ; CONJUNCT2 SUBRING_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SUBRING_GENERATED_MINIMAL THEN REWRITE_TAC[SUBRING_SUBRING_GENERATED; SUBSET_REFL]; MATCH_MP_TAC SUBRING_GENERATED_SUBSET_CARRIER_SUBSET THEN REWRITE_TAC[RING_CARRIER_SUBRING_GENERATED_SUBSET]]);; let SUBRING_GENERATED_INSERT_ZERO = prove (`!r s:A->bool. subring_generated r (ring_0 r INSERT s) = subring_generated r s`, REWRITE_TAC[RINGS_EQ; SUBRING_GENERATED] THEN REWRITE_TAC[EXTENSION; INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_INSERT; TAUT `p /\ (q \/ r) ==> s <=> (q ==> p ==> s) /\ (p /\ r ==> s)`] THEN REWRITE_TAC[FORALL_AND_THM; FORALL_UNWIND_THM2; RING_0] THEN MESON_TAC[subring_of]);; let RING_CARRIER_SUBRING_GENERATED_MONO = prove (`!r s t:A->bool. ring_carrier(subring_generated (subring_generated r s) t) SUBSET ring_carrier(subring_generated r t)`, ONCE_REWRITE_TAC[SUBRING_GENERATED] THEN REWRITE_TAC[SUBRING_OF_SUBRING_GENERATED_EQ] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC INTERS_ANTIMONO_GEN THEN X_GEN_TAC `h:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN EXISTS_TAC `h INTER ring_carrier (subring_generated r s):A->bool` THEN REWRITE_TAC[INTER_SUBSET; SUBSET_INTER] THEN ASM_SIMP_TAC[SUBRING_OF_INTER; SUBRING_SUBRING_GENERATED] THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN ASM SET_TAC[]);; let SUBRING_GENERATED_IDEMPOT_GEN = prove (`!r s t:A->bool. s SUBSET ring_carrier(subring_generated r t) ==> subring_generated (subring_generated r t) s = subring_generated r s`, REPEAT STRIP_TAC THEN REWRITE_TAC[RINGS_EQ; CONJUNCT2 SUBRING_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[RING_CARRIER_SUBRING_GENERATED_MONO] THEN MATCH_MP_TAC SUBRING_GENERATED_MINIMAL THEN ASM_SIMP_TAC[SUBRING_GENERATED_SUBSET_CARRIER_SUBSET] THEN MESON_TAC[SUBRING_OF_SUBRING_GENERATED_REV; SUBRING_SUBRING_GENERATED]);; let SUBRING_GENERATED_IDEMPOT = prove (`!r s t:A->bool. s SUBSET t ==> subring_generated (subring_generated r t) s = subring_generated r s`, REPEAT STRIP_TAC THEN REWRITE_TAC[RINGS_EQ; CONJUNCT2 SUBRING_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[RING_CARRIER_SUBRING_GENERATED_MONO] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SUBRING_GENERATED_RESTRICT] THEN MATCH_MP_TAC SUBRING_GENERATED_MINIMAL THEN CONJ_TAC THENL [W(MP_TAC o PART_MATCH rand SUBRING_GENERATED_SUBSET_CARRIER o rand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN REWRITE_TAC[INTER_SUBSET; SUBSET_INTER] THEN MP_TAC(ISPECL [`r:A ring`; `t:A->bool`] SUBRING_GENERATED_SUBSET_CARRIER) THEN ASM SET_TAC[]; MATCH_MP_TAC SUBRING_OF_SUBRING_GENERATED_REV THEN EXISTS_TAC `t:A->bool` THEN REWRITE_TAC[SUBRING_SUBRING_GENERATED]]);; let SUBRING_GENERATED_SUBRING_GENERATED = prove (`!r s t:A->bool. s subring_of r /\ t subring_of r ==> subring_generated (subring_generated r s) t = subring_generated r (s INTER t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[RINGS_EQ; CONJUNCT2 SUBRING_GENERATED] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SUBRING_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; SUBRING_OF_INTER] THEN MATCH_MP_TAC CARRIER_SUBRING_GENERATED_SUBRING THEN ASM_SIMP_TAC[SUBRING_OF_SUBRING_GENERATED_SUBRING_EQ] THEN ASM_SIMP_TAC[INTER_SUBSET; SUBRING_OF_INTER]);; let SUBRING_GENERATED_BY_SUBRING_GENERATED_IDEMPOT = prove (`!r s t:A->bool. s SUBSET t ==> subring_generated (subring_generated r t) (ring_carrier (subring_generated r s)) = subring_generated r s`, MESON_TAC[SUBRING_GENERATED_BY_SUBRING_GENERATED; SUBRING_GENERATED_IDEMPOT; SUBRING_GENERATED_MONO]);; let SUBRING_GENERATED_UNION_LEFT = prove (`!r s t:A->bool. subring_generated r (ring_carrier(subring_generated r s) UNION t) = subring_generated r (s UNION t)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [RINGS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBRING_GENERATED_MINIMAL_EQ; SUBRING_SUBRING_GENERATED] THEN REWRITE_TAC[UNION_OVER_INTER; UNION_SUBSET] THEN SIMP_TAC[GSYM SUBRING_GENERATED_MINIMAL_EQ; SUBRING_SUBRING_GENERATED] THEN REWRITE_TAC[SUBRING_GENERATED_BY_SUBRING_GENERATED] THEN REPEAT CONJ_TAC THENL [ALL_TAC; ALL_TAC; GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SUBRING_GENERATED_BY_SUBRING_GENERATED]; ALL_TAC] THEN MATCH_MP_TAC SUBRING_GENERATED_MONO THEN SET_TAC[]);; let SUBRING_GENERATED_UNION_RIGHT = prove (`!r s t:A->bool. subring_generated r (s UNION ring_carrier(subring_generated r t)) = subring_generated r (s UNION t)`, ONCE_REWRITE_TAC[UNION_COMM] THEN REWRITE_TAC[SUBRING_GENERATED_UNION_LEFT]);; let SUBRING_GENERATED_UNION = prove (`!r s t:A->bool. subring_generated r (ring_carrier(subring_generated r s) UNION ring_carrier(subring_generated r t)) = subring_generated r (s UNION t)`, REWRITE_TAC[SUBRING_GENERATED_UNION_LEFT; SUBRING_GENERATED_UNION_RIGHT]);; let RING_CHAR_SUBRING_GENERATED = prove (`!r s:A->bool. ring_char(subring_generated r s) = ring_char r`, REWRITE_TAC[RING_CHAR_UNIQUE] THEN REWRITE_TAC[SUBRING_GENERATED; RING_OF_NUM_SUBRING_GENERATED] THEN REWRITE_TAC[RING_OF_NUM_EQ_0]);; (* ------------------------------------------------------------------------- *) (* Ideals, with some quite analogous properties to subrings in many cases. *) (* ------------------------------------------------------------------------- *) let ring_ideal = new_definition `ring_ideal (r:A ring) j <=> j SUBSET ring_carrier r /\ ring_0 r IN j /\ (!x. x IN j ==> ring_neg r x IN j) /\ (!x y. x IN j /\ y IN j ==> ring_add r x y IN j) /\ (!x y. x IN ring_carrier r /\ y IN j ==> ring_mul r x y IN j)`;; let RING_IDEAL_IMP_SUBSET = prove (`!r s:A->bool. ring_ideal r s ==> s SUBSET ring_carrier r`, SIMP_TAC[ring_ideal]);; let RING_IDEAL_IMP_NONEMPTY = prove (`!r s:A->bool. ring_ideal r s ==> ~(s = {})`, REWRITE_TAC[ring_ideal] THEN SET_TAC[]);; let RING_IDEAL_0 = prove (`!r:A ring. ring_ideal r {ring_0 r}`, REWRITE_TAC[ring_ideal; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IN_SING; FORALL_UNWIND_THM2; SING_SUBSET] THEN SIMP_TAC[RING_MUL_RZERO; RING_NEG_0; RING_0; RING_ADD_LZERO]);; let IN_RING_IDEAL_0 = prove (`!r h:A->bool. ring_ideal r h ==> ring_0 r IN h`, SIMP_TAC[ring_ideal]);; let IN_RING_IDEAL_NEG = prove (`!r h x:A. ring_ideal r h /\ x IN h ==> ring_neg r x IN h`, SIMP_TAC[ring_ideal]);; let IN_RING_IDEAL_ADD = prove (`!r h x y:A. ring_ideal r h /\ x IN h /\ y IN h ==> ring_add r x y IN h`, SIMP_TAC[ring_ideal]);; let IN_RING_IDEAL_SUB = prove (`!r h x y:A. ring_ideal r h /\ x IN h /\ y IN h ==> ring_sub r x y IN h`, SIMP_TAC[ring_sub; IN_RING_IDEAL_ADD; IN_RING_IDEAL_NEG]);; let IN_RING_IDEAL_MUL = prove (`!r h x y:A. ring_ideal r h /\ x IN h /\ y IN h ==> ring_mul r x y IN h`, SIMP_TAC[ring_ideal; SUBSET]);; let IN_RING_IDEAL_LMUL = prove (`!r h x y:A. ring_ideal r h /\ x IN ring_carrier r /\ y IN h ==> ring_mul r x y IN h`, REWRITE_TAC[ring_ideal; SUBSET] THEN MESON_TAC[RING_MUL_SYM]);; let IN_RING_IDEAL_RMUL = prove (`!r h x y:A. ring_ideal r h /\ x IN h /\ y IN ring_carrier r ==> ring_mul r x y IN h`, REWRITE_TAC[ring_ideal; SUBSET] THEN MESON_TAC[RING_MUL_SYM]);; let RING_MULTIPLE_IN_IDEAL = prove (`!r j a b:A. ring_ideal r j /\ a IN j /\ ring_divides r a b ==> b IN j`, REWRITE_TAC[ring_divides] THEN MESON_TAC[IN_RING_IDEAL_RMUL]);; let RING_POW_IN_IDEAL = prove (`!r j (x:A) n. ring_ideal r j /\ x IN j /\ ~(n = 0) ==> ring_pow r x n IN j`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `(x:A) IN ring_carrier r` ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[NOT_SUC] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[ring_pow; RING_MUL_RID; IN_RING_IDEAL_LMUL]);; let IN_RING_IDEAL_SUM = prove (`!r j s (f:K->A). ring_ideal r j /\ (!i. i IN s ==> f i IN j) ==> ring_sum r s f IN j`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[] (ISPECL [`r:A ring`; `\x:A. x IN j`] RING_SUM_CLOSED)) THEN ASM_MESON_TAC[ring_ideal; SUBSET]);; let RING_ASSOCIATES_IN_IDEAL = prove (`!r j a a'. ring_ideal r j /\ ring_associates r a a' ==> (a IN j <=> a' IN j)`, REWRITE_TAC[ring_associates] THEN MESON_TAC[RING_MULTIPLE_IN_IDEAL]);; let RING_IDEAL_INTERS = prove (`!r (gs:(A->bool)->bool). (!g. g IN gs ==> ring_ideal r g) /\ ~(gs = {}) ==> ring_ideal r (INTERS gs)`, REWRITE_TAC[ring_ideal; SUBSET; IN_INTERS] THEN SET_TAC[]);; let RING_IDEAL_INTER = prove (`!r g h:A->bool. ring_ideal r g /\ ring_ideal r h ==> ring_ideal r (g INTER h)`, REWRITE_TAC[ring_ideal; SUBSET; IN_INTER] THEN SET_TAC[]);; let RING_IDEAL_UNIONS = prove (`!r (u:(A->bool)->bool). ~(u = {}) /\ (!h. h IN u ==> ring_ideal r h) /\ (!g h. g IN u /\ h IN u ==> g SUBSET h \/ h SUBSET g) ==> ring_ideal r (UNIONS u)`, REWRITE_TAC[ring_ideal] THEN SET_TAC[]);; let RING_IDEAL_EQ_CARRIER = prove (`!(r:A ring) j. ring_ideal r j ==> (j = ring_carrier r <=> ring_1 r IN j)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MESON_TAC[RING_1]; ALL_TAC] THEN ASM_SIMP_TAC[RING_IDEAL_IMP_SUBSET; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[IN_RING_IDEAL_RMUL; RING_MUL_LID]);; let RING_IDEAL_EQ_CARRIER_UNIT = prove (`!(r:A ring) j. ring_ideal r j ==> (j = ring_carrier r <=> ?u. ring_unit r u /\ u IN j)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[RING_IDEAL_EQ_CARRIER] THEN EQ_TAC THENL [MESON_TAC[RING_UNIT_1]; ALL_TAC] THEN REWRITE_TAC[ring_unit] THEN ASM_MESON_TAC[IN_RING_IDEAL_RMUL]);; let TRIVIAL_RING_IDEAL = prove (`!r:A ring. ring_ideal r {ring_0 r}`, SIMP_TAC[ring_ideal; IN_SING; SING_SUBSET] THEN SIMP_TAC[RING_ADD_LZERO; RING_0; RING_MUL_RZERO; RING_NEG_0]);; let RING_IDEAL_CARRIER = prove (`!r:A ring. ring_ideal r (ring_carrier r)`, REWRITE_TAC[ring_ideal; SUBSET_REFL] THEN SIMP_TAC[RING_0; RING_NEG; RING_ADD; RING_MUL]);; let RING_IDEAL_SUBRING_GENERATED_EQ = prove (`!r s j:A->bool. s subring_of r /\ ring_ideal r j ==> (ring_ideal (subring_generated r s) j <=> j SUBSET s)`, SIMP_TAC[ring_ideal; CARRIER_SUBRING_GENERATED_SUBRING] THEN SIMP_TAC[SUBRING_GENERATED] THEN REWRITE_TAC[subring_of] THEN SET_TAC[]);; let RING_IDEAL_SUBRING_GENERATED = prove (`!r s j:A->bool. s subring_of r /\ ring_ideal r j /\ j SUBSET s ==> ring_ideal (subring_generated r s) j`, SIMP_TAC[RING_IDEAL_SUBRING_GENERATED_EQ]);; let RING_SUBRING_INTER_IDEAL = prove (`!r s j:A->bool. s subring_of r /\ ring_ideal r j ==> ring_ideal (subring_generated r s) (s INTER j)`, SIMP_TAC[ring_ideal; CARRIER_SUBRING_GENERATED_SUBRING] THEN SIMP_TAC[SUBRING_GENERATED; IN_INTER; subring_of] THEN SET_TAC[]);; let RING_IDEAL_INTER_SUBRING = prove (`!r s j:A->bool. s subring_of r /\ ring_ideal r j ==> ring_ideal (subring_generated r s) (j INTER s)`, ONCE_REWRITE_TAC[INTER_COMM] THEN REWRITE_TAC[RING_SUBRING_INTER_IDEAL]);; (* ------------------------------------------------------------------------- *) (* Setwise operations. *) (* ------------------------------------------------------------------------- *) let ring_setneg = new_definition `ring_setneg (r:A ring) s = {ring_neg r x | x IN s}`;; let ring_setadd = new_definition `ring_setadd (r:A ring) s t = {ring_add r x y | x IN s /\ y IN t}`;; let ring_setmul = new_definition `ring_setmul (r:A ring) s t = {ring_mul r x y | x IN s /\ y IN t}`;; let RING_NEG_IN_SETNEG = prove (`!r s x:A. x IN s ==> ring_neg r x IN ring_setneg r s`, REWRITE_TAC[ring_setneg; IN_ELIM_THM] THEN MESON_TAC[]);; let RING_ADD_IN_SETADD = prove (`!r s t x y:A. x IN s /\ y IN t ==> ring_add r x y IN ring_setadd r s t`, REWRITE_TAC[ring_setadd; IN_ELIM_THM] THEN MESON_TAC[]);; let RING_MUL_IN_SETMUL = prove (`!r s t x y:A. x IN s /\ y IN t ==> ring_mul r x y IN ring_setmul r s t`, REWRITE_TAC[ring_setmul; IN_ELIM_THM] THEN MESON_TAC[]);; let RING_SETNEG_MONO = prove (`!r s s':A->bool. s SUBSET s' ==> ring_setneg r s SUBSET ring_setneg r s'`, REWRITE_TAC[ring_setneg] THEN SET_TAC[]);; let RING_SETADD_MONO = prove (`!r s t s' t':A->bool. s SUBSET s' /\ t SUBSET t' ==> ring_setadd r s t SUBSET ring_setadd r s' t'`, REWRITE_TAC[ring_setadd] THEN SET_TAC[]);; let RING_SETMUL_MONO = prove (`!r s t s' t':A->bool. s SUBSET s' /\ t SUBSET t' ==> ring_setmul r s t SUBSET ring_setmul r s' t'`, REWRITE_TAC[ring_setmul] THEN SET_TAC[]);; let SUBRING_OF_SETWISE = prove (`!r s:A->bool. s subring_of r <=> s SUBSET ring_carrier r /\ ring_0 r IN s /\ ring_1 r IN s /\ ring_setneg r s SUBSET s /\ ring_setadd r s s SUBSET s /\ ring_setmul r s s SUBSET s`, REWRITE_TAC[subring_of; ring_setneg; ring_setadd; ring_setmul] THEN SET_TAC[]);; let RING_IDEAL_SETWISE = prove (`!r j:A->bool. ring_ideal r j <=> j SUBSET ring_carrier r /\ ring_0 r IN j /\ ring_setneg r j SUBSET j /\ ring_setadd r j j SUBSET j /\ ring_setmul r (ring_carrier r) j SUBSET j`, REWRITE_TAC[ring_ideal; ring_setneg; ring_setadd; ring_setmul] THEN SET_TAC[]);; let RING_SETNEG_EQ_EMPTY = prove (`!r s:A->bool. ring_setneg r s = {} <=> s = {}`, REWRITE_TAC[ring_setneg] THEN SET_TAC[]);; let RING_SETADD_EQ_EMPTY = prove (`!r s t:A->bool. ring_setadd r s t = {} <=> s = {} \/ t = {}`, REWRITE_TAC[ring_setadd] THEN SET_TAC[]);; let RING_SETMUL_EQ_EMPTY = prove (`!r s t:A->bool. ring_setmul r s t = {} <=> s = {} \/ t = {}`, REWRITE_TAC[ring_setmul] THEN SET_TAC[]);; let RING_SETNEG_SING = prove (`!r x:A. ring_setneg r {x} = {ring_neg r x}`, REWRITE_TAC[ring_setneg] THEN SET_TAC[]);; let RING_SETADD_SING = prove (`!r x y:A. ring_setadd r {x} {y} = {ring_add r x y}`, REWRITE_TAC[ring_setadd] THEN SET_TAC[]);; let RING_SETMUL_SING = prove (`!r x y:A. ring_setmul r {x} {y} = {ring_mul r x y}`, REWRITE_TAC[ring_setmul] THEN SET_TAC[]);; let RING_SETNEG = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> ring_setneg r s SUBSET ring_carrier r`, SIMP_TAC[ring_setneg; SUBSET; FORALL_IN_GSPEC; RING_NEG]);; let RING_SETADD = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setadd r s t SUBSET ring_carrier r`, SIMP_TAC[ring_setadd; SUBSET; FORALL_IN_GSPEC; RING_ADD]);; let RING_SETMUL = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setmul r s t SUBSET ring_carrier r`, SIMP_TAC[ring_setmul; SUBSET; FORALL_IN_GSPEC; RING_MUL]);; let RING_SETADD_SYM = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setadd r s t = ring_setadd r t s`, REWRITE_TAC[SUBSET; EXTENSION; IN_ELIM_THM; ring_setadd] THEN MESON_TAC[RING_ADD_SYM]);; let RING_SETMUL_SYM = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setmul r s t = ring_setmul r t s`, REWRITE_TAC[SUBSET; EXTENSION; IN_ELIM_THM; ring_setmul] THEN MESON_TAC[RING_MUL_SYM]);; let RING_SETADD_LZERO = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> ring_setadd r {ring_0 r} s = s`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_setadd] THEN MATCH_MP_TAC(SET_RULE `(!y. y IN s ==> f a y = y) ==> {f x y | x IN {a} /\ y IN s} = s`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[RING_ADD_LZERO]);; let RING_SETADD_RZERO = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> ring_setadd r s {ring_0 r} = s`, MESON_TAC[RING_SETADD_SYM; RING_SETADD_LZERO; RING_0; SING_SUBSET]);; let RING_SETMUL_LID = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> ring_setmul r {ring_1 r} s = s`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_setmul] THEN MATCH_MP_TAC(SET_RULE `(!y. y IN s ==> f a y = y) ==> {f x y | x IN {a} /\ y IN s} = s`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[RING_MUL_LID]);; let RING_SETMUL_RID = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> ring_setmul r s {ring_1 r} = s`, MESON_TAC[RING_SETMUL_SYM; RING_SETMUL_LID; RING_1; SING_SUBSET]);; let RING_SETADD_ASSOC = prove (`!r s t u:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setadd r s (ring_setadd r t u) = ring_setadd r (ring_setadd r s t) u`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_setadd] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN s /\ y IN {g w z | w IN t /\ z IN u}} = {f x (g y z) | x IN s /\ y IN t /\ z IN u}`] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN {g w z | w IN s /\ z IN t} /\ y IN u} = {f (g x y) z | x IN s /\ y IN t /\ z IN u}`] THEN MATCH_MP_TAC(SET_RULE `(!x y z. P x y z ==> f x y z = g x y z) ==> {f x y z | P x y z} = {g x y z | P x y z}`) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_ADD_ASSOC THEN ASM SET_TAC[]);; let RING_SETMUL_ASSOC = prove (`!r s t u:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setmul r s (ring_setmul r t u) = ring_setmul r (ring_setmul r s t) u`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_setmul] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN s /\ y IN {g w z | w IN t /\ z IN u}} = {f x (g y z) | x IN s /\ y IN t /\ z IN u}`] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN {g w z | w IN s /\ z IN t} /\ y IN u} = {f (g x y) z | x IN s /\ y IN t /\ z IN u}`] THEN MATCH_MP_TAC(SET_RULE `(!x y z. P x y z ==> f x y z = g x y z) ==> {f x y z | P x y z} = {g x y z | P x y z}`) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_MUL_ASSOC THEN ASM SET_TAC[]);; let RING_SETADD_AC = prove (`!r:A ring. (!s t. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setadd r s t = ring_setadd r t s) /\ (!s t u. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setadd r (ring_setadd r s t) u = ring_setadd r s (ring_setadd r t u)) /\ (!s t u. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setadd r s (ring_setadd r t u) = ring_setadd r t (ring_setadd r s u))`, MESON_TAC[RING_SETADD_SYM; RING_SETADD_ASSOC; RING_SETADD]);; let RING_SETMUL_AC = prove (`!r:A ring. (!s t. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setmul r s t = ring_setmul r t s) /\ (!s t u. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setmul r (ring_setmul r s t) u = ring_setmul r s (ring_setmul r t u)) /\ (!s t u. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setmul r s (ring_setmul r t u) = ring_setmul r t (ring_setmul r s u))`, MESON_TAC[RING_SETMUL_SYM; RING_SETMUL_ASSOC; RING_SETMUL]);; let RING_SETADD_SUPERSET_LEFT = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ ring_0 r IN t ==> s SUBSET ring_setadd r s t`, REWRITE_TAC[SUBSET; ring_setadd; IN_ELIM_THM] THEN MESON_TAC[RING_ADD_RZERO]);; let RING_SETADD_SUPERSET_RIGHT = prove (`!r s t:A->bool. ring_0 r IN s /\ t SUBSET ring_carrier r ==> t SUBSET ring_setadd r s t`, REWRITE_TAC[SUBSET; ring_setadd; IN_ELIM_THM] THEN MESON_TAC[RING_ADD_LZERO]);; let RING_SETNEG_SETADD = prove (`!r s t:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setneg r (ring_setadd r s t) = ring_setadd r (ring_setneg r s) (ring_setneg r t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; ring_setneg; ring_setadd; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET; RING_NEG_ADD; RING_NEG; RING_ADD]);; let RING_SETADD_LDISTRIB = prove (`!r s t u:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setmul r s (ring_setadd r t u) SUBSET ring_setadd r (ring_setmul r s t) (ring_setmul r s u)`, REWRITE_TAC[SUBSET; ring_setadd; ring_setmul; IN_ELIM_THM] THEN MESON_TAC[RING_ADD_LDISTRIB; RING_MUL; RING_ADD]);; let RING_SETADD_RDISTRIB = prove (`!r s t u:A->bool. s SUBSET ring_carrier r /\ t SUBSET ring_carrier r /\ u SUBSET ring_carrier r ==> ring_setmul r (ring_setadd r s t) u SUBSET ring_setadd r (ring_setmul r s u) (ring_setmul r t u)`, REWRITE_TAC[SUBSET; ring_setadd; ring_setmul; IN_ELIM_THM] THEN MESON_TAC[RING_ADD_RDISTRIB; RING_MUL; RING_ADD]);; let RING_SETNEG_IDEAL = prove (`!r j:A->bool. ring_ideal r j ==> ring_setneg r j = j`, REWRITE_TAC[ring_setneg; ring_ideal; SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x IN s /\ f(f x) = x) ==> {f x | x IN s} = s`) THEN ASM_SIMP_TAC[RING_NEG_NEG]);; let RING_SETNEG_SUBRING = prove (`!r s:A->bool. s subring_of r ==> ring_setneg r s = s`, REWRITE_TAC[ring_setneg; subring_of; SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x IN s /\ f(f x) = x) ==> {f x | x IN s} = s`) THEN ASM_SIMP_TAC[RING_NEG_NEG]);; let RING_SETADD_LSUBSET = prove (`!r j s:A->bool. (ring_ideal r j \/ j subring_of r) /\ s SUBSET j /\ ~(s = {}) ==> ring_setadd r s j = j`, REWRITE_TAC[ring_setadd; ring_ideal; subring_of; SUBSET] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; RING_ADD; FORALL_IN_GSPEC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `y:A` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN MAP_EVERY EXISTS_TAC [`y:A`; `ring_add r (ring_neg r y) x:A`] THEN ASM_SIMP_TAC[] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_ADD_ASSOC o rand o snd) THEN ASM_SIMP_TAC[RING_ADD; RING_NEG; RING_ADD_RNEG; RING_ADD_LZERO]);; let RING_SETADD_RSUBSET = prove (`!r j s:A->bool. (ring_ideal r j \/ j subring_of r) /\ s SUBSET j /\ ~(s = {}) ==> ring_setadd r j s = j`, MESON_TAC[RING_SETADD_LSUBSET; RING_SETADD_SYM; ring_ideal; subring_of; SUBSET_TRANS]);; let RING_SETADD_LSUBSET_EQ = prove (`!r j s:A->bool. (ring_ideal r j \/ j subring_of r) /\ s SUBSET ring_carrier r ==> (ring_setadd r s j = j <=> s SUBSET j /\ ~(s = {}))`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_MESON_TAC[RING_SETADD_EQ_EMPTY; RING_IDEAL_IMP_NONEMPTY; SUBRING_OF_IMP_NONEMPTY]; ASM_REWRITE_TAC[]] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_SETADD_LSUBSET]] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[ring_setadd; IN_ELIM_THM; SUBSET] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:A`; `ring_0 r:A`] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_ideal; subring_of; SUBSET]) THEN ASM_MESON_TAC[RING_ADD_RZERO]);; let RING_SETADD_RSUBSET_EQ = prove (`!r j s:A->bool. (ring_ideal r j \/ j subring_of r) /\ s SUBSET ring_carrier r ==> (ring_setadd r j s = j <=> s SUBSET j /\ ~(s = {}))`, MESON_TAC[RING_SETADD_LSUBSET_EQ; RING_SETADD_SYM; ring_ideal; subring_of; SUBSET_TRANS]);; let RING_SETADD_SUBRING = prove (`!r j:A->bool. (ring_ideal r j \/ j subring_of r) ==> ring_setadd r j j = j`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_SETADD_LSUBSET THEN ASM_MESON_TAC[SUBRING_OF_IMP_NONEMPTY; RING_IDEAL_IMP_NONEMPTY; SUBSET_REFL]);; let RING_SETMUL_SUBRING = prove (`!r s:A->bool. s subring_of r ==> ring_setmul r s s = s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBRING_OF_SETWISE]; ALL_TAC] THEN REWRITE_TAC[ring_setmul; SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`a:A`; `ring_1 r:A`] THEN RULE_ASSUM_TAC(REWRITE_RULE[subring_of; SUBSET]) THEN ASM_MESON_TAC[RING_MUL_RID; RING_1]);; let RING_SETADD_SUBSET_IDEAL = prove (`!r j s t:A->bool. ring_ideal r j /\ s SUBSET j /\ t SUBSET j ==> ring_setadd r s t SUBSET j`, SIMP_TAC[ring_setadd; SUBSET; FORALL_IN_GSPEC; ring_ideal] THEN SET_TAC[]);; let RING_SETADD_IDEAL_LEFT = prove (`!r j s t:A->bool. (ring_ideal r j \/ j subring_of r) /\ s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setadd r (ring_setadd r j s) (ring_setadd r j t) = ring_setadd r j (ring_setadd r s t)`, REPEAT STRIP_TAC THEN (TRANS_TAC EQ_TRANS `ring_setadd r (ring_setadd r j j) (ring_setadd r s t):A->bool` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_SETADD_AC; RING_SETADD; RING_IDEAL_IMP_SUBSET; SUBRING_OF_IMP_SUBSET]; ASM_SIMP_TAC[RING_SETADD_SUBRING]]));; let RING_SETADD_IDEAL_RIGHT = prove (`!r j s t:A->bool. (ring_ideal r j \/ j subring_of r) /\ s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setadd r (ring_setadd r s j) (ring_setadd r t j) = ring_setadd r (ring_setadd r s t) j`, REPEAT STRIP_TAC THEN (TRANS_TAC EQ_TRANS `ring_setadd r (ring_setadd r s t) (ring_setadd r j j) :A->bool` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_SETADD_AC; RING_SETADD; RING_IDEAL_IMP_SUBSET; SUBRING_OF_IMP_SUBSET]; ASM_SIMP_TAC[RING_SETADD_SUBRING]]));; let RING_SETMUL_IDEAL_LEFT = prove (`!r j s t:A->bool. ring_ideal r j /\ s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setmul r (ring_setadd r j s) (ring_setadd r j t) SUBSET ring_setadd r j (ring_setmul r s t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_setmul; ring_setadd; SUBSET; FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN MAP_EVERY X_GEN_TAC [`x:A`; `a:A`; `y:A`; `b:A`] THEN STRIP_TAC THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN s /\ y IN {g w z | w IN t /\ z IN u}} = {f x (g y z) | x IN s /\ y IN t /\ z IN u}`] THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`ring_add r (ring_mul r x y) (ring_add r (ring_mul r a y) (ring_mul r x b)):A`; `a:A`; `b:A`] THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [SUBSET; IN_RING_IDEAL_ADD; IN_RING_IDEAL_LMUL; RING_ADD_LDISTRIB; IN_RING_IDEAL_RMUL; RING_ADD; RING_MUL] THEN ASM_SIMP_TAC[RING_ADD; RING_ADD_RDISTRIB] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [GSYM RING_ADD_ASSOC; RING_MUL; RING_ADD]);; let RING_SETMUL_IDEAL_RIGHT = prove (`!r j s t:A->bool. ring_ideal r j /\ s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> ring_setmul r (ring_setadd r s j) (ring_setadd r t j) SUBSET ring_setadd r (ring_setmul r s t) j`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_SETMUL_IDEAL_LEFT) THEN ASM_SIMP_TAC[RING_SETADD_AC; RING_SETMUL; RING_IDEAL_IMP_SUBSET]);; let RING_SETMUL_SUBSET_IDEAL = prove (`!r j s t:A->bool. ring_ideal r j /\ (s SUBSET j /\ t SUBSET ring_carrier r \/ s SUBSET ring_carrier r /\ t SUBSET j) ==> ring_setmul r s t SUBSET j`, SIMP_TAC[ring_setmul; SUBSET; FORALL_IN_GSPEC; ring_ideal] THEN MESON_TAC[RING_MUL_SYM]);; let RING_SETADD_LCANCEL = prove (`!r s t x:A. x IN ring_carrier r /\ s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> (ring_setadd r {x} s = ring_setadd r {x} t <=> s = t)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_THEN(MP_TAC o AP_TERM `ring_setadd r {ring_neg r x:A}`) THEN ASM_SIMP_TAC[RING_SETADD_ASSOC; SING_SUBSET; RING_NEG] THEN ASM_SIMP_TAC[RING_SETADD_SING; RING_ADD_LNEG; RING_SETADD_LZERO]);; let RING_SETADD_RCANCEL = prove (`!r s t x:A. x IN ring_carrier r /\ s SUBSET ring_carrier r /\ t SUBSET ring_carrier r ==> (ring_setadd r s {x} = ring_setadd r t {x} <=> s = t)`, MESON_TAC[RING_SETADD_LCANCEL; RING_SETADD_SYM; SING_SUBSET]);; let RING_SETADD_LCANCEL_SET = prove (`!r j x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ (ring_ideal r j \/ j subring_of r) ==> (ring_setadd r j {x} = ring_setadd r j {y} <=> ring_sub r x y IN j)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `(j:A->bool) SUBSET ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[SUBRING_OF_IMP_SUBSET; RING_IDEAL_IMP_SUBSET]; ALL_TAC] THEN TRANS_TAC EQ_TRANS `ring_setadd r (ring_setadd r j {x}) {ring_neg r y} = ring_setadd r (ring_setadd r j {y:A}) {ring_neg r y}` THEN CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_SETADD_RCANCEL THEN ASM_SIMP_TAC[RING_NEG; RING_SETADD; SING_SUBSET]; ASM_SIMP_TAC[GSYM RING_SETADD_ASSOC; RING_NEG; SING_SUBSET] THEN ASM_SIMP_TAC[RING_SETADD_SING; RING_ADD_RNEG; RING_SETADD_RZERO] THEN ASM_SIMP_TAC[RING_SETADD_RSUBSET_EQ; SING_SUBSET; ring_sub; RING_NEG; RING_ADD; NOT_INSERT_EMPTY]]);; let RING_SETADD_RCANCEL_SET = prove (`!r j x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ (ring_ideal r j \/ j subring_of r) ==> (ring_setadd r {x} j = ring_setadd r {y} j <=> ring_sub r x y IN j)`, MESON_TAC[RING_SETADD_LCANCEL_SET; RING_SETADD_SYM; SING_SUBSET; SUBRING_OF_IMP_SUBSET; RING_IDEAL_IMP_SUBSET]);; let RING_IDEAL_SETADD = prove (`!r j k:A->bool. ring_ideal r j /\ ring_ideal r k ==> ring_ideal r (ring_setadd r j k)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_ideal; RING_SETADD] THEN REWRITE_TAC[SUBSET; ring_setadd] THEN STRIP_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_GSPEC] THEN REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [REPEAT(EXISTS_TAC `ring_0 r:A`) THEN ASM_SIMP_TAC[RING_ADD_LZERO; RING_0]; ASM_SIMP_TAC[RING_NEG_ADD] THEN ASM_MESON_TAC[]; MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`ring_add r x1 x2:A`; `ring_add r y1 y2:A`] THEN ASM_SIMP_TAC[RING_ADD_AC; RING_ADD]; ASM_SIMP_TAC[RING_ADD_LDISTRIB] THEN ASM_MESON_TAC[RING_MUL]]);; let SUBRING_SETADD_LEFT = prove (`!r j s:A->bool. ring_ideal r j /\ s subring_of r ==> (ring_setadd r j s) subring_of r`, REWRITE_TAC[ring_ideal; subring_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[ring_setadd; FORALL_IN_GSPEC] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REPEAT(GEN_TAC ORELSE DISCH_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_ADD]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_0; RING_ADD_LZERO]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_1; RING_ADD_LZERO]; ALL_TAC] THEN REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`a:A`; `x:A`] THENL [ASM_MESON_TAC[RING_NEG_ADD; RING_ADD; RING_NEG]; DISCH_TAC; DISCH_TAC] THEN MAP_EVERY X_GEN_TAC [`b:A`; `y:A`] THEN STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`ring_add r a b:A`; `ring_add r x y:A`] THEN ASM_SIMP_TAC[RING_ADD; RING_ADD_AC]; EXISTS_TAC `ring_add r (ring_mul r a b) (ring_add r (ring_mul r y a) (ring_mul r x b)):A` THEN EXISTS_TAC `ring_mul r x y:A` THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_ADD_LDISTRIB; RING_ADD_RDISTRIB; RING_ADD; RING_MUL; RING_MUL_SYM; RING_ADD_AC]]);; let SUBRING_SETADD_RIGHT = prove (`!r j s:A->bool. ring_ideal r j /\ s subring_of r ==> (ring_setadd r s j) subring_of r`, MESON_TAC[RING_SETADD_SYM; SUBRING_SETADD_LEFT; SUBRING_OF_IMP_SUBSET; RING_IDEAL_IMP_SUBSET]);; let RING_IDEAL_QUOTIENT = prove (`!r i j:A->bool. ring_ideal r i /\ ring_ideal r j ==> ring_ideal r {x | x IN ring_carrier r /\ ring_setmul r {x} j SUBSET i}`, REWRITE_TAC[ring_ideal; SUBSET; ring_setmul; FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_SING; FORALL_UNWIND_THM2] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; IN_ELIM_THM] THEN ASM_SIMP_TAC[RING_0; RING_MUL_LZERO] THEN ASM_SIMP_TAC[RING_MUL_LNEG; RING_NEG] THEN ASM_SIMP_TAC[RING_ADD; RING_ADD_RDISTRIB] THEN ASM_SIMP_TAC[RING_MUL; GSYM RING_MUL_ASSOC]);; let RING_IDEAL_QUOTIENT_RMUL = prove (`!r j a:A. ring_ideal r j /\ a IN ring_carrier r ==> ring_ideal r {x | x IN ring_carrier r /\ ring_mul r x a IN j}`, REWRITE_TAC[ring_ideal; SUBSET; ring_setmul; FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_SING; FORALL_UNWIND_THM2] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; IN_ELIM_THM] THEN ASM_SIMP_TAC[RING_0; RING_MUL_LZERO] THEN ASM_SIMP_TAC[RING_MUL_LNEG; RING_NEG] THEN ASM_SIMP_TAC[RING_ADD; RING_ADD_RDISTRIB] THEN ASM_SIMP_TAC[RING_MUL; GSYM RING_MUL_ASSOC]);; let RING_IDEAL_QUOTIENT_LMUL = prove (`!r (a:A) j. a IN ring_carrier r /\ ring_ideal r j ==> ring_ideal r {x | x IN ring_carrier r /\ ring_mul r a x IN j}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_QUOTIENT_RMUL) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[RING_MUL_SYM]);; let RING_COMAXIMAL = prove (`!r j k. ring_ideal r j /\ ring_ideal r k ==> (ring_setadd r j k = ring_carrier r <=> ?a b. a IN j /\ b IN k /\ ring_add r a b = ring_1 r)`, SIMP_TAC[RING_IDEAL_EQ_CARRIER; RING_IDEAL_SETADD] THEN REWRITE_TAC[ring_setadd] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Ideal generated by a subset. *) (* ------------------------------------------------------------------------- *) let ideal_generated = new_definition `ideal_generated r (s:A->bool) = INTERS {j | ring_ideal r j /\ (ring_carrier r INTER s) SUBSET j}`;; let IDEAL_GENERATED_RESTRICT = prove (`!r s:A->bool. ideal_generated r s = ideal_generated r (ring_carrier r INTER s)`, REWRITE_TAC[ideal_generated; SET_RULE `g INTER g INTER s = g INTER s`]);; let RING_IDEAL_IDEAL_GENERATED = prove (`!r s:A->bool. ring_ideal r (ideal_generated r s)`, REPEAT GEN_TAC THEN REWRITE_TAC[ideal_generated] THEN MATCH_MP_TAC RING_IDEAL_INTERS THEN SIMP_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN EXISTS_TAC `ring_carrier r:A->bool` THEN REWRITE_TAC[RING_IDEAL_CARRIER; INTER_SUBSET]);; let IDEAL_GENERATED_NONEMPTY = prove (`!r s:A->bool. ~(ideal_generated r s = {})`, MESON_TAC[RING_IDEAL_IDEAL_GENERATED; RING_IDEAL_IMP_NONEMPTY]);; let IDEAL_GENERATED_MONO = prove (`!r s t:A->bool. s SUBSET t ==> ideal_generated r s SUBSET ideal_generated r t`, REWRITE_TAC[ideal_generated] THEN SET_TAC[]);; let IDEAL_GENERATED_MINIMAL = prove (`!r h s:A->bool. s SUBSET h /\ ring_ideal r h ==> ideal_generated r s SUBSET h`, REWRITE_TAC[ideal_generated; INTERS_GSPEC] THEN SET_TAC[]);; let IDEAL_GENERATED_INDUCT = prove (`!r P s:A->bool. (!x. x IN ring_carrier r /\ x IN s ==> P x) /\ P(ring_0 r) /\ (!x. P x ==> P(ring_neg r x)) /\ (!x y. P x /\ P y ==> P(ring_add r x y)) /\ (!x y. x IN ring_carrier r /\ P y ==> P(ring_mul r x y)) ==> !x. x IN ideal_generated r s ==> P x`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IN_INTER] THEN ONCE_REWRITE_TAC[IDEAL_GENERATED_RESTRICT] THEN MP_TAC(SET_RULE `ring_carrier r INTER (s:A->bool) SUBSET ring_carrier r`) THEN SPEC_TAC(`ring_carrier r INTER (s:A->bool)`,`s:A->bool`) THEN GEN_TAC THEN DISCH_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `{x:A | x IN ring_carrier r /\ P x}`; `s:A->bool`] IDEAL_GENERATED_MINIMAL) THEN ANTS_TAC THENL [ALL_TAC; SET_TAC[]] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[ring_ideal; IN_ELIM_THM; SUBSET; RING_ADD; RING_NEG; RING_0; RING_1; RING_MUL]);; let IDEAL_GENERATED_INDUCT_STRONG = prove (`!r P s:A->bool. (!x. x IN ring_carrier r /\ x IN s ==> P x) /\ P(ring_0 r) /\ (!x. x IN ring_carrier r /\ P x ==> P(ring_neg r x)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ P x /\ P y ==> P(ring_add r x y)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ P y ==> P(ring_mul r x y)) ==> !x. x IN ideal_generated r s ==> P x`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x. x IN ideal_generated r s ==> (x:A) IN ring_carrier r /\ P x` MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC IDEAL_GENERATED_INDUCT THEN ASM_SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let IDEAL_GENERATED_SUBSET = prove (`!r h:A->bool. ideal_generated r h SUBSET ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ideal_generated] THEN MATCH_MP_TAC(SET_RULE `a IN s ==> INTERS s SUBSET a`) THEN REWRITE_TAC[IN_ELIM_THM; RING_IDEAL_CARRIER; INTER_SUBSET]);; let FINITE_IDEAL_GENERATED = prove (`!r s:A->bool. FINITE(ring_carrier r) ==> FINITE(ideal_generated r s)`, MESON_TAC[FINITE_SUBSET; IDEAL_GENERATED_SUBSET]);; let IDEAL_GENERATED_SUBSET_CARRIER = prove (`!r h:A->bool. ring_carrier r INTER h SUBSET (ideal_generated r h)`, REWRITE_TAC[ring_ideal; ideal_generated; SUBSET_INTERS] THEN SET_TAC[]);; let IDEAL_GENERATED_MINIMAL_EQ = prove (`!r h s:A->bool. ring_ideal r h ==> (ideal_generated r s SUBSET h <=> ring_carrier r INTER s SUBSET h)`, MESON_TAC[IDEAL_GENERATED_SUBSET_CARRIER; SUBSET_TRANS; IDEAL_GENERATED_MINIMAL; IDEAL_GENERATED_RESTRICT]);; let IDEALS_GENERATED_SUBSET = prove (`!r s t:A->bool. ideal_generated r s SUBSET ideal_generated r t <=> ring_carrier r INTER s SUBSET ideal_generated r t`, SIMP_TAC[IDEAL_GENERATED_MINIMAL_EQ; RING_IDEAL_IDEAL_GENERATED]);; let IDEAL_GENERATED_RING_IDEAL = prove (`!r h:A->bool. ring_ideal r h ==> ideal_generated r h = h`, REWRITE_TAC[ring_ideal; ideal_generated; INTERS_GSPEC] THEN REPEAT GEN_TAC THEN SIMP_TAC[SET_RULE `h SUBSET g ==> g INTER h = h`] THEN STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [SUBSET]; ASM SET_TAC[]] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `h:A->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL]);; let IDEAL_GENERATED_RING_IDEAL_EQ = prove (`!r h:A->bool. ideal_generated r h = h <=> ring_ideal r h`, MESON_TAC[IDEAL_GENERATED_RING_IDEAL; RING_IDEAL_IDEAL_GENERATED]);; let IDEAL_GENERATED_RING_CARRIER = prove (`!r:A ring. ideal_generated r (ring_carrier r) = ring_carrier r`, GEN_TAC THEN REWRITE_TAC[RINGS_EQ] THEN SIMP_TAC[IDEAL_GENERATED_RING_IDEAL; RING_IDEAL_CARRIER] THEN REWRITE_TAC[ideal_generated]);; let IDEAL_GENERATED_SUBSET_CARRIER_SUBSET = prove (`!r s:A->bool. s SUBSET ring_carrier r ==> s SUBSET (ideal_generated r s)`, MESON_TAC[IDEAL_GENERATED_SUBSET_CARRIER; SET_RULE `s SUBSET t <=> t INTER s = s`]);; let IDEAL_GENERATED_REFL = prove (`!r s:A->bool. ring_carrier r SUBSET s ==> ideal_generated r s = ring_carrier r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[IDEAL_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `u SUBSET s ==> u INTER s = u`] THEN REWRITE_TAC[IDEAL_GENERATED_RING_CARRIER]);; let IDEAL_GENERATED_INC = prove (`!r s x:A. s SUBSET ring_carrier r /\ x IN s ==> x IN ideal_generated r s`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; GSYM SUBSET] THEN REWRITE_TAC[IDEAL_GENERATED_SUBSET_CARRIER_SUBSET]);; let IDEAL_GENERATED_INC_GEN = prove (`!r s x:A. x IN ring_carrier r /\ x IN s ==> x IN ideal_generated r s`, ONCE_REWRITE_TAC[IDEAL_GENERATED_RESTRICT] THEN SIMP_TAC[IDEAL_GENERATED_INC; INTER_SUBSET; IN_INTER]);; let IDEAL_GENERATED_BY_IDEAL_GENERATED = prove (`!r s:A->bool. ideal_generated r (ideal_generated r s) = ideal_generated r s`, REPEAT GEN_TAC THEN REWRITE_TAC[RINGS_EQ] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC IDEAL_GENERATED_MINIMAL THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED; SUBSET_REFL]; MATCH_MP_TAC IDEAL_GENERATED_SUBSET_CARRIER_SUBSET THEN REWRITE_TAC[IDEAL_GENERATED_SUBSET]]);; let IDEAL_GENERATED_INSERT_ZERO = prove (`!r s:A->bool. ideal_generated r (ring_0 r INSERT s) = ideal_generated r s`, REWRITE_TAC[RINGS_EQ; ideal_generated] THEN REWRITE_TAC[EXTENSION; INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_INSERT; TAUT `p /\ (q \/ r) ==> s <=> (q ==> p ==> s) /\ (p /\ r ==> s)`] THEN REWRITE_TAC[FORALL_AND_THM; FORALL_UNWIND_THM2; RING_0] THEN MESON_TAC[ring_ideal]);; let IDEAL_GENERATED_0 = prove (`!r:A ring. ideal_generated r {ring_0 r} = {ring_0 r}`, REWRITE_TAC[IDEAL_GENERATED_RING_IDEAL_EQ; RING_IDEAL_0]);; let IDEAL_GENERATED_EMPTY = prove (`!r:A ring. ideal_generated r {} = {ring_0 r}`, MESON_TAC[IDEAL_GENERATED_0; IDEAL_GENERATED_INSERT_ZERO]);; let IDEAL_GENERATED_SING = prove (`!r a:A. a IN ring_carrier r ==> ideal_generated r {a} = {x | ring_divides r a x}`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC IDEAL_GENERATED_INDUCT THEN ASM_SIMP_TAC[IN_SING; RING_DIVIDES_REFL; RING_DIVIDES_0; RING_DIVIDES_NEG; RING_DIVIDES_ADD; RING_DIVIDES_LMUL]; REWRITE_TAC[ring_divides] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IN_RING_IDEAL_RMUL THEN ASM_REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED] THEN MATCH_MP_TAC IDEAL_GENERATED_INC THEN ASM_REWRITE_TAC[SING_SUBSET; IN_SING]]);; let IDEAL_GENERATED_SING_ALT = prove (`!r a:A. a IN ring_carrier r ==> ideal_generated r {a} = {ring_mul r a x | x | x IN ring_carrier r}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; ring_divides] THEN ASM_MESON_TAC[RING_MUL]);; let IDEAL_GENERATED_SING_EQ_CARRIER = prove (`!r a:A. a IN ring_carrier r ==> (ideal_generated r {a} = ring_carrier r <=> ring_unit r a)`, SIMP_TAC[RING_IDEAL_EQ_CARRIER; RING_IDEAL_IDEAL_GENERATED] THEN SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM; RING_DIVIDES_ONE]);; let SUBSET_IDEALS_GENERATED_SING = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> (ideal_generated r {a} SUBSET ideal_generated r {b} <=> ring_divides r b a)`, SIMP_TAC[IDEALS_GENERATED_SUBSET] THEN SIMP_TAC[SET_RULE `x IN s ==> s INTER {x} = {x}`; SING_SUBSET] THEN SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM]);; let IDEALS_GENERATED_SING_EQ = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> (ideal_generated r {a} = ideal_generated r {b} <=> ring_associates r b a)`, REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; ring_associates] THEN SIMP_TAC[SUBSET_IDEALS_GENERATED_SING]);; let PSUBSET_IDEALS_GENERATED_SING = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> (ideal_generated r {a} PSUBSET ideal_generated r {b} <=> ring_divides r b a /\ ~(ring_divides r a b))`, REWRITE_TAC[SET_RULE `s PSUBSET t <=> s SUBSET t /\ ~(t SUBSET s)`] THEN SIMP_TAC[SUBSET_IDEALS_GENERATED_SING]);; let IDEAL_GENERATED_EQ_0 = prove (`!r a:A. ideal_generated r {a} = {ring_0 r} <=> a IN ring_carrier r ==> a = ring_0 r`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THENL [ONCE_REWRITE_TAC[GSYM IDEAL_GENERATED_0] THEN ASM_SIMP_TAC[IDEALS_GENERATED_SING_EQ; RING_0; RING_ASSOCIATES_0]; ONCE_REWRITE_TAC[IDEAL_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> s INTER {a} = {}`] THEN REWRITE_TAC[IDEAL_GENERATED_EMPTY]]);; let IDEAL_GENERATED_SING_SETMUL_RIGHT = prove (`!r a:A. a IN ring_carrier r ==> ideal_generated r {a} = ring_setmul r {a} (ring_carrier r)`, SIMP_TAC[IDEAL_GENERATED_SING_ALT; ring_setmul] THEN SET_TAC[]);; let IDEAL_GENERATED_SING_SETMUL_LEFT = prove (`!r a:A. a IN ring_carrier r ==> ideal_generated r {a} = ring_setmul r (ring_carrier r) {a}`, MESON_TAC[IDEAL_GENERATED_SING_SETMUL_RIGHT; RING_SETMUL_SYM; SING_SUBSET; SUBSET_REFL]);; let RING_SETMUL_IDEAL_GENERATED_SING = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> ring_setmul r (ideal_generated r {a}) (ideal_generated r {b}) = ideal_generated r {ring_mul r a b}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING_SETMUL_LEFT; RING_MUL] THEN TRANS_TAC EQ_TRANS `ring_setmul r (ring_setmul r (ring_carrier r) (ring_carrier r)) {ring_mul r a b}:A->bool` THEN CONJ_TAC THENL [ASM_SIMP_TAC[GSYM RING_SETMUL_SING; RING_SETMUL_AC; SING_SUBSET; SUBSET_REFL; RING_SETMUL]; ASM_SIMP_TAC[RING_SETMUL_SUBRING; CARRIER_SUBRING_OF]]);; let IDEAL_GENERATED_UNION = prove (`!r s t:A->bool. ideal_generated r (s UNION t) = ring_setadd r (ideal_generated r s) (ideal_generated r t)`, REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [IDEAL_GENERATED_RESTRICT] THEN MATCH_MP_TAC IDEAL_GENERATED_MINIMAL THEN SIMP_TAC[RING_IDEAL_SETADD; RING_IDEAL_IDEAL_GENERATED] THEN REWRITE_TAC[UNION_OVER_INTER; UNION_SUBSET; ring_setadd] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_ELIM_THM] THEN CONJ_TAC THEN X_GEN_TAC `z:A` THEN DISCH_TAC THENL [MAP_EVERY EXISTS_TAC [`z:A`; `ring_0 r:A`]; MAP_EVERY EXISTS_TAC [`ring_0 r:A`; `z:A`]] THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; RING_ADD_RZERO; RING_ADD_LZERO; IN_RING_IDEAL_0; RING_IDEAL_IDEAL_GENERATED]; REWRITE_TAC[ring_setadd; SUBSET; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN MATCH_MP_TAC IN_RING_IDEAL_ADD THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED] THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `z IN u ==> u SUBSET v ==> z IN v`)) THEN MATCH_MP_TAC IDEAL_GENERATED_MONO THEN SET_TAC[]]);; let IDEAL_GENERATED_INSERT = prove (`!r s a:A. ideal_generated r (a INSERT s) = ring_setadd r (ideal_generated r {a}) (ideal_generated r s)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IDEAL_GENERATED_UNION] THEN AP_TERM_TAC THEN SET_TAC[]);; let IDEAL_GENERATED_2 = prove (`!r a b:A. a IN ring_carrier r /\ b IN ring_carrier r ==> ideal_generated r {a,b} = { ring_add r (ring_mul r a x) (ring_mul r b y) | x,y | x IN ring_carrier r /\ y IN ring_carrier r}`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[IDEAL_GENERATED_INSERT] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT] THEN REWRITE_TAC[ring_setadd] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Integral domain and field. *) (* ------------------------------------------------------------------------- *) let integral_domain = new_definition `integral_domain (r:A ring) <=> ~(ring_1 r = ring_0 r) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_mul r x y = ring_0 r ==> x = ring_0 r \/ y = ring_0 r)`;; let field = new_definition `field (r:A ring) <=> ~(ring_1 r = ring_0 r) /\ !x. x IN ring_carrier r /\ ~(x = ring_0 r) ==> ?y. y IN ring_carrier r /\ ring_mul r x y = ring_1 r`;; let INTEGRAL_DOMAIN_IMP_NONTRIVIAL_RING = prove (`!r:A ring. integral_domain r ==> ~(trivial_ring r)`, SIMP_TAC[integral_domain; TRIVIAL_RING_10]);; let FIELD_IMP_NONTRIVIAL_RING = prove (`!r:A ring. field r ==> ~(trivial_ring r)`, SIMP_TAC[field; TRIVIAL_RING_10]);; let INTEGRAL_DOMAIN_EQ_NO_ZERODIVISORS = prove (`!r:A ring. integral_domain r <=> ~(ring_1 r = ring_0 r) /\ !x. ring_zerodivisor r x ==> x = ring_0 r`, REWRITE_TAC[integral_domain; ring_zerodivisor] THEN MESON_TAC[]);; let INTEGRAL_DOMAIN_EQ_ALL_REGULAR = prove (`!r:A ring. integral_domain r <=> ~(ring_1 r = ring_0 r) /\ !x. ring_regular r x <=> x IN ring_carrier r /\ ~(x = ring_0 r)`, REWRITE_TAC[ring_regular; INTEGRAL_DOMAIN_EQ_NO_ZERODIVISORS] THEN MESON_TAC[ring_zerodivisor; RING_ZERODIVISOR_0; TRIVIAL_RING_10]);; let INTEGRAL_DOMAIN_ZERODIVISOR = prove (`!r a:A. integral_domain r ==> (ring_zerodivisor r a <=> a = ring_0 r)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[INTEGRAL_DOMAIN_EQ_NO_ZERODIVISORS]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[ring_zerodivisor; RING_0] THEN ASM_MESON_TAC[integral_domain; RING_1; RING_MUL_LZERO]]);; let INTEGRAL_DOMAIN_REGULAR = prove (`!r a:A. integral_domain r ==> (ring_regular r a <=> a IN ring_carrier r /\ ~(a = ring_0 r))`, SIMP_TAC[ring_regular; INTEGRAL_DOMAIN_ZERODIVISOR]);; let INTEGRAL_DOMAIN_MUL_EQ_0 = prove (`!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_mul r a b = ring_0 r <=> a = ring_0 r \/ b = ring_0 r)`, REWRITE_TAC[integral_domain] THEN MESON_TAC[RING_MUL_LZERO; RING_MUL_RZERO]);; let INTEGRAL_DOMAIN_POW_EQ_0 = prove (`!r (a:A) n. integral_domain r /\ a IN ring_carrier r ==> (ring_pow r a n = ring_0 r <=> a = ring_0 r /\ ~(n = 0))`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_MUL_EQ_0; ring_pow; RING_POW; NOT_SUC] THEN ASM_MESON_TAC[integral_domain]);; let INTEGRAL_DOMAIN_NILPOTENT = prove (`!r a:A. integral_domain r ==> (ring_nilpotent r a <=> a = ring_0 r)`, REWRITE_TAC[ring_nilpotent] THEN MESON_TAC[INTEGRAL_DOMAIN_POW_EQ_0; NOT_SUC; RING_0]);; let INTEGRAL_DOMAIN_PRODUCT_EQ_0 = prove (`!r k (f:K->A). integral_domain r /\ FINITE k ==> (ring_product r k f = ring_0 r <=> ?i. i IN k /\ f i = ring_0 r)`, GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[RING_PRODUCT_CLAUSES; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL [ASM_MESON_TAC[integral_domain]; ALL_TAC] THEN SIMP_TAC[RING_PRODUCT_CLAUSES; COND_SWAP] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_MUL_EQ_0; RING_PRODUCT] THEN ASM_MESON_TAC[RING_0]);; let INTEGRAL_DOMAIN_MUL_LCANCEL = prove (`!r a x y:A. integral_domain r /\ a IN ring_carrier r /\ ~(a = ring_0 r) /\ x IN ring_carrier r /\ y IN ring_carrier r /\ ring_mul r a x = ring_mul r a y ==> x = y`, REWRITE_TAC[integral_domain] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `ring_sub r x y:A`]) THEN ASM_SIMP_TAC[RING_SUB_LDISTRIB; RING_SUB; RING_SUB_EQ_0; RING_MUL]);; let INTEGRAL_DOMAIN_MUL_LCANCEL_EQ = prove (`!r a x y:A. integral_domain r /\ a IN ring_carrier r /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_mul r a x = ring_mul r a y <=> a = ring_0 r \/ x = y)`, MESON_TAC[RING_MUL_LZERO; INTEGRAL_DOMAIN_MUL_LCANCEL]);; let INTEGRAL_DOMAIN_MUL_RCANCEL = prove (`!r a x y:A. integral_domain r /\ a IN ring_carrier r /\ ~(a = ring_0 r) /\ x IN ring_carrier r /\ y IN ring_carrier r /\ ring_mul r x a = ring_mul r y a ==> x = y`, MESON_TAC[INTEGRAL_DOMAIN_MUL_LCANCEL; RING_MUL_SYM]);; let INTEGRAL_DOMAIN_MUL_RCANCEL_EQ = prove (`!r a x y:A. integral_domain r /\ a IN ring_carrier r /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_mul r x a = ring_mul r y a <=> x = y \/ a = ring_0 r)`, MESON_TAC[INTEGRAL_DOMAIN_MUL_LCANCEL_EQ; RING_MUL_SYM]);; let INTEGRAL_DOMAIN_DIVIDES_LMUL2 = prove (`!r a b c:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> (ring_divides r (ring_mul r a b) (ring_mul r a c) <=> a = ring_0 r \/ ring_divides r b c)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_DIVIDES_REFL; RING_0] THEN EQ_TAC THEN ASM_SIMP_TAC[RING_DIVIDES_LMUL2] THEN ASM_SIMP_TAC[RING_MUL; ring_divides] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:A` THEN ASM_CASES_TAC `(d:A) IN ring_carrier r` THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; INTEGRAL_DOMAIN_MUL_LCANCEL_EQ; RING_MUL]);; let INTEGRAL_DOMAIN_DIVIDES_RMUL2 = prove (`!r a b c:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> (ring_divides r (ring_mul r a c) (ring_mul r b c) <=> ring_divides r a b \/ c = ring_0 r)`, MESON_TAC[INTEGRAL_DOMAIN_DIVIDES_LMUL2; RING_MUL_SYM]);; let INTEGRAL_DOMAIN_ASSOCIATES_LMUL2 = prove (`!r a b c:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> (ring_associates r (ring_mul r a b) (ring_mul r a c) <=> a = ring_0 r \/ ring_associates r b c)`, SIMP_TAC[ring_associates; INTEGRAL_DOMAIN_DIVIDES_LMUL2] THEN CONV_TAC TAUT);; let INTEGRAL_DOMAIN_ASSOCIATES_RMUL2 = prove (`!r a b c:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> (ring_associates r (ring_mul r a c) (ring_mul r b c) <=> ring_associates r a b \/ c = ring_0 r)`, SIMP_TAC[ring_associates; INTEGRAL_DOMAIN_DIVIDES_RMUL2] THEN CONV_TAC TAUT);; let INTEGRAL_DOMAIN_MUL_EQ_SELF = prove (`(!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_mul r a b = b <=> a = ring_1 r \/ b = ring_0 r)) /\ (!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_mul r a b = a <=> a = ring_0 r \/ b = ring_1 r))`, MESON_TAC[INTEGRAL_DOMAIN_MUL_RCANCEL_EQ; INTEGRAL_DOMAIN_MUL_LCANCEL_EQ; RING_1; RING_0; RING_MUL_LID; RING_MUL_RID]);; let INTEGRAL_DOMAIN_DIVIDES_MUL_SELF = prove (`(!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_divides r (ring_mul r a b) b <=> ring_unit r a \/ b = ring_0 r)) /\ (!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_divides r (ring_mul r a b) a <=> a = ring_0 r \/ ring_unit r b))`, REWRITE_TAC[GSYM RING_DIVIDES_ONE] THEN SIMP_TAC[GSYM INTEGRAL_DOMAIN_DIVIDES_LMUL2; RING_1; RING_MUL_RID; GSYM INTEGRAL_DOMAIN_DIVIDES_RMUL2; RING_MUL_LID]);; let INTEGRAL_DOMAIN_DIVIDES_ASSOCIATES_MUL_SELF = prove (`(!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_associates r (ring_mul r a b) b <=> ring_unit r a \/ b = ring_0 r)) /\ (!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_associates r (ring_mul r a b) a <=> a = ring_0 r \/ ring_unit r b)) /\ (!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_associates r b (ring_mul r a b) <=> ring_unit r a \/ b = ring_0 r)) /\ (!r a b:A. integral_domain r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_associates r a (ring_mul r a b) <=> a = ring_0 r \/ ring_unit r b))`, REWRITE_TAC[ring_associates] THEN SIMP_TAC[RING_DIVIDES_LMUL; RING_DIVIDES_RMUL; RING_DIVIDES_REFL] THEN SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_MUL_SELF]);; let FIELD_EQ_ALL_UNITS = prove (`!r:A ring. field r <=> ~(ring_1 r = ring_0 r) /\ !x. x IN ring_carrier r /\ ~(x = ring_0 r) ==> ring_unit r x`, REWRITE_TAC[field; ring_unit] THEN MESON_TAC[]);; let FIELD_EQ_ALL_DIVIDE_1 = prove (`!r:A ring. field r <=> ~(ring_1 r = ring_0 r) /\ !a. a IN ring_carrier r /\ ~(a = ring_0 r) ==> ring_divides r a (ring_1 r)`, REWRITE_TAC[field; ring_divides] THEN MESON_TAC[RING_1]);; let FIELD_UNIT = prove (`!r a:A. field r ==> (ring_unit r a <=> a IN ring_carrier r /\ ~(a = ring_0 r))`, REWRITE_TAC[field; GSYM TRIVIAL_RING_10] THEN MESON_TAC[FIELD_EQ_ALL_UNITS; RING_UNIT_0; ring_unit]);; let FIELD_MUL_LINV = prove (`!r a:A. field r /\ a IN ring_carrier r /\ ~(a = ring_0 r) ==> ring_mul r (ring_inv r a) a = ring_1 r`, SIMP_TAC[FIELD_UNIT; RING_MUL_LINV]);; let FIELD_MUL_RINV = prove (`!r a:A. field r /\ a IN ring_carrier r /\ ~(a = ring_0 r) ==> ring_mul r a (ring_inv r a) = ring_1 r`, SIMP_TAC[FIELD_UNIT; RING_MUL_RINV]);; let FIELD_DIVIDES = prove (`!r a b:A. field r ==> (ring_divides r a b <=> a IN ring_carrier r /\ b IN ring_carrier r /\ (a = ring_0 r ==> b = ring_0 r))`, MESON_TAC[RING_UNIT_DIVIDES_ALL; FIELD_UNIT; RING_DIVIDES_ZERO; ring_divides]);; let FIELD_ASSOCIATES = prove (`!r a b:A. field r ==> (ring_associates r a b <=> a IN ring_carrier r /\ b IN ring_carrier r /\ (a = ring_0 r <=> b = ring_0 r))`, SIMP_TAC[ring_associates; FIELD_DIVIDES] THEN MESON_TAC[]);; let FIELD_COPRIME = prove (`!r a b:A. field r ==> (ring_coprime r (a,b) <=> a IN ring_carrier r /\ b IN ring_carrier r /\ ~(a = ring_0 r /\ b = ring_0 r))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ring_coprime; FIELD_DIVIDES; FIELD_UNIT] THEN MESON_TAC[RING_0]);; let FIELD_IMP_INTEGRAL_DOMAIN = prove (`!r:A ring. field r ==> integral_domain r`, REPEAT GEN_TAC THEN REWRITE_TAC[field; integral_domain] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:A`) THEN ASM_CASES_TAC `y:A = ring_0 r` THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y':A` THEN STRIP_TAC THEN TRANS_TAC EQ_TRANS `ring_mul r x (ring_mul r y y'):A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_MUL_RID]; ALL_TAC] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL; RING_MUL_LZERO]);; let FIELD_ZERODIVISOR = prove (`!r a:A. field r ==> (ring_zerodivisor r a <=> a = ring_0 r)`, SIMP_TAC[INTEGRAL_DOMAIN_ZERODIVISOR; FIELD_IMP_INTEGRAL_DOMAIN]);; let FIELD_REGULAR = prove (`!r a:A. field r ==> (ring_regular r a <=> a IN ring_carrier r /\ ~(a = ring_0 r))`, SIMP_TAC[ring_regular; FIELD_ZERODIVISOR]);; let FIELD_NILPOTENT = prove (`!r a:A. field r ==> (ring_nilpotent r a <=> a = ring_0 r)`, SIMP_TAC[INTEGRAL_DOMAIN_NILPOTENT; FIELD_IMP_INTEGRAL_DOMAIN]);; let FIELD_MUL_EQ_0 = prove (`!r a b:A. field r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_mul r a b = ring_0 r <=> a = ring_0 r \/ b = ring_0 r)`, SIMP_TAC[INTEGRAL_DOMAIN_MUL_EQ_0; FIELD_IMP_INTEGRAL_DOMAIN]);; let FIELD_POW_EQ_0 = prove (`!r (a:A) n. field r /\ a IN ring_carrier r ==> (ring_pow r a n = ring_0 r <=> a = ring_0 r /\ ~(n = 0))`, SIMP_TAC[INTEGRAL_DOMAIN_POW_EQ_0; FIELD_IMP_INTEGRAL_DOMAIN]);; let FIELD_PRODUCT_EQ_0 = prove (`!r k (f:K->A). field r /\ FINITE k ==> (ring_product r k f = ring_0 r <=> ?i. i IN k /\ f i = ring_0 r)`, SIMP_TAC[INTEGRAL_DOMAIN_PRODUCT_EQ_0; FIELD_IMP_INTEGRAL_DOMAIN]);; let FINITE_INTEGRAL_DOMAIN_IMP_FIELD = prove (`!r:A ring. FINITE(ring_carrier r) /\ integral_domain r ==> field r`, GEN_TAC THEN REWRITE_TAC[integral_domain; field] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN MP_TAC(ISPECL [`ring_carrier r:A->bool`; `\x:A. ring_mul r a x`] SURJECTIVE_IFF_INJECTIVE) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; RING_MUL] THEN DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE) THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_1]] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN EXISTS_TAC `r:A ring` THEN ASM_REWRITE_TAC[integral_domain] THEN ASM_MESON_TAC[]);; let FINITE_INTEGRAL_DOMAIN_EQ_FIELD = prove (`!r:A ring. FINITE(ring_carrier r) ==> (integral_domain r <=> field r)`, MESON_TAC[FINITE_INTEGRAL_DOMAIN_IMP_FIELD; FIELD_IMP_INTEGRAL_DOMAIN]);; let INTEGRAL_DOMAIN_CHAR = prove (`!r:A ring. integral_domain r ==> ring_char r = 0 \/ prime(ring_char r)`, REWRITE_TAC[integral_domain; GSYM TRIVIAL_RING_10] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[prime; RING_CHAR_EQ_1] THEN ASM_CASES_TAC `ring_char(r:A ring) = 0` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`ring_of_num r m:A`; `ring_of_num r n:A`]) THEN ASM_REWRITE_TAC[RING_OF_NUM; GSYM RING_OF_NUM_MUL] THEN REWRITE_TAC[RING_OF_NUM_EQ_0; NUMBER_RULE `!n:num. n divides n`] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[divides; GSYM MULT_ASSOC] THEN REWRITE_TAC[ARITH_RULE `n:num = m * n * d <=> n = n * m * d`] THEN REWRITE_TAC[ARITH_RULE `m = m * n <=> m * n = m * 1`] THEN ASM_REWRITE_TAC[EQ_MULT_LCANCEL; MULT_EQ_1] THEN MESON_TAC[]);; let RING_CHAR_DIVIDES_MUL = prove (`!(r:A ring) m n. integral_domain r \/ field r ==> (ring_char r divides m * n <=> ring_char r divides m \/ ring_char r divides n)`, REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (p ==> r) ==> (p \/ q ==> r)`) THEN REWRITE_TAC[FIELD_IMP_INTEGRAL_DOMAIN] THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP INTEGRAL_DOMAIN_CHAR) THEN ASM_MESON_TAC[ZERO_ONE_OR_PRIME_DIVPROD]);; let RING_CHAR_DIVIDES_PRIME = prove (`!(r:A ring) p. (integral_domain r \/ field r) /\ prime p ==> (ring_char r divides p <=> ring_char r = p)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (p ==> r) ==> (p \/ q ==> r)`) THEN REWRITE_TAC[FIELD_IMP_INTEGRAL_DOMAIN] THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP INTEGRAL_DOMAIN_CHAR) THEN ASM_MESON_TAC[prime; NUMBER_RULE `(n:num) divides n`; NUMBER_RULE `0 divides n <=> n = 0`]);; let FINITE_INTEGRAL_DOMAIN_CHAR = prove (`!r:A ring. integral_domain r /\ FINITE(ring_carrier r) ==> prime(ring_char r)`, MESON_TAC[RING_CHAR_FINITE; INTEGRAL_DOMAIN_CHAR]);; let INTEGRAL_DOMAIN_SUBRING_GENERATED = prove (`!r s:A->bool. integral_domain r ==> integral_domain (subring_generated r s)`, REPEAT GEN_TAC THEN REWRITE_TAC[integral_domain; GSYM TRIVIAL_RING_10] THEN STRIP_TAC THEN ASM_REWRITE_TAC[TRIVIAL_RING_SUBRING_GENERATED] THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED] THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN ASM SET_TAC[]);; let INTEGRAL_DOMAIN_ASSOCIATES = prove (`!r a b:A. integral_domain r ==> (ring_associates r a b <=> a IN ring_carrier r /\ b IN ring_carrier r /\ ?u. ring_unit r u /\ ring_mul r a u = b)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `a:A = ring_0 r` THENL [ASM_REWRITE_TAC[RING_0; RING_ASSOCIATES_0] THEN ASM_MESON_TAC[RING_MUL_LZERO; RING_UNIT_1; RING_0; ring_unit]; ALL_TAC] THEN REWRITE_TAC[ring_associates; ring_divides] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(b:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; ring_unit] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `u:A` THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `v:A` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `a:A`] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_1; RING_MUL; RING_MUL_RID]; UNDISCH_THEN `ring_mul r a u:A = b` (SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; RING_MUL_RID]]);; let INTEGRAL_DOMAIN_10 = prove (`!r:A ring. ring_carrier r = {ring_0 r,ring_1 r} ==> (integral_domain r <=> ~(ring_1 r = ring_0 r))`, REPEAT STRIP_TAC THEN REWRITE_TAC[integral_domain; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN SIMP_TAC[RING_1; RING_MUL_LID]);; let FIELD_10 = prove (`!r:A ring. ring_carrier r = {ring_0 r,ring_1 r} ==> (field r <=> ~(ring_1 r = ring_0 r))`, REPEAT STRIP_TAC THEN REWRITE_TAC[field; IMP_CONJ] THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN SIMP_TAC[RING_1; RING_MUL_LID]);; (* ------------------------------------------------------------------------- *) (* Rule and tactic methods of proving carrier membership by backchaining. *) (* The tactic also tries expanding ABBREV_TAC-style definitions and using *) (* existing assumptions. *) (* ------------------------------------------------------------------------- *) let RING_CARRIER_RULE = let rule_0 = PART_MATCH I RING_0 and rule_1 = PART_MATCH I RING_1 and rule_n = PART_MATCH I RING_OF_NUM and rule_z = PART_MATCH I RING_OF_INT and rule_neg = PART_MATCH rand RING_NEG and rule_inv = PART_MATCH rand RING_INV and rule_pow = PART_MATCH rand RING_POW and rule_add = PART_MATCH rand RING_ADD and rule_sub = PART_MATCH rand RING_SUB and rule_mul = PART_MATCH rand RING_MUL and rule_div = PART_MATCH rand RING_DIV in fun asm -> let rule_nullary tm = try find (fun a -> concl a = tm) asm with Failure _ -> try rule_0 tm with Failure _ -> try rule_1 tm with Failure _ -> try rule_n tm with Failure _ -> rule_z tm and rule_unary tm = try rule_neg tm with Failure _ -> try rule_inv tm with Failure _ -> rule_pow tm and rule_binary tm = try rule_add tm with Failure _ -> try rule_sub tm with Failure _ -> try rule_mul tm with Failure _ -> rule_div tm in let rec rule tm = try rule_nullary tm with Failure _ -> try let th = rule_unary tm in MP th (rule(lhand(concl th))) with Failure _ -> try let th = rule_binary tm in MP th (CONJ (rule(lhand(lhand(concl th)))) (rule(rand(lhand(concl th))))) with Failure _ -> ASSUME tm in fun tm -> match tm with Comb(Comb(Const("IN",_),t),Comb(Const("ring_carrier",_),r)) -> rule tm | _ -> failwith "RING_CARRIER_RULE";; let RING_CARRIER_TAC = let tac_0 = MATCH_ACCEPT_TAC RING_0 and tac_1 = MATCH_ACCEPT_TAC RING_1 and tac_n = MATCH_ACCEPT_TAC RING_OF_NUM and tac_z = MATCH_ACCEPT_TAC RING_OF_INT and tac_neg = MATCH_MP_TAC RING_NEG and tac_inv = MATCH_MP_TAC RING_INV and tac_pow = MATCH_MP_TAC RING_POW and tac_add = MATCH_MP_TAC RING_ADD and tac_sub = MATCH_MP_TAC RING_SUB and tac_mul = MATCH_MP_TAC RING_MUL and tac_div = MATCH_MP_TAC RING_DIV in let tac_nullary = tac_0 ORELSE tac_1 ORELSE tac_n ORELSE tac_z and tac_unary = tac_neg ORELSE tac_inv ORELSE tac_pow and tac_binary = tac_add ORELSE tac_sub ORELSE tac_mul ORELSE tac_div in let base_tac = FIRST_ASSUM ACCEPT_TAC ORELSE tac_nullary ORELSE tac_unary ORELSE (tac_binary THEN CONJ_TAC) and checker = can (term_match [] `(x:A) IN ring_carrier r`) in W(fun (asl,w) -> if checker w then ALL_TAC else NO_TAC) THEN REPEAT(base_tac ORELSE (FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [SYM th]) THEN base_tac));; (* ------------------------------------------------------------------------- *) (* Instantiate the normalizer and ring procedure for the case of a ring *) (* "r:A ring" with the whole type A as the carrier. Since all the machinery *) (* of the normalizer is designed for such "universal" rings, this is the *) (* best we can do, but below we use this to define a general procedure. *) (* The RING instantiation is called RING_INTEGRAL_DOMAIN_UNIVERSAL since *) (* it in general assumes "integral_domain r" and may also assume that *) (* "ring_char r = 0". Later we use the other cofactors function to give *) (* a better decision procedure for general rings, but the integral *) (* domain one may be independently useful for proofs involving cancellation *) (* in such domains. *) (* ------------------------------------------------------------------------- *) let RING_POLY_UNIVERSAL_CONV = let pth = (UNDISCH o SPEC_ALL o prove) (`!r. ring_carrier r = (:A) ==> (!x y z. ring_add r x (ring_add r y z) = ring_add r (ring_add r x y) z) /\ (!x y. ring_add r x y = ring_add r y x) /\ (!x. ring_add r (ring_of_int r (&0)) x = x) /\ (!x y z. ring_mul r x (ring_mul r y z) = ring_mul r (ring_mul r x y) z) /\ (!x y. ring_mul r x y = ring_mul r y x) /\ (!x. ring_mul r (ring_of_int r (&1)) x = x) /\ (!x. ring_mul r (ring_of_int r (&0)) x = ring_of_int r (&0)) /\ (!x y z. ring_mul r x (ring_add r y z) = ring_add r (ring_mul r x y) (ring_mul r x z)) /\ (!x. ring_pow r x 0 = ring_of_int r (&1)) /\ (!x n. ring_pow r x (SUC n) = ring_mul r x (ring_pow r x n))`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_1; CONJUNCT1 ring_of_num] THEN SIMP_TAC[RING_ADD_LZERO; RING_MUL_LID; RING_MUL_LZERO; IN_UNIV] THEN SIMP_TAC[ring_pow; RING_ADD_LDISTRIB; IN_UNIV] THEN SIMP_TAC[RING_ADD_AC; RING_MUL_AC; IN_UNIV]) and sth = (UNDISCH o SPEC_ALL o prove) (`!r. ring_carrier r = (:A) ==> (!x. ring_neg r x = ring_mul r (ring_of_int r (-- &1)) x) /\ (!x y. ring_sub r x y = ring_add r x (ring_mul r (ring_of_int r (-- &1)) y))`, SIMP_TAC[RING_OF_INT_NEG; RING_MUL_LNEG; IN_UNIV; ring_sub] THEN REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_1; CONJUNCT1 ring_of_num] THEN SIMP_TAC[ring_sub; RING_MUL_LNEG; RING_MUL_LID; IN_UNIV]) and RING_INT_ADD_CONV = GEN_REWRITE_CONV I [GSYM RING_OF_INT_ADD] THENC RAND_CONV INT_ADD_CONV and RING_INT_MUL_CONV = GEN_REWRITE_CONV I [GSYM RING_OF_INT_MUL] THENC RAND_CONV INT_MUL_CONV and RING_INT_POW_CONV = GEN_REWRITE_CONV I [GSYM RING_OF_INT_POW] THENC RAND_CONV INT_POW_CONV and is_ringconst tm = match tm with Comb(Comb(Const("ring_of_int",_),_),n) -> is_intconst n | _ -> false and ith = prove (`ring_0 r = ring_of_int r (&0) /\ ring_1 r = ring_of_int r (&1)`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_1; CONJUNCT1 ring_of_num]) in let _,_,_,_,_,RING_POLY_CONV = SEMIRING_NORMALIZERS_CONV pth sth (is_ringconst, RING_INT_ADD_CONV,RING_INT_MUL_CONV,RING_INT_POW_CONV) (<) in GEN_REWRITE_CONV ONCE_DEPTH_CONV [ith; GSYM RING_OF_INT_OF_NUM] THENC RING_POLY_CONV;; let RING_INTEGRAL_DOMAIN_UNIVERSAL,ring_ring_cofactors_universal = let RING_INTEGRAL = (repeat UNDISCH o prove) (`integral_domain r ==> ring_carrier r = (:A) ==> (!x. ring_mul r (ring_of_int r (&0)) x = ring_of_int r (&0)) /\ (!x y z. ring_add r x y = ring_add r x z <=> y = z) /\ (!w x y z. ring_add r (ring_mul r w y) (ring_mul r x z) = ring_add r (ring_mul r w z) (ring_mul r x y) <=> w = x \/ y = z)`, REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_0] THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_ADD_LCANCEL; IN_UNIV] THEN REPEAT GEN_TAC THEN MP_TAC(ISPEC `r:A ring` RING_SUB_EQ_0) THEN ASM_REWRITE_TAC[IN_UNIV] THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] INTEGRAL_DOMAIN_MUL_EQ_0)) THEN ASM_REWRITE_TAC[IN_UNIV] THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[ring_sub; IN_UNIV; RING_ADD_LDISTRIB; RING_ADD_RDISTRIB; RING_NEG_NEG; RING_NEG_ADD; RING_MUL_LNEG; RING_MUL_RNEG] THEN ASM_SIMP_TAC[RING_MUL_AC; IN_UNIV] THEN ASM_SIMP_TAC[RING_ADD_AC; IN_UNIV]) and neth_b = prove (`ring_of_int r n :A = ring_of_int r n <=> T`, REWRITE_TAC[]) and neth_l = (UNDISCH o prove) (`integral_domain (r:A ring) ==> (ring_of_int r (&1) = ring_of_int r (&0) <=> F)`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_0; RING_OF_NUM_1] THEN SIMP_TAC[integral_domain]) and neth_r = (UNDISCH o prove) (`integral_domain (r:A ring) ==> (ring_of_int r (&0) = ring_of_int r (&1) <=> F)`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_0; RING_OF_NUM_1] THEN SIMP_TAC[integral_domain]) and neth_g = prove (`(ring_of_int r m :A = ring_of_int r n <=> F) <=> ~(&(ring_char r) divides (m - n))`, REWRITE_TAC[RING_OF_INT_EQ] THEN CONV_TAC INTEGER_RULE) and neth_h = prove (`(&(ring_char(r:A ring)) divides --(&n) <=> ring_char r divides n) /\ (&(ring_char(r:A ring)) divides &n <=> ring_char r divides n)`, REWRITE_TAC[num_divides] THEN CONV_TAC INTEGER_RULE) in let rule1 = PART_MATCH (lhand o lhand) neth_g and conv1 = RAND_CONV INT_SUB_CONV THENC GEN_REWRITE_CONV TRY_CONV [neth_h] in let RING_EQ_CONV tm = try PART_MATCH lhand neth_b tm with Failure _ -> try PART_MATCH lhand neth_l tm with Failure _ -> try PART_MATCH lhand neth_r tm with Failure _ -> try let th1 = rule1 tm in let th2 = CONV_RULE(RAND_CONV(RAND_CONV conv1)) th1 in UNDISCH(snd(EQ_IMP_RULE th2)) with Failure _ -> failwith "RING_EQ_CONV" and dest_ringconst tm = match tm with Comb(Comb(Const("ring_of_int",_),_),n) -> dest_intconst n | _ -> failwith "dest_ringconst" and mk_ringconst = let ptm = `ring_of_int (r:A ring)` in fun n -> mk_comb(ptm,mk_intconst n) in let cth = prove (`ring_0 r:A = ring_of_int r (&0) /\ ring_1 r:A = ring_of_int r (&1)`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_0; RING_OF_NUM_1]) in let decorule = GEN_REWRITE_CONV ONCE_DEPTH_CONV [cth; GSYM RING_OF_INT_OF_NUM] in let basic_rule,idealconv = RING_AND_IDEAL_CONV (dest_ringconst, mk_ringconst, RING_EQ_CONV, `ring_neg(r:A ring)`, `ring_add(r:A ring)`, `ring_sub(r:A ring)`, `ring_inv(r:A ring)`, `ring_mul(r:A ring)`, `ring_div(r:A ring)`, `ring_pow(r:A ring)`, RING_INTEGRAL,TRUTH,RING_POLY_UNIVERSAL_CONV) in let rule tm = let th = decorule tm in EQ_MP (SYM th) (basic_rule(rand(concl th))) in rule,idealconv;; (* ------------------------------------------------------------------------- *) (* Homomorphisms etc. *) (* ------------------------------------------------------------------------- *) let ring_homomorphism = new_definition `ring_homomorphism (r,r') (f:A->B) <=> IMAGE f (ring_carrier r) SUBSET ring_carrier r' /\ f (ring_0 r) = ring_0 r' /\ f (ring_1 r) = ring_1 r' /\ (!x. x IN ring_carrier r ==> f(ring_neg r x) = ring_neg r' (f x)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_add r x y) = ring_add r' (f x) (f y)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_mul r x y) = ring_mul r' (f x) (f y))`;; let ring_monomorphism = new_definition `ring_monomorphism (r,r') (f:A->B) <=> ring_homomorphism (r,r') f /\ !x y. x IN ring_carrier r /\ y IN ring_carrier r /\ f x = f y ==> x = y`;; let ring_epimorphism = new_definition `ring_epimorphism (r,r') (f:A->B) <=> ring_homomorphism (r,r') f /\ IMAGE f (ring_carrier r) = ring_carrier r'`;; let ring_endomorphism = new_definition `ring_endomorphism r (f:A->A) <=> ring_homomorphism (r,r) f`;; let ring_isomorphisms = new_definition `ring_isomorphisms (r,r') ((f:A->B),g) <=> ring_homomorphism (r,r') f /\ ring_homomorphism (r',r) g /\ (!x. x IN ring_carrier r ==> g(f x) = x) /\ (!y. y IN ring_carrier r' ==> f(g y) = y)`;; let ring_isomorphism = new_definition `ring_isomorphism (r,r') (f:A->B) <=> ?g. ring_isomorphisms (r,r') (f,g)`;; let ring_automorphism = new_definition `ring_automorphism r (f:A->A) <=> ring_isomorphism (r,r) f`;; let RING_HOMOMORPHISM_EQ = prove (`!r r' (f:A->B) f'. ring_homomorphism(r,r') f /\ (!x. x IN ring_carrier r ==> f' x = f x) ==> ring_homomorphism (r,r') f'`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let RING_MONOMORPHISM_EQ = prove (`!r r' (f:A->B) f'. ring_monomorphism(r,r') f /\ (!x. x IN ring_carrier r ==> f' x = f x) ==> ring_monomorphism (r,r') f'`, REWRITE_TAC[ring_monomorphism; ring_homomorphism; SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN MESON_TAC[]);; let RING_EPIMORPHISM_EQ = prove (`!r r' (f:A->B) f'. ring_epimorphism(r,r') f /\ (!x. x IN ring_carrier r ==> f' x = f x) ==> ring_epimorphism (r,r') f'`, REWRITE_TAC[ring_epimorphism; ring_homomorphism; SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN SET_TAC[]);; let RING_ENDOMORPHISM_EQ = prove (`!r (f:A->A) f'. ring_endomorphism r f /\ (!x. x IN ring_carrier r ==> f' x = f x) ==> ring_endomorphism r f'`, REWRITE_TAC[ring_endomorphism; RING_HOMOMORPHISM_EQ]);; let RING_ISOMORPHISMS_EQ = prove (`!r r' (f:A->B) g. ring_isomorphisms(r,r') (f,g) /\ (!x. x IN ring_carrier r ==> f' x = f x) /\ (!y. y IN ring_carrier r' ==> g' y = g y) ==> ring_isomorphisms(r,r') (f',g')`, SIMP_TAC[ring_isomorphisms; ring_homomorphism; SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN SET_TAC[]);; let RING_ISOMORPHISM_EQ = prove (`!r r' (f:A->B) f'. ring_isomorphism(r,r') f /\ (!x. x IN ring_carrier r ==> f' x = f x) ==> ring_isomorphism (r,r') f'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[ring_isomorphism] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[RING_ISOMORPHISMS_EQ]);; let RING_AUTOMORPHISM_EQ = prove (`!r (f:A->A) f'. ring_automorphism r f /\ (!x. x IN ring_carrier r ==> f' x = f x) ==> ring_automorphism r f'`, REWRITE_TAC[ring_automorphism; RING_ISOMORPHISM_EQ]);; let RING_ISOMORPHISMS_SYM = prove (`!r r' (f:A->B) g. ring_isomorphisms (r,r') (f,g) <=> ring_isomorphisms(r',r) (g,f)`, REWRITE_TAC[ring_isomorphisms] THEN MESON_TAC[]);; let RING_ISOMORPHISMS_IMP_ISOMORPHISM = prove (`!(f:A->B) g r r'. ring_isomorphisms (r,r') (f,g) ==> ring_isomorphism (r,r') f`, REWRITE_TAC[ring_isomorphism] THEN MESON_TAC[]);; let RING_ISOMORPHISMS_IMP_ISOMORPHISM_ALT = prove (`!(f:A->B) g r r'. ring_isomorphisms (r,r') (f,g) ==> ring_isomorphism (r',r) g`, MESON_TAC[RING_ISOMORPHISMS_SYM; RING_ISOMORPHISMS_IMP_ISOMORPHISM]);; let RING_HOMOMORPHISM = prove (`!r r' f:A->B. ring_homomorphism (r,r') (f:A->B) <=> IMAGE f (ring_carrier r) SUBSET ring_carrier r' /\ f(ring_1 r) = ring_1 r' /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_add r x y) = ring_add r' (f x) (f y)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_mul r x y) = ring_mul r' (f x) (f y))`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`ring_0 r:A`; `ring_0 r:A`])) THEN SIMP_TAC[RING_0; RING_ADD_LZERO] THEN ASM_MESON_TAC[RING_LZERO_UNIQUE; RING_0]; REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_LNEG_UNIQUE THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `ring_neg r x:A`])) THEN ASM_SIMP_TAC[RING_NEG; RING_ADD_RNEG]]);; let RING_ISOMORPHISMS = prove (`!r r' (f:A->B) g. ring_isomorphisms(r,r') (f,g) <=> ring_homomorphism(r,r') f /\ (!x. x IN ring_carrier r ==> g(f x) = x) /\ (!y. y IN ring_carrier r' ==> g y IN ring_carrier r /\ f(g y) = y)`, REWRITE_TAC[ring_isomorphisms; ring_homomorphism] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let RING_HOMOMORPHISM_0 = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> f(ring_0 r) = ring_0 r'`, SIMP_TAC[ring_homomorphism]);; let RING_HOMOMORPHISM_1 = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> f(ring_1 r) = ring_1 r'`, SIMP_TAC[ring_homomorphism]);; let RING_HOMOMORPHISM_NEG = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !x. x IN ring_carrier r ==> f(ring_neg r x) = ring_neg r' (f x)`, SIMP_TAC[ring_homomorphism]);; let RING_HOMOMORPHISM_ADD = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_add r x y) = ring_add r' (f x) (f y)`, SIMP_TAC[ring_homomorphism]);; let RING_HOMOMORPHISM_MUL = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_mul r x y) = ring_mul r' (f x) (f y)`, SIMP_TAC[ring_homomorphism]);; let RING_HOMOMORPHISM_SUB = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_sub r x y) = ring_sub r' (f x) (f y)`, REWRITE_TAC[ring_homomorphism; ring_sub] THEN MESON_TAC[RING_ADD; RING_NEG]);; let RING_HOMOMORPHISM_POW = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !x n. x IN ring_carrier r ==> f(ring_pow r x n) = ring_pow r' (f x) n`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism] THEN DISCH_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_POW]);; let RING_HOMOMORPHISM_RING_OF_NUM = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !n. f(ring_of_num r n) = ring_of_num r' n`, REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ring_of_num] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP RING_HOMOMORPHISM_0) THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC [MATCH_MP RING_HOMOMORPHISM_ADD th; RING_OF_NUM; RING_1]) THEN ASM_MESON_TAC[RING_HOMOMORPHISM_1]);; let RING_HOMOMORPHISM_RING_OF_INT = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !n. f(ring_of_int r n) = ring_of_int r' n`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORALL_INT_CASES; RING_OF_INT_CLAUSES] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC [RING_NEG; RING_OF_NUM; MATCH_MP RING_HOMOMORPHISM_NEG th]) THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[MATCH_MP RING_HOMOMORPHISM_RING_OF_NUM th]));; let RING_HOMOMORPHISM_SUM = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !(h:K->A) k. FINITE k /\ (!i. i IN k ==> h i IN ring_carrier r) ==> f(ring_sum r k h) = ring_sum r' k (f o h)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; FINITE_INSERT] THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; o_THM; RING_SUM]);; let RING_HOMOMORPHISM_PRODUCT = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> !(h:K->A) k. FINITE k /\ (!i. i IN k ==> h i IN ring_carrier r) ==> f(ring_product r k h) = ring_product r' k (f o h)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; FINITE_INSERT] THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; o_THM; RING_PRODUCT]);; let RING_MONOMORPHISM_SUM = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f ==> !(h:K->A) k. (!i. i IN k ==> h i IN ring_carrier r) ==> f(ring_sum r k h) = ring_sum r' k (f o h)`, REWRITE_TAC[ring_monomorphism; INJECTIVE_ON_ALT] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_SUM_SUPPORT] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP RING_HOMOMORPHISM_0) THEN ASM_SIMP_TAC[o_THM; RING_0; TAUT `p /\ ~q <=> ~(p ==> q)`] THEN REWRITE_TAC[NOT_IMP] THEN ASM_CASES_TAC `FINITE {a | a IN k /\ ~((h:K->A) a = ring_0 r)}` THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_SUM; IN_ELIM_THM] THEN MATCH_MP_TAC(MESON[RING_HOMOMORPHISM_0] `ring_homomorphism(r,r') f /\ x = ring_0 r /\ y = ring_0 r' ==> f x = y`) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC RING_SUM_TRIVIAL THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM INFINITE]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[o_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN ASM SET_TAC[]);; let RING_MONOMORPHISM_PRODUCT = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f ==> !(h:K->A) k. (!i. i IN k ==> h i IN ring_carrier r) ==> f(ring_product r k h) = ring_product r' k (f o h)`, REWRITE_TAC[ring_monomorphism; INJECTIVE_ON_ALT] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM RING_PRODUCT_SUPPORT] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP RING_HOMOMORPHISM_1) THEN ASM_SIMP_TAC[o_THM; RING_1; TAUT `p /\ ~q <=> ~(p ==> q)`] THEN REWRITE_TAC[NOT_IMP] THEN ASM_CASES_TAC `FINITE {a | a IN k /\ ~((h:K->A) a = ring_1 r)}` THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_PRODUCT; IN_ELIM_THM] THEN MATCH_MP_TAC(MESON[RING_HOMOMORPHISM_1] `ring_homomorphism(r,r') f /\ x = ring_1 r /\ y = ring_1 r' ==> f x = y`) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC RING_PRODUCT_TRIVIAL THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM INFINITE]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[o_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN MP_TAC(ISPEC `r:A ring` RING_1) THEN ASM SET_TAC[]);; let RING_MONOMORPHISM_SUM_GEN = prove (`!r r' (f:A->B) (h:K->A) k. ring_monomorphism(r,r') f ==> f(ring_sum r k h) = ring_sum r' {i | i IN k /\ h i IN ring_carrier r} (f o h)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM RING_SUM_RESTRICT] THEN ASM_SIMP_TAC[RING_MONOMORPHISM_SUM; IN_ELIM_THM]);; let RING_MONOMORPHISM_PRODUCT_GEN = prove (`!r r' (f:A->B) (h:K->A) k. ring_monomorphism(r,r') f ==> f(ring_product r k h) = ring_product r' {i | i IN k /\ h i IN ring_carrier r} (f o h)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM RING_PRODUCT_RESTRICT] THEN ASM_SIMP_TAC[RING_MONOMORPHISM_PRODUCT; IN_ELIM_THM]);; let RING_MONOMORPHISM_IMP_HOMOMORPHISM = prove (`!(f:A->B) r r'. ring_monomorphism(r,r') f ==> ring_homomorphism(r,r') f`, SIMP_TAC[ring_monomorphism]);; let RING_EPIMORPHISM_IMP_HOMOMORPHISM = prove (`!(f:A->B) r r'. ring_epimorphism(r,r') f ==> ring_homomorphism(r,r') f`, SIMP_TAC[ring_epimorphism]);; let RING_MONOMORPHISM_INJECTIVE_EQ = prove (`!r r' (f:A->B) x y. ring_monomorphism(r,r') f /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (f x = f y <=> x = y)`, REWRITE_TAC[ring_monomorphism] THEN MESON_TAC[]);; let RING_MONOMORPHISM_EQ_0 = prove (`!r r' (f:A->B) x. ring_monomorphism(r,r') f /\ x IN ring_carrier r ==> (f x = ring_0 r' <=> x = ring_0 r)`, MESON_TAC[RING_MONOMORPHISM_INJECTIVE_EQ; RING_HOMOMORPHISM_0; RING_0; RING_MONOMORPHISM_IMP_HOMOMORPHISM]);; let RING_HOMOMORPHISM_ID = prove (`!r:A ring. ring_homomorphism (r,r) (\x. x)`, REWRITE_TAC[ring_homomorphism; IMAGE_ID; SUBSET_REFL]);; let RING_MONOMORPHISM_ID = prove (`!r:A ring. ring_monomorphism (r,r) (\x. x)`, SIMP_TAC[ring_monomorphism; RING_HOMOMORPHISM_ID]);; let RING_EPIMORPHISM_ID = prove (`!r:A ring. ring_epimorphism (r,r) (\x. x)`, SIMP_TAC[ring_epimorphism; RING_HOMOMORPHISM_ID; IMAGE_ID]);; let RING_ISOMORPHISMS_ID = prove (`!r:A ring. ring_isomorphisms (r,r) ((\x. x),(\x. x))`, REWRITE_TAC[ring_isomorphisms; RING_HOMOMORPHISM_ID]);; let RING_ISOMORPHISM_ID = prove (`!r:A ring. ring_isomorphism (r,r) (\x. x)`, REWRITE_TAC[ring_isomorphism] THEN MESON_TAC[RING_ISOMORPHISMS_ID]);; let RING_HOMOMORPHISM_COMPOSE = prove (`!r1 r2 r3 (f:A->B) (g:B->C). ring_homomorphism(r1,r2) f /\ ring_homomorphism(r2,r3) g ==> ring_homomorphism(r1,r3) (g o f)`, SIMP_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE; IMAGE_o; o_THM]);; let RING_MONOMORPHISM_COMPOSE = prove (`!r1 r2 r3 (f:A->B) (g:B->C). ring_monomorphism(r1,r2) f /\ ring_monomorphism(r2,r3) g ==> ring_monomorphism(r1,r3) (g o f)`, REWRITE_TAC[ring_monomorphism; ring_homomorphism; INJECTIVE_ON_ALT] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IMAGE_o; o_THM]);; let RING_MONOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. ring_homomorphism(A,B) f /\ ring_homomorphism(B,C) g /\ ring_monomorphism(A,C) (g o f) ==> ring_monomorphism(A,B) f`, REWRITE_TAC[ring_monomorphism; o_THM] THEN MESON_TAC[]);; let RING_EPIMORPHISM_COMPOSE = prove (`!r1 r2 r3 (f:A->B) (g:B->C). ring_epimorphism(r1,r2) f /\ ring_epimorphism(r2,r3) g ==> ring_epimorphism(r1,r3) (g o f)`, SIMP_TAC[ring_epimorphism; IMAGE_o] THEN MESON_TAC[RING_HOMOMORPHISM_COMPOSE]);; let RING_EPIMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. ring_homomorphism(A,B) f /\ ring_homomorphism(B,C) g /\ ring_epimorphism(A,C) (g o f) ==> ring_epimorphism(B,C) g`, REWRITE_TAC[ring_epimorphism; ring_homomorphism; o_THM; IMAGE_o] THEN SET_TAC[]);; let RING_MONOMORPHISM_LEFT_INVERTIBLE = prove (`!r r' (f:A->B) g. ring_homomorphism(r,r') f /\ (!x. x IN ring_carrier r ==> g(f x) = x) ==> ring_monomorphism (r,r') f`, REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; ring_monomorphism] THEN MESON_TAC[]);; let RING_EPIMORPHISM_RIGHT_INVERTIBLE = prove (`!r r' (f:A->B) g. ring_homomorphism(r,r') f /\ ring_homomorphism(r',r) g /\ (!x. x IN ring_carrier r ==> g(f x) = x) ==> ring_epimorphism (r',r) g`, SIMP_TAC[ring_epimorphism] THEN REWRITE_TAC[ring_homomorphism] THEN SET_TAC[]);; let RING_HOMOMORPHISM_INTO_SUBRING = prove (`!r r' h (f:A->B). ring_homomorphism (r,r') f /\ IMAGE f (ring_carrier r) SUBSET h ==> ring_homomorphism (r,subring_generated r' h) f`, REPEAT GEN_TAC THEN SIMP_TAC[ring_homomorphism; SUBRING_GENERATED] THEN REWRITE_TAC[INTERS_GSPEC] THEN SET_TAC[]);; let RING_HOMOMORPHISM_INTO_SUBRING_EQ_GEN = prove (`!(f:A->B) r r' s. ring_homomorphism(r,subring_generated r' s) f <=> ring_homomorphism(r,r') f /\ IMAGE f (ring_carrier r) SUBSET ring_carrier(subring_generated r' s)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism] THEN MP_TAC(ISPECL [`r':B ring`; `s:B->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN REWRITE_TAC[SUBRING_GENERATED] THEN SET_TAC[]);; let RING_HOMOMORPHISM_INTO_SUBRING_EQ = prove (`!r r' h (f:A->B). h subring_of r' ==> (ring_homomorphism (r,subring_generated r' h) f <=> ring_homomorphism (r,r') f /\ IMAGE f (ring_carrier r) SUBSET h)`, SIMP_TAC[RING_HOMOMORPHISM_INTO_SUBRING_EQ_GEN; CARRIER_SUBRING_GENERATED_SUBRING]);; let RING_HOMOMORPHISM_FROM_SUBRING_GENERATED = prove (`!(f:A->B) r r' s. ring_homomorphism (r,r') f ==> ring_homomorphism(subring_generated r s,r') f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism] THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN SIMP_TAC[SUBSET; SUBRING_GENERATED; INTERS_GSPEC; FORALL_IN_IMAGE] THEN SET_TAC[]);; let RING_MONOMORPHISM_FROM_SUBRING_GENERATED = prove (`!(f:A->B) r r' s. ring_monomorphism (r,r') f ==> ring_monomorphism(subring_generated r s,r') f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_monomorphism] THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[RING_HOMOMORPHISM_FROM_SUBRING_GENERATED] THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN SET_TAC[]);; let RING_HOMOMORPHISM_INCLUSION = prove (`!r s:A->bool. ring_homomorphism(subring_generated r s,r) (\x. x)`, SIMP_TAC[RING_HOMOMORPHISM_FROM_SUBRING_GENERATED; RING_HOMOMORPHISM_ID]);; let RING_MONOMORPHISM_INCLUSION = prove (`!r s:A->bool. ring_monomorphism(subring_generated r s,r) (\x. x)`, SIMP_TAC[RING_MONOMORPHISM_FROM_SUBRING_GENERATED; RING_MONOMORPHISM_ID]);; let RING_HOMOMORPHISM_BETWEEN_SUBRINGS = prove (`!r r' s t (f:A->B). ring_homomorphism(r,r') f /\ IMAGE f s SUBSET t ==> ring_homomorphism(subring_generated r s,subring_generated r' t) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[RING_HOMOMORPHISM_INTO_SUBRING_EQ_GEN] THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_FROM_SUBRING_GENERATED] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN MATCH_MP_TAC SUBRING_GENERATED_INDUCT THEN RULE_ASSUM_TAC (REWRITE_RULE[ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN MP_TAC(REWRITE_RULE[SUBSET] (ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET)) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[SUBSET] SUBRING_GENERATED_SUBSET_CARRIER) THEN ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_0; SUBRING_GENERATED]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_1; SUBRING_GENERATED]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_NEG; SUBRING_GENERATED]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_ADD; SUBRING_GENERATED]; ALL_TAC] THEN ASM_MESON_TAC[RING_MUL; SUBRING_GENERATED]);; let RING_HOMOMORPHISM_BETWEEN_SUBRINGS_ALT = prove (`!r s g h (f:A->B). ring_homomorphism(r,s) f /\ IMAGE f (ring_carrier r INTER g) SUBSET h ==> ring_homomorphism(subring_generated r g,subring_generated s h) f`, MESON_TAC[SUBRING_GENERATED_RESTRICT; RING_HOMOMORPHISM_BETWEEN_SUBRINGS]);; let RING_MONOMORPHISM_BETWEEN_SUBRINGS = prove (`!r r' s t (f:A->B). ring_monomorphism(r,r') f /\ IMAGE f s SUBSET t ==> ring_monomorphism(subring_generated r s,subring_generated r' t) f`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_monomorphism] THEN SIMP_TAC[RING_HOMOMORPHISM_BETWEEN_SUBRINGS] THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN SET_TAC[]);; let RING_MONOMORPHISM_INTO_SUPERRING = prove (`!r r' t (f:A->B). ring_monomorphism(r,subring_generated r' t) f ==> ring_monomorphism(r,r') f`, REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_INTO_SUBRING_EQ_GEN] THEN MESON_TAC[]);; let RING_SUM_SUBRING_GENERATED_GEN = prove (`!r s k (f:K->A). ring_sum (subring_generated r s) k f = ring_sum r {x | x IN k /\ f x IN ring_carrier(subring_generated r s)} f`, REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC (REWRITE_RULE[o_DEF; ETA_AX] (MATCH_MP RING_MONOMORPHISM_SUM_GEN (SPEC_ALL RING_MONOMORPHISM_INCLUSION))));; let RING_SUM_SUBRING_GENERATED = prove (`!r s k (f:K->A). s subring_of r ==> ring_sum (subring_generated r s) k f = ring_sum r {x | x IN k /\ f x IN s} f`, REWRITE_TAC[RING_SUM_SUBRING_GENERATED_GEN] THEN SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING]);; let SUBRING_GENERATED_BY_HOMOMORPHIC_IMAGE = prove (`!r r' (f:A->B) s. ring_homomorphism(r,r') f /\ s SUBSET ring_carrier r ==> ring_carrier (subring_generated r' (IMAGE f s)) = IMAGE f (ring_carrier(subring_generated r s))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC SUBRING_GENERATED_INDUCT THEN REWRITE_TAC[FORALL_IN_IMAGE_2] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN MP_TAC(REWRITE_RULE[SUBSET] (ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET)) THEN FIRST_X_ASSUM(MP_TAC o GSYM o GEN_REWRITE_RULE I [ring_homomorphism]) THEN ASM_SIMP_TAC[SUBRING_GENERATED_INC; FUN_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN ASM_MESON_TAC[SUBRING_GENERATED; RING_0; RING_NEG; RING_ADD; RING_1; RING_MUL]; FIRST_ASSUM(MP_TAC o ISPECL [`s:A->bool`; `IMAGE (f:A->B) s`] o MATCH_MP (REWRITE_RULE[IMP_CONJ] RING_HOMOMORPHISM_BETWEEN_SUBRINGS)) THEN SIMP_TAC[ring_homomorphism; SUBSET_REFL]]);; let RING_EPIMORPHISM_BETWEEN_SUBRINGS = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f /\ s SUBSET ring_carrier r ==> ring_epimorphism(subring_generated r s, subring_generated r' (IMAGE f s)) f`, REWRITE_TAC[ring_epimorphism; RING_HOMOMORPHISM_INTO_SUBRING_EQ_GEN] THEN SIMP_TAC[RING_HOMOMORPHISM_FROM_SUBRING_GENERATED] THEN ASM_SIMP_TAC[SUBRING_GENERATED_BY_HOMOMORPHIC_IMAGE; SUBSET_REFL]);; let RING_ISOMORPHISM = prove (`!r r' f:A->B. ring_isomorphism (r,r') (f:A->B) <=> ring_homomorphism (r,r') f /\ IMAGE f (ring_carrier r) = ring_carrier r' /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ f x = f y ==> x = y)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_isomorphism; ring_isomorphisms; ring_homomorphism] THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBST1_TAC(SYM(ASSUME `IMAGE (f:A->B) (ring_carrier r) = ring_carrier r'`)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_IMAGE_2] THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[RING_0; RING_ADD; RING_MUL; RING_1; RING_NEG]);; let RING_ISOMORPHISM_SUBSET = prove (`!r r' f:A->B. ring_isomorphism (r,r') (f:A->B) <=> ring_homomorphism (r,r') f /\ ring_carrier r' SUBSET IMAGE f (ring_carrier r) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ f x = f y ==> x = y)`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_ISOMORPHISM; ring_homomorphism] THEN SET_TAC[]);; let SUBRING_OF_HOMOMORPHIC_IMAGE = prove (`!r r' (f:A->B) h. ring_homomorphism (r,r') f /\ h subring_of r ==> IMAGE f h subring_of r'`, REWRITE_TAC[ring_homomorphism; subring_of] THEN SET_TAC[]);; let RING_IDEAL_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B) j. ring_epimorphism (r,r') f /\ ring_ideal r j ==> ring_ideal r' (IMAGE f j)`, REWRITE_TAC[ring_epimorphism; ring_homomorphism; ring_ideal] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN ASM SET_TAC[]);; let SUBRING_OF_HOMOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B) h. ring_homomorphism(r,r') f /\ h subring_of r' ==> {x | x IN ring_carrier r /\ f x IN h} subring_of r`, REWRITE_TAC[ring_homomorphism; subring_of; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let SUBRING_OF_EPIMORPHIC_PREIMAGE = prove (`!r r' (f:A->B) h. ring_epimorphism(r,r') f /\ h subring_of r' ==> {x | x IN ring_carrier r /\ f x IN h} subring_of r /\ IMAGE f {x | x IN ring_carrier r /\ f x IN h} = h`, REWRITE_TAC[ring_epimorphism] THEN REWRITE_TAC[ring_homomorphism; subring_of; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let RING_IDEAL_HOMOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B) j. ring_homomorphism(r,r') f /\ ring_ideal r' j ==> ring_ideal r {x | x IN ring_carrier r /\ f x IN j}`, REWRITE_TAC[ring_homomorphism; ring_ideal; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B) s. ring_epimorphism(r,r') f /\ s SUBSET ring_carrier r ==> ideal_generated r' (IMAGE f s) = IMAGE f (ideal_generated r s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC IDEAL_GENERATED_MINIMAL THEN ASM_SIMP_TAC[IDEAL_GENERATED_SUBSET_CARRIER_SUBSET; IMAGE_SUBSET] THEN ASM_MESON_TAC[RING_IDEAL_IDEAL_GENERATED; RING_IDEAL_EPIMORPHIC_IMAGE]; MATCH_MP_TAC(SET_RULE `u SUBSET {x | x IN ring_carrier r /\ f x IN t} ==> IMAGE f u SUBSET t`) THEN MATCH_MP_TAC IDEAL_GENERATED_MINIMAL THEN CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `s SUBSET u /\ IMAGE f s SUBSET t ==> s SUBSET {x | x IN u /\ f x IN t}`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IDEAL_GENERATED_SUBSET_CARRIER_SUBSET THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_epimorphism]) THEN ASM SET_TAC[]; MATCH_MP_TAC RING_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[RING_IDEAL_IDEAL_GENERATED; ring_epimorphism]]]);; let RING_MONOMORPHISM_EPIMORPHISM = prove (`!r r' f:A->B. ring_monomorphism (r,r') f /\ ring_epimorphism (r,r') f <=> ring_isomorphism (r,r') f`, REWRITE_TAC[RING_ISOMORPHISM; ring_monomorphism; ring_epimorphism] THEN MESON_TAC[]);; let SUBRING_MONOMORPHISM_EPIMORPHISM = prove (`!r r' s (f:A->B). ring_monomorphism(r,r') f /\ ring_epimorphism(r,subring_generated r' s) f <=> ring_isomorphism(r,subring_generated r' s) f`, MESON_TAC[RING_MONOMORPHISM_EPIMORPHISM; RING_MONOMORPHISM_INTO_SUPERRING; RING_HOMOMORPHISM_INTO_SUBRING; ring_monomorphism; ring_epimorphism]);; let RING_ISOMORPHISM_EPIMORPHISM = prove (`!r r' (f:A->B). ring_isomorphism (r,r') f <=> ring_epimorphism (r,r') f /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ f x = f y ==> x = y)`, REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM; ring_monomorphism; ring_epimorphism] THEN MESON_TAC[]);; let RING_ISOMORPHISM_MONOMORPHISM = prove (`!r r' f:A->B. ring_isomorphism (r,r') f <=> ring_monomorphism (r,r') f /\ IMAGE f (ring_carrier r) = ring_carrier r'`, REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[ring_monomorphism; ring_epimorphism] THEN MESON_TAC[]);; let RING_ISOMORPHISM_MONOMORPHISM_ALT = prove (`!r r' f:A->B. ring_isomorphism (r,r') f <=> ring_monomorphism (r,r') f /\ ring_carrier r' SUBSET IMAGE f (ring_carrier r)`, REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[ring_monomorphism; ring_epimorphism] THEN REWRITE_TAC[ring_homomorphism] THEN SET_TAC[]);; let RING_ISOMORPHISM_IMP_MONOMORPHISM = prove (`!r r' (f:A->B). ring_isomorphism (r,r') f ==> ring_monomorphism (r,r') f`, SIMP_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM]);; let RING_ISOMORPHISM_IMP_EPIMORPHISM = prove (`!r r' (f:A->B). ring_isomorphism (r,r') f ==> ring_epimorphism (r,r') f`, SIMP_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM]);; let RING_ISOMORPHISM_IMP_HOMOMORPHISM = prove (`!(f:A->B) r r'. ring_isomorphism(r,r') f ==> ring_homomorphism(r,r') f`, SIMP_TAC[RING_ISOMORPHISM]);; let RING_AUTOMORPHISM_IMP_ENDOMORPHISM = prove (`!r (f:A->A). ring_automorphism r f ==> ring_endomorphism r f`, REWRITE_TAC[ring_automorphism; ring_endomorphism] THEN REWRITE_TAC[RING_ISOMORPHISM_IMP_HOMOMORPHISM]);; let RING_ISOMORPHISMS_ISOMORPHISM = prove (`!r r' (f:A->B) g. ring_isomorphisms (r,r') (f,g) <=> ring_isomorphism (r,r') f /\ ring_isomorphism (r',r) g /\ (!x. x IN ring_carrier r ==> g (f x) = x) /\ (!y. y IN ring_carrier r' ==> f (g y) = y)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[ring_isomorphisms; RING_ISOMORPHISMS_IMP_ISOMORPHISM; RING_ISOMORPHISMS_IMP_ISOMORPHISM_ALT]; SIMP_TAC[ring_isomorphisms] THEN MESON_TAC[RING_ISOMORPHISM_IMP_HOMOMORPHISM]]);; let RING_ISOMORPHISM_EQ_MONOMORPHISM_FINITE = prove (`!G H (f:A->B). FINITE(ring_carrier G) /\ FINITE(ring_carrier H) /\ CARD(ring_carrier G) = CARD(ring_carrier H) ==> (ring_isomorphism(G,H) f <=> ring_monomorphism(G,H) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[RING_ISOMORPHISM_IMP_MONOMORPHISM] THEN SIMP_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[ring_monomorphism; ring_epimorphism] THEN REWRITE_TAC[ring_homomorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`ring_carrier G:A->bool`; `ring_carrier H:B->bool`; `f:A->B`] SURJECTIVE_IFF_INJECTIVE_GEN) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let RING_ISOMORPHISM_EQ_EPIMORPHISM_FINITE = prove (`!G H (f:A->B). FINITE(ring_carrier G) /\ FINITE(ring_carrier H) /\ CARD(ring_carrier G) = CARD(ring_carrier H) ==> (ring_isomorphism(G,H) f <=> ring_epimorphism(G,H) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[RING_ISOMORPHISM_IMP_EPIMORPHISM] THEN SIMP_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[ring_monomorphism; ring_epimorphism] THEN REWRITE_TAC[ring_homomorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`ring_carrier G:A->bool`; `ring_carrier H:B->bool`; `f:A->B`] SURJECTIVE_IFF_INJECTIVE_GEN) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let RING_ISOMORPHISMS_BETWEEN_SUBRINGS = prove (`!r r' g h (f:A->B) f'. ring_isomorphisms(r,r') (f,f') /\ IMAGE f g SUBSET h /\ IMAGE f' h SUBSET g ==> ring_isomorphisms (subring_generated r g,subring_generated r' h) (f,f')`, SIMP_TAC[ring_isomorphisms; RING_HOMOMORPHISM_BETWEEN_SUBRINGS] THEN MESON_TAC[SUBSET; RING_CARRIER_SUBRING_GENERATED_SUBSET]);; let RING_ISOMORPHISMS_BETWEEN_SUBRINGS_ALT = prove (`!r s g h (f:A->B) f'. ring_isomorphisms(r,s) (f,f') /\ IMAGE f (ring_carrier r INTER g) SUBSET h /\ IMAGE f' (ring_carrier s INTER h) SUBSET g ==> ring_isomorphisms (subring_generated r g,subring_generated s h) (f,f')`, SIMP_TAC[ring_isomorphisms; RING_HOMOMORPHISM_BETWEEN_SUBRINGS_ALT] THEN MESON_TAC[SUBSET; RING_CARRIER_SUBRING_GENERATED_SUBSET]);; let RING_ISOMORPHISM_BETWEEN_SUBRINGS = prove (`!r r' g h (f:A->B). ring_isomorphism(r,r') f /\ g SUBSET ring_carrier r /\ IMAGE f g = h ==> ring_isomorphism(subring_generated r g,subring_generated r' h) f`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[ring_isomorphism] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f':B->A` THEN REWRITE_TAC[ring_isomorphisms] THEN REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[RING_HOMOMORPHISM_BETWEEN_SUBRINGS; SUBSET_REFL]; ALL_TAC; ASM_MESON_TAC[RING_CARRIER_SUBRING_GENERATED_SUBSET; SUBSET]; ASM_MESON_TAC[RING_CARRIER_SUBRING_GENERATED_SUBSET; SUBSET]] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SUBRING_GENERATED_RESTRICT] THEN MATCH_MP_TAC RING_HOMOMORPHISM_BETWEEN_SUBRINGS THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM SET_TAC[]);; let RING_ISOMORPHISMS_COMPOSE = prove (`!r1 r2 r3 (f1:A->B) (f2:B->C) g1 g2. ring_isomorphisms(r1,r2) (f1,g1) /\ ring_isomorphisms(r2,r3) (f2,g2) ==> ring_isomorphisms(r1,r3) (f2 o f1,g1 o g2)`, SIMP_TAC[ring_isomorphisms; ring_homomorphism; SUBSET; FORALL_IN_IMAGE; IMAGE_o; o_THM]);; let RING_ISOMORPHISM_COMPOSE = prove (`!r1 r2 r3 (f:A->B) (g:B->C). ring_isomorphism(r1,r2) f /\ ring_isomorphism(r2,r3) g ==> ring_isomorphism(r1,r3) (g o f)`, REWRITE_TAC[ring_isomorphism] THEN MESON_TAC[RING_ISOMORPHISMS_COMPOSE]);; let RING_ISOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. ring_homomorphism(A,B) f /\ ring_homomorphism(B,C) g /\ ring_isomorphism(A,C) (g o f) ==> ring_monomorphism(A,B) f /\ ring_epimorphism(B,C) g`, REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN MESON_TAC[RING_MONOMORPHISM_COMPOSE_REV; RING_EPIMORPHISM_COMPOSE_REV]);; let RING_EPIMORPHISM_ISOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. ring_epimorphism (A,B) f /\ ring_homomorphism (B,C) g /\ ring_isomorphism (A,C) (g o f) ==> ring_isomorphism (A,B) f /\ ring_isomorphism (B,C) g`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_ISOMORPHISM_COMPOSE_REV; ring_epimorphism; RING_MONOMORPHISM_EPIMORPHISM]; REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f':B->A` THEN DISCH_TAC THEN REWRITE_TAC[GSYM ring_isomorphism] THEN MATCH_MP_TAC RING_ISOMORPHISM_EQ THEN EXISTS_TAC `(g:B->C) o f o (f':B->A)` THEN CONJ_TAC THENL [REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC RING_ISOMORPHISM_COMPOSE THEN ASM_MESON_TAC[RING_ISOMORPHISMS_SYM; ring_isomorphism]; RULE_ASSUM_TAC(REWRITE_RULE [ring_isomorphisms; ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[o_THM]]]);; let RING_MONOMORPHISM_ISOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. ring_homomorphism (A,B) f /\ ring_monomorphism (B,C) g /\ ring_isomorphism (A,C) (g o f) ==> ring_isomorphism (A,B) f /\ ring_isomorphism (B,C) g`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_ISOMORPHISM_COMPOSE_REV; ring_monomorphism; RING_MONOMORPHISM_EPIMORPHISM]; REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g':C->B` THEN DISCH_TAC THEN REWRITE_TAC[GSYM ring_isomorphism] THEN MATCH_MP_TAC RING_ISOMORPHISM_EQ THEN EXISTS_TAC `(g':C->B) o g o (f:A->B)` THEN CONJ_TAC THENL [MATCH_MP_TAC RING_ISOMORPHISM_COMPOSE THEN ASM_MESON_TAC[RING_ISOMORPHISMS_SYM; ring_isomorphism]; RULE_ASSUM_TAC(REWRITE_RULE [ring_isomorphisms; ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[o_THM]]]);; let RING_ISOMORPHISM_INVERSE = prove (`!(f:A->B) g r r'. ring_isomorphism(r,r') f /\ (!x. x IN ring_carrier r ==> g(f x) = x) ==> ring_isomorphism(r',r) g`, REWRITE_TAC[ring_isomorphism; ring_isomorphisms; ring_homomorphism] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `!y. y IN ring_carrier r' ==> (g:B->A) y IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!y. y IN ring_carrier r' ==> (f:A->B)(g y) = y` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL]);; let RING_HOMOMORPHISM_FROM_TRIVIAL_RING = prove (`!(f:A->B) r r'. trivial_ring r ==> (ring_homomorphism(r,r') f <=> trivial_ring r' /\ IMAGE f (ring_carrier r) = {ring_0 r'})`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [trivial_ring] THEN DISCH_TAC THEN EQ_TAC THENL [ASM_SIMP_TAC[ring_homomorphism; TRIVIAL_RING_10] THEN MP_TAC(ISPEC `r:A ring` RING_1) THEN ASM SET_TAC[]; SIMP_TAC[trivial_ring; RING_HOMOMORPHISM] THEN STRIP_TAC THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `IMAGE f s = {a} ==> !x. x IN s ==> f x = a`)) THEN ASM_SIMP_TAC[RING_0; RING_1; RING_ADD; RING_MUL; RING_ADD_LZERO; RING_MUL_LZERO] THEN MP_TAC(ISPEC `r':B ring` RING_0) THEN MP_TAC(ISPEC `r':B ring` RING_1) THEN ASM SET_TAC[]]);; let RING_MONOMORPHISM_FROM_TRIVIAL_RING = prove (`!(f:A->B) r r'. trivial_ring r ==> (ring_monomorphism (r,r') f <=> ring_homomorphism (r,r') f)`, REWRITE_TAC[ring_monomorphism; trivial_ring] THEN SET_TAC[]);; let RING_MONOMORPHISM_TO_TRIVIAL_RING = prove (`!(f:A->B) r r'. trivial_ring r' ==> (ring_monomorphism (r,r') f <=> ring_homomorphism (r,r') f /\ trivial_ring r)`, SIMP_TAC[ring_monomorphism; trivial_ring; ring_homomorphism] THEN REPEAT GEN_TAC THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN SET_TAC[]);; let RING_EPIMORPHISM_FROM_TRIVIAL_RING = prove (`!(f:A->B) r r'. trivial_ring r ==> (ring_epimorphism (r,r') f <=> ring_homomorphism (r,r') f /\ trivial_ring r')`, SIMP_TAC[ring_epimorphism; trivial_ring; ring_homomorphism] THEN SET_TAC[]);; let RING_EPIMORPHISM_TO_TRIVIAL_RING = prove (`!(f:A->B) r r'. trivial_ring r' ==> (ring_epimorphism (r,r') f <=> ring_homomorphism (r,r') f)`, REWRITE_TAC[ring_epimorphism; trivial_ring; ring_homomorphism] THEN REPEAT GEN_TAC THEN MAP_EVERY(MP_TAC o C ISPEC RING_0) [`r:A ring`; `r':B ring`] THEN SET_TAC[]);; let TRIVIAL_RING_MONOMORPHIC_PREIMAGE = prove (`!r r' f:A->B. ring_monomorphism (r,r') f /\ trivial_ring r' ==> trivial_ring r`, MESON_TAC[RING_MONOMORPHISM_TO_TRIVIAL_RING]);; let TRIVIAL_RING_HOMOMORPHIC_IMAGE = prove (`!r r' f:A->B. ring_homomorphism(r,r') f /\ trivial_ring r ==> trivial_ring r'`, REWRITE_TAC[ring_homomorphism; TRIVIAL_RING_10] THEN MESON_TAC[]);; let TRIVIAL_RING_MONOMORPHIC_IMAGE_EQ = prove (`!r r' f:A->B. ring_monomorphism (r,r') f ==> (trivial_ring r <=> trivial_ring r')`, MESON_TAC[TRIVIAL_RING_MONOMORPHIC_PREIMAGE; TRIVIAL_RING_HOMOMORPHIC_IMAGE; RING_MONOMORPHISM_IMP_HOMOMORPHISM]);; let RING_NILPOTENT_HOMOMORPHIC_IMAGE = prove (`!r r' (f:A->B) a. ring_homomorphism (r,r') f /\ ring_nilpotent r a ==> ring_nilpotent r' (f a)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_nilpotent; RIGHT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM SET_TAC[]; ASM_MESON_TAC[RING_HOMOMORPHISM_POW; RING_HOMOMORPHISM_0]]);; let RING_NILPOTENT_MONOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) a. ring_monomorphism(r,r') f /\ a IN ring_carrier r ==> (ring_nilpotent r' (f a) <=> ring_nilpotent r a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_nilpotent] THEN BINOP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[ring_monomorphism; ring_homomorphism]) THEN ASM SET_TAC[]; FIRST_ASSUM(fun th -> ASM_SIMP_TAC[GSYM(MATCH_MP RING_HOMOMORPHISM_POW (MATCH_MP RING_MONOMORPHISM_IMP_HOMOMORPHISM th))]) THEN ASM_MESON_TAC[RING_MONOMORPHISM_EQ_0; RING_POW]]);; let RING_CHAR_MONOMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f ==> ring_char r = ring_char r'`, REWRITE_TAC[RING_CHAR_UNIQUE; GSYM RING_OF_NUM_EQ_0] THEN MESON_TAC[RING_MONOMORPHISM_EQ_0; RING_HOMOMORPHISM_RING_OF_NUM; RING_OF_NUM; ring_monomorphism]);; (* ------------------------------------------------------------------------- *) (* Relation of isomorphism. *) (* ------------------------------------------------------------------------- *) parse_as_infix("isomorphic_ring",(12, "right"));; let isomorphic_ring = new_definition `r isomorphic_ring r' <=> ?f:A->B. ring_isomorphism (r,r') f`;; let RING_ISOMORPHISM_IMP_ISOMORPHIC = prove (`!r r' f:A->B. ring_isomorphism (r,r') f ==> r isomorphic_ring r'`, REWRITE_TAC[isomorphic_ring] THEN MESON_TAC[]);; let ISOMORPHIC_RING_REFL = prove (`!r:A ring. r isomorphic_ring r`, GEN_TAC THEN REWRITE_TAC[isomorphic_ring] THEN EXISTS_TAC `\x:A. x` THEN REWRITE_TAC[RING_ISOMORPHISM_ID]);; let ISOMORPHIC_RING_SYM = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' <=> r' isomorphic_ring r`, REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN MESON_TAC[RING_ISOMORPHISMS_SYM]);; let ISOMORPHIC_RING_TRANS = prove (`!(r1:A ring) (r2:B ring) (r3:C ring). r1 isomorphic_ring r2 /\ r2 isomorphic_ring r3 ==> r1 isomorphic_ring r3`, REWRITE_TAC[isomorphic_ring] THEN MESON_TAC[RING_ISOMORPHISM_COMPOSE]);; let ISOMORPHIC_RING_TRIVIALITY = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (trivial_ring r <=> trivial_ring r')`, REWRITE_TAC[isomorphic_ring; TRIVIAL_RING; ring_isomorphism; ring_isomorphisms; ring_homomorphism] THEN SET_TAC[]);; let ISOMORPHIC_TO_TRIVIAL_RING = prove (`(!(r:A ring) (r':B ring). trivial_ring r ==> (r isomorphic_ring r' <=> trivial_ring r')) /\ (!(r:A ring) (r':B ring). trivial_ring r' ==> (r isomorphic_ring r' <=> trivial_ring r))`, let lemma = prove (`!(r:A ring) (r':B ring). trivial_ring r ==> (r isomorphic_ring r' <=> trivial_ring r')`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[ISOMORPHIC_RING_TRIVIALITY]; ALL_TAC] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[TRIVIAL_RING; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `b:B` THEN DISCH_TAC THEN REWRITE_TAC[isomorphic_ring; RING_ISOMORPHISM] THEN EXISTS_TAC `(\x. b):A->B` THEN ASM_REWRITE_TAC[ring_homomorphism] THEN SIMP_TAC[IN_SING; IMAGE_CLAUSES; SUBSET_REFL] THEN ASM_MESON_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL; IN_SING]) in REWRITE_TAC[lemma] THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[lemma]);; let ISOMORPHIC_TRIVIAL_RINGS = prove (`!(G:A ring) (H:B ring). trivial_ring G /\ trivial_ring H ==> G isomorphic_ring H`, MESON_TAC[ISOMORPHIC_TO_TRIVIAL_RING]);; let ISOMORPHIC_RING_SINGLETON_RING = prove (`(!(r:A ring) (b:B). r isomorphic_ring singleton_ring b <=> trivial_ring r) /\ (!a:A (r:B ring). singleton_ring a isomorphic_ring r <=> trivial_ring r)`, MESON_TAC[ISOMORPHIC_TO_TRIVIAL_RING; TRIVIAL_RING_SINGLETON_RING]);; let CARD_LE_RING_MONOMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f ==> ring_carrier r <=_c ring_carrier r'`, REWRITE_TAC[ring_monomorphism; le_c; ring_homomorphism] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]);; let CARD_LE_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f ==> ring_carrier r' <=_c ring_carrier r`, REWRITE_TAC[ring_epimorphism; LE_C; ring_homomorphism] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]);; let CARD_EQ_RING_ISOMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_isomorphism(r,r') f ==> ring_carrier r =_c ring_carrier r'`, REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM; GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_RING_MONOMORPHIC_IMAGE; CARD_LE_RING_EPIMORPHIC_IMAGE]);; let ISOMORPHIC_RING_CARD_EQ = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> ring_carrier r =_c ring_carrier r'`, REWRITE_TAC[isomorphic_ring; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[CARD_EQ_RING_ISOMORPHIC_IMAGE]);; let ISOMORPHIC_RING_FINITENESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (FINITE(ring_carrier r) <=> FINITE(ring_carrier r'))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMORPHIC_RING_CARD_EQ) THEN REWRITE_TAC[CARD_FINITE_CONG]);; let ISOMORPHIC_RING_INFINITENESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (INFINITE(ring_carrier r) <=> INFINITE(ring_carrier r'))`, REWRITE_TAC[INFINITE; TAUT `(~p <=> ~q) <=> (p <=> q)`] THEN REWRITE_TAC[ISOMORPHIC_RING_FINITENESS]);; let FINITE_RING_MONOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f /\ FINITE(ring_carrier r') ==> FINITE(ring_carrier r)`, MESON_TAC[CARD_LE_FINITE; CARD_LE_RING_MONOMORPHIC_IMAGE]);; let FINITE_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ FINITE(ring_carrier r) ==> FINITE(ring_carrier r')`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN ASM_MESON_TAC[CARD_LE_RING_EPIMORPHIC_IMAGE]);; let CARD_EQ_RING_MONOMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f ==> IMAGE f (ring_carrier r) =_c ring_carrier r`, REWRITE_TAC[ring_monomorphism] THEN MESON_TAC[CARD_EQ_IMAGE]);; let ISOMORPHIC_RING_SIZE = prove (`!(r:A ring) (r':B ring) n. r isomorphic_ring r' ==> (ring_carrier r HAS_SIZE n <=> ring_carrier r' HAS_SIZE n)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMORPHIC_RING_CARD_EQ) THEN REWRITE_TAC[CARD_HAS_SIZE_CONG]);; let ISOMORPHIC_RING_CARD = prove (`!(G:A ring) (H:B ring). G isomorphic_ring H /\ (FINITE(ring_carrier G) \/ FINITE(ring_carrier H)) ==> CARD(ring_carrier G) = CARD(ring_carrier H)`, MESON_TAC[ISOMORPHIC_RING_SIZE; HAS_SIZE; ISOMORPHIC_RING_FINITENESS]);; let ISOMORPHIC_RING_CHAR = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> ring_char r = ring_char r'`, REWRITE_TAC[isomorphic_ring] THEN MESON_TAC[RING_ISOMORPHISM_IMP_MONOMORPHISM; RING_CHAR_MONOMORPHIC_IMAGE]);; let ISOMORPHIC_COPY_OF_RING = prove (`!(r:A ring) (s:B->bool). (?r'. ring_carrier r' = s /\ r isomorphic_ring r') <=> ring_carrier r =_c s`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[ISOMORPHIC_RING_CARD_EQ; CARD_EQ_TRANS]; REWRITE_TAC[EQ_C_BIJECTIONS; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN ABBREV_TAC `r' = ring(s:B->bool, f (ring_0 r:A), f (ring_1 r), (\x. f(ring_neg r (g x))), (\x1 x2. f(ring_add r (g x1) (g x2))), (\x1 x2. f(ring_mul r (g x1) (g x2))))` THEN SUBGOAL_THEN `ring_carrier r' = s /\ ring_0 r' = (f:A->B) (ring_0 r) /\ ring_1 r' = f (ring_1 r) /\ ring_neg r' = (\x. f(ring_neg r (g x))) /\ ring_add r' = (\x1 x2. f(ring_add r (g x1) (g x2))) /\ ring_mul r' = (\x1 x2. f(ring_mul r (g x1) (g x2)))` STRIP_ASSUME_TAC THENL [EXPAND_TAC "r'" THEN PURE_REWRITE_TAC [GSYM PAIR_EQ; ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul; BETA_THM; PAIR] THEN REWRITE_TAC[GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC(map (GSYM o REWRITE_RULE[FUN_EQ_THM]) [ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul]) THEN SUBGOAL_THEN `s = IMAGE (f:A->B) (ring_carrier r)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN ASM_SIMP_TAC[FUN_IN_IMAGE; RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN MESON_TAC[RING_ADD_SYM; RING_ADD_ASSOC; RING_ADD_LZERO; RING_ADD_LNEG; RING_MUL_SYM; RING_MUL_ASSOC; RING_MUL_LID; RING_ADD_LDISTRIB]; EXISTS_TAC `r':B ring` THEN ASM_REWRITE_TAC[isomorphic_ring] THEN EXISTS_TAC `f:A->B` THEN REWRITE_TAC[ring_isomorphism] THEN EXISTS_TAC `g:B->A` THEN REWRITE_TAC[ring_isomorphisms] THEN ASM_SIMP_TAC[ring_homomorphism; RING_0; RING_1; SUBSET; FORALL_IN_IMAGE; RING_NEG; RING_ADD; RING_MUL]]);; (* ------------------------------------------------------------------------- *) (* Kernels and images of homomorphisms. *) (* ------------------------------------------------------------------------- *) let ring_kernel = new_definition `ring_kernel (r,r') (f:A->B) = {x | x IN ring_carrier r /\ f x = ring_0 r'}`;; let ring_image = new_definition `ring_image (r:A ring,r':B ring) (f:A->B) = IMAGE f (ring_carrier r)`;; let RING_KERNEL_0 = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> ring_0 r IN ring_kernel (r,r') f`, SIMP_TAC[ring_homomorphism; ring_kernel; IN_ELIM_THM; RING_0]);; let RING_KERNEL_NONEMPTY = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> ~(ring_kernel (r,r') f = {})`, MESON_TAC[RING_KERNEL_0; NOT_IN_EMPTY]);; let RING_KERNEL_SUBSET_CARRIER = prove (`!r r' (f:A->B). ring_kernel (r,r') f SUBSET ring_carrier r`, REWRITE_TAC[ring_kernel; SUBSET_RESTRICT]);; let RING_MONOMORPHISM = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f <=> ring_homomorphism(r,r') f /\ ring_kernel (r,r') f = {ring_0 r}`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_monomorphism] THEN REWRITE_TAC[TAUT `(p /\ q <=> p /\ r) <=> p ==> (q <=> r)`] THEN REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SING_SUBSET] THEN ASM_REWRITE_TAC[SUBSET; IN_SING; ring_kernel; IN_ELIM_THM; RING_0] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `ring_0 r:A`]) THEN ASM_SIMP_TAC[RING_0]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_sub r x y:A`) THEN ASM_SIMP_TAC[ring_sub; RING_ADD; RING_NEG] THEN REWRITE_TAC[GSYM ring_sub] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUB_EQ_0 o rand o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN DISCH_THEN MATCH_MP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUB_EQ_0 o snd) THEN ASM_SIMP_TAC[]]);; let RING_MONOMORPHISM_ALT = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f <=> ring_homomorphism(r,r') f /\ !x. x IN ring_carrier r /\ f x = ring_0 r' ==> x = ring_0 r`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_MONOMORPHISM; ring_kernel] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN REWRITE_TAC[ring_homomorphism] THEN SET_TAC[]);; let RING_MONOMORPHISM_ALT_EQ = prove (`!r r' f:A->B. ring_monomorphism (r,r') f <=> ring_homomorphism (r,r') f /\ !x. x IN ring_carrier r ==> (f x = ring_0 r' <=> x = ring_0 r)`, MESON_TAC[RING_MONOMORPHISM_ALT; ring_homomorphism]);; let RING_EPIMORPHISM = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f <=> ring_homomorphism(r,r') f /\ ring_image (r,r') f = ring_carrier r'`, REWRITE_TAC[ring_epimorphism; ring_image] THEN MESON_TAC[]);; let RING_EPIMORPHISM_ALT = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f <=> ring_homomorphism(r,r') f /\ ring_carrier r' SUBSET ring_image (r,r') f`, REWRITE_TAC[RING_EPIMORPHISM; ring_homomorphism; ring_image] THEN MESON_TAC[SUBSET_ANTISYM_EQ]);; let RING_ISOMORPHISM_RING_KERNEL_RING_IMAGE = prove (`!r r' (f:A->B). ring_isomorphism (r,r') f <=> ring_homomorphism(r,r') f /\ ring_kernel (r,r') f = {ring_0 r} /\ ring_image (r,r') f = ring_carrier r'`, REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[RING_MONOMORPHISM; RING_EPIMORPHISM] THEN MESON_TAC[]);; let RING_ISOMORPHISM_ALT = prove (`!r r' (f:A->B). ring_isomorphism (r,r') f <=> IMAGE f (ring_carrier r) = ring_carrier r' /\ f (ring_1 r) = ring_1 r' /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_add r x y) = ring_add r' (f x) (f y)) /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r ==> f(ring_mul r x y) = ring_mul r' (f x) (f y)) /\ (!x. x IN ring_carrier r /\ f x = ring_0 r' ==> x = ring_0 r)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `ring_homomorphism (r,r') (f:A->B)` THENL [ALL_TAC; ASM_REWRITE_TAC[RING_ISOMORPHISM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [RING_HOMOMORPHISM]) THEN MESON_TAC[SUBSET_REFL]] THEN ASM_REWRITE_TAC[RING_ISOMORPHISM_RING_KERNEL_RING_IMAGE; ring_kernel; ring_image] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN ASM SET_TAC[]);; let CARD_EQ_RING_IMAGE_KERNEL = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> ring_image(r,r') f *_c ring_kernel(r,r') f =_c ring_carrier r`, REWRITE_TAC[ring_homomorphism; ring_image; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_EQ_IMAGE_MUL_FIBRES THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN TRANS_TAC CARD_EQ_TRANS `IMAGE (ring_add r x) (ring_kernel(r,r') (f:A->B))` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_REFL_IMP; MATCH_MP_TAC CARD_EQ_IMAGE THEN REWRITE_TAC[ring_kernel; IN_ELIM_THM] THEN ASM_MESON_TAC[RING_ADD_LCANCEL_IMP]] THEN MATCH_MP_TAC(SET_RULE `!g. IMAGE f s SUBSET t /\ IMAGE g t SUBSET s /\ (!y. y IN t ==> f(g y) = y) ==> t = IMAGE f s`) THEN EXISTS_TAC `ring_add r (ring_neg r x:A)` THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; ring_kernel] THEN ASM_SIMP_TAC[RING_ADD; RING_NEG; RING_ADD_RZERO; RING_ADD_LZERO; RING_ADD_LNEG; RING_ADD_ASSOC; RING_ADD_RNEG]);; let RING_IDEAL_RING_KERNEL = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> ring_ideal r (ring_kernel (r,r') f)`, SIMP_TAC[ring_homomorphism; ring_ideal; ring_kernel; IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE; RING_ADD_LZERO; RING_0; RING_ADD; RING_NEG_0; RING_NEG; RING_MUL_RZERO; RING_MUL]);; let SUBRING_RING_IMAGE = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> (ring_image (r,r') f) subring_of r'`, SIMP_TAC[ring_homomorphism; subring_of; ring_image; SUBSET; FORALL_IN_IMAGE; FORALL_IN_IMAGE_2; IN_IMAGE] THEN MESON_TAC[RING_ADD; RING_NEG; RING_0; RING_1; RING_MUL]);; let RING_KERNEL_TO_SUBRING_GENERATED = prove (`!r r' s (f:A->B). ring_kernel (r,subring_generated r' s) f = ring_kernel(r,r') f`, REWRITE_TAC[ring_kernel; SUBRING_GENERATED]);; let RING_IMAGE_TO_SUBRING_GENERATED = prove (`!r r' s (f:A->B). ring_image (r,subring_generated r' s) f = ring_image(r,r') f`, REWRITE_TAC[ring_image]);; let RING_KERNEL_FROM_SUBRING_GENERATED = prove (`!r r' s f:A->B. s subring_of r ==> ring_kernel(subring_generated r s,r') f = ring_kernel(r,r') f INTER s`, SIMP_TAC[ring_kernel; CARRIER_SUBRING_GENERATED_SUBRING] THEN REWRITE_TAC[subring_of] THEN SET_TAC[]);; let RING_IMAGE_FROM_SUBRING_GENERATED = prove (`!r r' s f:A->B. s subring_of r ==> ring_image(subring_generated r s,r') f = ring_image(r,r') f INTER IMAGE f s`, SIMP_TAC[ring_image; CARRIER_SUBRING_GENERATED_SUBRING] THEN REWRITE_TAC[subring_of] THEN SET_TAC[]);; let RING_ISOMORPHISM_ONTO_IMAGE = prove (`!(f:A->B) r r'. ring_isomorphism(r,subring_generated r' (ring_image (r,r') f)) f <=> ring_monomorphism(r,r') f`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[ring_monomorphism; ring_epimorphism] THEN REWRITE_TAC[RING_HOMOMORPHISM_INTO_SUBRING_EQ_GEN] THEN ASM_CASES_TAC `ring_homomorphism (r,r') (f:A->B)` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; SUBRING_RING_IMAGE] THEN REWRITE_TAC[ring_image; SUBSET_REFL]);; let SUBRING_IMP_MONOMORPHIC_PROPERTY = prove (`!P Q. (!r r'. r isomorphic_ring r' ==> (P r <=> Q r')) /\ (!r s. Q r ==> Q(subring_generated r s)) ==> !r r' (f:A->B). ring_monomorphism(r,r') f /\ Q r' ==> P r`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM RING_ISOMORPHISM_ONTO_IMAGE]) THEN DISCH_THEN(MP_TAC o MATCH_MP RING_ISOMORPHISM_IMP_ISOMORPHIC) THEN DISCH_THEN(ANTE_RES_THEN SUBST1_TAC) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; let RING_KERNEL_FROM_TRIVIAL_RING = prove (`!r r' (f:A->B). ring_homomorphism (r,r') f /\ trivial_ring r ==> ring_kernel (r,r') f = ring_carrier r`, REWRITE_TAC[trivial_ring; ring_kernel; ring_homomorphism] THEN SET_TAC[]);; let RING_IMAGE_FROM_TRIVIAL_RING = prove (`!r r' (f:A->B). ring_homomorphism (r,r') f /\ trivial_ring r ==> ring_image (r,r') f = {ring_0 r'}`, REWRITE_TAC[trivial_ring; ring_image; ring_homomorphism] THEN SET_TAC[]);; let RING_KERNEL_TO_TRIVIAL_RING = prove (`!r r' (f:A->B). ring_homomorphism (r,r') f /\ trivial_ring r' ==> ring_kernel (r,r') f = ring_carrier r`, REWRITE_TAC[trivial_ring; ring_kernel; ring_homomorphism] THEN SET_TAC[]);; let RING_IMAGE_TO_TRIVIAL_RING = prove (`!r r' (f:A->B). ring_homomorphism (r,r') f /\ trivial_ring r' ==> ring_image (r,r') f = ring_carrier r'`, REWRITE_TAC[trivial_ring; ring_image; ring_homomorphism] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SING_SUBSET; IN_IMAGE] THEN ASM_MESON_TAC[RING_0]);; let RING_HOMOMORPHISM_PREIMAGE_IMAGE_GEN = prove (`!r r' (f:A->B) s. ring_homomorphism(r,r') f /\ s SUBSET ring_carrier r ==> {x | x IN ring_carrier r /\ f x IN IMAGE f s} = ring_setadd r s (ring_kernel(r,r') f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; ring_kernel; IN_ELIM_THM; ring_setadd] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL [STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_IMAGE]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN ring_carrier r` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]] THEN EXISTS_TAC `ring_sub r z x:A` THEN ASM_SIMP_TAC[RING_SUB] THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_HOMOMORPHISM_SUB) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THENL [MATCH_MP_TAC RING_SUB_REFL THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM SET_TAC[]; TRANS_TAC EQ_TRANS `ring_add r (ring_sub r z x) x:A` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_ADD_SYM; RING_SUB]] THEN ASM_SIMP_TAC[ring_sub; GSYM RING_ADD_ASSOC; RING_NEG] THEN ASM_SIMP_TAC[RING_ADD_LNEG; RING_ADD_RZERO]]; REWRITE_TAC[IN_IMAGE; RIGHT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(x:A) IN ring_carrier r` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[RING_ADD]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_HOMOMORPHISM_ADD) THEN DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC (REWRITE_RULE[ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[RING_ADD_RZERO]]);; let RING_HOMOMORPHISM_IMAGE_PREIMAGE = prove (`!r r' (f:A->B) t. ring_homomorphism(r,r') f ==> IMAGE f {x | x IN ring_carrier r /\ f x IN t} = t INTER (ring_image(r,r') f)`, REWRITE_TAC[ring_homomorphism; ring_image] THEN SET_TAC[]);; let RING_HOMOMORPHISM_PREIMAGE_IMAGE = prove (`!r r' (f:A->B) s. ring_homomorphism(r,r') f /\ ring_kernel(r,r') f SUBSET s /\ (ring_ideal r s \/ s subring_of r) ==> {x | x IN ring_carrier r /\ f x IN IMAGE f s} = s`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_HOMOMORPHISM_PREIMAGE_IMAGE_GEN o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[ring_ideal; subring_of]; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[RING_SETADD_RSUBSET_EQ; RING_KERNEL_NONEMPTY; RING_KERNEL_SUBSET_CARRIER]);; let RING_HOMOMORPHISM_IMAGE_PREIMAGE_EQ = prove (`!r r' (f:A->B) t. ring_homomorphism(r,r') f /\ t SUBSET ring_image(r,r') f ==> IMAGE f {x | x IN ring_carrier r /\ f x IN t} = t`, SIMP_TAC[RING_HOMOMORPHISM_IMAGE_PREIMAGE] THEN SET_TAC[]);; let RING_EPIMORPHISM_IDEAL_CORRESPONDENCE = prove (`!r r' (f:A->B) k. ring_epimorphism(r,r') f ==> (ring_ideal r' k <=> ?j. ring_ideal r j /\ ring_kernel(r,r') f SUBSET j /\ {x | x IN ring_carrier r /\ f x IN k} = j /\ IMAGE f j = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_EPIMORPHISM_IMP_HOMOMORPHISM) THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_IDEAL_EPIMORPHIC_IMAGE]] THEN EXISTS_TAC `{x | x IN ring_carrier r /\ (f:A->B) x IN k}` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC RING_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]; ASM_SIMP_TAC[ring_kernel; SUBSET; IN_ELIM_THM; IN_RING_IDEAL_0]; RULE_ASSUM_TAC(REWRITE_RULE [RING_EPIMORPHISM; ring_image; ring_ideal]) THEN ASM SET_TAC[]]);; let RING_EPIMORPHISM_SUBRING_CORRESPONDENCE = prove (`!r r' (f:A->B) t. ring_epimorphism(r,r') f ==> (t subring_of r' <=> ?s. s subring_of r /\ ring_kernel(r,r') f SUBSET s /\ {x | x IN ring_carrier r /\ f x IN t} = s /\ IMAGE f s = t)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_EPIMORPHISM_IMP_HOMOMORPHISM) THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBRING_OF_HOMOMORPHIC_IMAGE]] THEN EXISTS_TAC `{x | x IN ring_carrier r /\ (f:A->B) x IN t}` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC SUBRING_OF_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]; ASM_SIMP_TAC[ring_kernel; SUBSET; IN_ELIM_THM; IN_SUBRING_0]; RULE_ASSUM_TAC(REWRITE_RULE [RING_EPIMORPHISM; ring_image; subring_of]) THEN ASM SET_TAC[]]);; let RING_EPIMORPHISM_IDEAL_CORRESPONDENCE_ALT = prove (`!r r' (f:A->B) j. ring_epimorphism(r,r') f ==> (ring_ideal r j /\ ring_kernel(r,r') f SUBSET j <=> ?k. ring_ideal r' k /\ {x | x IN ring_carrier r /\ f x IN k} = j /\ IMAGE f j = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_EPIMORPHISM_IMP_HOMOMORPHISM) THEN EQ_TAC THENL [STRIP_TAC THEN EXISTS_TAC `IMAGE (f:A->B) j` THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_IDEAL_EPIMORPHIC_IMAGE]; ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC(SET_RULE `j SUBSET s /\ (!x y. x IN j /\ y IN s /\ f x = f y ==> y IN j) ==> {x | x IN s /\ f x IN IMAGE f j} = j`) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `y:A = ring_add r (ring_sub r y x) x` SUBST1_TAC THENL [ASM_SIMP_TAC[ring_sub; GSYM RING_ADD_ASSOC; RING_NEG; RING_ADD_LNEG; RING_ADD_RZERO]; MATCH_MP_TAC IN_RING_IDEAL_ADD THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[ring_kernel; IN_ELIM_THM; RING_SUB] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[MATCH_MP RING_HOMOMORPHISM_SUB th]) THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUB_EQ_0 o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM SET_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `k:B->bool` STRIP_ASSUME_TAC) THEN EXPAND_TAC "j" THEN CONJ_TAC THENL [MATCH_MP_TAC RING_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; ring_kernel; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_RING_IDEAL_0]]]);; let RING_EPIMORPHISM_SUBRING_CORRESPONDENCE_ALT = prove (`!r r' (f:A->B) j. ring_epimorphism(r,r') f ==> (j subring_of r /\ ring_kernel(r,r') f SUBSET j <=> ?k. k subring_of r' /\ {x | x IN ring_carrier r /\ f x IN k} = j /\ IMAGE f j = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_EPIMORPHISM_IMP_HOMOMORPHISM) THEN EQ_TAC THENL [STRIP_TAC THEN EXISTS_TAC `IMAGE (f:A->B) j` THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBRING_OF_HOMOMORPHIC_IMAGE]; ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC(SET_RULE `j SUBSET s /\ (!x y. x IN j /\ y IN s /\ f x = f y ==> y IN j) ==> {x | x IN s /\ f x IN IMAGE f j} = j`) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBRING_OF_IMP_SUBSET) THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `y:A = ring_add r (ring_sub r y x) x` SUBST1_TAC THENL [ASM_SIMP_TAC[ring_sub; GSYM RING_ADD_ASSOC; RING_NEG; RING_ADD_LNEG; RING_ADD_RZERO]; MATCH_MP_TAC IN_SUBRING_ADD THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[ring_kernel; IN_ELIM_THM; RING_SUB] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[MATCH_MP RING_HOMOMORPHISM_SUB th]) THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUB_EQ_0 o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM SET_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `k:B->bool` STRIP_ASSUME_TAC) THEN EXPAND_TAC "j" THEN CONJ_TAC THENL [MATCH_MP_TAC SUBRING_OF_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; ring_kernel; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_SUBRING_0]]]);; let RING_IDEAL_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) j. ring_isomorphism(r,r') f /\ j SUBSET ring_carrier r ==> (ring_ideal r' (IMAGE f j) <=> ring_ideal r j)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[RING_ISOMORPHISM_IMP_EPIMORPHISM; RING_IDEAL_EPIMORPHIC_IMAGE]] THEN SUBGOAL_THEN `j = {x | x IN ring_carrier r /\ (f:A->B) x IN IMAGE f j}` SUBST1_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[ring_isomorphism; ring_isomorphisms]) THEN ASM SET_TAC[]; MATCH_MP_TAC RING_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[RING_ISOMORPHISM_IMP_HOMOMORPHISM]]);; let RING_DIVIDES_HOMOMORPHIC_IMAGE = prove (`!r r' (f:A->B) x y. ring_homomorphism(r,r') f /\ ring_divides r x y ==> ring_divides r' (f x) (f y)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_divides] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE [ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[]);; let RING_ASSOCIATES_HOMOMORPHIC_IMAGE = prove (`!r r' (f:A->B) x y. ring_homomorphism(r,r') f /\ ring_associates r x y ==> ring_associates r' (f x) (f y)`, REWRITE_TAC[ring_associates] THEN MESON_TAC[RING_DIVIDES_HOMOMORPHIC_IMAGE]);; let RING_UNIT_HOMOMORPHIC_IMAGE = prove (`!r r' (f:A->B) u. ring_homomorphism(r,r') f /\ ring_unit r u ==> ring_unit r' (f u)`, REWRITE_TAC[RING_UNIT_DIVIDES] THEN MESON_TAC[RING_DIVIDES_HOMOMORPHIC_IMAGE; ring_homomorphism]);; let RING_DIVIDES_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) x y. ring_isomorphism(r,r') f /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_divides r' (f x) (f y) <=> ring_divides r x y)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN ASM_MESON_TAC[RING_DIVIDES_HOMOMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_HOMOMORPHISM]);; let RING_ASSOCIATES_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) x y. ring_isomorphism(r,r') f /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_associates r' (f x) (f y) <=> ring_associates r x y)`, REWRITE_TAC[ring_associates] THEN MESON_TAC[RING_DIVIDES_ISOMORPHIC_IMAGE_EQ]);; let RING_UNIT_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) u. ring_isomorphism(r,r') f /\ u IN ring_carrier r ==> (ring_unit r' (f u) <=> ring_unit r u)`, REWRITE_TAC[RING_UNIT_DIVIDES] THEN MESON_TAC[RING_DIVIDES_ISOMORPHIC_IMAGE_EQ; ring_homomorphism; RING_1; RING_ISOMORPHISM_IMP_HOMOMORPHISM]);; let RING_ZERODIVISOR_MONOMORPHIC_IMAGE = prove (`!r r' (f:A->B) a. ring_monomorphism(r,r') f /\ ring_zerodivisor r a ==> ring_zerodivisor r' (f a)`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_MONOMORPHISM_ALT_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_zerodivisor] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [ring_homomorphism]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN DISCH_TAC THEN ASM_SIMP_TAC[] THEN EXISTS_TAC `(f:A->B) b` THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[ring_homomorphism]);; let RING_ZERODIVISOR_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) a. ring_isomorphism(r,r') f /\ a IN ring_carrier r ==> (ring_zerodivisor r' (f a) <=> ring_zerodivisor r a)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN ASM_MESON_TAC[RING_ZERODIVISOR_MONOMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_MONOMORPHISM]);; let RING_REGULAR_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) a. ring_isomorphism(r,r') f /\ a IN ring_carrier r ==> (ring_regular r' (f a) <=> ring_regular r a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_regular] THEN BINOP_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP RING_ISOMORPHISM_IMP_HOMOMORPHISM) THEN REWRITE_TAC[ring_homomorphism] THEN ASM SET_TAC[]; ASM_MESON_TAC[RING_ZERODIVISOR_ISOMORPHIC_IMAGE_EQ]]);; let ISOMORPHIC_RING_INTEGRAL_DOMAINNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (integral_domain r <=> integral_domain r')`, let lemma = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> integral_domain r ==> integral_domain r'`, REPEAT GEN_TAC THEN REWRITE_TAC[integral_domain; GSYM TRIVIAL_RING_10] THEN DISCH_TAC THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[ISOMORPHIC_RING_TRIVIALITY]; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `f:A->B` o REWRITE_RULE[isomorphic_ring]) THEN SUBGOAL_THEN `ring_carrier r' = IMAGE (f:A->B) (ring_carrier r)` SUBST1_TAC THENL [ASM_MESON_TAC[RING_ISOMORPHISM]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_ISOMORPHISM_IMP_MONOMORPHISM) THEN ASM_SIMP_TAC[RING_MONOMORPHISM_ALT_EQ; ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[RING_MUL]) in REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN ASM_REWRITE_TAC[]);; let INTEGRAL_DOMAIN_MONOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f /\ integral_domain r' ==> integral_domain r`, MATCH_MP_TAC SUBRING_IMP_MONOMORPHIC_PROPERTY THEN REWRITE_TAC[INTEGRAL_DOMAIN_SUBRING_GENERATED] THEN REWRITE_TAC[ISOMORPHIC_RING_INTEGRAL_DOMAINNESS]);; let FIELD_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ field r /\ ~(trivial_ring r') ==> field r'`, REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_EQ_ALL_UNITS; GSYM TRIVIAL_RING_10] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM (SUBST1_TAC o SYM o CONJUNCT2 o REWRITE_RULE[ring_epimorphism]) THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_UNIT_HOMOMORPHIC_IMAGE THEN EXISTS_TAC `r:A ring` THEN ASM_SIMP_TAC[RING_EPIMORPHISM_IMP_HOMOMORPHISM] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RING_HOMOMORPHISM_0; RING_EPIMORPHISM_IMP_HOMOMORPHISM]);; let ISOMORPHIC_RING_FIELDNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (field r <=> field r')`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `~(trivial_ring(r:A ring)) /\ ~(trivial_ring(r':B ring))` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isomorphic_ring]); ASM_MESON_TAC[ISOMORPHIC_RING_TRIVIALITY; FIELD_IMP_NONTRIVIAL_RING]] THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[FIELD_EPIMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_EPIMORPHISM]);; (* ------------------------------------------------------------------------- *) (* Direct products of rings, binary and general. *) (* ------------------------------------------------------------------------- *) let prod_ring = new_definition `prod_ring (r:A ring) (r':B ring) = ring((ring_carrier r) CROSS (ring_carrier r'), (ring_0 r,ring_0 r'), (ring_1 r,ring_1 r'), (\(x,x'). ring_neg r x,ring_neg r' x'), (\(x,x') (y,y'). ring_add r x y,ring_add r' x' y'), (\(x,x') (y,y'). ring_mul r x y,ring_mul r' x' y'))`;; let PROD_RING = prove (`(!(r:A ring) (r':B ring). ring_carrier (prod_ring r r') = (ring_carrier r) CROSS (ring_carrier r')) /\ (!(r:A ring) (r':B ring). ring_0 (prod_ring r r') = (ring_0 r,ring_0 r')) /\ (!(r:A ring) (r':B ring). ring_1 (prod_ring r r') = (ring_1 r,ring_1 r')) /\ (!(r:A ring) (r':B ring). ring_neg (prod_ring r r') = \(x,x'). ring_neg r x,ring_neg r' x') /\ (!(r:A ring) (r':B ring). ring_add (prod_ring r r') = \(x,x') (y,y'). ring_add r x y,ring_add r' x' y') /\ (!(r:A ring) (r':B ring). ring_mul (prod_ring r r') = \(x,x') (y,y'). ring_mul r x y,ring_mul r' x' y')`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl prod_ring))))) (CONJUNCT2 ring_tybij)))) THEN REWRITE_TAC[GSYM prod_ring] THEN ANTS_TAC THENL [REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN SIMP_TAC[RING_ADD_LDISTRIB; RING_ADD_LZERO; RING_ADD_LNEG; RING_MUL_LID; RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN SIMP_TAC[RING_MUL_AC; RING_ADD_AC; RING_ADD; RING_MUL]; DISCH_TAC THEN ASM_REWRITE_TAC[ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul]]);; let RING_HOMOMORPHISM_PAIRWISE = prove (`!(f:A->B#C) r r' K. ring_homomorphism(r,prod_ring r' K) f <=> ring_homomorphism(r,r') (FST o f) /\ ring_homomorphism(r,K) (SND o f)`, REWRITE_TAC[ring_homomorphism; PROD_RING] THEN REWRITE_TAC[FORALL_PAIR_FUN_THM; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; IN_CROSS; PAIR_EQ] THEN MESON_TAC[]);; let RING_HOMOMORPHISM_PAIRED = prove (`!(f:A->B) (g:A->C) r r' K. ring_homomorphism(r,prod_ring r' K) (\x. f x,g x) <=> ring_homomorphism(r,r') f /\ ring_homomorphism(r,K) g`, REWRITE_TAC[RING_HOMOMORPHISM_PAIRWISE; o_DEF; ETA_AX]);; let RING_HOMOMORPHISM_DIAG = prove (`!r:A ring. ring_homomorphism(r,prod_ring r r) (\x. x,x)`, REWRITE_TAC[RING_HOMOMORPHISM_PAIRED; RING_HOMOMORPHISM_ID]);; let RING_MONOMORPHISM_DIAG = prove (`!r:A ring. ring_monomorphism(r,prod_ring r r) (\x. x,x)`, REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_DIAG] THEN SIMP_TAC[PAIR_EQ]);; let RING_HOMOMORPHISM_PAIRED2 = prove (`!(f:A->B) (g:C->D) r r' r'' r'''. ring_homomorphism(prod_ring r r'',prod_ring r' r''') (\(x,y). f x,g y) <=> ring_homomorphism(r,r') f /\ ring_homomorphism(r'',r''') g`, REWRITE_TAC[ring_homomorphism; PROD_RING; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[PROD_RING; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN MESON_TAC[RING_0]);; let RING_ISOMORPHISMS_PAIRED2 = prove (`!(f:A->B) (g:C->D) f' g' r r' r'' r'''. ring_isomorphisms(prod_ring r r'',prod_ring r' r''') ((\(x,y). f x,g y),(\(x,y). f' x,g' y)) <=> ring_isomorphisms(r,r') (f,f') /\ ring_isomorphisms(r'',r''') (g,g')`, REWRITE_TAC[ring_isomorphisms; RING_HOMOMORPHISM_PAIRED2] THEN REWRITE_TAC[PROD_RING; FORALL_IN_CROSS; PAIR_EQ] THEN MESON_TAC[RING_0]);; let RING_ISOMORPHISM_PAIRED2 = prove (`!(f:A->B) (g:C->D) r r' r'' r'''. ring_isomorphism(prod_ring r r'',prod_ring r' r''') (\(x,y). f x,g y) <=> ring_isomorphism(r,r') f /\ ring_isomorphism(r'',r''') g`, REWRITE_TAC[RING_ISOMORPHISM; RING_HOMOMORPHISM_PAIRED2] THEN REWRITE_TAC[PROD_RING; FORALL_PAIR_THM; IN_CROSS; IMAGE_PAIRED_CROSS] THEN REWRITE_TAC[CROSS_EQ; IMAGE_EQ_EMPTY; RING_CARRIER_NONEMPTY; PAIR_EQ] THEN MESON_TAC[RING_0]);; let ISOMORPHIC_RING_PROD_RINGS = prove (`!(r:A ring) (r':B ring) (s:C ring) (s':D ring). r isomorphic_ring r' /\ s isomorphic_ring s' ==> (prod_ring r s) isomorphic_ring (prod_ring r' s')`, REWRITE_TAC[isomorphic_ring; ring_isomorphism; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[GSYM RING_ISOMORPHISMS_PAIRED2] THEN MESON_TAC[]);; let RING_HOMOMORPHISM_OF_FST = prove (`!(f:A->C) A (B:B ring) C. ring_homomorphism (prod_ring A B,C) (f o FST) <=> ring_homomorphism (A,C) f`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_RING] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[RING_0]);; let RING_HOMOMORPHISM_OF_SND = prove (`!(f:B->C) (A:A ring) B C. ring_homomorphism (prod_ring A B,C) (f o SND) <=> ring_homomorphism (B,C) f`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_RING] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[RING_0]);; let RING_EPIMORPHISM_OF_FST = prove (`!(f:A->C) A (B:B ring) C. ring_epimorphism (prod_ring A B,C) (f o FST) <=> ring_epimorphism (A,C) f`, REWRITE_TAC[ring_epimorphism; RING_HOMOMORPHISM_OF_FST] THEN REWRITE_TAC[PROD_RING; IMAGE_o; IMAGE_FST_CROSS; RING_CARRIER_NONEMPTY]);; let RING_EPIMORPHISM_OF_SND = prove (`!(f:B->C) A (B:B ring) C. ring_epimorphism (prod_ring A B,C) (f o SND) <=> ring_epimorphism (B,C) f`, REWRITE_TAC[ring_epimorphism; RING_HOMOMORPHISM_OF_SND] THEN REWRITE_TAC[PROD_RING; IMAGE_o; IMAGE_SND_CROSS; RING_CARRIER_NONEMPTY]);; let RING_HOMOMORPHISM_FST = prove (`!(A:A ring) (B:B ring). ring_homomorphism (prod_ring A B,A) FST`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_RING] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[RING_0]);; let RING_HOMOMORPHISM_SND = prove (`!(A:A ring) (B:B ring). ring_homomorphism (prod_ring A B,B) SND`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_RING] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[RING_0]);; let RING_EPIMORPHISM_FST = prove (`!(A:A ring) (B:B ring). ring_epimorphism (prod_ring A B,A) FST`, REWRITE_TAC[ring_epimorphism; RING_HOMOMORPHISM_FST] THEN REWRITE_TAC[PROD_RING; IMAGE_o; IMAGE_FST_CROSS; RING_CARRIER_NONEMPTY]);; let RING_EPIMORPHISM_SND = prove (`!(A:A ring) (B:B ring). ring_epimorphism (prod_ring A B,B) SND`, REWRITE_TAC[ring_epimorphism; RING_HOMOMORPHISM_SND] THEN REWRITE_TAC[PROD_RING; IMAGE_o; IMAGE_SND_CROSS; RING_CARRIER_NONEMPTY]);; let RING_ISOMORPHISM_FST = prove (`!(G:A ring) (H:B ring). ring_isomorphism (prod_ring G H,G) FST <=> trivial_ring H`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[RING_EPIMORPHISM_FST] THEN REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_FST] THEN SIMP_TAC[FORALL_PAIR_THM; PROD_RING; IN_CROSS; PAIR_EQ] THEN REWRITE_TAC[TRIVIAL_RING_ALT] THEN MP_TAC(ISPEC `G:A ring` RING_CARRIER_NONEMPTY) THEN SET_TAC[]);; let RING_ISOMORPHISM_SND = prove (`!(G:A ring) (H:B ring). ring_isomorphism (prod_ring G H,H) SND <=> trivial_ring G`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[RING_EPIMORPHISM_SND] THEN REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_SND] THEN SIMP_TAC[FORALL_PAIR_THM; PROD_RING; IN_CROSS; PAIR_EQ] THEN REWRITE_TAC[TRIVIAL_RING_ALT] THEN MP_TAC(ISPEC `H:B ring` RING_CARRIER_NONEMPTY) THEN SET_TAC[]);; let RING_ISOMORPHISMS_PROD_RING_SWAP = prove (`!(r:A ring) (r':B ring). ring_isomorphisms (prod_ring r r',prod_ring r' r) ((\(x,y). y,x),(\(y,x). x,y))`, REWRITE_TAC[ring_isomorphisms; FORALL_PAIR_THM] THEN REWRITE_TAC[RING_HOMOMORPHISM_PAIRWISE; o_DEF; LAMBDA_PAIR] THEN REWRITE_TAC[REWRITE_RULE[o_DEF] RING_HOMOMORPHISM_OF_FST; REWRITE_RULE[o_DEF] RING_HOMOMORPHISM_OF_SND] THEN REWRITE_TAC[RING_HOMOMORPHISM_ID]);; let ISOMORPHIC_RING_PROD_RING_SYM = prove (`!(r:A ring) (r':B ring). prod_ring r r' isomorphic_ring prod_ring r' r`, REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN MESON_TAC[RING_ISOMORPHISMS_PROD_RING_SWAP]);; let ISOMORPHIC_RING_PROD_RING_SWAP_LEFT = prove (`!(r:A ring) (r':B ring) (K:C ring). prod_ring r r' isomorphic_ring K <=> prod_ring r' r isomorphic_ring K`, REPEAT GEN_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_RING_TRANS) THEN REWRITE_TAC[ISOMORPHIC_RING_PROD_RING_SYM]);; let ISOMORPHIC_RING_PROD_RING_SWAP_RIGHT = prove (`!(r:A ring) (r':B ring) (K:C ring). r isomorphic_ring prod_ring r' K <=> r isomorphic_ring prod_ring K r'`, ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[ISOMORPHIC_RING_PROD_RING_SWAP_LEFT]);; let ISOMORPHIC_PROD_TRIVIAL_RING = prove (`(!(G:A ring) (H:B ring). trivial_ring G ==> (prod_ring G H isomorphic_ring H)) /\ (!(G:A ring) (H:B ring). trivial_ring H ==> (prod_ring G H isomorphic_ring G)) /\ (!(G:A ring) (H:B ring). trivial_ring G ==> (H isomorphic_ring prod_ring G H)) /\ (!(G:A ring) (H:B ring). trivial_ring H ==> (G isomorphic_ring prod_ring G H))`, let lemma = prove (`!(G:A ring) (H:B ring). trivial_ring G ==> (prod_ring G H isomorphic_ring H)`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_ring] THEN EXISTS_TAC `SND:A#B->B` THEN ASM_REWRITE_TAC[RING_ISOMORPHISM_SND]) in GEN_REWRITE_TAC I [CONJ_ASSOC] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ISOMORPHIC_RING_PROD_RING_SWAP_LEFT] THEN REWRITE_TAC[lemma]);; let TRIVIAL_PROD_RING = prove (`!(r:A ring) (r':B ring). trivial_ring(prod_ring r r') <=> trivial_ring r /\ trivial_ring r'`, REWRITE_TAC[TRIVIAL_RING_SUBSET; PROD_RING; GSYM CROSS_SING] THEN REWRITE_TAC[SUBSET_CROSS; RING_CARRIER_NONEMPTY]);; let FINITE_PROD_RING = prove (`!(r:A ring) (r':B ring). FINITE(ring_carrier(prod_ring r r')) <=> FINITE(ring_carrier r) /\ FINITE(ring_carrier r')`, REWRITE_TAC[PROD_RING; FINITE_CROSS_EQ; RING_CARRIER_NONEMPTY]);; let CROSS_SUBRING_OF_PROD_RING = prove (`!(r1:A ring) (r2:B ring) s1 s2. (s1 CROSS s2) subring_of (prod_ring r1 r2) <=> s1 subring_of r1 /\ s2 subring_of r2`, REPEAT GEN_TAC THEN REWRITE_TAC[subring_of; FORALL_PAIR_THM; PROD_RING; IN_CROSS] THEN REWRITE_TAC[SUBSET_CROSS] THEN SET_TAC[]);; let PROD_RING_SUBRING_GENERATED = prove (`!(r1:A ring) (r2:B ring) s1 s2. s1 subring_of r1 /\ s2 subring_of r2 ==> (prod_ring (subring_generated r1 s1) (subring_generated r2 s2) = subring_generated (prod_ring r1 r2) (s1 CROSS s2))`, SIMP_TAC[RINGS_EQ; CONJUNCT2 PROD_RING; CONJUNCT2 SUBRING_GENERATED] THEN SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; CROSS_SUBRING_OF_PROD_RING; PROD_RING]);; let RING_IDEAL_CROSS = prove (`!(r1:A ring) (r2:B ring) s1 s2. ring_ideal (prod_ring r1 r2) (s1 CROSS s2) <=> ring_ideal r1 s1 /\ ring_ideal r2 s2`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_ideal; FORALL_PAIR_THM; PROD_RING; IN_CROSS] THEN REWRITE_TAC[SUBSET_CROSS] THEN SET_TAC[]);; let RING_IDEAL_PROD_RING = prove (`!r1 r2 (k:A#B->bool). ring_ideal (prod_ring r1 r2) k <=> ?j1 j2. ring_ideal r1 j1 /\ ring_ideal r2 j2 /\ j1 CROSS j2 = k`, REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN EQ_TAC THENL [DISCH_TAC; MESON_TAC[RING_IDEAL_CROSS]] THEN EXISTS_TAC `IMAGE FST (k:A#B->bool)` THEN EXISTS_TAC `IMAGE SND (k:A#B->bool)` THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_IDEAL_EPIMORPHIC_IMAGE; RING_EPIMORPHISM_FST; RING_EPIMORPHISM_SND]; REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_CROSS; IN_IMAGE] THEN REWRITE_TAC[EXISTS_PAIR_THM; UNWIND_THM1; RIGHT_EXISTS_AND_THM]] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:B`] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `y:B`) (X_CHOOSE_TAC `x:A`)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_ideal]) THEN REWRITE_TAC[SUBSET; PROD_RING; FORALL_PAIR_THM; IN_CROSS] THEN STRIP_TAC THEN SUBGOAL_THEN `(a:A),(b:B) = ring_add r1 (ring_mul r1 (ring_1 r1) a) (ring_mul r1 (ring_0 r1) x), ring_add r2 (ring_mul r2 (ring_0 r2) y) (ring_mul r2 (ring_1 r2) b)` SUBST1_TAC THEN REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[RING_ADD_RZERO; RING_ADD_LZERO; RING_MUL_LID; RING_MUL_RID; RING_MUL_LZERO; RING_MUL_RZERO; RING_0; RING_1]);; let IDEAL_GENERATED_PAIRWISE = prove (`!(r1:A ring) (r2:B ring) t. t SUBSET ring_carrier(prod_ring r1 r2) ==> ideal_generated (prod_ring r1 r2) t = (ideal_generated r1 (IMAGE FST t)) CROSS (ideal_generated r2 (IMAGE SND t))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r1:A ring`; `r2:B ring`; `ideal_generated (prod_ring r1 r2) (t:A#B->bool)`] RING_IDEAL_PROD_RING) THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`j1:A->bool`; `j2:B->bool`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[CROSS_EQ; IDEAL_GENERATED_NONEMPTY] THEN CONJ_TAC THEN CONV_TAC SYM_CONV THENL [MP_TAC(SPECL [`r1:A ring`; `r2:B ring`] RING_EPIMORPHISM_FST); MP_TAC(SPECL [`r1:A ring`; `r2:B ring`] RING_EPIMORPHISM_SND)] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE)) THEN DISCH_THEN(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ASM_REWRITE_TAC[IMAGE_FST_CROSS; IMAGE_SND_CROSS] THEN ASM_MESON_TAC[RING_IDEAL_IMP_NONEMPTY]);; let IDEAL_GENERATED_CROSS = prove (`!(r1:A ring) (r2:B ring) s1 s2. s1 SUBSET ring_carrier r1 /\ s2 SUBSET ring_carrier r2 ==> ideal_generated (prod_ring r1 r2) (s1 CROSS s2) = if s1 = {} \/ s2 = {} then {ring_0(prod_ring r1 r2)} else (ideal_generated r1 s1) CROSS (ideal_generated r2 s2)`, REPEAT GEN_TAC THEN SIMP_TAC[IDEAL_GENERATED_PAIRWISE; SUBSET_CROSS; PROD_RING] THEN REWRITE_TAC[PROD_RING; INTER_CROSS; IMAGE_FST_CROSS; IMAGE_SND_CROSS] THEN MAP_EVERY ASM_CASES_TAC [`s1:A->bool = {}`; `s2:B->bool = {}`] THEN ASM_REWRITE_TAC[IDEAL_GENERATED_EMPTY; CROSS_SING]);; let RING_POW_PROD_RING = prove (`!r1 r2 (a:A) (b:B) n. ring_pow (prod_ring r1 r2) (a,b) n = (ring_pow r1 a n,ring_pow r2 b n)`, REPLICATE_TAC 4 GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; PROD_RING]);; let RING_DIVIDES_PROD_RING = prove (`!r1 r2 (a:A) (b:B) c d. ring_divides (prod_ring r1 r2) (a,b) (c,d) <=> ring_divides r1 a c /\ ring_divides r2 b d`, REWRITE_TAC[ring_divides; EXISTS_PAIR_THM; PROD_RING; IN_CROSS; PAIR_EQ] THEN MESON_TAC[]);; let RING_ASSOCIATES_PROD_RING = prove (`!r1 r2 (a:A) (b:B) c d. ring_associates (prod_ring r1 r2) (a,b) (c,d) <=> ring_associates r1 a c /\ ring_associates r2 b d`, REWRITE_TAC[ring_associates; RING_DIVIDES_PROD_RING] THEN MESON_TAC[]);; let RING_ZERODIVISOR_PROD_RING = prove (`!r1 r2 (a:A) (b:B). ring_zerodivisor (prod_ring r1 r2) (a,b) <=> ring_zerodivisor r1 a /\ b IN ring_carrier r2 \/ a IN ring_carrier r1 /\ ring_zerodivisor r2 b`, REWRITE_TAC[ring_zerodivisor; EXISTS_PAIR_THM; PROD_RING; IN_CROSS; PAIR_EQ] THEN MESON_TAC[RING_0; RING_MUL_RZERO]);; let RING_REGULAR_PROD_RING = prove (`!r1 r2 (a:A) (b:B). ring_regular (prod_ring r1 r2) (a,b) <=> ring_regular r1 a /\ ring_regular r2 b`, REWRITE_TAC[ring_regular; PROD_RING; IN_CROSS; RING_ZERODIVISOR_PROD_RING] THEN MESON_TAC[]);; let RING_NILPOTENT_PROD_RING = prove (`!r1 r2 (a:A) (b:B). ring_nilpotent (prod_ring r1 r2) (a,b) <=> ring_nilpotent r1 a /\ ring_nilpotent r2 b`, REWRITE_TAC[ring_nilpotent; EXISTS_PAIR_THM; PROD_RING; IN_CROSS; PAIR_EQ] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:A) IN ring_carrier r1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(b:B) IN ring_carrier r2` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[RING_POW_PROD_RING; PAIR_EQ] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `m + n:num` THEN ASM_SIMP_TAC[RING_POW_ADD; ADD_EQ_0; RING_MUL_LZERO; RING_MUL_RZERO; RING_POW]);; let product_ring = new_definition `product_ring k (r:K->A ring) = ring(cartesian_product k (\i. ring_carrier(r i)), RESTRICTION k (\i. ring_0 (r i)), RESTRICTION k (\i. ring_1 (r i)), (\x. RESTRICTION k (\i. ring_neg (r i) (x i))), (\x y. RESTRICTION k (\i. ring_add (r i) (x i) (y i))), (\x y. RESTRICTION k (\i. ring_mul (r i) (x i) (y i))))`;; let PRODUCT_RING = prove (`(!k (r:K->A ring). ring_carrier(product_ring k r) = cartesian_product k (\i. ring_carrier(r i))) /\ (!k (r:K->A ring). ring_0 (product_ring k r) = RESTRICTION k (\i. ring_0 (r i))) /\ (!k (r:K->A ring). ring_1 (product_ring k r) = RESTRICTION k (\i. ring_1 (r i))) /\ (!k (r:K->A ring). ring_neg (product_ring k r) = \x. RESTRICTION k (\i. ring_neg (r i) (x i))) /\ (!k (r:K->A ring). ring_add (product_ring k r) = (\x y. RESTRICTION k (\i. ring_add (r i) (x i) (y i)))) /\ (!k (r:K->A ring). ring_mul (product_ring k r) = (\x y. RESTRICTION k (\i. ring_mul (r i) (x i) (y i))))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl product_ring))))) (CONJUNCT2 ring_tybij)))) THEN REWRITE_TAC[GSYM product_ring] THEN ANTS_TAC THENL [REWRITE_TAC[cartesian_product; RESTRICTION; EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_SIMP_TAC[RING_ADD_LDISTRIB; RING_ADD_LZERO; RING_ADD_LNEG; RING_MUL_LID; RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN ASM_SIMP_TAC[RING_MUL_AC; RING_ADD_AC; RING_ADD; RING_MUL]; DISCH_TAC THEN ASM_REWRITE_TAC[ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul]]);; let TRIVIAL_PRODUCT_RING = prove (`!k (r:K->A ring). trivial_ring(product_ring k r) <=> !i. i IN k ==> trivial_ring(r i)`, REWRITE_TAC[TRIVIAL_RING_SUBSET; PRODUCT_RING] THEN REWRITE_TAC[GSYM CARTESIAN_PRODUCT_SINGS_GEN] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; RING_CARRIER_NONEMPTY]);; let ISOMORPHIC_RING_PRODUCT_RING = prove (`!(r:K->A ring) (r':K->B ring) k. (!i. i IN k ==> (r i) isomorphic_ring (r' i)) ==> (product_ring k r) isomorphic_ring (product_ring k r')`, REPEAT GEN_TAC THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; ring_isomorphisms] THEN MAP_EVERY X_GEN_TAC [`f:K->A->B`; `g:K->B->A`] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`\x. RESTRICTION k (\i. (f:K->A->B) i (x i))`; `\y. RESTRICTION k (\i. (g:K->B->A) i (y i))`] THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [REWRITE_TAC[RING_HOMOMORPHISM; PRODUCT_RING; cartesian_product; IN_ELIM_THM; EXTENSIONAL; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN SIMP_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [RING_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[]; REWRITE_TAC[PRODUCT_RING; IN_CARTESIAN_PRODUCT; FUN_EQ_THM] THEN ASM_SIMP_TAC[RESTRICTION; EXTENSIONAL] THEN SET_TAC[]]);; let RING_HOMOMORPHISM_COMPONENTWISE = prove (`!r k s (f:A->K->B). ring_homomorphism(r,product_ring k s) f <=> IMAGE f (ring_carrier r) SUBSET EXTENSIONAL k /\ !i. i IN k ==> ring_homomorphism (r,s i) (\x. f x i)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[PRODUCT_RING; IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RESTRICTION_UNIQUE_ALT] THEN REWRITE_TAC[SET_RULE `f IN EXTENSIONAL s <=> EXTENSIONAL s f`] THEN ASM_CASES_TAC `!x. x IN ring_carrier r ==> EXTENSIONAL k ((f:A->K->B) x)` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_SIMP_TAC[RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN MESON_TAC[]);; let RING_HOMOMORPHISM_COMPONENTWISE_UNIV = prove (`!r s (f:A->K->B). ring_homomorphism(r,product_ring (:K) s) f <=> !i. ring_homomorphism (r,s i) (\x. f x i)`, REWRITE_TAC[RING_HOMOMORPHISM_COMPONENTWISE; IN_UNIV] THEN REWRITE_TAC[SET_RULE `s SUBSET P <=> !x. x IN s ==> P x`] THEN REWRITE_TAC[EXTENSIONAL_UNIV]);; let RING_PRODUCT_INJECTION = prove (`!k (r:K->A ring) a i. RESTRICTION k (\j. if j = i then a else ring_0 (r j)) IN ring_carrier(product_ring k r) <=> i IN k ==> a IN ring_carrier(r i)`, SIMP_TAC[PRODUCT_RING; RESTRICTION_IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN MESON_TAC[RING_0]);; let RING_HOMOMORPHISM_DIAGONAL = prove (`!(k:K->bool) (r:A ring). ring_homomorphism (r,product_ring k (\i. r)) (\x. RESTRICTION k (\i. x))`, REWRITE_TAC[RING_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; RING_HOMOMORPHISM_ID]);; let RING_HOMOMORPHISM_DIAGONAL_UNIV = prove (`!(r:A ring). ring_homomorphism (r,product_ring (:K) (\i. r)) (\x i. x)`, REWRITE_TAC[RING_HOMOMORPHISM_COMPONENTWISE_UNIV] THEN REWRITE_TAC[RING_HOMOMORPHISM_ID]);; let RING_MONOMORPHISM_DIAGONAL = prove (`!(k:K->bool) (r:A ring). ring_monomorphism (r,product_ring k (\i. r)) (\x. RESTRICTION k (\i. x)) <=> k = {} ==> trivial_ring r`, REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_DIAGONAL] THEN REPEAT GEN_TAC THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN ASM_CASES_TAC `k:K->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY]; ASM SET_TAC[]] THEN REWRITE_TAC[TRIVIAL_RING_ALT] THEN SET_TAC[]);; let RING_MONOMORPHISM_DIAGONAL_UNIV = prove (`!(r:A ring). ring_monomorphism (r,product_ring (:K) (\i. r)) (\x i. x)`, REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_DIAGONAL_UNIV] THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SET_TAC[]);; let RING_HOMOMORPHISM_PRODUCT_PROJECTION = prove (`!(r:K->A ring) k i. i IN k ==> ring_homomorphism (product_ring k r,r i) (\x. x i)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`product_ring k (r:K->A ring)`; `k:K->bool`; `r:K->A ring`; `\x:K->A. x`] RING_HOMOMORPHISM_COMPONENTWISE) THEN REWRITE_TAC[RING_HOMOMORPHISM_ID] THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_COMPONENTWISE]);; let RING_EPIMORPHISM_PRODUCT_PROJECTION = prove (`!(r:K->A ring) k i. i IN k ==> ring_epimorphism (product_ring k r,r i) (\x. x i)`, SIMP_TAC[ring_epimorphism; RING_HOMOMORPHISM_PRODUCT_PROJECTION] THEN SIMP_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; PRODUCT_RING; CARTESIAN_PRODUCT_EQ_EMPTY; RING_CARRIER_NONEMPTY]);; let RING_ISOMORPHISM_PRODUCT_PROJECTION = prove (`!r k. ring_isomorphism (product_ring {k} r,r k) (\x. x k)`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_ISOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[RING_EPIMORPHISM_PRODUCT_PROJECTION; IN_SING] THEN REWRITE_TAC[PRODUCT_RING; CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN REWRITE_TAC[RESTRICTION_EXTENSION; RESTRICTION; IN_SING] THEN MESON_TAC[]);; let CARTESIAN_PRODUCT_SUBRING_OF_PRODUCT_RING = prove (`!k h r:K->A ring. (cartesian_product k h) subring_of (product_ring k r) <=> !i. i IN k ==> (h i) subring_of (r i)`, REWRITE_TAC[subring_of; PRODUCT_RING; RESTRICTION_IN_CARTESIAN_PRODUCT; SUBSET_CARTESIAN_PRODUCT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_CASES_TAC `cartesian_product k (h:K->A->bool) = {}` THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CARTESIAN_PRODUCT_EQ_EMPTY]) THEN SET_TAC[]; ASM_REWRITE_TAC[REWRITE_RULE[IMP_CONJ; RIGHT_FORALL_IMP_THM] FORALL_CARTESIAN_PRODUCT_ELEMENTS] THEN MESON_TAC[]]);; let PRODUCT_RING_SUBRING_GENERATED = prove (`!k r (h:K->A->bool). (!i. i IN k ==> (h i) subring_of (r i)) ==> product_ring k (\i. subring_generated (r i) (h i)) = subring_generated (product_ring k r) (cartesian_product k h)`, REPEAT STRIP_TAC THEN REWRITE_TAC[RINGS_EQ] THEN REWRITE_TAC[CONJUNCT2 PRODUCT_RING; CONJUNCT2 SUBRING_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; PRODUCT_RING; CARTESIAN_PRODUCT_SUBRING_OF_PRODUCT_RING] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ] THEN ASM_SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING]);; let FINITE_PRODUCT_RING = prove (`!k (r:K->A ring). FINITE(ring_carrier(product_ring k r)) <=> FINITE {i | i IN k /\ ~trivial_ring(r i)} /\ !i. i IN k ==> FINITE(ring_carrier(r i))`, REPEAT GEN_TAC THEN REWRITE_TAC[PRODUCT_RING] THEN REWRITE_TAC[FINITE_CARTESIAN_PRODUCT; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[TRIVIAL_RING_ALT; RING_CARRIER_NONEMPTY]);; let RING_IDEAL_CARTESIAN_PRODUCT = prove (`!k h r:K->A ring. ring_ideal (product_ring k r) (cartesian_product k h) <=> !i. i IN k ==> ring_ideal (r i) (h i)`, REWRITE_TAC[ring_ideal; PRODUCT_RING; RESTRICTION_IN_CARTESIAN_PRODUCT; SUBSET_CARTESIAN_PRODUCT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_CASES_TAC `cartesian_product k (h:K->A->bool) = {}` THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CARTESIAN_PRODUCT_EQ_EMPTY]) THEN SET_TAC[]; ASM_REWRITE_TAC[REWRITE_RULE[IMP_CONJ; RIGHT_FORALL_IMP_THM] FORALL_CARTESIAN_PRODUCT_ELEMENTS] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; RING_CARRIER_NONEMPTY] THEN MESON_TAC[]]);; let RING_SUM_PRODUCT_RING = prove (`!k r t (f:L->K->A). FINITE t /\ (!a. a IN t ==> (f a) IN ring_carrier(product_ring k r)) ==> ring_sum (product_ring k r) t f = RESTRICTION k (\i. ring_sum (r i) t (\a. f a i))`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT] THEN SIMP_TAC[PRODUCT_RING; IN_CARTESIAN_PRODUCT; RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let RING_IDEAL_PRODUCT_RING = prove (`!(r:K->A ring) k t. FINITE {i | i IN k /\ ~trivial_ring(r i)} ==> (ring_ideal (product_ring k r) t <=> ?j. (!i. i IN k ==> ring_ideal (r i) (j i)) /\ cartesian_product k j = t)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[RING_IDEAL_CARTESIAN_PRODUCT]] THEN DISCH_TAC THEN EXISTS_TAC `\i. IMAGE (\x. x i) (t:(K->A)->bool)` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_IDEAL_EPIMORPHIC_IMAGE THEN ASM_MESON_TAC[RING_EPIMORPHISM_PRODUCT_PROJECTION]; ALL_TAC] THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `f:K->A` THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT] THEN EQ_TAC THENL [DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC); DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN REWRITE_TAC[SUBSET; PRODUCT_RING; IN_CARTESIAN_PRODUCT] THEN DISCH_THEN(MP_TAC o SPEC `f:K->A`) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]] THEN REWRITE_TAC[IN_IMAGE; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:K->K->A` (STRIP_ASSUME_TAC o GSYM)) THEN SUBGOAL_THEN `!i j. i IN k /\ j IN k ==> (g:K->K->A) i j IN ring_carrier(r j)` ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN REWRITE_TAC[SUBSET; PRODUCT_RING; IN_CARTESIAN_PRODUCT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `f = ring_sum (product_ring k (r:K->A ring)) {i | i IN k /\ ~trivial_ring(r i)} (\i. ring_mul (product_ring k r) (g i) (RESTRICTION k (\j. if j = i then ring_1 (r i) else ring_0 (r j))))` SUBST1_TAC THENL [ALL_TAC; MATCH_MP_TAC IN_RING_IDEAL_SUM THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN MATCH_MP_TAC IN_RING_IDEAL_RMUL THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[PRODUCT_RING] THEN REWRITE_TAC[RESTRICTION_IN_CARTESIAN_PRODUCT] THEN ASM_MESON_TAC[RING_0; RING_1]] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUM_PRODUCT_RING o rand o snd) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [X_GEN_TAC `a:K` THEN DISCH_TAC THEN MATCH_MP_TAC RING_MUL THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN ASM SET_TAC[]; REWRITE_TAC[PRODUCT_RING; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN MESON_TAC[RING_0; RING_1]]; DISCH_THEN SUBST1_TAC] THEN ASM_REWRITE_TAC[RESTRICTION_UNIQUE_ALT] THEN X_GEN_TAC `a:K` THEN DISCH_TAC THEN TRANS_TAC EQ_TRANS `ring_sum ((r:K->A ring) a) {i | i IN k /\ ~trivial_ring (r i)} (\i:K. if i = a then f a else ring_0(r a))` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_SUM_DELTA; IN_ELIM_THM] THEN ASM_CASES_TAC `trivial_ring((r:K->A ring) a)` THEN ASM_REWRITE_TAC[] THENL [RULE_ASSUM_TAC(REWRITE_RULE[trivial_ring]) THEN ASM SET_TAC[]; ASM_MESON_TAC[RING_MUL_RZERO]]; MATCH_MP_TAC RING_SUM_EQ THEN X_GEN_TAC `b:K` THEN ASM_SIMP_TAC[PRODUCT_RING; RESTRICTION] THEN ASM_CASES_TAC `b:K = a` THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[RING_MUL_RID; RING_MUL_RZERO]]);; let IDEAL_GENERATED_COMPONENTWISE = prove (`!(r:K->A ring) k t. FINITE {i | i IN k /\ ~trivial_ring(r i)} /\ t SUBSET ring_carrier(product_ring k r) ==> ideal_generated (product_ring k r) t = cartesian_product k (\i. ideal_generated (r i) (IMAGE (\x. x i) t))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:K->A ring`; `k:K->bool`; `ideal_generated (product_ring k r) (t:(K->A)->bool)`] RING_IDEAL_PRODUCT_RING) THEN ASM_REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `j:K->A->bool` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[CARTESIAN_PRODUCT_EQ; IDEAL_GENERATED_NONEMPTY] THEN DISJ2_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN MP_TAC(ISPECL [`r:K->A ring`; `k:K->bool`; `i:K`] RING_EPIMORPHISM_PRODUCT_PROJECTION) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE)) THEN DISCH_THEN(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ASM_SIMP_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY] THEN ASM_MESON_TAC[IDEAL_GENERATED_NONEMPTY]);; let IDEAL_GENERATED_CARTESIAN_PRODUCT = prove (`!(r:K->A ring) k s. FINITE {i | i IN k /\ ~trivial_ring(r i)} /\ (!i. i IN k ==> (s i) SUBSET ring_carrier(r i)) ==> ideal_generated (product_ring k r) (cartesian_product k s) = if cartesian_product k s = {} then {ring_0(product_ring k r)} else cartesian_product k (\i. ideal_generated (r i) (s i))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[IDEAL_GENERATED_COMPONENTWISE; PRODUCT_RING; SUBSET_CARTESIAN_PRODUCT] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; CARTESIAN_PRODUCT_EQ] THEN ASM_SIMP_TAC[IMAGE_CLAUSES; IDEAL_GENERATED_EMPTY; PRODUCT_RING] THEN REWRITE_TAC[CARTESIAN_PRODUCT_SINGS_GEN]);; let RING_POW_PRODUCT_RING = prove (`!k (r:K->A ring) x n. ring_pow (product_ring k r) x n = RESTRICTION k (\i. ring_pow (r i) (x i) n)`, REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; PRODUCT_RING] THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let RING_DIVIDES_PRODUCT_RING = prove (`!k (r:K->A ring) x y. ring_divides (product_ring k r) x y <=> EXTENSIONAL k x /\ EXTENSIONAL k y /\ !i. i IN k ==> ring_divides (r i) (x i) (y i)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_divides; PRODUCT_RING; CONJ_ASSOC] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [IN_CARTESIAN_PRODUCT] THEN ASM_CASES_TAC `EXTENSIONAL k (x:K->A)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `EXTENSIONAL k (y:K->A)` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[RESTRICTION_UNIQUE_ALT; EXISTS_CARTESIAN_PRODUCT_ELEMENT] THEN MESON_TAC[]);; let RING_ASSOCIATES_PRODUCT_RING = prove (`!k (r:K->A ring) x y. ring_associates (product_ring k r) x y <=> EXTENSIONAL k x /\ EXTENSIONAL k y /\ !i. i IN k ==> ring_associates (r i) (x i) (y i)`, REWRITE_TAC[ring_associates; RING_DIVIDES_PRODUCT_RING] THEN MESON_TAC[]);; let RING_ZERODIVISOR_PRODUCT_RING = prove (`!k (r:K->A ring) x. ring_zerodivisor (product_ring k r) x <=> x IN ring_carrier (product_ring k r) /\ ?i. i IN k /\ ring_zerodivisor (r i) (x i)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_zerodivisor] THEN ASM_CASES_TAC `(x:K->A) IN ring_carrier (product_ring k r)` THEN ASM_REWRITE_TAC[PRODUCT_RING; RESTRICTION_EXTENSION] THEN REWRITE_TAC[RESTRICTION_UNIQUE_ALT] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `y:K->A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN RULE_ASSUM_TAC(REWRITE_RULE[PRODUCT_RING; IN_CARTESIAN_PRODUCT]) THEN ASM SET_TAC[]; REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `i:K` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `x:A` THEN REPEAT DISCH_TAC THEN EXISTS_TAC `RESTRICTION k (\j:K. if j = i then (x:A) else ring_0 (r j))` THEN REWRITE_TAC[RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[PRODUCT_RING; IN_CARTESIAN_PRODUCT]) THEN ASM_SIMP_TAC[RESTRICTION] THEN ASM_MESON_TAC[RING_0; RING_MUL_RZERO]]);; let RING_REGULAR_PRODUCT_RING = prove (`!k (r:K->A ring) x. ring_regular (product_ring k r) x <=> EXTENSIONAL k x /\ !i. i IN k ==> ring_regular (r i) (x i)`, REWRITE_TAC[ring_regular; RING_ZERODIVISOR_PRODUCT_RING] THEN REWRITE_TAC[PRODUCT_RING; IN_CARTESIAN_PRODUCT] THEN MESON_TAC[]);; let RING_NILPOTENT_PRODUCT_RING_GEN = prove (`!k (r:K->A ring) x. ring_nilpotent (product_ring k r) x <=> EXTENSIONAL k x /\ (!i. i IN k ==> ring_nilpotent (r i) (x i)) /\ (?n. ~(n = 0) /\ !i. i IN k ==> ring_pow (r i) (x i) n = ring_0(r i))`, REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `!q'. (p ==> q') /\ (q' ==> q) /\ (q' /\ s ==> r) /\ (q /\ r ==> q') /\ (p <=> q' /\ s) ==> (p <=> q /\ r /\ s)`) THEN EXISTS_TAC `(x:K->A) IN ring_carrier(product_ring k r)` THEN REWRITE_TAC[RING_NILPOTENT_IN_CARRIER] THEN SIMP_TAC[ring_nilpotent; PRODUCT_RING; IN_CARTESIAN_PRODUCT; RING_POW_PRODUCT_RING; RESTRICTION_EXTENSION] THEN MESON_TAC[]);; let RING_NILPOTENT_PRODUCT_RING = prove (`!k (r:K->A ring) x. FINITE k ==> (ring_nilpotent (product_ring k r) x <=> EXTENSIONAL k x /\ !i. i IN k ==> ring_nilpotent (r i) (x i))`, REPEAT STRIP_TAC THEN REWRITE_TAC[RING_NILPOTENT_PRODUCT_RING_GEN] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_nilpotent] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_AND_EXISTS_THM; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `m:K->num`) THEN MP_TAC(ISPEC `IMAGE (m:K->num) k` FINITE_SUBSET_NUMSEG) THEN ASM_SIMP_TAC[FINITE_IMAGE; SUBSET; IN_NUMSEG; LE_0; FORALL_IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN EXISTS_TAC `SUC n` THEN REWRITE_TAC[NOT_SUC] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:K`)) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN REWRITE_TAC[ARITH_RULE `SUC(m + d) = m + SUC d`] THEN ASM_SIMP_TAC[RING_POW_ADD; RING_MUL_LZERO; RING_POW]);; let ISOMORPHIC_PRODUCT_RING_DISJOINT_UNION = prove (`!(f:K->A ring) k l. DISJOINT k l ==> product_ring (k UNION l) f isomorphic_ring prod_ring (product_ring k f) (product_ring l f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN REWRITE_TAC[RING_ISOMORPHISMS] THEN EXISTS_TAC `\(f:K->A). RESTRICTION k f,RESTRICTION l f` THEN EXISTS_TAC `\((f:K->A),g) x. if x IN k then f x else g x` THEN CONJ_TAC THENL [REWRITE_TAC[RING_HOMOMORPHISM_PAIRED; RING_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; RING_HOMOMORPHISM_PRODUCT_PROJECTION; IN_UNION]; REWRITE_TAC[PROD_RING; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN SIMP_TAC[RESTRICTION_UNIQUE; IN_CARTESIAN_PRODUCT; PRODUCT_RING] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN ASM SET_TAC[]]);; let ISOMORPHIC_PRODUCT_RING_SING = prove (`!(r:K->A ring) k. product_ring {k} r isomorphic_ring r k`, REWRITE_TAC[isomorphic_ring] THEN MESON_TAC[RING_ISOMORPHISM_PRODUCT_PROJECTION]);; let ISOMORPHIC_PRODUCT_RING_SUPPORT = prove (`!k (r:K->A ring). product_ring {i | i IN k /\ ~trivial_ring(r i)} r isomorphic_ring product_ring k r`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism; RING_ISOMORPHISMS] THEN MAP_EVERY EXISTS_TAC [`\x:K->A. RESTRICTION {i | i IN k /\ ~trivial_ring((r:K->A ring) i)} x`; `\x. RESTRICTION k (\i. if trivial_ring((r:K->A ring) i) then ring_0(r i) else x i)`] THEN REWRITE_TAC[RING_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN REWRITE_TAC[PRODUCT_RING; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[IN_ELIM_THM; IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RESTRICTION_UNIQUE] THEN SIMP_TAC[IN_ELIM_THM] THEN SIMP_TAC[RESTRICTION; IN_ELIM_THM; EXTENSIONAL] THEN SIMP_TAC[RING_HOMOMORPHISM_PRODUCT_PROJECTION] THEN MESON_TAC[RING_0; trivial_ring; IN_SING]);; let ISOMORPHIC_PRODUCT_RING_SYMDIFF = prove (`!k l (r:K->A ring). (!i. i IN (k DIFF l) UNION (l DIFF k) ==> trivial_ring(r i)) ==> product_ring k r isomorphic_ring product_ring l r`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_PRODUCT_RING_SUPPORT o lhand o snd) THEN GEN_REWRITE_TAC LAND_CONV [ISOMORPHIC_RING_SYM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] ISOMORPHIC_RING_TRANS) THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_PRODUCT_RING_SUPPORT o rand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_RING_TRANS) THEN MATCH_MP_TAC(MESON[ISOMORPHIC_RING_REFL] `r = s ==> r isomorphic_ring s`) THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let ISOMORPHIC_PRODUCT_RING_BIJECTIONS = prove (`!s (r:K->A ring) t (r':L->B ring) f g. (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\ (!y. y IN t ==> g(y) IN s /\ f(g y) = y) /\ (!i. i IN s ==> (r i) isomorphic_ring r'(f i)) ==> product_ring s r isomorphic_ring product_ring t r'`, REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`h:K->A->B`; `k:K->B->A`] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [ring_isomorphisms; FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`\(x:K->A). RESTRICTION t (\j:L. (h:K->A->B) (g j) (x (g j)))`; `\(y:L->B). RESTRICTION s (\i:K. (k:K->B->A) i (y (f i)))`] THEN REWRITE_TAC[ring_isomorphisms] THEN REWRITE_TAC[RESTRICTION_EXTENSION; PRODUCT_RING; FORALL_IN_GSPEC; IMP_CONJ; CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN ASM_SIMP_TAC[RESTRICTION] THEN REWRITE_TAC[RING_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; PRODUCT_RING] THEN REWRITE_TAC[RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION] THEN CONJ_TAC THENL [X_GEN_TAC `j:L`; X_GEN_TAC `i:K`] THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC RING_HOMOMORPHISM_COMPOSE THENL [EXISTS_TAC `(r:K->A ring) (g(j:L))`; EXISTS_TAC `(r':L->B ring) (f(i:K))`] THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_PRODUCT_PROJECTION] THEN ASM_MESON_TAC[]);; let RING_ISOMORPHISMS_PRODUCT_RING_DISJOINT_UNION = prove (`!(f:K->A ring) k l. DISJOINT k l ==> ring_isomorphisms (product_ring (k UNION l) f, prod_ring (product_ring k f) (product_ring l f)) ((\f. RESTRICTION k f,RESTRICTION l f), (\(f,g) x. if x IN k then f x else g x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[RING_ISOMORPHISMS] THEN CONJ_TAC THENL [REWRITE_TAC[RING_HOMOMORPHISM_PAIRED; RING_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; RING_HOMOMORPHISM_PRODUCT_PROJECTION; IN_UNION]; REWRITE_TAC[PROD_RING; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN SIMP_TAC[RESTRICTION_UNIQUE; IN_CARTESIAN_PRODUCT; PRODUCT_RING] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN ASM SET_TAC[]]);; let RING_ISOMORPHISM_PRODUCT_RING_DISJOINT_UNION = prove (`!(f:K->A ring) k l. DISJOINT k l ==> ring_isomorphism (product_ring (k UNION l) f, prod_ring (product_ring k f) (product_ring l f)) (\f. RESTRICTION k f,RESTRICTION l f)`, REWRITE_TAC[ring_isomorphism] THEN MESON_TAC[RING_ISOMORPHISMS_PRODUCT_RING_DISJOINT_UNION]);; let ISOMORPHIC_PRODUCT_RING_INSERT = prove (`!(f:K->A ring) i k. ~(i IN k) ==> product_ring (i INSERT k) f isomorphic_ring prod_ring (f i) (product_ring k f)`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_RING_TRANS `prod_ring (product_ring {i} f) (product_ring k (f:K->A ring))` THEN SUBST1_TAC(SET_RULE `(i:K) INSERT k = {i} UNION k`) THEN ASM_SIMP_TAC[ISOMORPHIC_PRODUCT_RING_DISJOINT_UNION; DISJOINT_SING] THEN MATCH_MP_TAC ISOMORPHIC_RING_PROD_RINGS THEN REWRITE_TAC[ISOMORPHIC_RING_REFL; ISOMORPHIC_PRODUCT_RING_SING]);; (* ------------------------------------------------------------------------- *) (* Derived rule to take a theorem asserting a monomorphism between r and r' *) (* and a term that is some Boolean combination of equations in the ring r *) (* and prove it equivalent to a "transferred" version in r' where all the *) (* variables x (in r) in the original map to "f x" (in r'). *) (* ------------------------------------------------------------------------- *) let RING_MONOMORPHIC_IMAGE_RULE = let pth = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f ==> (!x x' y y'. (x IN ring_carrier r /\ f x = x') /\ (y IN ring_carrier r /\ f y = y') ==> (x = y <=> x' = y')) /\ (!x. x IN ring_carrier r ==> x IN ring_carrier r /\ f x = f x) /\ (ring_0 r IN ring_carrier r /\ f(ring_0 r) = ring_0 r') /\ (ring_1 r IN ring_carrier r /\ f(ring_1 r) = ring_1 r') /\ (!n. ring_of_num r n IN ring_carrier r /\ f(ring_of_num r n) = ring_of_num r' n) /\ (!n. ring_of_int r n IN ring_carrier r /\ f(ring_of_int r n) = ring_of_int r' n) /\ (!x x'. x IN ring_carrier r /\ f x = x' ==> ring_neg r x IN ring_carrier r /\ f(ring_neg r x) = ring_neg r' x') /\ (!n x x'. x IN ring_carrier r /\ f x = x' ==> ring_pow r x n IN ring_carrier r /\ f(ring_pow r x n) = ring_pow r' x' n) /\ (!x x' y y'. (x IN ring_carrier r /\ f x = x') /\ (y IN ring_carrier r /\ f y = y') ==> ring_add r x y IN ring_carrier r /\ f(ring_add r x y) = ring_add r' x' y') /\ (!x x' y y'. (x IN ring_carrier r /\ f x = x') /\ (y IN ring_carrier r /\ f y = y') ==> ring_sub r x y IN ring_carrier r /\ f(ring_sub r x y) = ring_sub r' x' y') /\ (!x x' y y'. (x IN ring_carrier r /\ f x = x') /\ (y IN ring_carrier r /\ f y = y') ==> ring_mul r x y IN ring_carrier r /\ f(ring_mul r x y) = ring_mul r' x' y')`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_monomorphism] THEN GEN_REWRITE_TAC LAND_CONV [CONJ_SYM] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MESON_TAC[RING_0; RING_1; RING_OF_NUM; RING_OF_INT; RING_NEG; RING_POW; RING_ADD; RING_SUB; RING_MUL; RING_HOMOMORPHISM_0; RING_HOMOMORPHISM_1; RING_HOMOMORPHISM_RING_OF_NUM; RING_HOMOMORPHISM_RING_OF_INT; RING_HOMOMORPHISM_NEG; RING_HOMOMORPHISM_POW; RING_HOMOMORPHISM_ADD; RING_HOMOMORPHISM_SUB; RING_HOMOMORPHISM_MUL]) in fun hth -> let [pth_eq; pth_asm; pth_0; pth_1; pth_num; pth_int; pth_neg; pth_pow; pth_add; pth_sub],pth_mul = splitlist CONJ_PAIR (MATCH_MP pth hth) and htm = rand(concl hth) in let rec mterm tm = match tm with Comb(Const("ring_0",_),_) -> pth_0 | Comb(Const("ring_1",_),_) -> pth_1 | Comb(Comb(Const("ring_of_num",_),_),n) -> SPEC n pth_num | Comb(Comb(Const("ring_of_int",_),_),n) -> SPEC n pth_int | Comb(Comb(Const("ring_neg",_),_),s) -> let sth = mterm s in MATCH_MP pth_neg sth | Comb(Comb(Comb(Const("ring_pow",_),_),s),n) -> let sth = mterm s in MATCH_MP (SPEC n pth_pow) sth | Comb(Comb(Comb(Const("ring_add",_),_),s),t) -> let sth = mterm s and tth = mterm t in MATCH_MP pth_add (CONJ sth tth) | Comb(Comb(Comb(Const("ring_sub",_),_),s),t) -> let sth = mterm s and tth = mterm t in MATCH_MP pth_sub (CONJ sth tth) | Comb(Comb(Comb(Const("ring_mul",_),_),s),t) -> let sth = mterm s and tth = mterm t in MATCH_MP pth_mul (CONJ sth tth) | _ -> UNDISCH(SPEC tm pth_asm) in let rec mform tm = if is_neg tm then RAND_CONV mform tm else if is_iff tm || is_imp tm || is_conj tm || is_disj tm then BINOP_CONV mform tm else if is_eq tm then let s,t = dest_eq tm in let sth = mterm s and tth = mterm t in MATCH_MP pth_eq (CONJ sth tth) else failwith "RING_MONOMORPHIC_IMAGE_RULE: unhandled formula" in mform;; (* ------------------------------------------------------------------------- *) (* A decision procedure for the universal theory of rings, mapping *) (* momomorphically into a "total" ring to leverage earlier stuff. *) (* It will prove either the exact thing you request, or if you omit some *) (* carrier membership hypotheses, will add those as an antecedent. *) (* ------------------------------------------------------------------------- *) let RING_RULE = let RING_TOTALIZATION = prove (`!r:A ring. (?r' f. ring_carrier r' = (:1) /\ ring_monomorphism(r,r') f) \/ (?r' f. ring_carrier r' = (:num#A->bool) /\ ring_monomorphism(r,r') f)`, let lemma = prove (`!r:A ring. ~(trivial_ring r) /\ INFINITE(:B) /\ (:A) <=_c (:B) ==> ring_carrier(product_ring (:B) (\i. r)) =_c (:B->bool)`, REPEAT STRIP_TAC THEN REWRITE_TAC[PRODUCT_RING] THEN REWRITE_TAC[CARTESIAN_PRODUCT_CONST; GSYM CARD_EXP_UNIV] THEN MATCH_MP_TAC CARD_EXP_ABSORB THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `{ring_0 r:A,ring_1 r:A}` THEN CONJ_TAC THENL [SIMP_TAC[CARD_LE_CARD; FINITE_INSERT; FINITE_EMPTY; FINITE_BOOL; CARD_BOOL; CARD_CLAUSES] THEN RULE_ASSUM_TAC(REWRITE_RULE[TRIVIAL_RING_10]) THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN CONV_TAC NUM_REDUCE_CONV; MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; RING_0; RING_1]]; TRANS_TAC CARD_LE_TRANS `(:A)` THEN ASM_SIMP_TAC[CARD_LE_SUBSET; SUBSET_UNIV] THEN TRANS_TAC CARD_LE_TRANS `(:B)` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[CARD_EXP_CANTOR; CARD_LT_IMP_LE]]) in GEN_TAC THEN ASM_CASES_TAC `trivial_ring(r:A ring)` THENL [DISJ1_TAC THEN EXISTS_TAC `singleton_ring one` THEN EXISTS_TAC `(\x. one):A->1` THEN ASM_SIMP_TAC[RING_MONOMORPHISM_FROM_TRIVIAL_RING; RING_HOMOMORPHISM_FROM_TRIVIAL_RING] THEN ASM_SIMP_TAC[TRIVIAL_RING_SINGLETON_RING; SINGLETON_RING] THEN REWRITE_TAC[IMAGE_CONST; RING_CARRIER_NONEMPTY] THEN REWRITE_TAC[EXTENSION; IN_UNIV; IN_SING; FORALL_ONE_THM]; DISJ2_TAC] THEN MP_TAC(snd(EQ_IMP_RULE(ISPECL [`product_ring (:num#A) (\i. (r:A ring))`; `(:num#A->bool)`] ISOMORPHIC_COPY_OF_RING))) THEN ANTS_TAC THENL [MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[GSYM MUL_C_UNIV; INFINITE; CARD_MUL_FINITE_EQ] THEN REWRITE_TAC[UNIV_NOT_EMPTY; DE_MORGAN_THM; GSYM INFINITE] THEN REWRITE_TAC[num_INFINITE; MUL_C_UNIV] THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. 0,x` THEN REWRITE_TAC[IN_UNIV; PAIR_EQ]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r':(num#A->bool)ring` THEN STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isomorphic_ring]) THEN DISCH_THEN(X_CHOOSE_TAC `f:(num#A->A)->num#A->bool`) THEN EXISTS_TAC `(f:(num#A->A)->num#A->bool) o (\x i. x)` THEN MATCH_MP_TAC RING_MONOMORPHISM_COMPOSE THEN EXISTS_TAC `product_ring (:num#A) (\i. (r:A ring))` THEN REWRITE_TAC[RING_MONOMORPHISM_DIAGONAL_UNIV] THEN ASM_SIMP_TAC[RING_ISOMORPHISM_IMP_MONOMORPHISM]) in let RING_WORD_UNIVERSAL = let cth = prove (`ring_0 r = ring_of_int r (&0) /\ ring_1 r = ring_of_int r (&1)`, REWRITE_TAC[RING_OF_INT_OF_NUM; RING_OF_NUM_0; RING_OF_NUM_1]) and pth = (UNDISCH o prove) (`ring_carrier r = (:A) ==> (x = y <=> ring_sub r x y = ring_of_int r (&0))`, SIMP_TAC[RING_SUB_EQ_0; IN_UNIV; RING_OF_INT_OF_NUM; RING_OF_NUM_0]) and bth = REFL `ring_of_int r (&0):A` and mth = (UNDISCH o prove) (`ring_carrier r = (:A) ==> p = ring_of_int r (&0) ==> !c. ring_mul r c p = ring_of_int r (&0)`, SIMP_TAC[RING_MUL_RZERO; RING_OF_INT_OF_NUM; RING_OF_NUM_0; IN_UNIV]) and dth = (UNDISCH o prove) (`ring_carrier r = (:A) ==> p = ring_of_int r (&0) /\ q = ring_of_int r (&0) ==> ring_add r p q = ring_of_int r (&0)`, SIMP_TAC[RING_ADD_RZERO; RING_OF_INT_OF_NUM; RING_OF_NUM_0; IN_UNIV]) in let decorule = GEN_REWRITE_RULE (RAND_CONV o ONCE_DEPTH_CONV) [cth; GSYM RING_OF_INT_OF_NUM] o PART_MATCH lhand pth in fun tm -> let avs,bod = strip_forall tm in if is_imp bod then let ant,con = dest_imp bod in let aths = mapfilter (CONV_RULE decorule) (CONJUNCTS(ASSUME ant)) and cth = decorule con in let atms = map (lhand o concl) aths and ctm = lhand(rand(concl cth)) in let ctms = ring_ring_cofactors_universal atms ctm in let zths = map2 (fun c th -> SPEC c (MATCH_MP mth th)) ctms aths in let zth = end_itlist (fun th1 th2 -> MATCH_MP dth (CONJ th1 th2)) zths in let eth = TRANS (RING_POLY_UNIVERSAL_CONV ctm) (SYM(RING_POLY_UNIVERSAL_CONV (lhand(concl zth)))) in GENL avs (DISCH ant (EQ_MP (SYM cth) (TRANS eth zth))) else let th1 = decorule tm in let th2 = CONV_RULE (RAND_CONV (LAND_CONV RING_POLY_UNIVERSAL_CONV)) th1 in EQ_MP (SYM th2) bth in let RING_RING_WORD = let imp_imp_rule = GEN_REWRITE_RULE I [IMP_IMP] and left_exists_rule = GEN_REWRITE_RULE I [LEFT_FORALL_IMP_THM] and or_elim_rule = GEN_REWRITE_RULE I [TAUT `(p ==> q) /\ (p' ==> q) <=> p \/ p' ==> q`] in fun ths tm -> let dty = type_of(rand tm) in let rty = mk_type("ring",[dty]) in let rtms = filter ((=) rty o type_of) (freesl(tm::map concl ths)) in if length rtms <> 1 then failwith "RING_RULE: can't deduce which ring" else let rtm = hd rtms in let tvs = itlist (union o type_vars_in_term o concl) ths (type_vars_in_term tm) in let dty' = mk_vartype("Z"^itlist ((^) o dest_vartype) tvs "") in let rty' = mk_type("ring",[dty']) in let avvers = itlist (union o variables o concl) ths (variables tm) in let rtm' = variant avvers (mk_var("r'",rty')) and htm = variant avvers (mk_var("h",mk_fun_ty dty dty')) in let hasm = list_mk_icomb "ring_monomorphism" [mk_pair(rtm,rtm'); htm] in let hth = ASSUME hasm in let ths' = mapfilter (CONV_RULE(RING_MONOMORPHIC_IMAGE_RULE hth)) ths and th' = RING_MONOMORPHIC_IMAGE_RULE hth tm in let utm = if ths' = [] then rand(concl th') else mk_imp(list_mk_conj (map concl ths'),rand(concl th')) in let hvs = find_terms (fun t -> is_comb t && rator t = htm && is_var(rand t)) utm in let gvs = map (genvar o type_of) hvs in let vtm = subst (zip gvs hvs) utm in let arty = mk_type("ring",[aty]) in let atm = vsubst [mk_var("r",arty),mk_var(fst(dest_var rtm'),arty)] (inst[aty,dty'] vtm) in let th1 = RING_WORD_UNIVERSAL atm in let th2 = INST_TYPE [dty',aty] th1 in let th3 = INST [rtm',mk_var("r",rty')] th2 in let th4 = INST (zip hvs gvs) th3 in let th5 = if ths' = [] then th4 else MP th4 (end_itlist CONJ ths') in let th6 = itlist PROVE_HYP ths (EQ_MP (SYM th') th5) in let ueq = mk_eq(list_mk_icomb "ring_carrier" [rtm'], mk_const("UNIV",[dty',aty])) in let th7 = imp_imp_rule (DISCH ueq (DISCH hasm th6)) in let th8 = left_exists_rule(GEN htm th7) in let th9 = left_exists_rule(GEN rtm' th8) in let th10 = ISPEC rtm RING_TOTALIZATION in let th11 = CONJ (PART_MATCH lhand th9 (lhand(concl th10))) (PART_MATCH lhand th9 (rand(concl th10))) in MP (or_elim_rule th11) th10 in let RING_RING_HORN = let ddj_conv = GEN_REWRITE_CONV (RAND_CONV o DEPTH_CONV) [TAUT `~p \/ ~q <=> ~(p /\ q)`] THENC GEN_REWRITE_CONV I [TAUT `p \/ ~q <=> q ==> p`] in fun tm -> if not(is_disj tm) then RING_RING_WORD [] tm else let th0 = ddj_conv tm in let tm' = rand(concl th0) in let abod = lhand tm' in let ths = CONJUNCTS(ASSUME abod) in let th1 = RING_RING_WORD ths (rand tm') in EQ_MP (SYM th0) (DISCH abod (itlist PROVE_HYP ths th1)) in let RING_RING_CORE = let pth = TAUT `p ==> q <=> (p \/ q <=> q)` and ptm = `p:bool` and qtm = `q:bool` in fun tm -> let negdjs,posdjs = partition is_neg (disjuncts tm) in let th = tryfind (fun p -> RING_RING_HORN (list_mk_disj(p::negdjs))) posdjs in let th1 = INST[concl th,ptm; tm,qtm] pth in MP (EQ_MP (SYM th1) (DISJ_ACI_RULE(rand(concl th1)))) th in let init_conv = TOP_DEPTH_CONV BETA_CONV THENC PRESIMP_CONV THENC CONDS_ELIM_CONV THENC NNFC_CONV THENC CNF_CONV THENC SKOLEM_CONV THENC PRENEX_CONV THENC GEN_REWRITE_CONV REDEPTH_CONV [RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM DISJ_ASSOC] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM CONJ_ASSOC] in let RING_RULE_BASIC tm = let avs,bod = strip_forall tm in let th1 = init_conv bod in let tm' = rand(concl th1) in let avs',bod' = strip_forall tm' in let th2 = end_itlist CONJ (map RING_RING_CORE (conjuncts bod')) in let th3 = EQ_MP (SYM th1) (GENL avs' th2) in let imps = hyp th3 in let th4 = if imps = [] then th3 else DISCH_ALL (itlist PROVE_HYP (CONJUNCTS(ASSUME(list_mk_conj imps))) th3) in GENL avs th4 in fun tm -> let tvs = type_vars_in_term tm in let ty = mk_vartype("Y"^itlist ((^) o dest_vartype) tvs "") in let tm' = inst[ty,aty] tm in INST_TYPE [aty,ty] (RING_RULE_BASIC tm');; (* ------------------------------------------------------------------------- *) (* A naive tactic form, pulling in equations in the assumptions and *) (* either solving outright or leaving some ring carrier membership *) (* ------------------------------------------------------------------------- *) let RING_TAC = REPEAT GEN_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o check (is_eq o concl))) THEN W(fun (asl,w) -> let th = RING_RULE w in (MATCH_ACCEPT_TAC th ORELSE (MATCH_MP_TAC th THEN ASM_REWRITE_TAC[])));; (* ------------------------------------------------------------------------- *) (* Cosets in a ring. *) (* ------------------------------------------------------------------------- *) let ring_coset = new_definition `ring_coset (r:A ring) j = \a. {ring_add r a x | x IN j}`;; let RING_COSET_SETADD = prove (`!r s a:A. ring_coset r s a = ring_setadd r {a} s`, REWRITE_TAC[ring_setadd; ring_coset] THEN SET_TAC[]);; let RING_COSET = prove (`!r t x:A. x IN ring_carrier r /\ t SUBSET ring_carrier r ==> ring_coset r t x SUBSET ring_carrier r`, SIMP_TAC[RING_COSET_SETADD; RING_SETADD; SING_SUBSET]);; let RING_COSET_0 = prove (`!r t:A->bool. t SUBSET ring_carrier r ==> ring_coset r t (ring_0 r) = t`, SIMP_TAC[RING_COSET_SETADD; RING_SETADD_LZERO]);; let RING_COSET_TRIVIAL = prove (`!r x:A. x IN ring_carrier r ==> ring_coset r {ring_0 r} x = {x}`, SIMP_TAC[RING_COSET_SETADD; RING_SETADD_SING; RING_0; RING_ADD_RZERO]);; let RING_COSET_CARRIER = prove (`!r x:A. x IN ring_carrier r ==> ring_coset r (ring_carrier r) x = ring_carrier r`, SIMP_TAC[RING_COSET_SETADD; RING_SETADD_LSUBSET; SING_SUBSET; NOT_INSERT_EMPTY; RING_IDEAL_CARRIER]);; let RING_COSET_EQ = prove (`!r j x y:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_coset r j x = ring_coset r j y <=> ring_sub r x y IN j)`, SIMP_TAC[RING_SETADD_RCANCEL_SET; RING_COSET_SETADD]);; let RING_COSET_EQ_IDEAL = prove (`!r j x:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r ==> (ring_coset r j x = j <=> x IN j)`, SIMP_TAC[RING_COSET_SETADD; RING_SETADD_LSUBSET_EQ; SING_SUBSET] THEN REWRITE_TAC[NOT_INSERT_EMPTY]);; let RING_COSET_EQ_EMPTY = prove (`!r j x:A. ring_coset r j x = {} <=> j = {}`, REWRITE_TAC[RING_COSET_SETADD; RING_SETADD_EQ_EMPTY; NOT_INSERT_EMPTY]);; let RING_COSET_NONEMPTY = prove (`!r j x:A. ring_ideal r j \/ j subring_of r ==> ~(ring_coset r j x = {})`, MESON_TAC[RING_COSET_EQ_EMPTY; SUBRING_OF_IMP_NONEMPTY; RING_IDEAL_IMP_NONEMPTY]);; let IN_RING_COSET_SELF = prove (`!r j x:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r ==> x IN ring_coset r j x`, REWRITE_TAC[ring_ideal; subring_of; RING_COSET_SETADD; ring_setadd; IN_ELIM_THM; IN_SING] THEN MESON_TAC[RING_ADD_RZERO]);; let UNIONS_RING_COSETS = prove (`!r j:A->bool. ring_ideal r j \/ j subring_of r ==> UNIONS {ring_coset r j x |x| x IN ring_carrier r} = ring_carrier r`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RING_COSET; RING_IDEAL_IMP_SUBSET; SUBRING_OF_IMP_SUBSET] THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; SUBSET] THEN ASM_MESON_TAC[IN_RING_COSET_SELF]);; let RING_COSETS_EQ = prove (`!r j x y:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_coset r j x = ring_coset r j y <=> ~(DISJOINT (ring_coset r j x) (ring_coset r j y)))`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[GSYM DISJOINT_EMPTY_REFL; RING_COSET_NONEMPTY] THEN ASM_SIMP_TAC[RING_COSET_EQ; LEFT_IMP_EXISTS_THM; IMP_CONJ; SET_RULE `~DISJOINT s t <=> ?x. x IN s /\ ?y. y IN t /\ x = y`] THEN REWRITE_TAC[RING_COSET_SETADD; ring_setadd; FORALL_IN_GSPEC; IN_SING] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN X_GEN_TAC `u:A` THEN DISCH_TAC THEN X_GEN_TAC `v:A` THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `\x:A. ring_sub r x u`) THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_ideal; subring_of; SUBSET]) THEN REWRITE_TAC[ring_sub] THEN ASM_SIMP_TAC[GSYM RING_ADD_ASSOC; RING_ADD_RNEG; RING_ADD_RZERO] THEN DISCH_THEN SUBST1_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_ADD_SYM o lhand o snd) THEN (ANTS_TAC THENL [ASM_MESON_TAC[RING_ADD; RING_NEG]; DISCH_THEN SUBST1_TAC]) THEN ASM_SIMP_TAC[RING_ADD_ASSOC; RING_SUB; RING_ADD; RING_NEG; RING_ADD_LNEG]);; let DISJOINT_RING_COSETS = prove (`!r j x y:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (DISJOINT (ring_coset r j x) (ring_coset r j y) <=> ~(ring_coset r j x = ring_coset r j y))`, SIMP_TAC[RING_COSETS_EQ]);; let PAIRWISE_DISJOINT_RING_COSETS = prove (`!r j:A->bool. ring_ideal r j \/ j subring_of r ==> pairwise DISJOINT {ring_coset r j x |x| x IN ring_carrier r}`, REWRITE_TAC[SIMPLE_IMAGE; PAIRWISE_IMAGE] THEN SIMP_TAC[pairwise; DISJOINT_RING_COSETS]);; let IMAGE_RING_COSET_SWITCH = prove (`!r j x y:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r /\ y IN ring_carrier r ==> IMAGE (\a. ring_add r (ring_sub r y x) a) (ring_coset r j x) = ring_coset r j y`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `ring_setadd r {ring_sub r y x:A} (ring_coset r j x)` THEN (CONJ_TAC THENL [REWRITE_TAC[ring_setadd] THEN SET_TAC[]; ALL_TAC]) THENL [FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET); FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBRING_OF_IMP_SUBSET)] THEN REWRITE_TAC[RING_COSET_SETADD; ring_sub] THEN ASM_SIMP_TAC[RING_SETADD_ASSOC; RING_SETADD; SING_SUBSET; RING_ADD; RING_NEG; RING_SETADD_SING; GSYM RING_ADD_ASSOC; RING_ADD_LNEG; RING_ADD_RZERO]);; let CARD_EQ_RING_COSETS = prove (`!r j x y:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r /\ y IN ring_carrier r ==> ring_coset r j x =_c ring_coset r j y`, let lemma = prove (`!f g. (IMAGE f s = t /\ IMAGE g t = s) /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> s =_c t`, REWRITE_TAC[eq_c; LEFT_FORALL_IMP_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]) in REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma THEN EXISTS_TAC `\a:A. ring_add r (ring_sub r y x) a` THEN EXISTS_TAC `\a:A. ring_add r (ring_sub r x y) a` THEN ASM_SIMP_TAC[IMAGE_RING_COSET_SWITCH; INJECTIVE_ON_ALT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_ADD_LCANCEL THEN ASM_MESON_TAC[RING_SUB; SUBSET; RING_COSET; SUBRING_OF_IMP_SUBSET; RING_IDEAL_IMP_SUBSET]);; let CARD_EQ_RING_COSET_IDEAL = prove (`!r j x:A. (ring_ideal r j \/ j subring_of r) /\ x IN ring_carrier r ==> ring_coset r j x =_c j`, MESON_TAC[CARD_EQ_RING_COSETS; RING_0; RING_COSET_0; SUBRING_OF_IMP_SUBSET; RING_IDEAL_IMP_SUBSET]);; let LAGRANGE_THEOREM_RING_EXPLICIT = prove (`!r j:A->bool. FINITE(ring_carrier r) /\ (ring_ideal r j \/ j subring_of r) ==> CARD {ring_coset r j x |x| x IN ring_carrier r} * CARD j = CARD(ring_carrier r)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `FINITE(j:A->bool)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET; ring_ideal; subring_of]; ALL_TAC] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM(MATCH_MP UNIONS_RING_COSETS th)]) THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_UNIONS o rand o snd) THEN ASM_REWRITE_TAC[SIMPLE_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; FINITE_IMAGE] THEN ASM_SIMP_TAC[GSYM DISJOINT; DISJOINT_RING_COSETS] THEN ANTS_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET; RING_COSET; ring_ideal; subring_of]; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[GSYM NSUM_CONST; FINITE_IMAGE] THEN MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_EQ_CARD_IMP THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CARD_EQ_RING_COSET_IDEAL]);; let LAGRANGE_THEOREM_RING = prove (`!r j:A->bool. FINITE(ring_carrier r) /\ (ring_ideal r j \/ j subring_of r) ==> (CARD j) divides CARD(ring_carrier r)`, REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP LAGRANGE_THEOREM_RING_EXPLICIT) THEN NUMBER_TAC);; let CARD_DIVIDES_RING_MONOMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f /\ FINITE(ring_carrier r') ==> CARD(ring_carrier r) divides CARD(ring_carrier r')`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `CARD(ring_carrier r) = CARD(ring_image (r,r') (f:A->B))` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_EQ_CARD_IMP THEN REWRITE_TAC[ring_image] THEN ASM_MESON_TAC[CARD_EQ_RING_MONOMORPHIC_IMAGE; FINITE_RING_MONOMORPHIC_PREIMAGE]; MATCH_MP_TAC LAGRANGE_THEOREM_RING THEN ASM_MESON_TAC[SUBRING_RING_IMAGE; ring_monomorphism]]);; let CARD_DIVIDES_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ FINITE(ring_carrier r) ==> CARD(ring_carrier r') divides CARD(ring_carrier r)`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_EPIMORPHISM] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CARD_EQ_RING_IMAGE_KERNEL) THEN DISCH_THEN (MP_TAC o (MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_CARD_IMP))) THEN ASM_REWRITE_TAC[ring_image; mul_c; GSYM CROSS; ring_kernel] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[FINITE_CROSS; CARD_CROSS; FINITE_IMAGE; FINITE_RESTRICT] THEN CONV_TAC NUMBER_RULE);; let CARD_RING_COSETS_DIVIDES = prove (`!r j:A->bool. FINITE(ring_carrier r) /\ (ring_ideal r j \/ j subring_of r) ==> CARD {ring_coset r j x | x | x IN ring_carrier r} divides CARD(ring_carrier r)`, MESON_TAC[divides; LAGRANGE_THEOREM_RING_EXPLICIT]);; let RING_SETADD_PROD_RING = prove (`!(r1:A ring) (r2:B ring) s1 s2 t1 t2. ring_setadd (prod_ring r1 r2) (s1 CROSS s2) (t1 CROSS t2) = (ring_setadd r1 s1 t1) CROSS (ring_setadd r2 s2 t2)`, REWRITE_TAC[ring_setadd; CROSS; PROD_RING; SET_RULE `{f x y | x IN {s a b | P a b} /\ y IN {t c d | Q c d}} = {f (s a b) (t c d) | P a b /\ Q c d}`] THEN SET_TAC[]);; let RING_COSET_PROD_RING = prove (`!r1 r2 s1 s2 (x1:A) (x2:B). ring_coset (prod_ring r1 r2) (s1 CROSS s2) (x1,x2) = (ring_coset r1 s1 x1) CROSS (ring_coset r2 s2 x2)`, REWRITE_TAC[RING_COSET_SETADD; GSYM CROSS_SING; RING_SETADD_PROD_RING]);; let RING_SETADD_PRODUCT_RING = prove (`!(r:K->A ring) k s t. ring_setadd (product_ring k r) (cartesian_product k s) (cartesian_product k t) = cartesian_product k (\i. ring_setadd (r i) (s i) (t i))`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_setadd; CARTESIAN_PRODUCT_AS_RESTRICTIONS; PRODUCT_RING] THEN REWRITE_TAC[IN_ELIM_THM; SET_RULE `{f x y | x,y | x IN {s x | P x} /\ y IN {s f | Q f}} = {f (s x) (s y) | P x /\ Q y}`] THEN GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM; TAUT `p ==> (q /\ r) /\ s <=> (p ==> s) /\ (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[GSYM RESTRICTION_EXTENSION; SET_RULE `{RESTRICTION k f | f | ?x y. RESTRICTION k f = RESTRICTION k (s x y) /\ R x y} = {RESTRICTION k (s x y) | R x y}`] THEN MATCH_MP_TAC(SET_RULE `(!x y. R x y ==> f x y = s x y) ==> {f x y | R x y} = {s x y | R x y}`) THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let RING_COSET_PRODUCT_RING = prove (`!(r:K->A ring) j x k. ring_coset (product_ring k r) (cartesian_product k j) x = cartesian_product k (\i. ring_coset (r i) (j i) (x i))`, REWRITE_TAC[RING_COSET_SETADD; GSYM RING_SETADD_PRODUCT_RING] THEN REPEAT GEN_TAC THEN REWRITE_TAC[CARTESIAN_PRODUCT_SINGS_GEN] THEN REWRITE_TAC[ring_setadd; PRODUCT_RING; SET_RULE `{f x y | x,y | x IN {a} /\ P y} = {f a x | P x}`] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> {f x | x IN s} = {g x | x IN s}`) THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let RING_SETNEG_SUBRING_GENERATED = prove (`!r s:A->bool. ring_setneg (subring_generated r s) = ring_setneg r`, REWRITE_TAC[ring_setneg; FUN_EQ_THM; SUBRING_GENERATED]);; let RING_SETADD_SUBRING_GENERATED = prove (`!r s:A->bool. ring_setadd (subring_generated r s) = ring_setadd r`, REWRITE_TAC[ring_setadd; FUN_EQ_THM; SUBRING_GENERATED]);; let RING_SETNEG_COSET = prove (`!r j a:A. a IN ring_carrier r /\ (ring_ideal r j \/ j subring_of r) ==> ring_setneg r (ring_coset r j a) = ring_coset r j (ring_neg r a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_coset] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; ring_setneg; FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SET_RULE `{f x | x IN {g a | P a}} = {f (g a) | P a}`] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `ring_neg r x:A` THEN ASM_SIMP_TAC[IN_RING_IDEAL_NEG; IN_SUBRING_NEG] THEN (FIRST_X_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) ORELSE FIRST_X_ASSUM(MP_TAC o MATCH_MP SUBRING_OF_IMP_SUBSET)) THEN ASM_SIMP_TAC[SUBSET; RING_NEG_ADD; RING_NEG_NEG; RING_NEG]);; let RING_SETADD_COSETS = prove (`!r j a b:A. (ring_ideal r j \/ j subring_of r) /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ring_setadd r (ring_coset r j a) (ring_coset r j b) = ring_coset r j (ring_add r a b)`, REWRITE_TAC[RING_COSET_SETADD] THEN ASM_SIMP_TAC[RING_SETADD_IDEAL_RIGHT; SING_SUBSET; IN_SING] THEN REWRITE_TAC[RING_SETADD_SING]);; let RING_SETMUL_COSETS = prove (`!r j a b:A. a IN ring_carrier r /\ b IN ring_carrier r /\ ring_ideal r j ==> ring_setmul r (ring_coset r j a) (ring_coset r j b) SUBSET ring_coset r j (ring_mul r a b)`, REWRITE_TAC[RING_COSET_SETADD] THEN ASM_SIMP_TAC[RING_SETMUL_IDEAL_RIGHT; GSYM RING_SETMUL_SING; SING_SUBSET]);; (* ------------------------------------------------------------------------- *) (* Quotient rings. *) (* ------------------------------------------------------------------------- *) let quotient_ring = new_definition `quotient_ring (r:A ring) j = ring({ring_coset r j a | a | a IN ring_carrier r}, ring_coset r j (ring_0 r:A), ring_coset r j (ring_1 r), ring_setneg r, ring_setadd r, (\s t. ring_setadd r (ring_setmul r s t) j))`;; let RING_HOMOMORPHISM_RING_COSET,QUOTIENT_RING = (CONJ_PAIR o prove) (`(!r j:A->bool. ring_ideal r j ==> ring_homomorphism (r,quotient_ring r j) (ring_coset r j)) /\ (!r j:A->bool. ring_ideal r j ==> ring_carrier (quotient_ring r j) = {ring_coset r j a | a | a IN ring_carrier r}) /\ (!r j:A->bool. ring_ideal r j ==> ring_0 (quotient_ring r j) = ring_coset r j (ring_0 r)) /\ (!r j:A->bool. ring_ideal r j ==> ring_1 (quotient_ring r j) = ring_coset r j (ring_1 r)) /\ (!r j:A->bool. ring_ideal r j ==> ring_neg (quotient_ring r j) = ring_setneg r) /\ (!r j:A->bool. ring_ideal r j ==> ring_add (quotient_ring r j) = ring_setadd r) /\ (!r j:A->bool. ring_ideal r j ==> ring_mul (quotient_ring r j) = (\s t. ring_setadd r (ring_setmul r s t) j))`, let lemma = prove (`!r j a b:A. ring_ideal r j /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ring_setadd r (ring_setmul r (ring_coset r j a) (ring_coset r j b)) j = ring_coset r j (ring_mul r a b)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_coset] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; ring_setmul; ring_setadd; FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SET_RULE `{f x y | x IN {g a | P a} /\ y IN {h b | Q b}} = {f (g a) (h b) | P a /\ Q b}`] THEN REWRITE_TAC[SET_RULE `{f x y | x IN {g a b | P a b} /\ y IN t} = {f (g a b) y | P a b /\ y IN t}`] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN EXISTS_TAC `ring_add r (ring_mul r x b) (ring_add r (ring_mul r a y) (ring_add r (ring_mul r x y) z)):A` THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [SUBSET; IN_RING_IDEAL_ADD; IN_RING_IDEAL_LMUL; RING_ADD_LDISTRIB; IN_RING_IDEAL_RMUL; RING_ADD; RING_MUL] THEN ASM_SIMP_TAC[RING_ADD; RING_ADD_RDISTRIB] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [GSYM RING_ADD_ASSOC; RING_MUL; RING_ADD]; X_GEN_TAC `z:A` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`ring_0 r:A`; `ring_0 r:A`; `z:A`] THEN ASM_SIMP_TAC[RING_0; RING_ADD_RZERO; IN_RING_IDEAL_0]]) in REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `ring_ideal r (j:A->bool)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[ring_homomorphism; RING_SETNEG_COSET; RING_SETADD_COSETS; lemma] THEN SET_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC (DEPTH_BINOP_CONV `/\` o LAND_CONV o ONCE_DEPTH_CONV) [ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul] THEN PURE_REWRITE_TAC[GSYM PAIR_EQ; BETA_THM; PAIR] THEN PURE_REWRITE_TAC[quotient_ring; GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RING_SETNEG_COSET; RING_SETADD_COSETS; lemma; RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THENL [MESON_TAC[RING_0]; MESON_TAC[RING_1]; ASM_MESON_TAC[RING_NEG]; ASM_MESON_TAC[RING_ADD]; ASM_MESON_TAC[RING_MUL]; ASM_SIMP_TAC[RING_ADD_SYM]; ASM_SIMP_TAC[RING_ADD_ASSOC]; ASM_SIMP_TAC[RING_ADD_LZERO]; ASM_SIMP_TAC[RING_ADD_LNEG]; ASM_SIMP_TAC[RING_MUL_SYM]; ASM_SIMP_TAC[RING_MUL_ASSOC]; ASM_SIMP_TAC[RING_MUL_LID]; ASM_SIMP_TAC[RING_ADD_LDISTRIB]]);; let RING_EPIMORPHISM_RING_COSET = prove (`!r j:A->bool. ring_ideal r j ==> ring_epimorphism (r,quotient_ring r j) (ring_coset r j)`, SIMP_TAC[ring_epimorphism; RING_HOMOMORPHISM_RING_COSET] THEN SIMP_TAC[QUOTIENT_RING] THEN SET_TAC[]);; let QUOTIENT_RING_CARRIER = prove (`!r j:A->bool. ring_ideal r j ==> ring_carrier (quotient_ring r j) = {ring_coset r j a | a | a IN ring_carrier r}`, REWRITE_TAC[QUOTIENT_RING]);; let QUOTIENT_RING_0 = prove (`!r j:A->bool. ring_ideal r j ==> ring_0(quotient_ring r j) = j`, SIMP_TAC[QUOTIENT_RING; RING_COSET_0; RING_IDEAL_IMP_SUBSET]);; let QUOTIENT_RING_1 = prove (`!r j:A->bool. ring_ideal r j ==> ring_1(quotient_ring r j) = ring_coset r j (ring_1 r)`, REWRITE_TAC[QUOTIENT_RING]);; let QUOTIENT_RING_NEG = prove (`!r j a:A. ring_ideal r j /\ a IN ring_carrier r ==> ring_neg (quotient_ring r j) (ring_coset r j a) = ring_coset r j (ring_neg r a)`, SIMP_TAC[REWRITE_RULE[ring_homomorphism] RING_HOMOMORPHISM_RING_COSET]);; let QUOTIENT_RING_ADD = prove (`!r j a b:A. ring_ideal r j /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ring_add (quotient_ring r j) (ring_coset r j a) (ring_coset r j b) = ring_coset r j (ring_add r a b)`, SIMP_TAC[REWRITE_RULE[ring_homomorphism] RING_HOMOMORPHISM_RING_COSET]);; let QUOTIENT_RING_MUL = prove (`!r j a b:A. ring_ideal r j /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ring_mul (quotient_ring r j) (ring_coset r j a) (ring_coset r j b) = ring_coset r j (ring_mul r a b)`, SIMP_TAC[REWRITE_RULE[ring_homomorphism] RING_HOMOMORPHISM_RING_COSET]);; let RING_KERNEL_RING_COSET = prove (`!r j:A->bool. ring_ideal r j ==> ring_kernel(r,quotient_ring r j) (ring_coset r j) = j`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ring_kernel; QUOTIENT_RING_0] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[RING_COSET_EQ_IDEAL; RING_IDEAL_IMP_SUBSET; SUBSET]);; let CARD_LE_QUOTIENT_RING = prove (`!r j:A->bool. ring_ideal r j ==> ring_carrier(quotient_ring r j) <=_c ring_carrier r`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP RING_EPIMORPHISM_RING_COSET) THEN REWRITE_TAC[CARD_LE_RING_EPIMORPHIC_IMAGE]);; let CARD_QUOTIENT_RING_DIVIDES = prove (`!r j:A->bool. FINITE(ring_carrier r) /\ ring_ideal r j ==> CARD(ring_carrier(quotient_ring r j)) divides CARD(ring_carrier r)`, SIMP_TAC[QUOTIENT_RING; CARD_RING_COSETS_DIVIDES]);; let QUOTIENT_RING_UNIVERSAL_EXPLICIT = prove (`!r r' j (f:A->B). ring_homomorphism (r,r') f /\ ring_ideal r j /\ (!x y. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_coset r j x = ring_coset r j y ==> f x = f y) ==> ?g. ring_homomorphism(quotient_ring r j,r') g /\ !x. x IN ring_carrier r ==> g(ring_coset r j x) = f x`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM (MP_TAC o GSYM o GEN_REWRITE_RULE I [FUNCTION_FACTORS_LEFT_GEN]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:(A->bool)->B` THEN DISCH_TAC THEN ASM_SIMP_TAC[CONJUNCT1 QUOTIENT_RING] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RING_ADD; QUOTIENT_RING_ADD; RING_MUL; QUOTIENT_RING_MUL; RING_NEG; QUOTIENT_RING_NEG; RING_1; QUOTIENT_RING_1] THEN ASM_SIMP_TAC[QUOTIENT_RING; RING_0]);; let QUOTIENT_RING_UNIVERSAL = prove (`!r r' j (f:A->B). ring_homomorphism (r,r') f /\ ring_ideal r j /\ j SUBSET ring_kernel(r,r') f ==> ?g. ring_homomorphism(quotient_ring r j,r') g /\ !x. x IN ring_carrier r ==> g(ring_coset r j x) = f x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC QUOTIENT_RING_UNIVERSAL_EXPLICIT THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_sub r x y:A` o REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GSYM RING_COSET_EQ; ring_kernel; IN_ELIM_THM; RING_SUB] THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_SUB] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC RING_SUB_EQ_0 THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[]);; let QUOTIENT_RING_UNIVERSAL_EPIMORPHISM = prove (`!r r' j (f:A->B). ring_epimorphism (r,r') f /\ ring_ideal r j /\ j SUBSET ring_kernel(r,r') f ==> ?g. ring_epimorphism(quotient_ring r j,r') g /\ !x. x IN ring_carrier r ==> g(ring_coset r j x) = f x`, REWRITE_TAC[ring_epimorphism] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `r':B ring`; `j:A->bool`; `f:A->B`] QUOTIENT_RING_UNIVERSAL) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[QUOTIENT_RING] THEN ASM SET_TAC[]);; let FIRST_RING_ISOMORPHISM_THEOREM = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f ==> (quotient_ring r (ring_kernel (r,r') f)) isomorphic_ring (subring_generated r' (ring_image (r,r') f))`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_ring; RING_ISOMORPHISM] THEN FIRST_ASSUM(MP_TAC o SPEC `ring_kernel (r,r') (f:A->B)` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] QUOTIENT_RING_UNIVERSAL_EXPLICIT)) THEN ASM_SIMP_TAC[RING_IDEAL_RING_KERNEL] THEN ANTS_TAC THENL [ASM_SIMP_TAC[IMP_CONJ; RING_COSET_EQ; RING_IDEAL_RING_KERNEL]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:(A->bool)->B` THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_HOMOMORPHISM_INTO_SUBRING_EQ; SUBRING_RING_IMAGE; CARRIER_SUBRING_GENERATED_SUBRING] THEN ASM_SIMP_TAC[QUOTIENT_RING; RING_IDEAL_RING_KERNEL] THEN REWRITE_TAC[ring_image] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RING_COSET_EQ; RING_IDEAL_RING_KERNEL]] THEN ASM_SIMP_TAC[ring_kernel; IN_ELIM_THM; RING_HOMOMORPHISM_SUB] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[RING_SUB; RING_SUB_EQ_0]);; let FIRST_RING_EPIMORPHISM_THEOREM = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f ==> (quotient_ring r (ring_kernel(r,r') f)) isomorphic_ring r'`, REWRITE_TAC[ring_epimorphism] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FIRST_RING_ISOMORPHISM_THEOREM) THEN ASM_REWRITE_TAC[ring_image; SUBRING_GENERATED_RING_CARRIER]);; let SECOND_RING_ISOMORPHISM_THEOREM = prove (`!r s j:A->bool. s subring_of r /\ ring_ideal r j ==> ring_ideal (subring_generated r (ring_setadd r s j)) j /\ ring_ideal (subring_generated r s) (s INTER j) /\ quotient_ring (subring_generated r (ring_setadd r s j)) j isomorphic_ring quotient_ring (subring_generated r s) (s INTER j)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(p /\ q) /\ (p /\ q ==> r) ==> p /\ q /\ r`) THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC RING_IDEAL_SUBRING_GENERATED THEN ASM_SIMP_TAC[SUBRING_SETADD_RIGHT] THEN MATCH_MP_TAC RING_SETADD_SUPERSET_RIGHT THEN ASM_MESON_TAC[subring_of; ring_ideal]; ASM_SIMP_TAC[RING_SUBRING_INTER_IDEAL]; STRIP_TAC] THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN MP_TAC(ISPECL [`subring_generated r s:A ring`; `quotient_ring (subring_generated r (ring_setadd r s (j:A->bool))) j`; `ring_coset r (j:A->bool)`] FIRST_RING_EPIMORPHISM_THEOREM) THEN ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[RING_KERNEL_FROM_SUBRING_GENERATED] THEN ASM_SIMP_TAC[ring_kernel; QUOTIENT_RING] THEN ASM_SIMP_TAC[RING_COSET_0; RING_IDEAL_IMP_SUBSET] THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM; IN_INTER] THEN ASM_MESON_TAC[RING_COSET_EQ_IDEAL; RING_IDEAL_IMP_SUBSET; SUBSET]] THEN SUBGOAL_THEN `subring_generated r s = subring_generated (subring_generated r (ring_setadd r s j)) (s:A->bool)` (fun th -> SUBST1_TAC th THEN ASSUME_TAC(SYM th)) THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUBRING_GENERATED_IDEMPOT THEN MATCH_MP_TAC RING_SETADD_SUPERSET_LEFT THEN ASM_MESON_TAC[subring_of; ring_ideal]; ALL_TAC] THEN REWRITE_TAC[RING_EPIMORPHISM_ALT] THEN CONJ_TAC THENL [MATCH_MP_TAC RING_HOMOMORPHISM_FROM_SUBRING_GENERATED THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_HOMOMORPHISM_RING_COSET o lhand o snd) THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[ring_coset; SUBRING_GENERATED]; ASM_SIMP_TAC[QUOTIENT_RING; ring_image] THEN ASM_SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; SUBRING_SETADD_RIGHT] THEN REWRITE_TAC[ring_coset; SUBRING_GENERATED] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; ring_setadd] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN REWRITE_TAC[IN_IMAGE] THEN REWRITE_TAC[GSYM(REWRITE_RULE[] (ONCE_REWRITE_RULE[FUN_EQ_THM] ring_coset))] THEN SUBGOAL_THEN `(x:A) IN ring_carrier r /\ y IN ring_carrier r` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[ring_ideal; subring_of; SUBSET]; EXISTS_TAC `x:A` THEN ASM_SIMP_TAC[RING_COSET_EQ; RING_ADD]] THEN SUBGOAL_THEN `ring_add r x y:A = ring_add r y x` SUBST1_TAC THENL [ASM_MESON_TAC[RING_ADD_SYM]; REWRITE_TAC[ring_sub]] THEN ASM_SIMP_TAC[GSYM RING_ADD_ASSOC; RING_NEG; RING_ADD_RNEG; RING_ADD_RZERO]]);; let THIRD_RING_ISOMORPHISM_THEOREM = prove (`!r j k:A->bool. ring_ideal r j /\ ring_ideal r k /\ j SUBSET k ==> quotient_ring (quotient_ring r j) (IMAGE (ring_coset r j) k) isomorphic_ring quotient_ring r k`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `quotient_ring r (k:A->bool)`; `j:A->bool`; `ring_coset r (k:A->bool)`] QUOTIENT_RING_UNIVERSAL_EPIMORPHISM) THEN ASM_SIMP_TAC[RING_EPIMORPHISM_RING_COSET; RING_KERNEL_RING_COSET] THEN DISCH_THEN(X_CHOOSE_THEN `g:(A->bool)->(A->bool)` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP FIRST_RING_EPIMORPHISM_THEOREM) THEN ASM_SIMP_TAC[ring_kernel; QUOTIENT_RING] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_RING_TRANS) THEN MATCH_MP_TAC(MESON[ISOMORPHIC_RING_REFL]`s = t ==> s isomorphic_ring t`) THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `{y | y IN {f x | P x} /\ Q y} = IMAGE f {x | P x /\ Q(f x)}`] THEN REWRITE_TAC[ETA_AX] THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN ASM_SIMP_TAC[RING_COSET_EQ; RING_0; RING_SUB_RZERO] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET)) THEN SET_TAC[]);; let QUOTIENT_RING_SUBRING_CORRESPONDENCE = prove (`!(r:A ring) j t. ring_ideal r j ==> (t subring_of (quotient_ring r j) <=> ?s. s subring_of r /\ j SUBSET s /\ {x | x IN ring_carrier r /\ ring_coset r j x IN t} = s /\ IMAGE (ring_coset r j) s = t)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_EPIMORPHISM_RING_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP RING_EPIMORPHISM_SUBRING_CORRESPONDENCE) THEN ASM_SIMP_TAC[RING_KERNEL_RING_COSET]);; let QUOTIENT_RING_IDEAL_CORRESPONDENCE = prove (`!(r:A ring) j k. ring_ideal r j ==> (ring_ideal (quotient_ring r j) k <=> ?i. ring_ideal r i /\ j SUBSET i /\ {x | x IN ring_carrier r /\ ring_coset r j x IN k} = i /\ IMAGE (ring_coset r j) i = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_EPIMORPHISM_RING_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP RING_EPIMORPHISM_IDEAL_CORRESPONDENCE) THEN ASM_SIMP_TAC[RING_KERNEL_RING_COSET]);; let FIRST_RING_ISOMORPHISM_THEOREM_GEN = prove (`!r r' (f:A->B) j k. ring_epimorphism(r,r') f /\ ring_ideal r' k /\ {x | x IN ring_carrier r /\ f x IN k} = j ==> quotient_ring r j isomorphic_ring quotient_ring r' k`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `quotient_ring r' (k:B->bool)`; `ring_coset r' k o (f:A->B)`] FIRST_RING_EPIMORPHISM_THEOREM) THEN ANTS_TAC THENL [MATCH_MP_TAC RING_EPIMORPHISM_COMPOSE THEN EXISTS_TAC `r':B ring` THEN ASM_SIMP_TAC[RING_EPIMORPHISM_RING_COSET]; MATCH_MP_TAC EQ_IMP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[ring_kernel; QUOTIENT_RING_0; o_THM] THEN GEN_REWRITE_TAC I [EXTENSION] THEN EXPAND_TAC "j" THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_CASES_TAC `(x:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RING_COSET_EQ_IDEAL THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_epimorphism]) THEN ASM SET_TAC[]);; let FIRST_RING_ISOMORPHISM_THEOREM_GEN_ALT = prove (`!r r' (f:A->B) j k. ring_epimorphism(r,r') f /\ ring_ideal r j /\ ring_kernel (r,r') f SUBSET j /\ IMAGE f j = k ==> quotient_ring r j isomorphic_ring quotient_ring r' k`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FIRST_RING_ISOMORPHISM_THEOREM_GEN THEN EXISTS_TAC `f:A->B` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RING_EPIMORPHISM_IDEAL_CORRESPONDENCE_ALT]);; (* ------------------------------------------------------------------------- *) (* Prime and irreducible elements. *) (* ------------------------------------------------------------------------- *) let ring_prime = new_definition `ring_prime r (p:A) <=> p IN ring_carrier r /\ ~(p = ring_0 r) /\ ~(ring_unit r p) /\ !a b. a IN ring_carrier r /\ b IN ring_carrier r /\ ring_divides r p (ring_mul r a b) ==> ring_divides r p a \/ ring_divides r p b`;; let ring_irreducible = new_definition `ring_irreducible r (p:A) <=> p IN ring_carrier r /\ ~(p = ring_0 r) /\ ~(ring_unit r p) /\ !a b. a IN ring_carrier r /\ b IN ring_carrier r /\ ring_mul r a b = p ==> ring_unit r a \/ ring_unit r b`;; let RING_PRIME_IN_CARRIER = prove (`!r a:A. ring_prime r a ==> a IN ring_carrier r`, SIMP_TAC[ring_prime]);; let RING_IRREDUCIBLE_IN_CARRIER = prove (`!r a:A. ring_irreducible r a ==> a IN ring_carrier r`, SIMP_TAC[ring_irreducible]);; let FIELD_PRIME = prove (`!r a:A. field r ==> ~(ring_prime r a)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[ring_prime; FIELD_DIVIDES; FIELD_UNIT] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_REWRITE_TAC[]);; let FIELD_IRREDUCIBLE = prove (`!r a:A. field r ==> ~(ring_irreducible r a)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[ring_irreducible; FIELD_DIVIDES; FIELD_UNIT] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_REWRITE_TAC[]);; let RING_ASSOCIATES_PRIME = prove (`!r a a':A. ring_associates r a a' ==> (ring_prime r a <=> ring_prime r a')`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_prime] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP RING_ASSOCIATES_IN_CARRIER) THEN ASM_REWRITE_TAC[] THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_ASSOCIATES_EQ_0]; ALL_TAC] THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_ASSOCIATES_UNIT]; ALL_TAC] THEN ASM_MESON_TAC[RING_MUL; RING_ASSOCIATES_DIVIDES; RING_ASSOCIATES_REFL]);; let RING_NONUNIT_DIVIDES_IRREDUCIBLE = prove (`!r p q:A. ~(ring_unit r p) /\ ring_irreducible r q /\ ring_divides r p q ==> ring_associates r p q`, SIMP_TAC[ring_irreducible; ring_associates] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_divides]) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `x:A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`p:A`; `x:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC RING_DIVIDES_ASSOCIATES THEN ONCE_REWRITE_TAC[RING_ASSOCIATES_SYM] THEN ASM_SIMP_TAC[RING_ASSOCIATES_RMUL]);; let RING_PRIME_DIVIDES_IRREDUCIBLE = prove (`!r p q:A. ring_prime r p /\ ring_irreducible r q /\ ring_divides r p q ==> ring_prime r q`, MESON_TAC[ring_prime; RING_ASSOCIATES_PRIME; RING_NONUNIT_DIVIDES_IRREDUCIBLE]);; let RING_PRIME_DIVIDES_MUL = prove (`!r p a b:A. ring_prime r p /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_divides r p (ring_mul r a b) <=> ring_divides r p a \/ ring_divides r p b)`, MESON_TAC[ring_prime; RING_DIVIDES_RMUL; RING_DIVIDES_LMUL]);; let RING_PRIME_DIVIDES_PRODUCT = prove (`!r p k (f:K->A). ring_prime r p /\ FINITE k /\ (!i. i IN k ==> f i IN ring_carrier r) ==> (ring_divides r p (ring_product r k f) <=> ?i. i IN k /\ ring_divides r p (f i))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_IN_EMPTY; FORALL_IN_INSERT; EXISTS_IN_INSERT] THEN SIMP_TAC[RING_PRODUCT_CLAUSES; RING_DIVIDES_ONE] THEN CONJ_TAC THENL [ASM_MESON_TAC[ring_prime]; ALL_TAC] THEN ASM_SIMP_TAC[RING_PRIME_DIVIDES_MUL; RING_PRODUCT]);; let INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE = prove (`!r p:A. integral_domain r /\ ring_prime r p ==> ring_irreducible r p`, REPEAT GEN_TAC THEN SIMP_TAC[ring_prime; ring_irreducible] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [DISJ_SYM] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`]) THEN ASM_REWRITE_TAC[RING_DIVIDES_REFL] THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN ASM_REWRITE_TAC[ring_divides; ring_unit] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN EXISTS_TAC `r:A ring` THEN EXISTS_TAC `p:A` THEN ASM_SIMP_TAC[RING_MUL; RING_1; RING_MUL_RID] THEN ASM_MESON_TAC[RING_MUL_AC]);; let INTEGRAL_DOMAIN_IRREDUCIBLE = prove (`!r a:A. integral_domain r ==> (ring_irreducible r a <=> a IN ring_carrier r /\ ~(a = ring_0 r) /\ ~ring_unit r a /\ !d. ring_divides r d a ==> ring_unit r d \/ ring_divides r a d)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_irreducible] THEN REPEAT(MATCH_MP_TAC(TAUT `(p ==> (q <=> q')) ==> (p /\ q <=> p /\ q')`) THEN DISCH_TAC) THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o LAND_CONV) [ring_divides] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:A` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th THEN ASM_REWRITE_TAC[]) THEN ASM_CASES_TAC `ring_unit r (x:A)` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THENL [ASM_MESON_TAC[RING_ASSOCIATES_RMUL; RING_DIVIDES_REFL; RING_ASSOCIATES_DIVIDES; RING_ASSOCIATES_REFL]; ASM_REWRITE_TAC[ring_divides; ring_unit] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SYM)) THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC] THEN DISCH_TAC THEN MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `x:A`] THEN ASM_SIMP_TAC[RING_1; RING_MUL_RID; RING_MUL] THEN ASM_MESON_TAC[RING_MUL_LZERO]]);; let INTEGRAL_DOMAIN_IRREDUCIBLE_ALT = prove (`!r a:A. integral_domain r ==> (ring_irreducible r a <=> a IN ring_carrier r /\ ~(a = ring_0 r) /\ ~ring_unit r a /\ !d. ring_divides r d a ==> ring_unit r d \/ ring_associates r d a)`, SIMP_TAC[ring_associates; INTEGRAL_DOMAIN_IRREDUCIBLE]);; let INTEGRAL_DOMAIN_IRREDUCIBLE_DIVISORS = prove (`!r a:A. integral_domain r ==> (ring_irreducible r a <=> a IN ring_carrier r /\ ~(a = ring_0 r) /\ ~ring_unit r a /\ !b c. b IN ring_carrier r /\ c IN ring_carrier r /\ ring_mul r b c = a ==> ring_divides r a b \/ ring_divides r a c)`, REPEAT STRIP_TAC THEN REWRITE_TAC[integral_domain; ring_irreducible] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`b:A`; `c:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`b:A`; `c:A`]) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_MUL_SELF] THEN ASM_MESON_TAC[RING_MUL_LZERO; RING_MUL_RZERO]);; let RING_ASSOCIATES_IRREDUCIBLE = prove (`!r a a':A. integral_domain r /\ ring_associates r a a' ==> (ring_irreducible r a <=> ring_irreducible r a')`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_IRREDUCIBLE_ALT] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP RING_ASSOCIATES_IN_CARRIER) THEN ASM_REWRITE_TAC[] THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_ASSOCIATES_EQ_0]; ALL_TAC] THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_ASSOCIATES_UNIT]; ALL_TAC] THEN ASM_MESON_TAC[ring_divides; RING_ASSOCIATES_DIVIDES; RING_ASSOCIATES_REFL; RING_ASSOCIATES_ASSOCIATES]);; let INTEGRAL_DOMAIN_DIVIDES_PRIME_LMUL = prove (`!r p a b:A. integral_domain r /\ ring_prime r p /\ a IN ring_carrier r /\ b IN ring_carrier r /\ ~(ring_divides r p a) ==> (ring_divides r a (ring_mul r p b) <=> ring_divides r a b)`, REWRITE_TAC[ring_prime] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[RING_DIVIDES_LMUL] THEN GEN_REWRITE_TAC LAND_CONV [ring_divides] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `x:A`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_REFL]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [ring_divides] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[ring_divides] THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `p:A`] THEN ASM_SIMP_TAC[RING_MUL] THEN ASM_SIMP_TAC[RING_MUL_AC]);; let INTEGRAL_DOMAIN_DIVIDES_PRIME_RMUL = prove (`!r p a b:A. integral_domain r /\ ring_prime r p /\ a IN ring_carrier r /\ b IN ring_carrier r /\ ~(ring_divides r p a) ==> (ring_divides r a (ring_mul r b p) <=> ring_divides r a b)`, MESON_TAC[INTEGRAL_DOMAIN_DIVIDES_PRIME_LMUL; RING_MUL_SYM; RING_PRIME_IN_CARRIER]);; let RING_IRREDUCIBLE_DIVIDES_OR_COPRIME = prove (`!r p a:A. ring_irreducible r p /\ a IN ring_carrier r ==> ring_divides r p a \/ ring_coprime r (p,a)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[ring_coprime; RING_IRREDUCIBLE_IN_CARRIER] THEN ASM_MESON_TAC[RING_NONUNIT_DIVIDES_IRREDUCIBLE; RING_ASSOCIATES_DIVIDES; RING_ASSOCIATES_REFL]);; let RING_IRREDUCIBLE_COPRIME_EQ = prove (`!r p a:A. ring_irreducible r p ==> (ring_coprime r (p,a) <=> a IN ring_carrier r /\ ~(ring_divides r p a))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[RING_COPRIME_IN_CARRIER]] THEN EQ_TAC THENL [GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_TAC; ASM_MESON_TAC[RING_IRREDUCIBLE_DIVIDES_OR_COPRIME]] THEN ASM_REWRITE_TAC[ring_coprime] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `p:A`)) THEN ASM_MESON_TAC[RING_DIVIDES_REFL; ring_irreducible]);; let INTEGRAL_DOMAIN_PRIME_DIVIDES_OR_COPRIME = prove (`!r p a:A. integral_domain r /\ ring_prime r p /\ a IN ring_carrier r ==> ring_divides r p a \/ ring_coprime r (p,a)`, MESON_TAC[RING_IRREDUCIBLE_DIVIDES_OR_COPRIME; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]);; let INTEGRAL_DOMAIN_PRIME_COPRIME_EQ = prove (`!r p a:A. integral_domain r /\ ring_prime r p ==> (ring_coprime r (p,a) <=> a IN ring_carrier r /\ ~(ring_divides r p a))`, MESON_TAC[RING_IRREDUCIBLE_COPRIME_EQ; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]);; let RING_PRIME_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) a. ring_isomorphism(r,r') f /\ a IN ring_carrier r ==> (ring_prime r' (f a) <=> ring_prime r a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_prime] THEN FIRST_ASSUM(SUBST1_TAC o SYM o el 1 o CONJUNCTS o REWRITE_RULE[RING_ISOMORPHISM]) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[FUN_IN_IMAGE] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[GSYM(MATCH_MP RING_HOMOMORPHISM_MUL (MATCH_MP RING_ISOMORPHISM_IMP_HOMOMORPHISM th))]) THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[RING_MUL; MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] RING_DIVIDES_ISOMORPHIC_IMAGE_EQ) th]) THEN BINOP_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_UNIT_ISOMORPHIC_IMAGE_EQ]] THEN ASM_MESON_TAC[RING_MONOMORPHISM_ALT_EQ; RING_ISOMORPHISM_IMP_MONOMORPHISM]);; let RING_IRREDUCIBLE_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) a. ring_isomorphism(r,r') f /\ a IN ring_carrier r ==> (ring_irreducible r' (f a) <=> ring_irreducible r a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_irreducible] THEN FIRST_ASSUM(SUBST1_TAC o SYM o el 1 o CONJUNCTS o REWRITE_RULE[RING_ISOMORPHISM]) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[FUN_IN_IMAGE] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[GSYM(MATCH_MP RING_HOMOMORPHISM_MUL (MATCH_MP RING_ISOMORPHISM_IMP_HOMOMORPHISM th))]) THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] RING_UNIT_ISOMORPHIC_IMAGE_EQ) th]) THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_MONOMORPHISM_ALT_EQ; RING_ISOMORPHISM_IMP_MONOMORPHISM]; ALL_TAC] THEN BINOP_TAC THENL [ASM_MESON_TAC[RING_UNIT_ISOMORPHIC_IMAGE_EQ]; ALL_TAC] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[RING_MUL; MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] RING_MONOMORPHISM_INJECTIVE_EQ) (MATCH_MP RING_ISOMORPHISM_IMP_MONOMORPHISM th)]));; (* ------------------------------------------------------------------------- *) (* Prime (not in general irreducible) factorizations are automatically *) (* unique, up to permutation and associates. Here we have several forms of *) (* that observation here, including one-way variants for divisibility, and *) (* with the refinement of only assuming irreducibility for one side. *) (* ------------------------------------------------------------------------- *) let RING_DIVIDES_PRIMEFACTS_INJECTION = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) /\ ring_divides r (ring_product r s f) (ring_product r t g) ==> ?h. IMAGE h s SUBSET t /\ (!i j. i IN s /\ j IN s /\ h i = h j ==> i = j) /\ (!i. i IN s ==> ring_associates r (f i) (g(h i)))`, REWRITE_TAC[INJECTIVE_ON_ALT; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; CARD_CLAUSES; LE_0] THEN MAP_EVERY X_GEN_TAC [`i:K`; `s:K->bool`] THEN STRIP_TAC THEN X_GEN_TAC `f:K->A` THEN STRIP_TAC THEN X_GEN_TAC `t:L->bool` THEN DISCH_TAC THEN X_GEN_TAC `g:L->A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `f:K->A`) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN DISCH_TAC THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; RING_PRIME_IN_CARRIER] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] RING_DIVIDES_RMUL_REV))) THEN ASM_SIMP_TAC[RING_PRODUCT; RING_PRIME_IN_CARRIER] THEN ASM_SIMP_TAC[RING_PRIME_DIVIDES_PRODUCT; RING_IRREDUCIBLE_IN_CARRIER] THEN DISCH_THEN(X_CHOOSE_THEN `j:L` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`t DELETE (j:L)`; `g:L->A`]) THEN ASM_SIMP_TAC[FINITE_DELETE; IN_DELETE; CARD_DELETE; CARD_CLAUSES] THEN SUBGOAL_THEN `ring_associates r ((f:K->A) i) ((g:L->A) j)` ASSUME_TAC THENL [ASM_MESON_TAC[RING_NONUNIT_DIVIDES_IRREDUCIBLE; ring_prime]; ALL_TAC] THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN(X_CHOOSE_THEN `h:K->L` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\k. if k = i then j else (h:K->L) k` THEN ASM SET_TAC[]] THEN SUBGOAL_THEN `ring_divides r (ring_mul r (f i) (ring_product r s (f:K->A))) (ring_mul r (f i) (ring_product r (t DELETE (j:L)) g))` MP_TAC THENL [ALL_TAC; ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_LMUL2; RING_PRIME_IN_CARRIER; RING_PRODUCT] THEN ASM_MESON_TAC[ring_prime]] THEN TRANS_TAC RING_DIVIDES_TRANS `ring_mul r ((g:L->A) j) (ring_product r (t DELETE j) g)` THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] RING_DIVIDES_TRANS)) THEN MATCH_MP_TAC(MESON[RING_DIVIDES_REFL] `a IN ring_carrier r /\ b = a ==> ring_divides r a b`) THEN REWRITE_TAC[RING_PRODUCT] THEN ABBREV_TAC `u = t DELETE (j:L)` THEN SUBGOAL_THEN `t = (j:L) INSERT u` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXPAND_TAC "u" THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; FINITE_DELETE] THEN EXPAND_TAC "u" THEN REWRITE_TAC[IN_DELETE] THEN ASM_SIMP_TAC[RING_IRREDUCIBLE_IN_CARRIER]; MATCH_MP_TAC RING_DIVIDES_RMUL2 THEN REWRITE_TAC[RING_PRODUCT] THEN MATCH_MP_TAC RING_DIVIDES_ASSOCIATES THEN ONCE_REWRITE_TAC[RING_ASSOCIATES_SYM] THEN ASM_REWRITE_TAC[]]);; let RING_DIVIDES_PRIMEFACTS_INJECTION_EQ = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) ==> (ring_divides r (ring_product r s f) (ring_product r t g) <=> ?h. IMAGE h s SUBSET t /\ (!i j. i IN s /\ j IN s /\ h i = h j ==> i = j) /\ (!i. i IN s ==> ring_associates r (f i) (g(h i))))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MATCH_MP_TAC RING_DIVIDES_PRIMEFACTS_INJECTION THEN ASM_REWRITE_TAC[]; REWRITE_TAC[INJECTIVE_ON_ALT] THEN DISCH_THEN(X_CHOOSE_THEN `h:K->L` STRIP_ASSUME_TAC)] THEN TRANS_TAC RING_DIVIDES_TRANS `ring_product r (IMAGE (h:K->L) s) (g:L->A)` THEN ASM_SIMP_TAC[RING_DIVIDES_PRODUCT_SUBSET] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_IMAGE o rand o snd) THEN ASM_REWRITE_TAC[INJECTIVE_ON_ALT] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC RING_PRODUCT_RELATED THEN ASM_REWRITE_TAC[RING_DIVIDES_REFL; RING_1; o_THM] THEN SIMP_TAC[RING_DIVIDES_MUL2] THEN RULE_ASSUM_TAC (REWRITE_RULE[ring_associates; ring_prime; ring_irreducible]) THEN ASM SET_TAC[]);; let RING_DIVIDES_PRIMEFACTS_LE = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) /\ ring_divides r (ring_product r s f) (ring_product r t g) ==> CARD s <= CARD t`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_DIVIDES_PRIMEFACTS_INJECTION) THEN REWRITE_TAC[INJECTIVE_ON_ALT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:K->L` THEN DISCH_TAC THEN TRANS_TAC LE_TRANS `CARD(IMAGE (h:K->L) s)` THEN ASM_SIMP_TAC[CARD_SUBSET] THEN MATCH_MP_TAC EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[INJECTIVE_ON_ALT]);; let RING_ASSOCIATES_PRIMEFACTS_BIJECTION = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) /\ ring_associates r (ring_product r s f) (ring_product r t g) ==> ?h. IMAGE h s = t /\ (!i j. i IN s /\ j IN s /\ h i = h j ==> i = j) /\ (!i. i IN s ==> ring_associates r (f i) (g(h i)))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `s:K->bool`; `f:K->A`; `t:L->bool`; `g:L->A`] RING_DIVIDES_PRIMEFACTS_INJECTION) THEN REWRITE_TAC[INJECTIVE_ON_ALT] THEN ASM_SIMP_TAC[RING_DIVIDES_ASSOCIATES] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:K->L` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC (SET_RULE `s SUBSET t /\ (~(t DIFF s = {}) ==> F) ==> s = t`) THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `ring_associates r (ring_product r s (f:K->A)) (ring_mul r (ring_product r s f) (ring_product r (t DIFF IMAGE (h:K->L) s) g))` MP_TAC THENL [ALL_TAC; ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_ASSOCIATES_MUL_SELF; RING_PRODUCT; RING_UNIT_PRODUCT; FINITE_DIFF; INTEGRAL_DOMAIN_PRODUCT_EQ_0] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_prime; ring_irreducible]) THEN ASM SET_TAC[]] THEN TRANS_TAC RING_ASSOCIATES_TRANS `ring_mul r (ring_product r (IMAGE h s) g) (ring_product r (t DIFF IMAGE (h:K->L) s) g):A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[GSYM RING_PRODUCT_UNION; FINITE_DIFF; FINITE_IMAGE; SET_RULE `DISJOINT s (t DIFF s)`] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> s UNION (t DIFF s) = t`]; MATCH_MP_TAC RING_ASSOCIATES_MUL THEN REWRITE_TAC[RING_ASSOCIATES_REFL; RING_PRODUCT] THEN ASM_SIMP_TAC[RING_PRODUCT_IMAGE; INJECTIVE_ON_ALT] THEN MATCH_MP_TAC RING_ASSOCIATES_PRODUCT THEN ASM_REWRITE_TAC[o_DEF] THEN ASM_MESON_TAC[RING_ASSOCIATES_SYM]]);; let RING_ASSOCIATES_PRIMEFACTS_BIJECTIONS = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) /\ ring_associates r (ring_product r s f) (ring_product r t g) ==> ?h k. IMAGE h s = t /\ IMAGE k t = s /\ (!i. i IN s ==> k(h i) = i) /\ (!j. j IN t ==> h(k j) = j) /\ (!i. i IN s ==> ring_associates r (f i) (g(h i))) /\ (!j. j IN t ==> ring_associates r (g j) (f(k j)))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP RING_ASSOCIATES_PRIMEFACTS_BIJECTION) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:K->L` THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:L->K` THEN GEN_REWRITE_TAC (funpow 6 RAND_CONV o ONCE_DEPTH_CONV) [RING_ASSOCIATES_SYM] THEN SET_TAC[]);; let RING_ASSOCIATES_PRIMEFACTS_BIJECTIONS_EQ = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) ==> (ring_associates r (ring_product r s f) (ring_product r t g) <=> ?h k. IMAGE h s = t /\ IMAGE k t = s /\ (!i. i IN s ==> k(h i) = i) /\ (!j. j IN t ==> h(k j) = j) /\ (!i. i IN s ==> ring_associates r (f i) (g(h i))) /\ (!j. j IN t ==> ring_associates r (g j) (f(k j))))`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[RING_ASSOCIATES_PRIMEFACTS_BIJECTIONS] THEN STRIP_TAC THEN UNDISCH_THEN `IMAGE (h:K->L) s = t` (SUBST1_TAC o SYM) THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_IMAGE o rand o snd) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC RING_ASSOCIATES_PRODUCT THEN ASM_REWRITE_TAC[o_THM]);; let RING_ASSOCIATES_PRIMEFACTS_BIJECTION_EQ = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) ==> (ring_associates r (ring_product r s f) (ring_product r t g) <=> ?h. IMAGE h s = t /\ (!i j. i IN s /\ j IN s /\ h i = h j ==> i = j) /\ (!i. i IN s ==> ring_associates r (f i) (g(h i))))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[RING_ASSOCIATES_PRIMEFACTS_BIJECTIONS_EQ] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN GEN_REWRITE_TAC (LAND_CONV o funpow 5 RAND_CONV o ONCE_DEPTH_CONV) [RING_ASSOCIATES_SYM] THEN ASM SET_TAC[]);; let RING_ASSOCIATES_PRIMEFACTS_EQ = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) /\ ring_associates r (ring_product r s f) (ring_product r t g) ==> CARD s = CARD t`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_ASSOCIATES_PRIMEFACTS_BIJECTION) THEN REWRITE_TAC[INJECTIVE_ON_ALT] THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[]);; let RING_DIVIDES_PRIMEFACTS_LT = prove (`!r s (f:K->A) t (g:L->A). integral_domain r /\ FINITE s /\ (!i. i IN s ==> ring_prime r (f i)) /\ FINITE t /\ (!j. j IN t ==> ring_irreducible r (g j)) /\ ring_divides r (ring_product r s f) (ring_product r t g) /\ ~(ring_divides r (ring_product r t g) (ring_product r s f)) ==> CARD s < CARD t`, REPEAT GEN_TAC THEN REPLICATE_TAC 5 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[MESON[ring_associates] `ring_divides r x y /\ ~(ring_divides r y x) <=> ring_divides r x y /\ ~(ring_associates r x y)`] THEN ASM_SIMP_TAC[RING_DIVIDES_PRIMEFACTS_INJECTION_EQ; RING_ASSOCIATES_PRIMEFACTS_BIJECTION_EQ] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] `(?x. P x) /\ ~(?x. Q x) ==> ?x. P x /\ ~Q x`)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; INJECTIVE_ON_ALT] THEN X_GEN_TAC `h:K->L` THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN TRANS_TAC LET_TRANS `CARD(IMAGE (h:K->L) s)` THEN CONJ_TAC THENL [MATCH_MP_TAC EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[]; MATCH_MP_TAC CARD_PSUBSET THEN ASM SET_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Multiplicative system in a ring. *) (* ------------------------------------------------------------------------- *) let ring_multsys = new_definition `ring_multsys (r:A ring) s <=> s SUBSET ring_carrier r /\ ring_1 r IN s /\ (!x y. x IN s /\ y IN s ==> ring_mul r x y IN s)`;; let RING_MULTSYS_IMP_SUBSET = prove (`!r s:A->bool. ring_multsys r s ==> s SUBSET ring_carrier r`, SIMP_TAC[ring_multsys]);; let RING_MULTSYS_IMP_NONEMPTY = prove (`!r s:A->bool. ring_multsys r s ==> ~(s = {})`, MESON_TAC[ring_multsys; NOT_IN_EMPTY]);; let RING_MULYSYS_1 = prove (`!r:A ring. ring_multsys r {ring_1 r}`, GEN_TAC THEN REWRITE_TAC[ring_multsys; SING_SUBSET; IN_SING] THEN SIMP_TAC[RING_1; RING_MUL_LID]);; let RING_MULYSYS_CARRIER = prove (`!r:A ring. ring_multsys r (ring_carrier r)`, GEN_TAC THEN REWRITE_TAC[ring_multsys; SUBSET_REFL] THEN SIMP_TAC[RING_1; RING_MUL]);; let RING_MULTSYS_REGULAR = prove (`!r:A ring. ring_multsys r {a | ring_regular r a}`, GEN_TAC THEN REWRITE_TAC[ring_multsys; IN_ELIM_THM] THEN REWRITE_TAC[RING_REGULAR_MUL; RING_REGULAR_1] THEN REWRITE_TAC[ring_regular] THEN SET_TAC[]);; let RING_MULTSYS_NONZERO = prove (`!r:A ring. ring_multsys r (ring_carrier r DIFF {ring_0 r}) <=> integral_domain r`, REWRITE_TAC[ring_multsys; IN_DIFF; IN_SING; integral_domain] THEN GEN_TAC THEN SIMP_TAC[RING_MUL; RING_1] THEN SET_TAC[]);; let RING_MULTSYS_POWERS = prove (`!r x:A. x IN ring_carrier r ==> ring_multsys r {ring_pow r x n | n IN (:num)}`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_multsys] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC; IN_UNIV] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_SIMP_TAC[GSYM RING_POW_ADD] THEN ASM_MESON_TAC[RING_POW; ring_pow]);; let RING_MULTSYS_UNITS = prove (`!r:A ring. ring_multsys r {u | ring_unit r u}`, SIMP_TAC[ring_multsys; IN_ELIM_THM; SUBSET; RING_UNIT_MUL; RING_UNIT_1] THEN SIMP_TAC[ring_unit]);; let RING_MULTSYS_IDEMPOT = prove (`!r x:A. x IN ring_carrier r /\ ring_mul r x x = x ==> ring_multsys r {ring_1 r,x}`, REWRITE_TAC[ring_multsys; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; IMP_IMP] THEN SIMP_TAC[IN_INSERT; NOT_IN_EMPTY; INSERT_SUBSET; EMPTY_SUBSET] THEN SIMP_TAC[RING_1; RING_MUL_LID; RING_MUL_RID]);; let RING_MULTSYS_INTERS = prove (`!r gs. (!g. g IN gs ==> ring_multsys r g) /\ ~(gs = {}) ==> ring_multsys r (INTERS gs)`, REWRITE_TAC[ring_multsys; SUBSET; IN_INTERS] THEN SET_TAC[]);; let RING_MULTSYS_INTER = prove (`!r s t:A->bool. ring_multsys r s /\ ring_multsys r t ==> ring_multsys r (s INTER t)`, REWRITE_TAC[ring_multsys] THEN SET_TAC[]);; let RING_POW_IN_MULTSYS = prove (`!r s (x:A) n. ring_multsys r s /\ x IN s ==> ring_pow r x n IN s`, REWRITE_TAC[RIGHT_FORALL_IMP_THM; ring_multsys] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow]);; let RING_MULTSYS_NILPOTENT_EXISTS = prove (`!r s:A->bool. ring_multsys r s ==> ((?x. ring_nilpotent r x /\ x IN s) <=> ring_0 r IN s)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[RING_NILPOTENT_0]] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_nilpotent]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM))) THEN ASM_SIMP_TAC[RING_POW_IN_MULTSYS]);; (* ------------------------------------------------------------------------- *) (* Localization, special case of total ring or field of fractions. *) (* ------------------------------------------------------------------------- *) let ring_localequiv = new_definition `ring_localequiv r s (a,b) (a',b') <=> a IN ring_carrier r /\ a' IN ring_carrier r /\ b IN s /\ b' IN s /\ ?u. u IN s /\ ring_mul r u (ring_sub r (ring_mul r a b') (ring_mul r a' b)) = ring_0 r`;; let RING_LOCALEQUIV = prove (`!r s a b a' b':A. ring_multsys r s ==> (ring_localequiv r s (a,b) (a',b') <=> a IN ring_carrier r /\ a' IN ring_carrier r /\ b IN ring_carrier r /\ b' IN ring_carrier r /\ b IN s /\ b' IN s /\ ?u. u IN s /\ ring_mul r u (ring_sub r (ring_mul r a b') (ring_mul r a' b)) = ring_0 r)`, REWRITE_TAC[ring_multsys; ring_localequiv; SUBSET] THEN MESON_TAC[]);; let RING_LOCALEQUIV_REFL = prove (`!r s a b:A. ring_multsys r s ==> (ring_localequiv r s (a,b) (a,b) <=> a IN ring_carrier r /\ b IN s)`, REWRITE_TAC[ring_multsys; SUBSET] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[ring_localequiv] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_CASES_TAC `(b:A) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[RING_MUL; RING_SUB_REFL] THEN ASM_MESON_TAC[RING_MUL_RZERO]);; let RING_LOCALEQUIV_SYM = prove (`!r s a b a' b':A. ring_multsys r s ==> (ring_localequiv r s (a,b) (a',b') <=> ring_localequiv r s (a',b') (a,b))`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_multsys; SUBSET] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN REWRITE_TAC[ring_localequiv; RIGHT_AND_EXISTS_THM] THEN EQ_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN RING_TAC THEN ASM SET_TAC[]);; let RING_LOCALEQUIV_TRANS = prove (`!r s a b a' b' a'' b'':A. ring_multsys r s /\ ring_localequiv r s (a,b) (a',b') /\ ring_localequiv r s (a',b') (a'',b'') ==> ring_localequiv r s (a,b) (a'',b'')`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_multsys] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_localequiv; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `u:A` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `v:A` THEN REPEAT DISCH_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `ring_mul r b' (ring_mul r u v):A` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; RING_TAC THEN ASM SET_TAC[]]);; let RING_LOCALEQUIV_EQUIV = prove (`!r s a b a' b'. ring_multsys r s /\ a IN ring_carrier r /\ a' IN ring_carrier r /\ b IN s /\ b' IN s ==> (ring_localequiv r s (a,b) (a',b') <=> ring_localequiv r s (a,b) = ring_localequiv r s (a',b'))`, REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN ASM_MESON_TAC[RING_LOCALEQUIV_REFL; RING_LOCALEQUIV_SYM; RING_LOCALEQUIV_TRANS]);; let RING_LOCALEQUIV_NEG = prove (`!r s a b a' b':A. ring_multsys r s /\ ring_localequiv r s (a,b) (a',b') ==> ring_localequiv r s (ring_neg r a,b) (ring_neg r a',b')`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_multsys] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_localequiv; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `u:A` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[RING_NEG] THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[] THEN RING_TAC THEN ASM SET_TAC[]);; let RING_LOCALEQUIV_ADD = prove (`!r s a1 b1 a1' b1' a2 b2 a2' b2':A. ring_multsys r s /\ ring_localequiv r s (a1,b1) (a1',b1') /\ ring_localequiv r s (a2,b2) (a2',b2') ==> ring_localequiv r s (ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1), ring_mul r b1 b2) (ring_add r (ring_mul r a1' b2') (ring_mul r a2' b1'), ring_mul r b1' b2')`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_multsys; SUBSET] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_localequiv; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `u:A` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `v:A` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[RING_MUL; RING_ADD] THEN EXISTS_TAC `ring_mul r u v:A` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; RING_TAC THEN ASM SET_TAC[]]);; let RING_LOCALEQUIV_MUL = prove (`!r s a1 b1 a1' b1' a2 b2 a2' b2':A. ring_multsys r s /\ ring_localequiv r s (a1,b1) (a1',b1') /\ ring_localequiv r s (a2,b2) (a2',b2') ==> ring_localequiv r s (ring_mul r a1 a2,ring_mul r b1 b2) (ring_mul r a1' a2',ring_mul r b1' b2')`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_multsys] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ring_localequiv; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `u:A` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `v:A` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[RING_MUL] THEN EXISTS_TAC `ring_mul r u v:A` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; RING_TAC THEN ASM SET_TAC[]]);; let ring_localization = new_definition `ring_localization (r:A ring) s = ring({ring_localequiv r s (a,b) |a,b| a IN ring_carrier r /\ b IN s}, ring_localequiv r s (ring_0 r,ring_1 r), ring_localequiv r s (ring_1 r,ring_1 r), (@f. !a b. a IN ring_carrier r /\ b IN s ==> f (ring_localequiv r s (a,b)) = ring_localequiv r s (ring_neg r a,b)), (@f. !a1 b1 a2 b2. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1), ring_mul r b1 b2)), (@f. !a1 b1 a2 b2. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_mul r a1 a2,ring_mul r b1 b2)))`;; let [RING_LOCALIZATION; RING_LOCALIZATION_NEG; RING_LOCALIZATION_ADD], RING_LOCALIZATION_MUL = let lemma = prove (`!(r:A->B) P. (!x x' y y'. P x y /\ P x' y' /\ r x = r x' /\ r y = r y' ==> r (f x y) = r (f x' y')) ==> ?g. !x y. P x y ==> g (r x) (r y) = r (f x y)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[MESON[] `(!x y. P x y ==> g (r x) (r y) = r (f x y)) <=> (!w z x y. P x y /\ r x = w /\ r y = z ==> g w z = r (f x y))`] THEN REWRITE_TAC[GSYM SKOLEM_THM] THEN ASM_METIS_TAC[]) in let localization_neg_exists = prove (`!r s:A->bool. ring_multsys r s ==> ?f. !a b. a IN ring_carrier r /\ b IN s ==> f (ring_localequiv r s (a,b)) = ring_localequiv r s (ring_neg r a,b)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC BINDER_CONV [FORALL_UNPAIR_THM] THEN GEN_REWRITE_TAC ONCE_DEPTH_CONV [EQ_SYM_EQ] THEN REWRITE_TAC[GSYM FUNCTION_FACTORS_LEFT_GEN] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[GSYM RING_LOCALEQUIV_EQUIV; RING_NEG] THEN STRIP_TAC THEN MATCH_MP_TAC RING_LOCALEQUIV_NEG THEN ASM_REWRITE_TAC[]) and localization_mul_exists = prove (`!r s:A->bool. ring_multsys r s ==> ?f. !a1 b1 a2 b2. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_mul r a1 a2,ring_mul r b1 b2)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC BINDER_CONV [FORALL_UNPAIR_THM] THEN GEN_REWRITE_TAC (BINDER_CONV o BINDER_CONV) [FORALL_UNPAIR_THM] THEN REWRITE_TAC[PAIR] THEN MATCH_MP_TAC(ISPEC `ring_localequiv (r:A ring) s` lemma) THEN REWRITE_TAC[FORALL_PAIR_THM] THEN REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ring_multsys]) THEN ASM_SIMP_TAC[GSYM RING_LOCALEQUIV_EQUIV; RING_MUL] THEN STRIP_TAC THEN MATCH_MP_TAC RING_LOCALEQUIV_MUL THEN ASM_REWRITE_TAC[]) and localization_add_exists = prove (`!r s:A->bool. ring_multsys r s ==> ?f. !a1 b1 a2 b2. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1), ring_mul r b1 b2)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC BINDER_CONV [FORALL_UNPAIR_THM] THEN GEN_REWRITE_TAC (BINDER_CONV o BINDER_CONV) [FORALL_UNPAIR_THM] THEN REWRITE_TAC[PAIR] THEN MATCH_MP_TAC(ISPEC `ring_localequiv (r:A ring) s` lemma) THEN REWRITE_TAC[FORALL_PAIR_THM] THEN REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ring_multsys]) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [GSYM RING_LOCALEQUIV_EQUIV; RING_MUL; RING_ADD] THEN STRIP_TAC THEN MATCH_MP_TAC RING_LOCALEQUIV_ADD THEN ASM_REWRITE_TAC[]) in (splitlist CONJ_PAIR o prove) (`((!r s:A->bool. ring_multsys r s ==> ring_carrier (ring_localization r s) = { ring_localequiv r s (a,b) |a,b| a IN ring_carrier r /\ b IN s}) /\ (!r s:A->bool. ring_multsys r s ==> ring_0 (ring_localization r s) = ring_localequiv r s (ring_0 r,ring_1 r)) /\ (!r s:A->bool. ring_multsys r s ==> ring_1 (ring_localization r s) = ring_localequiv r s (ring_1 r,ring_1 r)) /\ (!r s:A->bool. ring_multsys r s ==> ring_neg (ring_localization r s) = @f. !a b. a IN ring_carrier r /\ b IN s ==> f (ring_localequiv r s (a,b)) = ring_localequiv r s (ring_neg r a,b)) /\ (!r s:A->bool. ring_multsys r s ==> ring_add (ring_localization r s) = @f. !a1 b1 a2 b2. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1), ring_mul r b1 b2)) /\ (!r s:A->bool. ring_multsys r s ==> ring_mul (ring_localization r s) = @f. !a1 b1 a2 b2. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_mul r a1 a2,ring_mul r b1 b2))) /\ ((!r s a b:A. ring_multsys r s /\ a IN ring_carrier r /\ b IN s ==> ring_neg (ring_localization r s) (ring_localequiv r s (a,b)) = ring_localequiv r s (ring_neg r a,b)) /\ (!r s a1 b1 a2 b2:A. ring_multsys r s /\ a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> ring_add (ring_localization r s) (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1), ring_mul r b1 b2)) /\ (!r s a1 b1 a2 b2:A. ring_multsys r s /\ a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> ring_mul (ring_localization r s) (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_mul r a1 a2, ring_mul r b1 b2)))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GSYM AND_FORALL_THM] THEN ASM_CASES_TAC `ring_multsys r (s:A->bool)` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY ABBREV_TAC [`lneg = @f. !a b:A. a IN ring_carrier r /\ b IN s ==> f (ring_localequiv r s (a,b)) = ring_localequiv r s (ring_neg r a,b)`; `ladd = @f. !a1 b1 a2 b2:A. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1), ring_mul r b1 b2)`; `lmul = @f. !a1 b1 a2 b2:A. a1 IN ring_carrier r /\ b1 IN s /\ a2 IN ring_carrier r /\ b2 IN s ==> f (ring_localequiv r s (a1,b1)) (ring_localequiv r s (a2,b2)) = ring_localequiv r s (ring_mul r a1 a2,ring_mul r b1 b2)`] THEN FIRST_ASSUM(MP_TAC o SELECT_RULE o MATCH_MP localization_neg_exists) THEN FIRST_ASSUM(MP_TAC o SELECT_RULE o MATCH_MP localization_add_exists) THEN FIRST_ASSUM(MP_TAC o SELECT_RULE o MATCH_MP localization_mul_exists) THEN ASM_REWRITE_TAC[] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [DISCH_THEN(fun th -> ASM_SIMP_TAC[th]); ALL_TAC] THEN GEN_REWRITE_TAC (DEPTH_BINOP_CONV `/\` o LAND_CONV o ONCE_DEPTH_CONV) [ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul] THEN PURE_REWRITE_TAC[GSYM PAIR_EQ; BETA_THM; PAIR] THEN ASM_REWRITE_TAC[ring_localization; GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o SYM)) THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_multsys; SUBSET]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN REPLICATE_TAC 3 (CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[RING_0; RING_1; RING_NEG]; ALL_TAC]) THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`a1:A`; `b1:A`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`a2:A`; `b2:A`] THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `ring_add r (ring_mul r a1 b2) (ring_mul r a2 b1):A` THEN EXISTS_TAC `ring_mul r b1 b2:A` THEN ASM_MESON_TAC[RING_ADD; RING_MUL]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[RING_MUL]; ALL_TAC] THEN REPEAT CONJ_TAC THEN MP_TAC(GSYM(ISPECL [`r:A ring`; `s:A->bool`] RING_LOCALEQUIV_EQUIV)) THEN ASM_REWRITE_TAC[ring_multsys; SUBSET] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 6) [RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN DISCH_THEN(K ALL_TAC) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[ring_localequiv] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN EXISTS_TAC `ring_1 r:A` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[PAIR_EQ] THEN RING_TAC THEN ASM SET_TAC[]);; let RING_LOCALIZATION_CARRIER = prove (`!r s:A->bool. ring_multsys r s ==> ring_carrier (ring_localization r s) = { ring_localequiv r s (a,b) |a,b| a IN ring_carrier r /\ b IN s}`, REWRITE_TAC[RING_LOCALIZATION]);; let RING_LOCALIZATION_0 = prove (`!r s:A->bool. ring_multsys r s ==> ring_0 (ring_localization r s) = ring_localequiv r s (ring_0 r,ring_1 r)`, REWRITE_TAC[RING_LOCALIZATION]);; let RING_LOCALIZATION_1 = prove (`!r s:A->bool. ring_multsys r s ==> ring_1 (ring_localization r s) = ring_localequiv r s (ring_1 r,ring_1 r)`, REWRITE_TAC[RING_LOCALIZATION]);; let TRIVIAL_RING_LOCALIZATION = prove (`!r s:A->bool. ring_multsys r s ==> (trivial_ring(ring_localization r s) <=> ring_0 r IN s)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [ring_multsys]) THEN ASM_SIMP_TAC[TRIVIAL_RING_10; RING_LOCALIZATION_1; RING_LOCALIZATION_0; GSYM RING_LOCALEQUIV_EQUIV; RING_0; RING_1; ring_localequiv] THEN SIMP_TAC[RING_1; RING_0; RING_MUL_RID; RING_SUB_RZERO] THEN ASM_MESON_TAC[RING_MUL_RID; RING_MUL_LID; SUBSET]);; let RING_LOCALEQUIV_IN_CARRIER = prove (`!r s a b:A. ring_multsys r s /\ a IN ring_carrier r /\ b IN s ==> ring_localequiv r s (a,b) IN ring_carrier(ring_localization r s)`, SIMP_TAC[RING_LOCALIZATION_CARRIER] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]);; let RING_UNIT_LOCALEQUIV = prove (`!r s a b:A. ring_multsys r s /\ a IN s /\ b IN s ==> ring_unit (ring_localization r s) (ring_localequiv r s (a,b))`, REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ring_multsys]) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[ring_unit; RING_LOCALEQUIV_IN_CARRIER] THEN EXISTS_TAC `ring_localequiv r s (b:A,a)` THEN ASM_SIMP_TAC[RING_LOCALEQUIV_IN_CARRIER] THEN ASM_SIMP_TAC[RING_LOCALIZATION_MUL; RING_LOCALIZATION_1] THEN ASM_SIMP_TAC[GSYM RING_LOCALEQUIV_EQUIV; RING_MUL_LID; RING_MUL_RID] THEN ASM_SIMP_TAC[ring_localequiv; RING_1] THEN EXISTS_TAC `ring_1 r:A` THEN ASM_REWRITE_TAC[] THEN RING_TAC THEN ASM_SIMP_TAC[]);; let RING_LOCALEQUIV_EQ_0_GEN = prove (`!r s a b:A. ring_multsys r s /\ a IN ring_carrier r /\ b IN s ==> (ring_localequiv r s (a,b) = ring_0(ring_localization r s) <=> ?c. c IN s /\ ring_mul r c a = ring_0 r)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ring_multsys]) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[RING_LOCALIZATION_0; GSYM RING_LOCALEQUIV_EQUIV; RING_0] THEN ASM_SIMP_TAC[ring_localequiv; RING_0; RING_MUL_RID; RING_MUL_LZERO] THEN ASM_SIMP_TAC[RING_SUB_RZERO]);; let ring_fractionate = new_definition `ring_fractionate r s = \x:A. ring_localequiv r s (x,ring_1 r)`;; let RING_FRACTIONATE_IN_CARRIER = prove (`!r s a:A. ring_multsys r s /\ a IN ring_carrier r ==> ring_fractionate r s a IN ring_carrier (ring_localization r s)`, SIMP_TAC[RING_LOCALIZATION_CARRIER; ring_fractionate] THEN REWRITE_TAC[IN_ELIM_THM; ring_multsys] THEN MESON_TAC[]);; let RING_UNIT_FRACTIONATE = prove (`!r s a:A. ring_multsys r s /\ a IN s ==> ring_unit (ring_localization r s) (ring_fractionate r s a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_fractionate] THEN MATCH_MP_TAC RING_UNIT_LOCALEQUIV THEN ASM_MESON_TAC[ring_multsys]);; let RING_FRACTIONATE_EQ_0_GEN = prove (`!r s a:A. ring_multsys r s /\ a IN ring_carrier r ==> (ring_fractionate r s a = ring_0(ring_localization r s) <=> ?c. c IN s /\ ring_mul r c a = ring_0 r)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_fractionate] THEN MATCH_MP_TAC RING_LOCALEQUIV_EQ_0_GEN THEN ASM_MESON_TAC[ring_multsys]);; let RING_HOMOMORPHISM_FRACTIONATE = prove (`!r s:A->bool. ring_multsys r s ==> ring_homomorphism (r,ring_localization r s) (ring_fractionate r s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_fractionate] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o REWRITE_RULE[ring_multsys; SUBSET]) THEN ASM_SIMP_TAC[ring_homomorphism; RING_LOCALIZATION_CARRIER] THEN ASM_SIMP_TAC[RING_LOCALIZATION_0; RING_LOCALIZATION_1] THEN ASM_SIMP_TAC[RING_LOCALIZATION_NEG; SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[RING_LOCALIZATION_ADD; RING_LOCALIZATION_MUL] THEN SIMP_TAC[RING_MUL_RID; RING_1] THEN ASM SET_TAC[]);; let RING_MONOMORPHISM_FRACTIONATE_GEN = prove (`!r s:A->bool. ring_multsys r s ==> (ring_monomorphism (r,ring_localization r s) (ring_fractionate r s) <=> s SUBSET {a | ring_regular r a})`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o REWRITE_RULE[ring_multsys; SUBSET]) THEN ASM_SIMP_TAC[ring_monomorphism; RING_HOMOMORPHISM_FRACTIONATE] THEN REWRITE_TAC[ring_fractionate; IMP_CONJ] THEN ASM_SIMP_TAC[GSYM RING_LOCALEQUIV_EQUIV; ring_localequiv] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN REWRITE_TAC[ring_regular; ring_zerodivisor] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `a:A` THEN DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `ring_0 r:A`; `a:A`]) THEN ASM_SIMP_TAC[RING_0; RING_MUL_RID; RING_SUB_RZERO]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `a:A`] THEN SIMP_TAC[IMP_CONJ; RING_MUL_RID] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `ring_sub r x y:A`) THEN ASM_SIMP_TAC[RING_SUB_EQ_0; RING_SUB]]);; let RING_ISOMORPHISM_FRACTIONATE_GEN = prove (`!r s:A->bool. ring_multsys r s ==> (ring_isomorphism (r,ring_localization r s) (ring_fractionate r s) <=> s SUBSET {a | ring_unit r a})`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o REWRITE_RULE[ring_multsys; SUBSET]) THEN ASM_SIMP_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM; RING_EPIMORPHISM_ALT; RING_MONOMORPHISM_FRACTIONATE_GEN; RING_HOMOMORPHISM_FRACTIONATE; SUBSET; IN_ELIM_THM] THEN MATCH_MP_TAC(TAUT `(r ==> p) /\ (r ==> q) /\ (p ==> q ==> r) ==> (p /\ q <=> r)`) THEN CONJ_TAC THENL [MESON_TAC[RING_UNIT_IMP_REGULAR]; ALL_TAC] THEN ASM_SIMP_TAC[ring_image; ring_fractionate; RING_LOCALIZATION_CARRIER] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_IMAGE] THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. Q x ==> ~P x)`] THEN ASM_SIMP_TAC[GSYM RING_LOCALEQUIV_EQUIV] THEN ASM_SIMP_TAC[ring_localequiv; RING_MUL_RID] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN CONJ_TAC THENL [DISCH_THEN(fun th -> MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN MP_TAC(SPEC `b:A` th)) THEN ASM_SIMP_TAC[ring_unit] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_mul r a x:A` THEN ASM_SIMP_TAC[RING_MUL] THEN EXISTS_TAC `ring_1 r:A` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN RING_TAC THEN ASM_SIMP_TAC[]; DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `ring_1 r:A`) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:A` THEN ASM_CASES_TAC `(y:A) IN s` THEN ASM_SIMP_TAC[RING_1] THEN ASM_SIMP_TAC[ring_unit] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `ring_regular r (u:A)` MP_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[ring_regular]] THEN ASM_SIMP_TAC[ring_zerodivisor; IMP_CONJ; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `ring_sub r (ring_1 r) (ring_mul r z y):A`) THEN ASM_SIMP_TAC[RING_1; RING_SUB; RING_MUL] THEN RING_TAC THEN ASM SET_TAC[]]);; let RING_LOCALIZATION_UNCHANGED = prove (`!r s:A->bool. ring_multsys r s /\ s SUBSET {x | ring_unit r x} ==> (ring_localization r s) isomorphic_ring r`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[isomorphic_ring] THEN EXISTS_TAC `ring_fractionate r (s:A->bool)` THEN ASM_SIMP_TAC[RING_ISOMORPHISM_FRACTIONATE_GEN]);; let RING_LOCALIZATION_UNIVERSAL = prove (`!r s r' (f:A->B). ring_multsys r s /\ ring_homomorphism (r,r') f /\ (!x. x IN s ==> ring_unit r' (f x)) ==> ?g. ring_homomorphism(ring_localization r s,r') g /\ !x. x IN ring_carrier r ==> g (ring_fractionate r s x) = f x`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_multsys]) THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[ring_homomorphism]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `?g. !a b. a IN ring_carrier r /\ b IN s ==> g (ring_localequiv r s (a,b)) = ring_mul r' ((f:A->B) a) (ring_inv r' (f b))` MP_TAC THENL [GEN_REWRITE_TAC BINDER_CONV [FORALL_UNPAIR_THM] THEN GEN_REWRITE_TAC ONCE_DEPTH_CONV [EQ_SYM_EQ] THEN REWRITE_TAC[GSYM FUNCTION_FACTORS_LEFT_GEN] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`a1:A`; `b1:A`; `a2:A`; `b2:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[GSYM RING_LOCALEQUIV_EQUIV] THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] (RING_RULE `ring_mul r y1 (ring_inv r y1) = ring_1 r /\ ring_mul r y2 (ring_inv r y2) = ring_1 r /\ ring_mul r x1 y2 = ring_mul r x2 y1 ==> ring_mul r x1 (ring_inv r y1) = ring_mul r x2 (ring_inv r y2)`)) THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_INV; RING_MUL_RINV] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_localequiv]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o AP_TERM `ring_mul r' (ring_inv r' ((f:A->B) u)) o f`) THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_HOMOMORPHISM_0) THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_HOMOMORPHISM_SUB) THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_HOMOMORPHISM_MUL) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [o_THM; RING_SUB; RING_MUL; RING_MUL_ASSOC; RING_MUL_RZERO; RING_INV; RING_MUL_LINV; RING_MUL_LID; RING_SUB_EQ_0]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `g:(A#A->bool)->B` THEN DISCH_TAC THEN ASM_SIMP_TAC[ring_fractionate] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP RING_HOMOMORPHISM_1) THEN ASM_SIMP_TAC[RING_MUL_RID; RING_INV_1] THEN REWRITE_TAC[ring_homomorphism] THEN ASM_SIMP_TAC[RING_LOCALIZATION_CARRIER; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; SUBSET; FORALL_IN_IMAGE] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_homomorphism]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_LOCALIZATION_0; RING_LOCALIZATION_1; RING_0; RING_1; RING_LOCALIZATION_NEG; RING_LOCALIZATION_ADD; RING_NEG; RING_ADD; RING_LOCALIZATION_MUL; RING_MUL; RING_MUL_LZERO; RING_MUL_LID; RING_INV_1; RING_INV; RING_MUL_LNEG; RING_INV_MUL] THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`a1:A`; `b1:A`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`a2:A`; `b2:A`] THEN STRIP_TAC THEN (SUBGOAL_THEN `ring_unit r' ((f:A->B) b1) /\ ring_unit r' ((f:A->B) b2)` MP_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC]) THEN DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP RING_MUL_RINV)) THEN RING_TAC THEN ASM_SIMP_TAC[RING_INV]);; let fraction_ring = new_definition `fraction_ring (r:A ring) = ring_localization r {a | ring_regular r a}`;; let RING_LOCALEQUIV_EQ_0 = prove (`!r a b:A. a IN ring_carrier r /\ ring_regular r b ==> (ring_localequiv r {x | ring_regular r x} (a,b) = ring_0(fraction_ring r) <=> a = ring_0 r)`, REPEAT STRIP_TAC THEN REWRITE_TAC[fraction_ring] THEN ASM_SIMP_TAC[RING_LOCALEQUIV_EQ_0_GEN; RING_MULTSYS_REGULAR; IN_ELIM_THM] THEN REWRITE_TAC[IN_ELIM_THM] THEN EQ_TAC THENL [REWRITE_TAC[ring_regular; ring_zerodivisor] THEN ASM_MESON_TAC[]; ASM_MESON_TAC[RING_MUL_RZERO; RING_REGULAR_IN_CARRIER]]);; let RING_FRACTIONATE_EQ_0 = prove (`!r a:A. a IN ring_carrier r ==> (ring_fractionate r {x | ring_regular r x} a = ring_0(fraction_ring r) <=> a = ring_0 r)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_fractionate] THEN MATCH_MP_TAC RING_LOCALEQUIV_EQ_0 THEN ASM_REWRITE_TAC[RING_REGULAR_1]);; let RING_MONOMORPHISM_FRACTIONATE = prove (`!r:A ring. ring_monomorphism (r,fraction_ring r) (ring_fractionate r {a | ring_regular r a})`, SIMP_TAC[fraction_ring; RING_MONOMORPHISM_FRACTIONATE_GEN; RING_MULTSYS_REGULAR; SUBSET_REFL]);; let FRACTION_RING_UNIVERSAL = prove (`!r r' (f:A->B). ring_homomorphism (r,r') f /\ (!x. ring_regular r x ==> ring_unit r' (f x)) ==> ?g. ring_homomorphism(fraction_ring r,r') g /\ !x. x IN ring_carrier r ==> g (ring_fractionate r {a | ring_regular r a} x) = f x`, REPEAT STRIP_TAC THEN REWRITE_TAC[fraction_ring] THEN MATCH_MP_TAC RING_LOCALIZATION_UNIVERSAL THEN ASM_REWRITE_TAC[IN_ELIM_THM; RING_MULTSYS_REGULAR]);; let RING_UNIT_FRACTION_RING,RING_ZERODIVISOR_FRACTION_RING = (CONJ_PAIR o prove) (`(!r a b:A. a IN ring_carrier r /\ ring_regular r b ==> (ring_unit (fraction_ring r) (ring_localequiv r {x | ring_regular r x} (a,b)) <=> ring_regular r a)) /\ (!r a b:A. a IN ring_carrier r /\ ring_regular r b ==> (ring_zerodivisor (fraction_ring r) (ring_localequiv r {x | ring_regular r x} (a,b)) <=> ring_zerodivisor r a))`, REWRITE_TAC[ring_regular; AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(~r ==> p) /\ (r ==> q) /\ (q ==> ~p) ==> (p <=> ~r) /\ (q <=> r)`) THEN REWRITE_TAC[RING_ZERODIVISOR_IMP_NONUNIT] THEN CONJ_TAC THENL [DISCH_TAC THEN REWRITE_TAC[fraction_ring; GSYM ring_regular] THEN MATCH_MP_TAC RING_UNIT_LOCALEQUIV THEN REWRITE_TAC[RING_MULTSYS_REGULAR; IN_ELIM_THM] THEN ASM_REWRITE_TAC[ring_regular]; REWRITE_TAC[GSYM ring_regular] THEN ASM_REWRITE_TAC[ring_zerodivisor] THEN DISCH_THEN(X_CHOOSE_THEN `c:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `ring_regular r (b:A)` ASSUME_TAC THENL [ASM_MESON_TAC[ring_regular]; ALL_TAC] THEN ASM_SIMP_TAC[fraction_ring; RING_LOCALEQUIV_IN_CARRIER; RING_MULTSYS_REGULAR; IN_ELIM_THM] THEN EXISTS_TAC `ring_fractionate r {x | ring_regular r x} (c:A)` THEN REWRITE_TAC[ring_fractionate] THEN ASM_SIMP_TAC[RING_LOCALEQUIV_IN_CARRIER; RING_MULTSYS_REGULAR; RING_0; IN_ELIM_THM; RING_REGULAR_1; RING_LOCALEQUIV_EQ_0_GEN; RING_LOCALIZATION_MUL; RING_REGULAR_MUL] THEN ASM_MESON_TAC[ring_regular; ring_zerodivisor; RING_REGULAR_1; RING_MUL_RZERO]]);; let FRACTION_RING_UNIT_EQ_REGULAR = prove (`!(r:A ring) a. ring_unit (fraction_ring r) a <=> ring_regular (fraction_ring r) a`, GEN_TAC THEN MATCH_MP_TAC (MESON[RING_UNIT_IN_CARRIER; RING_REGULAR_IN_CARRIER] `(!a. a IN ring_carrier r ==> (ring_unit r a <=> ring_regular r a)) ==> !a. ring_unit r a <=> ring_regular r a`) THEN SIMP_TAC[fraction_ring; RING_LOCALIZATION_CARRIER; RING_MULTSYS_REGULAR] THEN REWRITE_TAC[GSYM fraction_ring; FORALL_IN_GSPEC] THEN SIMP_TAC[IN_ELIM_THM; RING_UNIT_FRACTION_RING] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [ring_regular] THEN ASM_SIMP_TAC[RING_ZERODIVISOR_FRACTION_RING] THEN ASM_SIMP_TAC[RING_LOCALEQUIV_IN_CARRIER; fraction_ring; RING_MULTSYS_REGULAR; IN_ELIM_THM] THEN ASM_REWRITE_TAC[ring_regular]);; let FRACTION_RING_UNIT_OR_ZERODIVISOR = prove (`!(r:A ring) a. a IN ring_carrier(fraction_ring r) ==> ring_unit (fraction_ring r) a \/ ring_zerodivisor (fraction_ring r) a`, SIMP_TAC[FRACTION_RING_UNIT_EQ_REGULAR; ring_regular] THEN CONV_TAC TAUT);; let TRIVIAL_FRACTION_RING = prove (`!r:A ring. trivial_ring(fraction_ring r) <=> trivial_ring r`, SIMP_TAC[fraction_ring; TRIVIAL_RING_LOCALIZATION; RING_MULTSYS_REGULAR] THEN REWRITE_TAC[IN_ELIM_THM; RING_REGULAR_0]);; let FRACTION_FIELD = prove (`!r:A ring. field(fraction_ring r) <=> integral_domain r`, GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MP_TAC(ISPEC `r:A ring` RING_MONOMORPHISM_FRACTIONATE) THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] INTEGRAL_DOMAIN_MONOMORPHIC_PREIMAGE)) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]; DISCH_TAC THEN REWRITE_TAC[FIELD_EQ_ALL_UNITS; GSYM TRIVIAL_RING_10] THEN REWRITE_TAC[TRIVIAL_FRACTION_RING] THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_IMP_NONTRIVIAL_RING] THEN SIMP_TAC[fraction_ring; RING_LOCALIZATION_CARRIER; RING_MULTSYS_REGULAR; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_GSPEC; GSYM fraction_ring] THEN SIMP_TAC[RING_LOCALEQUIV_EQ_0; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[fraction_ring] THEN MATCH_MP_TAC RING_UNIT_LOCALEQUIV THEN ASM_REWRITE_TAC[RING_MULTSYS_REGULAR; IN_ELIM_THM] THEN ASM_MESON_TAC[INTEGRAL_DOMAIN_REGULAR]]);; let FRACTION_DOMAIN = prove (`!r:A ring. integral_domain(fraction_ring r) <=> integral_domain r`, GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MP_TAC(ISPEC `r:A ring` RING_MONOMORPHISM_FRACTIONATE) THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] INTEGRAL_DOMAIN_MONOMORPHIC_PREIMAGE)) THEN ASM_REWRITE_TAC[]; GEN_REWRITE_TAC LAND_CONV [GSYM FRACTION_FIELD] THEN REWRITE_TAC[FIELD_IMP_INTEGRAL_DOMAIN]]);; (* ------------------------------------------------------------------------- *) (* Special types of ideal, hence PID and Noetherian rings. *) (* ------------------------------------------------------------------------- *) let proper_ideal = new_definition `proper_ideal (r:A ring) j <=> ring_ideal r j /\ j PSUBSET ring_carrier r`;; let principal_ideal = new_definition `principal_ideal (r:A ring) j <=> ?a. a IN ring_carrier r /\ ideal_generated r {a} = j`;; let finitely_generated_ideal = new_definition `finitely_generated_ideal (r:A ring) j <=> ?s. FINITE s /\ s SUBSET ring_carrier r /\ ideal_generated r s = j`;; let prime_ideal = new_definition `prime_ideal (r:A ring) j <=> proper_ideal r j /\ !x y. x IN ring_carrier r /\ y IN ring_carrier r /\ (ring_mul r x y) IN j ==> x IN j \/ y IN j`;; let maximal_ideal = new_definition `maximal_ideal (r:A ring) j <=> proper_ideal r j /\ ~(?j'. proper_ideal r j' /\ j PSUBSET j')`;; let PID = new_definition `PID (r:A ring) <=> integral_domain r /\ !j. ring_ideal r j ==> principal_ideal r j`;; let noetherian_ring = new_definition `noetherian_ring (r:A ring) <=> !j. ring_ideal r j ==> finitely_generated_ideal r j`;; let PROPER_IMP_RING_IDEAL = prove (`!r j:A->bool. proper_ideal r j ==> ring_ideal r j`, SIMP_TAC[proper_ideal]);; let PROPER_IDEAL_IMP_SUBSET = prove (`!r s:A->bool. proper_ideal r s ==> s SUBSET ring_carrier r`, SIMP_TAC[ring_ideal; proper_ideal]);; let PROPER_IDEAL_IMP_PSUBSET = prove (`!r s:A->bool. proper_ideal r s ==> s PSUBSET ring_carrier r`, SIMP_TAC[proper_ideal]);; let PRINCIPAL_IMP_RING_IDEAL = prove (`!r j:A->bool. principal_ideal r j ==> ring_ideal r j`, REWRITE_TAC[principal_ideal] THEN MESON_TAC[RING_IDEAL_IDEAL_GENERATED]);; let PRINCIPAL_IDEAL_IMP_SUBSET = prove (`!r s:A->bool. principal_ideal r s ==> s SUBSET ring_carrier r`, MESON_TAC[principal_ideal; IDEAL_GENERATED_SUBSET]);; let FINITELY_GENERATED_IMP_RING_IDEAL = prove (`!r j:A->bool. finitely_generated_ideal r j ==> ring_ideal r j`, REWRITE_TAC[finitely_generated_ideal] THEN MESON_TAC[RING_IDEAL_IDEAL_GENERATED]);; let FINITELY_GENERATED_IDEAL_IMP_SUBSET = prove (`!r s:A->bool. finitely_generated_ideal r s ==> s SUBSET ring_carrier r`, MESON_TAC[finitely_generated_ideal; IDEAL_GENERATED_SUBSET]);; let PRIME_IMP_PROPER_IDEAL = prove (`!r j:A->bool. prime_ideal r j ==> proper_ideal r j`, SIMP_TAC[prime_ideal]);; let PRIME_IMP_RING_IDEAL = prove (`!r j:A->bool. prime_ideal r j ==> ring_ideal r j`, SIMP_TAC[prime_ideal; proper_ideal]);; let PRIME_IDEAL_IMP_SUBSET = prove (`!r j:A->bool. prime_ideal r j ==> j SUBSET ring_carrier r`, SIMP_TAC[RING_IDEAL_IMP_SUBSET; PRIME_IMP_RING_IDEAL]);; let PRIME_IDEAL_IMP_PSUBSET = prove (`!r j:A->bool. prime_ideal r j ==> j PSUBSET ring_carrier r`, SIMP_TAC[PROPER_IDEAL_IMP_PSUBSET; PRIME_IMP_PROPER_IDEAL]);; let MAXIMAL_IMP_PROPER_IDEAL = prove (`!r j:A->bool. maximal_ideal r j ==> proper_ideal r j`, SIMP_TAC[maximal_ideal]);; let MAXIMAL_IMP_RING_IDEAL = prove (`!r j:A->bool. maximal_ideal r j ==> ring_ideal r j`, SIMP_TAC[maximal_ideal; proper_ideal]);; let MAXIMAL_IDEAL_IMP_SUBSET = prove (`!r j:A->bool. maximal_ideal r j ==> j SUBSET ring_carrier r`, SIMP_TAC[RING_IDEAL_IMP_SUBSET; MAXIMAL_IMP_RING_IDEAL]);; let MAXIMAL_IDEAL_IMP_PSUBSET = prove (`!r j:A->bool. maximal_ideal r j ==> j PSUBSET ring_carrier r`, SIMP_TAC[PROPER_IDEAL_IMP_PSUBSET; MAXIMAL_IMP_PROPER_IDEAL]);; let PROPER_IDEAL_0 = prove (`!r:A ring. proper_ideal r {ring_0 r} <=> ~trivial_ring r`, GEN_TAC THEN REWRITE_TAC[proper_ideal; RING_IDEAL_0; trivial_ring] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN SET_TAC[]);; let PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL = prove (`!r j:A->bool. principal_ideal r j ==> finitely_generated_ideal r j`, REPEAT GEN_TAC THEN REWRITE_TAC[principal_ideal; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN REWRITE_TAC[finitely_generated_ideal] THEN EXISTS_TAC `{a:A}` THEN ASM_REWRITE_TAC[SING_SUBSET; FINITE_SING]);; let PID_IMP_INTEGRAL_DOMAIN = prove (`!r:A ring. PID r ==> integral_domain r`, SIMP_TAC[PID]);; let PID_IMP_NOETHERIAN_RING = prove (`!r:A ring. PID r ==> noetherian_ring r`, REWRITE_TAC[PID; noetherian_ring] THEN MESON_TAC[PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL]);; let PRINCIPAL_IDEAL_ALT = prove (`!(r:A ring) j. principal_ideal (r:A ring) j <=> ?a. ideal_generated r {a} = j`, REPEAT GEN_TAC THEN REWRITE_TAC[principal_ideal] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` MP_TAC) THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IDEAL_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `~(x IN s) ==> s INTER {x} = {}`] THEN REWRITE_TAC[IDEAL_GENERATED_EMPTY] THEN MESON_TAC[IDEAL_GENERATED_0; RING_0]);; let PRINCIPAL_IDEAL_IDEAL_GENERATED_SING = prove (`!r a:A. principal_ideal r (ideal_generated r {a})`, MESON_TAC[PRINCIPAL_IDEAL_ALT]);; let PRINCIPAL_IDEAL_0 = prove (`!r:A ring. principal_ideal r {ring_0 r}`, REWRITE_TAC[principal_ideal] THEN MESON_TAC[IDEAL_GENERATED_0; RING_0]);; let FINITELY_GENERATED_IDEAL_0 = prove (`!r:A ring. finitely_generated_ideal r {ring_0 r}`, MESON_TAC[PRINCIPAL_IDEAL_0; PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL]);; let PRINCIPAL_IDEAL_CARRIER = prove (`!r:A ring. principal_ideal r (ring_carrier r)`, GEN_TAC THEN REWRITE_TAC[principal_ideal] THEN EXISTS_TAC `ring_1 r:A` THEN SIMP_TAC[RING_IDEAL_EQ_CARRIER; RING_IDEAL_IDEAL_GENERATED; RING_1; IDEAL_GENERATED_INC_GEN; IN_SING]);; let FINITELY_GENERATED_IDEAL_CARRIER = prove (`!r:A ring. finitely_generated_ideal r (ring_carrier r)`, MESON_TAC[PRINCIPAL_IDEAL_CARRIER; PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL]);; let PROPER_IDEAL_ALT = prove (`!(r:A ring) j. proper_ideal r j <=> ring_ideal r j /\ ~(j = ring_carrier r)`, REWRITE_TAC[proper_ideal; PSUBSET] THEN MESON_TAC[RING_IDEAL_IMP_SUBSET]);; let NONPRINCIPAL_IMP_PROPER_IDEAL = prove (`!r:A ring. ring_ideal r j /\ ~(principal_ideal r j) ==> proper_ideal r j`, SIMP_TAC[PROPER_IDEAL_ALT] THEN MESON_TAC[PRINCIPAL_IDEAL_CARRIER; SET_RULE `~(s PSUBSET s)`]);; let NONFINITELY_GENERATED_IMP_PROPER_IDEAL = prove (`!r:A ring. ring_ideal r j /\ ~(finitely_generated_ideal r j) ==> proper_ideal r j`, MESON_TAC[NONPRINCIPAL_IMP_PROPER_IDEAL; PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL]);; let FINITELY_GENERATED_IDEAL_ALT = prove (`!(r:A ring) j. finitely_generated_ideal (r:A ring) j <=> ?s. FINITE s /\ ideal_generated r s = j`, REPEAT GEN_TAC THEN REWRITE_TAC[finitely_generated_ideal] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(ring_carrier r INTER s):A->bool` THEN ASM_REWRITE_TAC[INTER_SUBSET; GSYM IDEAL_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[FINITE_INTER]);; let FINITELY_GENERATED_IDEAL_GENERATED = prove (`!(r:A ring) s. FINITE s ==> finitely_generated_ideal r (ideal_generated r s)`, REWRITE_TAC[FINITELY_GENERATED_IDEAL_ALT] THEN MESON_TAC[]);; let FINITELY_GENERATED_IDEAL_SETADD = prove (`!r j k:A->bool. finitely_generated_ideal r j /\ finitely_generated_ideal r k ==> finitely_generated_ideal r (ring_setadd r j k)`, REPEAT GEN_TAC THEN REWRITE_TAC[finitely_generated_ideal] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `s UNION t:A->bool` THEN ASM_REWRITE_TAC[FINITE_UNION; UNION_SUBSET; IDEAL_GENERATED_UNION]);; let PROPER_IDEAL = prove (`!(r:A ring) j. proper_ideal r j <=> ring_ideal r j /\ ~(ring_1 r IN j)`, SIMP_TAC[proper_ideal; PSUBSET] THEN MESON_TAC[RING_IDEAL_IMP_SUBSET; RING_IDEAL_EQ_CARRIER]);; let PROPER_IDEAL_UNIT = prove (`!(r:A ring) j. proper_ideal r j <=> ring_ideal r j /\ DISJOINT j {u | ring_unit r u}`, REWRITE_TAC[SET_RULE `DISJOINT u {x | P x} <=> ~(?x. P x /\ x IN u)`] THEN SIMP_TAC[proper_ideal; PSUBSET] THEN MESON_TAC[RING_IDEAL_IMP_SUBSET; RING_IDEAL_EQ_CARRIER_UNIT]);; let PROPER_IDEAL_UNIONS = prove (`!r (u:(A->bool)->bool). ~(u = {}) /\ (!h. h IN u ==> proper_ideal r h) /\ (!g h. g IN u /\ h IN u ==> g SUBSET h \/ h SUBSET g) ==> proper_ideal r (UNIONS u)`, SIMP_TAC[PROPER_IDEAL; RING_IDEAL_UNIONS] THEN SET_TAC[]);; let PROPER_IDEAL_EXISTS = prove (`!(r:A ring). (?j. proper_ideal r j) <=> ~(trivial_ring r)`, GEN_TAC THEN REWRITE_TAC[proper_ideal; TRIVIAL_RING_SUBSET] THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `j:A->bool` THEN MP_TAC(ISPECL [`r:A ring`; `j:A->bool`] IN_RING_IDEAL_0) THEN SET_TAC[]; DISCH_TAC THEN EXISTS_TAC `{ring_0 r:A}` THEN REWRITE_TAC[RING_IDEAL_0] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN ASM SET_TAC[]]);; let FINITELY_GENERATED_IDEAL_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B) j. ring_epimorphism (r,r') f /\ finitely_generated_ideal r j ==> finitely_generated_ideal r' (IMAGE f j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[finitely_generated_ideal] THEN FIRST_ASSUM (SUBST1_TAC o SYM o CONJUNCT2 o REWRITE_RULE[ring_epimorphism]) THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE]);; let PRINCIPAL_IDEAL_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B) j. ring_epimorphism (r,r') f /\ principal_ideal r j ==> principal_ideal r' (IMAGE f j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[principal_ideal] THEN FIRST_ASSUM (SUBST1_TAC o SYM o CONJUNCT2 o REWRITE_RULE[ring_epimorphism]) THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[IMAGE_CLAUSES; SING_SUBSET; IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE]);; let PROPER_IDEAL_HOMOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B) j. ring_homomorphism(r,r') f /\ proper_ideal r' j ==> proper_ideal r {x | x IN ring_carrier r /\ f x IN j}`, REWRITE_TAC[PROPER_IDEAL; IN_ELIM_THM; RING_1] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC RING_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM SET_TAC[]; ASM_MESON_TAC[RING_HOMOMORPHISM_1]]);; let PROPER_IDEAL_CORRESPONDENCE = prove (`!r r' (f:A->B) j k. ring_homomorphism (r,r') f /\ ring_ideal r' k /\ {x | x IN ring_carrier r /\ f x IN k} = j ==> (proper_ideal r j <=> proper_ideal r' k)`, SIMP_TAC[PROPER_IDEAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[IN_ELIM_THM; RING_1] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP RING_HOMOMORPHISM_1) THEN ASM_CASES_TAC `(ring_1 r':B) IN k` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RING_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]);; let PROPER_IDEAL_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) j. ring_isomorphism(r,r') f /\ j SUBSET ring_carrier r ==> (proper_ideal r' (IMAGE f j) <=> proper_ideal r j)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_ISOMORPHIC_IMAGE_EQ) THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (q' ==> p') /\ (p' ==> (q' <=> q)) ==> (p' <=> p) ==> (q' <=> q)`) THEN REWRITE_TAC[PROPER_IMP_RING_IDEAL] THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC PROPER_IDEAL_CORRESPONDENCE THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[RING_ISOMORPHISM_IMP_HOMOMORPHISM] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_isomorphism; ring_isomorphisms]) THEN ASM SET_TAC[]);; let PRIME_IDEAL_HOMOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B) j. ring_homomorphism(r,r') f /\ prime_ideal r' j ==> prime_ideal r {x | x IN ring_carrier r /\ f x IN j}`, REWRITE_TAC[prime_ideal; IN_ELIM_THM] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC PROPER_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM SET_TAC[]; ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM SET_TAC[]]);; let RING_1_NOT_IN_PRIME_IDEAL = prove (`!r j:A->bool. prime_ideal r j ==> ~(ring_1 r IN j)`, MESON_TAC[PROPER_IDEAL; prime_ideal]);; let RING_UNIT_NOT_IN_PRIME_IDEAL = prove (`!r j x:A. prime_ideal r j /\ ring_unit r x ==> ~(x IN j)`, REWRITE_TAC[prime_ideal; PROPER_IDEAL_UNIT] THEN SET_TAC[]);; let RING_MUL_IN_PRIME_IDEAL = prove (`!r j x y:A. prime_ideal r j /\ x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_mul r x y IN j <=> x IN j \/ y IN j)`, ASM_MESON_TAC[prime_ideal; proper_ideal; ring_ideal; RING_MUL_SYM; SUBSET]);; let RING_POW_IN_PRIME_IDEAL = prove (`!r j (x:A) n. prime_ideal r j /\ x IN ring_carrier r ==> (ring_pow r x n IN j <=> ~(n = 0) /\ x IN j)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[ring_pow; RING_1_NOT_IN_PRIME_IDEAL] THEN ASM_SIMP_TAC[RING_MUL_IN_PRIME_IDEAL; RING_POW; NOT_SUC] THEN CONV_TAC TAUT);; let MAXIMAL_SUPERIDEAL_EXISTS = prove (`!(r:A ring) j. proper_ideal r j ==> ?j'. maximal_ideal r j' /\ j SUBSET j'`, REWRITE_TAC[PROPER_IDEAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\j'. proper_ideal (r:A ring) j' /\ j SUBSET j'` ZL_SUBSETS_UNIONS_NONEMPTY) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[MEMBER_NOT_EMPTY; PROPER_IDEAL] THEN SIMP_TAC[RING_IDEAL_UNIONS] THEN ASM SET_TAC[]; REWRITE_TAC[maximal_ideal; PROPER_IDEAL] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]]);; let MAXIMAL_IDEAL_EXISTS = prove (`!r:A ring. (?j. maximal_ideal r j) <=> ~(trivial_ring r)`, GEN_TAC THEN REWRITE_TAC[GSYM PROPER_IDEAL_EXISTS] THEN MESON_TAC[MAXIMAL_IMP_PROPER_IDEAL; MAXIMAL_SUPERIDEAL_EXISTS]);; let RING_MULTSYS_NONPRIME = prove (`!r j:A->bool. prime_ideal r j ==> ring_multsys r (ring_carrier r DIFF j)`, REWRITE_TAC[ring_multsys; IN_DIFF; prime_ideal; PROPER_IDEAL] THEN GEN_TAC THEN SIMP_TAC[RING_MUL; RING_1] THEN SET_TAC[]);; let RING_MULTSYS_NONPRIME_EQ = prove (`!r j:A->bool. ring_ideal r j ==> (ring_multsys r (ring_carrier r DIFF j) <=> prime_ideal r j)`, REWRITE_TAC[ring_multsys; IN_DIFF; prime_ideal; PROPER_IDEAL] THEN GEN_TAC THEN SIMP_TAC[RING_MUL; RING_1] THEN SET_TAC[]);; let MAXIMAL_EXCLUDING_IMP_PRIME_IDEAL = prove (`!r s j:A->bool. ring_multsys r s /\ ring_ideal r j /\ DISJOINT j s /\ (!j'. ring_ideal r j' /\ j PSUBSET j' ==> ~DISJOINT j' s) ==> prime_ideal r j`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[prime_ideal; proper_ideal] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `DISJOINT j s ==> j SUBSET c /\ s SUBSET c /\ ~(s = {}) ==> j PSUBSET c`)) THEN ASM_MESON_TAC[RING_MULTSYS_IMP_SUBSET; RING_MULTSYS_IMP_NONEMPTY; RING_IDEAL_IMP_SUBSET]; MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `ring_setadd r j (ideal_generated r {b:A})` th) THEN MP_TAC(SPEC `ring_setadd r j (ideal_generated r {a:A})` th)) THEN MATCH_MP_TAC(TAUT `(p /\ p') /\ (q /\ q' ==> r) ==> (p ==> q) ==> (p' ==> q') ==> r`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_IDEAL_SETADD; RING_IDEAL_IDEAL_GENERATED] THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `!a. a IN s /\ ~(a IN j) /\ j SUBSET ring_setadd r j s /\ s SUBSET ring_setadd r j s ==> j PSUBSET ring_setadd r j s`) THENL [EXISTS_TAC `a:A`; EXISTS_TAC `b:A`] THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC; IN_SING; SING_SUBSET] THEN ASM_SIMP_TAC[RING_SETADD_SUPERSET_LEFT; IN_RING_IDEAL_0; SING_SUBSET; RING_IDEAL_IMP_SUBSET; RING_IDEAL_IDEAL_GENERATED; RING_SETADD_SUPERSET_RIGHT]; REWRITE_TAC[SET_RULE `~DISJOINT t s /\ ~DISJOINT u s ==> P <=> !x y. x IN s /\ y IN s ==> x IN t /\ y IN u ==> P`] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o ISPEC `r:A ring` o MATCH_MP RING_MUL_IN_SETMUL) THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SETMUL_IDEAL_LEFT o rand o lhand o snd) THEN ASM_REWRITE_TAC[IDEAL_GENERATED_SUBSET] THEN MATCH_MP_TAC(SET_RULE `(P ==> a IN t ==> F) ==> (s SUBSET t ==> a IN s ==> ~P)`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `DISJOINT j s ==> z IN s /\ j' SUBSET j ==> z IN j' ==> F`)) THEN CONJ_TAC THENL [ASM_MESON_TAC[ring_multsys]; ALL_TAC] THEN ASM_SIMP_TAC[RING_SETMUL_IDEAL_GENERATED_SING] THEN MATCH_MP_TAC RING_SETADD_SUBSET_IDEAL THEN ASM_SIMP_TAC[SUBSET_REFL; IDEAL_GENERATED_MINIMAL; SING_SUBSET]]]);; let MAXIMAL_IMP_PRIME_IDEAL = prove (`!r j:A->bool. maximal_ideal r j ==> prime_ideal r j`, REWRITE_TAC[maximal_ideal; PROPER_IDEAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MAXIMAL_EXCLUDING_IMP_PRIME_IDEAL THEN EXISTS_TAC `{ring_1 r:A}` THEN ASM_REWRITE_TAC[RING_MULYSYS_1] THEN ASM SET_TAC[]);; let MAXIMAL_AMONG_PRIME_IDEALS = prove (`!r j:A->bool. maximal_ideal r j <=> prime_ideal r j /\ ~(?j'. prime_ideal r j' /\ j PSUBSET j')`, ASM_MESON_TAC[MAXIMAL_SUPERIDEAL_EXISTS; PRIME_IMP_PROPER_IDEAL; MAXIMAL_IMP_PRIME_IDEAL; maximal_ideal; SET_RULE `s PSUBSET t /\ t SUBSET u ==> s PSUBSET u`]);; let PRIME_IDEAL_0 = prove (`!r:A ring. prime_ideal r {ring_0 r} <=> integral_domain r`, GEN_TAC THEN REWRITE_TAC[prime_ideal; PROPER_IDEAL; RING_IDEAL_0] THEN REWRITE_TAC[IN_SING; integral_domain]);; let MAXIMAL_IDEAL_0 = prove (`!r:A ring. maximal_ideal r {ring_0 r} <=> field r`, REWRITE_TAC[maximal_ideal; PROPER_IDEAL; RING_IDEAL_IDEAL_GENERATED] THEN REWRITE_TAC[RING_IDEAL_0; IN_SING; field] THEN GEN_TAC THEN ASM_CASES_TAC `ring_1 r:A = ring_0 r` THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `a:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ideal_generated r {a:A}`) THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED] THEN MATCH_MP_TAC(SET_RULE `!x. x IN a /\ ring_0 r IN a /\ ~(x = ring_0 r) /\ (P ==> Q) ==> ~(~P /\ {ring_0 r} PSUBSET a) ==> Q`) THEN EXISTS_TAC `a:A` THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING] THEN SIMP_TAC[IN_RING_IDEAL_0; RING_IDEAL_IDEAL_GENERATED] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM; ring_divides] THEN MESON_TAC[RING_1]; X_GEN_TAC `j:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC o MATCH_MP (SET_RULE `{z} PSUBSET s ==> ?a. z IN s /\ a IN s /\ ~(a = z)`)) THEN SUBGOAL_THEN `(a:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[RING_IDEAL_IMP_SUBSET; SUBSET]; ASM_MESON_TAC[IN_RING_IDEAL_RMUL]]]);; let PRIME_SUPERIDEAL_EXISTS = prove (`!(r:A ring) j. proper_ideal r j ==> ?j'. prime_ideal r j' /\ j SUBSET j'`, MESON_TAC[MAXIMAL_IMP_PRIME_IDEAL; MAXIMAL_SUPERIDEAL_EXISTS]);; let PRIME_IDEAL_EXISTS = prove (`!r:A ring. (?j. prime_ideal r j) <=> ~trivial_ring r`, MESON_TAC[PRIME_SUPERIDEAL_EXISTS; PROPER_IDEAL_EXISTS; PRIME_IMP_PROPER_IDEAL]);; let PRIME_SUPERIDEAL_EXCLUDING_EXISTS = prove (`!r s j:A->bool. ring_ideal r j /\ ring_multsys r s /\ DISJOINT j s ==> ?j'. prime_ideal r j' /\ j SUBSET j' /\ DISJOINT j' s`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\j'. ring_ideal (r:A ring) j' /\ j SUBSET j' /\ DISJOINT j' s` ZL_SUBSETS_UNIONS_NONEMPTY) THEN ANTS_TAC THENL [ASM_SIMP_TAC[MEMBER_NOT_EMPTY; RING_IDEAL_UNIONS] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_REFL]; SET_TAC[]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:A->bool` THEN REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MAXIMAL_EXCLUDING_IMP_PRIME_IDEAL THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);; let PRIME_IDEAL_EXCLUDING_EXISTS = prove (`!r s:A->bool. ring_multsys r s /\ ~(ring_0 r IN s) ==> ?j. prime_ideal r j /\ DISJOINT j s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`; `{ring_0 r:A}`] PRIME_SUPERIDEAL_EXCLUDING_EXISTS) THEN ASM_REWRITE_TAC[RING_IDEAL_0; DISJOINT_SING] THEN MESON_TAC[]);; let PRIME_IDEAL_SING = prove (`!r a:A. prime_ideal r (ideal_generated r {a}) <=> if ~(a IN ring_carrier r) \/ a = ring_0 r then integral_domain r else ring_prime r a`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THENL [COND_CASES_TAC THEN ASM_REWRITE_TAC[IDEAL_GENERATED_0; PRIME_IDEAL_0] THEN ASM_SIMP_TAC[prime_ideal; PROPER_IDEAL; RING_IDEAL_IDEAL_GENERATED] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM; RING_DIVIDES_ONE] THEN ASM_REWRITE_TAC[ring_prime]; ONCE_REWRITE_TAC[IDEAL_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[IDEAL_GENERATED_EMPTY; SET_RULE `~(a IN s) ==> s INTER {a} = {}`] THEN REWRITE_TAC[PRIME_IDEAL_0]]);; let RING_PRIME_IDEAL = prove (`!r a:A. ring_prime r a <=> a IN ring_carrier r /\ ~(a = ring_0 r) /\ prime_ideal r (ideal_generated r {a})`, MESON_TAC[ring_prime; PRIME_IDEAL_SING]);; let PROPER_IDEAL_IDEAL_GENERATED_SING = prove (`!r a:A. a IN ring_carrier r ==> (proper_ideal r (ideal_generated r {a}) <=> ~(ring_unit r a))`, SIMP_TAC[PROPER_IDEAL_ALT; RING_IDEAL_IDEAL_GENERATED] THEN SIMP_TAC[IDEAL_GENERATED_SING_EQ_CARRIER]);; let UNIONS_MAXIMAL_IDEALS = prove (`!r:A ring. UNIONS {j | maximal_ideal r j} = {x | x IN ring_carrier r /\ ~(ring_unit r x)}`, GEN_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM] THEN CONJ_TAC THENL [REWRITE_TAC[maximal_ideal; PROPER_IDEAL_UNIT; ring_ideal] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN SET_TAC[]; SIMP_TAC[GSYM PROPER_IDEAL_IDEAL_GENERATED_SING; IMP_CONJ] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP MAXIMAL_SUPERIDEAL_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING]]);; let RING_IRREDUCIBLE_IMP_MAXIMAL_PRINCIPAL_IDEAL = prove (`!r p:A. ring_irreducible r p ==> proper_ideal r (ideal_generated r {p}) /\ ~(?j. principal_ideal r j /\ proper_ideal r j /\ ideal_generated r {p} PSUBSET j)`, REWRITE_TAC[ring_irreducible] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PROPER_IDEAL_IDEAL_GENERATED_SING] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [principal_ideal]) THEN DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 ASSUME_TAC (SUBST_ALL_TAC o SYM))) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [PSUBSET]) THEN ASM_SIMP_TAC[SUBSET_IDEALS_GENERATED_SING; IDEALS_GENERATED_SING_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_divides]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `u:A`]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RING_ASSOCIATES_RMUL; PROPER_IDEAL_IDEAL_GENERATED_SING]);; let RING_IRREDUCIBLE_EQ_MAXIMAL_PRINCIPAL_IDEAL = prove (`!r p:A. integral_domain r ==> (ring_irreducible r p <=> p IN ring_carrier r /\ ~(p = ring_0 r) /\ proper_ideal r (ideal_generated r {p}) /\ ~(?j. principal_ideal r j /\ proper_ideal r j /\ ideal_generated r {p} PSUBSET j))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(p:A) IN ring_carrier r` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[ring_irreducible]] THEN ASM_CASES_TAC `p:A = ring_0 r` THENL [ASM_MESON_TAC[ring_irreducible]; ASM_REWRITE_TAC[]] THEN EQ_TAC THEN REWRITE_TAC[RING_IRREDUCIBLE_IMP_MAXIMAL_PRINCIPAL_IDEAL] THEN ASM_SIMP_TAC[PROPER_IDEAL_IDEAL_GENERATED_SING; NOT_EXISTS_THM] THEN STRIP_TAC THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_IRREDUCIBLE_ALT] THEN X_GEN_TAC `d:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ideal_generated r {d:A}`) THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP RING_DIVIDES_IN_CARRIER) THEN REWRITE_TAC[PRINCIPAL_IDEAL_IDEAL_GENERATED_SING] THEN ASM_SIMP_TAC[PROPER_IDEAL_IDEAL_GENERATED_SING; DE_MORGAN_THM] THEN ASM_SIMP_TAC[PSUBSET; SUBSET_IDEALS_GENERATED_SING] THEN ASM_SIMP_TAC[IDEALS_GENERATED_SING_EQ]);; let MAXIMAL_IDEAL_SING_IMP_IRREDUCIBLE = prove (`!r p:A. integral_domain r /\ p IN ring_carrier r /\ ~(p = ring_0 r) /\ maximal_ideal r (ideal_generated r {p}) ==> ring_irreducible r p`, REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP MAXIMAL_IMP_PRIME_IDEAL) THEN ASM_SIMP_TAC[PRIME_IDEAL_SING]);; let RING_IRREDUCIBLE_EQ_MAXIMAL_IDEAL = prove (`!r p:A. PID r ==> (ring_irreducible r p <=> p IN ring_carrier r /\ ~(p = ring_0 r) /\ maximal_ideal r (ideal_generated r {p}))`, SIMP_TAC[PID; RING_IRREDUCIBLE_EQ_MAXIMAL_PRINCIPAL_IDEAL] THEN REWRITE_TAC[maximal_ideal] THEN MESON_TAC[proper_ideal]);; let MAXIMAL_IDEAL_SING = prove (`!r p:A. PID r ==> (maximal_ideal r (ideal_generated r {p}) <=> if ~(p IN ring_carrier r) \/ p = ring_0 r then field r else ring_irreducible r p)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(p:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THENL [COND_CASES_TAC THEN ASM_REWRITE_TAC[IDEAL_GENERATED_0; MAXIMAL_IDEAL_0] THEN ASM_SIMP_TAC[RING_IRREDUCIBLE_EQ_MAXIMAL_IDEAL]; ONCE_REWRITE_TAC[IDEAL_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[IDEAL_GENERATED_EMPTY; SET_RULE `~(p IN s) ==> s INTER {p} = {}`] THEN REWRITE_TAC[MAXIMAL_IDEAL_0]]);; let PID_IRREDUCIBLE_EQ_PRIME = prove (`!r p:A. PID r ==> (ring_irreducible r p <=> ring_prime r p)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PID; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]] THEN ASM_SIMP_TAC[RING_IRREDUCIBLE_EQ_MAXIMAL_IDEAL; RING_PRIME_IDEAL] THEN SIMP_TAC[MAXIMAL_IMP_PRIME_IDEAL]);; let FIELD_EQ_TRIVIAL_IDEALS = prove (`!r:A ring. field r <=> ~(trivial_ring r) /\ !j. ring_ideal r j ==> j = {ring_0 r} \/ j = ring_carrier r`, GEN_TAC THEN REWRITE_TAC[GSYM MAXIMAL_IDEAL_0; maximal_ideal] THEN REWRITE_TAC[PROPER_IDEAL_0; NOT_EXISTS_THM] THEN AP_TERM_TAC THEN REWRITE_TAC[proper_ideal; TAUT `~((p /\ q) /\ r) <=> p ==> ~r \/ ~q`] THEN SIMP_TAC[PSUBSET; RING_IDEAL_IMP_SUBSET; SING_SUBSET; IN_RING_IDEAL_0] THEN MESON_TAC[]);; let FIELD_EQ_TRIVIAL_IDEALS_EQ = prove (`!r:A ring. field r <=> ~(trivial_ring r) /\ !j. ring_ideal r j <=> j = {ring_0 r} \/ j = ring_carrier r`, REWRITE_TAC[FIELD_EQ_TRIVIAL_IDEALS] THEN MESON_TAC[RING_IDEAL_CARRIER; RING_IDEAL_0]);; let FIELD_EQ_NO_PROPER_IDEALS = prove (`!r:A ring. field r <=> ~(trivial_ring r) /\ !j. proper_ideal r j ==> j = {ring_0 r}`, REWRITE_TAC[proper_ideal; FIELD_EQ_TRIVIAL_IDEALS; PSUBSET] THEN MESON_TAC[RING_IDEAL_IMP_SUBSET]);; let FIELD_EQ_NO_PROPER_IDEALS_EQ = prove (`!r:A ring. field r <=> ~(trivial_ring r) /\ !j. proper_ideal r j <=> j = {ring_0 r}`, REWRITE_TAC[FIELD_EQ_NO_PROPER_IDEALS] THEN MESON_TAC[PROPER_IDEAL_0]);; let FIELD_EQ_PROPER_IMP_MAXIMAL_IDEAL = prove (`!r:A ring. field r <=> ~(trivial_ring r) /\ !j. proper_ideal r j ==> maximal_ideal r j`, MESON_TAC[FIELD_EQ_NO_PROPER_IDEALS; PROPER_IDEAL_0; MAXIMAL_IDEAL_0]);; let FIELD_EQ_PROPER_IMP_PRIME_IDEAL = prove (`!r:A ring. field r <=> ~(trivial_ring r) /\ !j. proper_ideal r j ==> prime_ideal r j`, GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[FIELD_EQ_PROPER_IMP_MAXIMAL_IDEAL; MAXIMAL_IMP_PRIME_IDEAL]; STRIP_TAC THEN ASM_SIMP_TAC[FIELD_EQ_ALL_UNITS; GSYM TRIVIAL_RING_10]] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `ideal_generated r {ring_pow r (a:A) 2}`) THEN REWRITE_TAC[TAUT `(p ==> q) ==> r <=> (~p ==> r) /\ (q ==> r)`] THEN ASM_SIMP_TAC[PROPER_IDEAL_IDEAL_GENERATED_SING; RING_POW] THEN ASM_SIMP_TAC[RING_UNIT_POW_EQ; ARITH_EQ] THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `ideal_generated r {ring_pow r (a:A) 2}`; `a:A`; `2`] RING_POW_IN_PRIME_IDEAL) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING; RING_POW; ARITH_EQ] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT; RING_POW; IN_ELIM_THM; ring_unit] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:A` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `a:A`] THEN ASM_REWRITE_TAC[RING_1] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL; GSYM RING_POW_2; RING_MUL_RID] THEN ASM_MESON_TAC[PRIME_IDEAL_0; PROPER_IDEAL_0]);; let FIELD_IMP_PID = prove (`!r:A ring. field r ==> PID r`, GEN_TAC THEN SIMP_TAC[PID; FIELD_IMP_INTEGRAL_DOMAIN] THEN REWRITE_TAC[FIELD_EQ_TRIVIAL_IDEALS] THEN MESON_TAC[PRINCIPAL_IDEAL_0; PRINCIPAL_IDEAL_CARRIER]);; let FIELD_IMP_NOETHERIAN_RING = prove (`!r:A ring. field r ==> noetherian_ring r`, SIMP_TAC[FIELD_IMP_PID; PID_IMP_NOETHERIAN_RING]);; let PID_MAXIMAL_EQ_PRIME_IDEAL = prove (`!r j:A->bool. PID r /\ ~(j = {ring_0 r}) ==> (maximal_ideal r j <=> prime_ideal r j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `principal_ideal r (j:A->bool)` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [principal_ideal]); ASM_MESON_TAC[PID; maximal_ideal; prime_ideal; proper_ideal]] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN ASM_REWRITE_TAC[IDEAL_GENERATED_EQ_0] THEN DISCH_TAC THEN ASM_SIMP_TAC[MAXIMAL_IDEAL_SING; PRIME_IDEAL_SING; PID_IMP_INTEGRAL_DOMAIN] THEN ASM_SIMP_TAC[PID_IRREDUCIBLE_EQ_PRIME]);; let PID_EQ_INTEGRAL_DOMAIN_PRIME_PRINCIPAL = prove (`!r:A ring. PID r <=> integral_domain r /\ (!j. prime_ideal r j ==> principal_ideal r j)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MESON_TAC[PID; PRIME_IMP_RING_IDEAL]; STRIP_TAC THEN ASM_REWRITE_TAC[PID]] THEN GEN_REWRITE_TAC I [MESON[] `(!x. P x ==> Q x) <=> ~(?x. P x /\ ~Q x)`] THEN DISCH_TAC THEN MP_TAC(ISPEC `\j:A->bool. ring_ideal r j /\ ~principal_ideal r j` ZL_SUBSETS_UNIONS_NONEMPTY) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[MEMBER_NOT_EMPTY; PROPER_IDEAL] THEN SIMP_TAC[RING_IDEAL_UNIONS] THEN X_GEN_TAC `c:(A->bool)->bool` THEN STRIP_TAC THEN REWRITE_TAC[principal_ideal] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `a:A` o GEN_REWRITE_RULE I [EXTENSION]) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING; IN_UNIONS] THEN DISCH_THEN(X_CHOOSE_THEN `i:A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `ideal_generated r {a:A} = i` MP_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM; ASM_MESON_TAC[principal_ideal]] THEN ASM_SIMP_TAC[IDEAL_GENERATED_MINIMAL_EQ] THEN ASM SET_TAC[]; REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `k:A->bool` THEN FIRST_X_ASSUM(K ALL_TAC o check (is_exists o concl))] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN ASM_SIMP_TAC[prime_ideal; NONPRINCIPAL_IMP_PROPER_IDEAL] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `p \/ q <=> ~(~p /\ ~q)`] THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[TAUT `(p /\ ~q) /\ r ==> s <=> p /\ r /\ ~s ==> q`]) THEN FIRST_ASSUM(MP_TAC o SPEC `ideal_generated r ((a:A) INSERT k)`) THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED; NOT_IMP] THEN REPEAT CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `(a:A) INSERT k` THEN REWRITE_TAC[SET_RULE `s SUBSET a INSERT s`] THEN MATCH_MP_TAC IDEAL_GENERATED_SUBSET_CARRIER_SUBSET THEN ASM_SIMP_TAC[INSERT_SUBSET; RING_IDEAL_IMP_SUBSET]; GEN_REWRITE_TAC RAND_CONV [EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IDEAL_GENERATED_INC_GEN THEN ASM_REWRITE_TAC[IN_INSERT]; REWRITE_TAC[principal_ideal] THEN DISCH_THEN(X_CHOOSE_THEN `c:A` (STRIP_ASSUME_TAC o GSYM))] THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A | x IN ring_carrier r /\ ring_mul r x a IN k}`) THEN ASM_SIMP_TAC[RING_IDEAL_QUOTIENT_RMUL; NOT_IMP] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_RING_IDEAL_RMUL; SUBSET; RING_IDEAL_IMP_SUBSET]; GEN_REWRITE_TAC RAND_CONV [EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `b:A`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[RING_MUL_SYM]; REWRITE_TAC[principal_ideal] THEN DISCH_THEN(X_CHOOSE_THEN `d:A` (STRIP_ASSUME_TAC o GSYM))] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [principal_ideal]) THEN REWRITE_TAC[] THEN EXISTS_TAC `ring_mul r c d:A` THEN ASM_SIMP_TAC[RING_MUL; GSYM SUBSET_ANTISYM_EQ; IDEAL_GENERATED_MINIMAL_EQ; SING_SUBSET; SET_RULE `a IN s ==> s INTER {a} = {a}`] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [IDEAL_GENERATED_INSERT]) THEN REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `c:A`) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING] THEN ASM_SIMP_TAC[IDEAL_GENERATED_RING_IDEAL; IDEAL_GENERATED_SING_ALT] THEN SPEC_TAC(`c:A`,`c:A`) THEN UNDISCH_THEN `(c:A) IN ring_carrier r` (K ALL_TAC) THEN REWRITE_TAC[ring_setadd; FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(y:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[RING_IDEAL_IMP_SUBSET; SUBSET]; ALL_TAC] THEN ASM_SIMP_TAC[RING_ADD_RDISTRIB; RING_MUL] THEN MATCH_MP_TAC IN_RING_IDEAL_ADD THEN ASM_SIMP_TAC[IN_RING_IDEAL_RMUL] THEN SUBGOAL_THEN `ring_mul r (ring_mul r a x) d:A = ring_mul r x (ring_mul r d a)` SUBST1_TAC THENL [ASM_SIMP_TAC[RING_MUL_AC]; ALL_TAC] THEN MATCH_MP_TAC IN_RING_IDEAL_LMUL THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `{x | P x /\ f x IN k} = s ==> d IN s ==> f d IN k`)) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING]; FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `ideal_generated r (a INSERT k) = s ==> (a INSERT k) SUBSET ideal_generated r (a INSERT k) /\ s INTER k SUBSET t ==> k SUBSET t`)) THEN CONJ_TAC THENL [MATCH_MP_TAC IDEAL_GENERATED_SUBSET_CARRIER_SUBSET THEN ASM_SIMP_TAC[INSERT_SUBSET; RING_IDEAL_IMP_SUBSET]; ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT]] THEN REWRITE_TAC[SUBSET; IN_INTER; IMP_CONJ; FORALL_IN_GSPEC] THEN X_GEN_TAC `u:A` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[GSYM RING_SETMUL_IDEAL_GENERATED_SING] THEN MATCH_MP_TAC RING_MUL_IN_SETMUL THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC RING_MULTIPLE_IN_IDEAL THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `ring_mul r u c:A`] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_MUL_SYM]; ALL_TAC] THEN MATCH_MP_TAC RING_DIVIDES_MUL2 THEN ASM_REWRITE_TAC[RING_DIVIDES_REFL] THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A` o GEN_REWRITE_RULE I [EXTENSION]) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_INSERT] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM]]);; let TRIVIAL_QUOTIENT_RING = prove (`!r j:A->bool. ring_ideal r j ==> (trivial_ring (quotient_ring r j) <=> ~proper_ideal r j)`, SIMP_TAC[TRIVIAL_RING_10; QUOTIENT_RING] THEN SIMP_TAC[RING_COSET_EQ; RING_0; RING_1; PROPER_IDEAL] THEN SIMP_TAC[RING_SUB_RZERO; RING_1]);; let INTEGRAL_DOMAIN_QUOTIENT_RING = prove (`!r j:A->bool. ring_ideal r j ==> (integral_domain(quotient_ring r j) <=> prime_ideal r j)`, REPEAT STRIP_TAC THEN REWRITE_TAC[integral_domain] THEN ASM_SIMP_TAC[CONJUNCT1 QUOTIENT_RING] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[QUOTIENT_RING_0] THEN ASM_SIMP_TAC[el 2 (CONJUNCTS QUOTIENT_RING)] THEN ASM_SIMP_TAC[RING_COSET_EQ_IDEAL; QUOTIENT_RING_MUL; RING_MUL; RING_1] THEN ASM_REWRITE_TAC[prime_ideal; PROPER_IDEAL] THEN MESON_TAC[]);; let FIELD_QUOTIENT_RING = prove (`!r j:A->bool. ring_ideal r j ==> (field(quotient_ring r j) <=> maximal_ideal r j)`, REPEAT STRIP_TAC THEN REWRITE_TAC[field] THEN ASM_SIMP_TAC[CONJUNCT1 QUOTIENT_RING] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC; EXISTS_IN_GSPEC] THEN ASM_SIMP_TAC[QUOTIENT_RING_0] THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN ASM_SIMP_TAC[el 2 (CONJUNCTS QUOTIENT_RING)] THEN ASM_SIMP_TAC[RING_COSET_EQ_IDEAL; QUOTIENT_RING_MUL; RING_MUL; RING_1; RING_COSET_EQ] THEN ASM_CASES_TAC `(ring_1 r:A) IN j` THEN ASM_REWRITE_TAC[maximal_ideal; PROPER_IDEAL; NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM; IMP_IMP] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o GEN_REWRITE_RULE I [PSUBSET_ALT]) THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN SUBGOAL_THEN `(a:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; RING_IDEAL_IMP_SUBSET]; ASM_REWRITE_TAC[NOT_EXISTS_THM]] THEN X_GEN_TAC `b:A` THEN STRIP_TAC THEN UNDISCH_TAC `~((ring_1 r:A) IN k)` THEN SUBGOAL_THEN `ring_1 r:A = ring_sub r (ring_mul r a b) (ring_sub r (ring_mul r a b) (ring_1 r))` SUBST1_TAC THENL [ASM_SIMP_TAC[ring_sub; RING_NEG_ADD; RING_NEG_NEG; RING_1; RING_MUL; RING_ADD; RING_NEG; RING_ADD_ASSOC; RING_ADD_RNEG; RING_ADD_LZERO]; REWRITE_TAC[] THEN MATCH_MP_TAC IN_RING_IDEAL_SUB THEN ASM_MESON_TAC[SUBSET; ring_ideal; RING_MUL_SYM]]; X_GEN_TAC `a:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_setadd r j (ideal_generated r {a:A})`) THEN ASM_SIMP_TAC[RING_IDEAL_SETADD; RING_IDEAL_IDEAL_GENERATED; SING_SUBSET] THEN MATCH_MP_TAC(TAUT `q /\ (~p ==> r) ==> ~(p /\ q) ==> r`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[PSUBSET; RING_SETADD_SUPERSET_LEFT; IN_RING_IDEAL_0; RING_IDEAL_IMP_SUBSET; RING_IDEAL_IDEAL_GENERATED] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~(a IN j) ==> a IN s ==> ~(j = s)`)) THEN W(MP_TAC o PART_MATCH (rand o rand) RING_SETADD_SUPERSET_RIGHT o rand o snd) THEN ASM_SIMP_TAC[IN_RING_IDEAL_0; IDEAL_GENERATED_SUBSET; SING_SUBSET] THEN MATCH_MP_TAC(SET_RULE `x IN s ==> s SUBSET t ==> x IN t`) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC; IN_SING; SING_SUBSET]; ASM_SIMP_TAC[ring_setadd; IDEAL_GENERATED_SING_ALT] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN EXISTS_TAC `z:A` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(x:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[ring_ideal; SUBSET]; ALL_TAC] THEN ASM_SIMP_TAC[ring_sub; RING_NEG_ADD; RING_MUL] THEN MATCH_MP_TAC(MESON[] `x IN j /\ ring_add r a (ring_add r x (ring_neg r a)) = x ==> (ring_add r a (ring_add r x (ring_neg r a))) IN j`) THEN ASM_SIMP_TAC[IN_RING_IDEAL_NEG] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_LNEG_UNIQUE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_ADD; RING_NEG; RING_MUL]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM RING_NEG_ADD; RING_MUL; RING_ADD; RING_MUL; RING_NEG] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_ADD_ASSOC; RING_MUL; RING_NEG; RING_ADD; RING_ADD_RNEG]]]);; let PRIME_IDEAL_CORRESPONDENCE = prove (`!r r' (f:A->B) j k. ring_epimorphism (r,r') f /\ ring_ideal r' k /\ {x | x IN ring_carrier r /\ f x IN k} = j ==> (prime_ideal r j <=> prime_ideal r' k)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MP_TAC(ISPECL [`r:A ring`; `r':B ring`; `f:A->B`] RING_IDEAL_HOMOMORPHIC_PREIMAGE) THEN ASM_SIMP_TAC[GSYM INTEGRAL_DOMAIN_QUOTIENT_RING; RING_EPIMORPHISM_IMP_HOMOMORPHISM] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC ISOMORPHIC_RING_INTEGRAL_DOMAINNESS THEN MATCH_MP_TAC FIRST_RING_ISOMORPHISM_THEOREM_GEN THEN EXISTS_TAC `f:A->B` THEN ASM_REWRITE_TAC[]);; let PRIME_IDEAL_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) j. ring_isomorphism(r,r') f /\ j SUBSET ring_carrier r ==> (prime_ideal r' (IMAGE f j) <=> prime_ideal r j)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_ISOMORPHIC_IMAGE_EQ) THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (q' ==> p') /\ (p' ==> (q' <=> q)) ==> (p' <=> p) ==> (q' <=> q)`) THEN REWRITE_TAC[PRIME_IMP_RING_IDEAL] THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC PRIME_IDEAL_CORRESPONDENCE THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[RING_ISOMORPHISM_IMP_EPIMORPHISM] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_isomorphism; ring_isomorphisms]) THEN ASM SET_TAC[]);; let MAXIMAL_IDEAL_CORRESPONDENCE = prove (`!r r' (f:A->B) j k. ring_epimorphism (r,r') f /\ ring_ideal r' k /\ {x | x IN ring_carrier r /\ f x IN k} = j ==> (maximal_ideal r j <=> maximal_ideal r' k)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MP_TAC(ISPECL [`r:A ring`; `r':B ring`; `f:A->B`] RING_IDEAL_HOMOMORPHIC_PREIMAGE) THEN ASM_SIMP_TAC[GSYM FIELD_QUOTIENT_RING; RING_EPIMORPHISM_IMP_HOMOMORPHISM] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC ISOMORPHIC_RING_FIELDNESS THEN MATCH_MP_TAC FIRST_RING_ISOMORPHISM_THEOREM_GEN THEN EXISTS_TAC `f:A->B` THEN ASM_REWRITE_TAC[]);; let MAXIMAL_IDEAL_EPIMORPHIC_PREIMAGE = prove (`!r r' (f:A->B) j. ring_epimorphism(r,r') f /\ maximal_ideal r' j ==> maximal_ideal r {x | x IN ring_carrier r /\ f x IN j}`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP MAXIMAL_IMP_RING_IDEAL) THEN UNDISCH_TAC `maximal_ideal r' (j:B->bool)` THEN MATCH_MP_TAC EQ_IMP THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MAXIMAL_IDEAL_CORRESPONDENCE THEN EXISTS_TAC `f:A->B` THEN ASM_REWRITE_TAC[]);; let MAXIMAL_IDEAL_ISOMORPHIC_IMAGE_EQ = prove (`!r r' (f:A->B) j. ring_isomorphism(r,r') f /\ j SUBSET ring_carrier r ==> (maximal_ideal r' (IMAGE f j) <=> maximal_ideal r j)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_ISOMORPHIC_IMAGE_EQ) THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (q' ==> p') /\ (p' ==> (q' <=> q)) ==> (p' <=> p) ==> (q' <=> q)`) THEN REWRITE_TAC[MAXIMAL_IMP_RING_IDEAL] THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MAXIMAL_IDEAL_CORRESPONDENCE THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[RING_ISOMORPHISM_IMP_EPIMORPHISM] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_isomorphism; ring_isomorphisms]) THEN ASM SET_TAC[]);; let ISOMORPHIC_RING_PIDNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (PID r <=> PID r')`, let lemma = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> PID r ==> PID r'`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[PID] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ASM_MESON_TAC[ISOMORPHIC_RING_INTEGRAL_DOMAINNESS]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `k:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `f:A->B` MP_TAC o REWRITE_RULE[isomorphic_ring]) THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:B->A` THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (g:B->A) k`) THEN ANTS_TAC THENL [ASM_MESON_TAC[RING_IDEAL_EPIMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_EPIMORPHISM]; REWRITE_TAC[principal_ideal]] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:A->B) a` THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[RING_ISOMORPHISM]) THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[SET_RULE `{f a} = IMAGE f {a}`]] THEN MP_TAC(ISPECL [`r:A ring`; `r':B ring`; `f:A->B`] IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE) THEN ASM_SIMP_TAC[SING_SUBSET; RING_ISOMORPHISM_IMP_EPIMORPHISM] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN ASM SET_TAC[]) in REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN ASM_REWRITE_TAC[]);; let FIELD_HOMOMORPHISM_IMP_MONOMORPHISM = prove (`!r r' (f:A->B). ring_homomorphism(r,r') f /\ field r ==> (!x. x IN ring_carrier r ==> f x = ring_0 r') \/ ring_monomorphism(r,r') f`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[RING_MONOMORPHISM] THEN FIRST_ASSUM(MP_TAC o SPEC `ring_kernel(r,r') (f:A->B)` o CONJUNCT2 o GEN_REWRITE_RULE I [FIELD_EQ_TRIVIAL_IDEALS]) THEN ASM_SIMP_TAC[RING_IDEAL_RING_KERNEL] THEN REWRITE_TAC[ring_kernel] THEN SET_TAC[]);; let FIELD_EPIMORPHISM_IMP_ISOMORPHISM = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ field r ==> (!x. x IN ring_carrier r ==> f x = ring_0 r') \/ ring_isomorphism(r,r') f`, SIMP_TAC[GSYM RING_MONOMORPHISM_EPIMORPHISM] THEN MESON_TAC[FIELD_HOMOMORPHISM_IMP_MONOMORPHISM; RING_EPIMORPHISM_IMP_HOMOMORPHISM]);; let RING_EPIMORPHISM_ONTO_FIELD_EXISTS = prove (`!r:A ring. ~(trivial_ring r) ==> ?s (f:A->A->bool). ring_epimorphism(r,s) f /\ field s`, GEN_TAC THEN REWRITE_TAC[GSYM MAXIMAL_IDEAL_EXISTS] THEN DISCH_THEN(X_CHOOSE_TAC `j:A->bool`) THEN EXISTS_TAC `quotient_ring r (j:A->bool)` THEN EXISTS_TAC `ring_coset r (j:A->bool)` THEN ASM_SIMP_TAC[FIELD_QUOTIENT_RING; MAXIMAL_IMP_RING_IDEAL; RING_EPIMORPHISM_RING_COSET]);; (* ------------------------------------------------------------------------- *) (* The radical ideal and in particular the nilradical *) (* ------------------------------------------------------------------------- *) let radical = new_definition `radical r j = {x:A | x IN ring_carrier r /\ ?n. ~(n = 0) /\ ring_pow r x n IN j}`;; let RADICAL_SUBSET = prove (`!r j:A->bool. j SUBSET radical r j <=> j SUBSET ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[radical] THEN EQ_TAC THENL [SET_TAC[]; REWRITE_TAC[SUBSET; IN_ELIM_THM]] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN EXISTS_TAC `1` THEN ASM_SIMP_TAC[RING_POW_1] THEN CONV_TAC NUM_REDUCE_CONV);; let RADICAL_MONO = prove (`!r j k:A->bool. j SUBSET k ==> radical r j SUBSET radical r k`, REWRITE_TAC[radical] THEN SET_TAC[]);; let RING_IDEAL_RADICAL = prove (`!r j:A->bool. ring_ideal r j ==> ring_ideal r (radical r j)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_ideal; radical; SUBSET] THEN SIMP_TAC[IN_ELIM_THM; RING_0] THEN REPEAT CONJ_TAC THENL [EXISTS_TAC `1` THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_SIMP_TAC[RING_POW_1; RING_0; IN_RING_IDEAL_0]; X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[RING_NEG] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[RING_POW_NEG] THEN ASM_MESON_TAC[IN_RING_IDEAL_NEG]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN DISCH_THEN(CONJUNCTS_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_ADD] THEN EXISTS_TAC `m + n:num` THEN ASM_SIMP_TAC[RING_BINOMIAL_THEOREM; ADD_EQ_0] THEN MATCH_MP_TAC IN_RING_IDEAL_SUM THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_0] THEN X_GEN_TAC `k:num` THEN DISCH_TAC THEN MATCH_MP_TAC IN_RING_IDEAL_LMUL THEN ASM_REWRITE_TAC[RING_OF_NUM] THEN FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP (ARITH_RULE `k:num <= m + n ==> k = m + (k - m) \/ (m + n) - k = n + (m - k)`)) THENL [MATCH_MP_TAC IN_RING_IDEAL_RMUL; MATCH_MP_TAC IN_RING_IDEAL_LMUL] THEN ASM_SIMP_TAC[RING_POW] THEN ASM_SIMP_TAC[RING_POW_ADD] THEN MATCH_MP_TAC IN_RING_IDEAL_RMUL THEN ASM_SIMP_TAC[RING_POW]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[RING_MUL] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[RING_MUL_POW] THEN ASM_MESON_TAC[IN_RING_IDEAL_LMUL; RING_POW]]);; let RADICAL_0 = prove (`!r:A ring. radical r {ring_0 r} = {x | ring_nilpotent r x}`, GEN_TAC THEN REWRITE_TAC[radical; ring_nilpotent; IN_SING]);; let RADICAL_RING_CARRIER = prove (`!r:A ring. radical r (ring_carrier r) = ring_carrier r`, REWRITE_TAC[radical; EXTENSION; IN_ELIM_THM] THEN MESON_TAC[ARITH_RULE `~(1 = 0)`; RING_POW]);; let RADICAL_ALT = prove (`!r j:A->bool. ring_ideal r j ==> radical r j = {x | x IN ring_carrier r /\ ?n. ring_pow r x n IN j}`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `j:A->bool = ring_carrier r` THENL [ASM_REWRITE_TAC[RADICAL_RING_CARRIER; EXTENSION; IN_ELIM_THM] THEN MESON_TAC[RING_POW]; REWRITE_TAC[radical]] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `~P 0 ==> ((?n. ~(n = 0) /\ P n) <=> (?n. P n))`) THEN REWRITE_TAC[ring_pow] THEN ASM_MESON_TAC[PROPER_IDEAL; PROPER_IDEAL_ALT]);; let RING_POW_IN_RADICAL = prove (`!r j (x:A) n. ring_ideal r j /\ x IN ring_carrier r /\ ~(n = 0) ==> (ring_pow r x n IN radical r j <=> x IN radical r j)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[RADICAL_ALT; IN_ELIM_THM; RING_POW] THEN ASM_SIMP_TAC[GSYM RING_POW_MUL] THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[RING_POW_MUL] THEN ASM_SIMP_TAC[RING_POW_IN_IDEAL]);; let INTEGRAL_DOMAIN_NILRADICAL = prove (`!r:A ring. integral_domain r ==> radical r {ring_0 r} = {ring_0 r}`, SIMP_TAC[INTEGRAL_DOMAIN_NILPOTENT; RADICAL_0; SING_GSPEC]);; let FIELD_NILRADICAL = prove (`!r:A ring. field r ==> radical r {ring_0 r} = {ring_0 r}`, SIMP_TAC[INTEGRAL_DOMAIN_NILRADICAL; FIELD_IMP_INTEGRAL_DOMAIN]);; let RADICAL = prove (`!r j:A->bool. ring_ideal r j ==> radical r j = if j = ring_carrier r then ring_carrier r else INTERS {k | prime_ideal r k /\ j SUBSET k}`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RADICAL_RING_CARRIER] THEN ASM_SIMP_TAC[RADICAL_ALT; EXTENSION; IN_ELIM_THM; INTERS_GSPEC] THEN X_GEN_TAC `x:A` THEN EQ_TAC THENL [ASM_MESON_TAC[RING_POW_IN_PRIME_IDEAL; SUBSET]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MP_TAC(ISPECL [`r:A ring`; `j:A->bool`] PRIME_SUPERIDEAL_EXISTS) THEN ASM_REWRITE_TAC[PROPER_IDEAL_ALT] THEN ASM_MESON_TAC[PRIME_IDEAL_IMP_SUBSET; SUBSET]; DISCH_TAC] THEN MP_TAC(ISPECL [`r:A ring`; `{ring_pow r (x:A) n | n IN (:num)}`; `j:A->bool`] PRIME_SUPERIDEAL_EXCLUDING_EXISTS) THEN ASM_SIMP_TAC[RING_MULTSYS_POWERS] THEN MATCH_MP_TAC(TAUT `(~p ==> r) /\ ~q ==> (p ==> q) ==> r`) THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `k:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `DISJOINT k {f n | n IN (:num)} ==> ~(f 1 IN k)`)) THEN ASM_SIMP_TAC[RING_POW_1]);; let RING_NILRADICAL = prove (`!r:A ring. radical r {ring_0 r} = if trivial_ring r then {ring_0 r} else INTERS {j | prime_ideal r j}`, GEN_TAC THEN SIMP_TAC[RADICAL; RING_IDEAL_0] THEN ASM_CASES_TAC `trivial_ring(r:A ring)` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[trivial_ring]) THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; SING_SUBSET] THEN MESON_TAC[IN_RING_IDEAL_0; PRIME_IMP_RING_IDEAL]);; let INTERS_PRIME_IDEALS = prove (`!r:A ring. ~(trivial_ring r) ==> INTERS {j | prime_ideal r j} = radical r {ring_0 r}`, SIMP_TAC[RING_NILRADICAL]);; let RADICAL_RADICAL = prove (`!r j:A->bool. radical r (radical r j) = radical r j`, REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; radical; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_SIMP_TAC[RING_POW] THEN ASM_SIMP_TAC[RIGHT_AND_EXISTS_THM; GSYM RING_POW_MUL] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `n:num`) THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `n * m:num` THEN ASM_SIMP_TAC[MULT_EQ_0]; MAP_EVERY EXISTS_TAC [`1`; `n:num`] THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH]]);; let RADICAL_EQ_CARRIER = prove (`!r j:A->bool. ring_ideal r j ==> (radical r j = ring_carrier r <=> j = ring_carrier r)`, SIMP_TAC[RING_IDEAL_EQ_CARRIER; RING_IDEAL_RADICAL] THEN SIMP_TAC[RADICAL_ALT; IN_ELIM_THM; RING_POW_ONE; RING_1]);; let PROPER_RADICAL = prove (`!r j:A->bool. ring_ideal r j ==> (proper_ideal r (radical r j) <=> proper_ideal r j)`, SIMP_TAC[PROPER_IDEAL_ALT; RADICAL_EQ_CARRIER; RING_IDEAL_RADICAL]);; let RADICAL_UNIONS = prove (`!r u:(A->bool)->bool. radical r (UNIONS u) = UNIONS {radical r j | j IN u}`, REWRITE_TAC[radical; UNIONS_GSPEC] THEN SET_TAC[]);; let RADICAL_UNION = prove (`!r j k:A->bool. radical r (j UNION k) = radical r j UNION radical r k`, REWRITE_TAC[radical] THEN SET_TAC[]);; let RADICAL_INTER = prove (`!r j k:A->bool. ring_ideal r j /\ ring_ideal r k ==> radical r (j INTER k) = radical r j INTER radical r k`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[RADICAL_ALT; RING_IDEAL_INTER] THEN CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INTER]] THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `m:num`) (X_CHOOSE_TAC `n:num`)) THEN EXISTS_TAC `m + n:num` THEN ASM_SIMP_TAC[RING_POW_ADD; IN_RING_IDEAL_LMUL; IN_RING_IDEAL_RMUL; RING_POW]);; let RADICAL_SETADD = prove (`!r j k:A->bool. ring_ideal r j /\ ring_ideal r k ==> radical r (ring_setadd r (radical r j) (radical r k)) = radical r (ring_setadd r j k)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [GSYM RADICAL_RADICAL] THEN MATCH_MP_TAC RADICAL_MONO THEN W(MP_TAC o PART_MATCH (rand o rand) RING_SETADD_SUBRING o rand o snd) THEN ASM_SIMP_TAC[RING_IDEAL_RADICAL; RING_IDEAL_SETADD] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC RING_SETADD_MONO THEN CONJ_TAC THEN MATCH_MP_TAC RADICAL_MONO THENL [MATCH_MP_TAC RING_SETADD_SUPERSET_LEFT; MATCH_MP_TAC RING_SETADD_SUPERSET_RIGHT] THEN ASM_SIMP_TAC[RING_IDEAL_IMP_SUBSET; IN_RING_IDEAL_0]; MATCH_MP_TAC RADICAL_MONO THEN MATCH_MP_TAC RING_SETADD_MONO THEN ASM_SIMP_TAC[RADICAL_SUBSET; RING_IDEAL_IMP_SUBSET]]);; let COMAXIMAL_RADICALS = prove (`!r j k:A->bool. ring_ideal r j /\ ring_ideal r k ==> (ring_setadd r (radical r j) (radical r k) = ring_carrier r <=> ring_setadd r j k = ring_carrier r)`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) RADICAL_EQ_CARRIER o rand o snd) THEN ASM_SIMP_TAC[RING_IDEAL_SETADD] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN W(MP_TAC o PART_MATCH (rand o rand) RADICAL_EQ_CARRIER o lhand o snd) THEN ASM_SIMP_TAC[RING_IDEAL_SETADD; RING_IDEAL_RADICAL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[RADICAL_SETADD]);; let RADICAL_PRIME_IDEAL = prove (`!r j:A->bool. prime_ideal r j ==> radical r j = j`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IDEAL_IMP_SUBSET) THEN ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; RADICAL_SUBSET] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; radical] THEN ASM_SIMP_TAC[IMP_CONJ; RING_POW_IN_PRIME_IDEAL] THEN MESON_TAC[]);; let RADICAL_SUBSET_PRIME_IDEAL_EQ = prove (`!r j k:A->bool. j SUBSET ring_carrier r /\ prime_ideal r k ==> (radical r j SUBSET k <=> j SUBSET k)`, MESON_TAC[RADICAL_PRIME_IDEAL; RADICAL_SUBSET; SUBSET_TRANS; RADICAL_MONO]);; let RADICAL_IDEAL_PRIME_IDEAL_EQ = prove (`!r j k:A->bool. ring_ideal r j /\ prime_ideal r k ==> (radical r j SUBSET k <=> j SUBSET k)`, SIMP_TAC[RADICAL_SUBSET_PRIME_IDEAL_EQ; RING_IDEAL_IMP_SUBSET]);; (* ------------------------------------------------------------------------- *) (* More closure properties for nilpotents etc. (could be put earlier but *) (* the proofs would sometimes be a bit longer). *) (* ------------------------------------------------------------------------- *) let RING_NILPOTENT_ADD = prove (`!r x y:A. ring_nilpotent r x /\ ring_nilpotent r y ==> ring_nilpotent r (ring_add r x y)`, REPEAT GEN_TAC THEN MP_TAC(MATCH_MP RING_IDEAL_RADICAL (SPEC `r:A ring` RING_IDEAL_0)) THEN REWRITE_TAC[RADICAL_0; ring_ideal] THEN SET_TAC[]);; let RING_NILPOTENT_LMUL = prove (`!r x y:A. x IN ring_carrier r /\ ring_nilpotent r y ==> ring_nilpotent r (ring_mul r x y)`, REPEAT GEN_TAC THEN MP_TAC(MATCH_MP RING_IDEAL_RADICAL (SPEC `r:A ring` RING_IDEAL_0)) THEN REWRITE_TAC[RADICAL_0; ring_ideal] THEN SET_TAC[]);; let RING_NILPOTENT_RMUL = prove (`!r x y:A. ring_nilpotent r x /\ y IN ring_carrier r ==> ring_nilpotent r (ring_mul r x y)`, MESON_TAC[RING_NILPOTENT_LMUL; RING_MUL_SYM; RING_NILPOTENT_IN_CARRIER]);; let RING_NILPOTENT_SUB = prove (`!r x y:A. ring_nilpotent r x /\ ring_nilpotent r y ==> ring_nilpotent r (ring_sub r x y)`, SIMP_TAC[ring_sub; RING_NILPOTENT_ADD; RING_NILPOTENT_NEG]);; let RING_ZERODIVISOR_NILPOTENT_CLAUSES = prove (`(!r w z:A. ring_zerodivisor r w /\ ring_nilpotent r z ==> ring_zerodivisor r (ring_add r w z)) /\ (!r w z:A. ring_nilpotent r z /\ ring_zerodivisor r w ==> ring_zerodivisor r (ring_add r z w)) /\ (!r w z:A. ring_zerodivisor r w /\ ring_nilpotent r z ==> ring_zerodivisor r (ring_sub r w z)) /\ (!r w z:A. ring_nilpotent r z /\ ring_zerodivisor r w ==> ring_zerodivisor r (ring_sub r z w))`, MATCH_MP_TAC(TAUT `(p ==> q) /\ (p /\ q ==> r /\ s) /\ p ==> p /\ q /\ r /\ s`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[RING_ADD_SYM; RING_NILPOTENT_IN_CARRIER; RING_ZERODIVISOR_IN_CARRIER]; SIMP_TAC[ring_sub; RING_ZERODIVISOR_NEG; RING_NILPOTENT_NEG]; MAP_EVERY X_GEN_TAC [`r:A ring`; `x:A`; `z:A`] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_ZERODIVISOR_IN_CARRIER) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_NILPOTENT_IN_CARRIER)] THEN ASM_SIMP_TAC[ring_zerodivisor; RING_ADD] THEN GEN_REWRITE_TAC I [TAUT `p <=> ~p ==> F`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_zerodivisor]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `w:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!n. ~(ring_mul r (ring_pow r z n) w:A = ring_0 r)` MP_TAC THENL [MATCH_MP_TAC num_INDUCTION THEN ASM_SIMP_TAC[ring_pow; RING_MUL_LID] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[CONTRAPOS_THM] THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_mul r w (ring_pow r z n):A` o REWRITE_RULE[NOT_EXISTS_THM]) THEN ASM_SIMP_TAC[RING_MUL; RING_POW] THEN FIRST_ASSUM(MP_TAC o SYM) THEN RING_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_nilpotent]) THEN ASM_REWRITE_TAC[NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[RING_MUL_LZERO]]);; let RING_REGULAR_NILPOTENT_CLAUSES = prove (`(!r w z:A. ring_regular r w /\ ring_nilpotent r z ==> ring_regular r (ring_add r w z)) /\ (!r w z:A. ring_nilpotent r z /\ ring_regular r w ==> ring_regular r (ring_add r z w)) /\ (!r w z:A. ring_regular r w /\ ring_nilpotent r z ==> ring_regular r (ring_sub r w z)) /\ (!r w z:A. ring_nilpotent r z /\ ring_regular r w ==> ring_regular r (ring_sub r z w))`, MATCH_MP_TAC(TAUT `(p ==> q) /\ (p /\ q ==> r /\ s) /\ p ==> p /\ q /\ r /\ s`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[RING_ADD_SYM; RING_NILPOTENT_IN_CARRIER; RING_REGULAR_IN_CARRIER]; SIMP_TAC[ring_sub; RING_REGULAR_NEG; RING_NILPOTENT_NEG]; MAP_EVERY X_GEN_TAC [`r:A ring`; `x:A`; `z:A`] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_REGULAR_IN_CARRIER) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_NILPOTENT_IN_CARRIER)] THEN UNDISCH_TAC `ring_regular r (x:A)` THEN ASM_SIMP_TAC[ring_regular; RING_ADD; CONTRAPOS_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `x:A = ring_sub r (ring_add r x z) z` SUBST1_TAC THENL [RING_TAC; ASM_SIMP_TAC[RING_ZERODIVISOR_NILPOTENT_CLAUSES]]);; let RING_UNIT_NILPOTENT_CLAUSES_1 = prove (`(!r z:A. ring_nilpotent r z ==> ring_unit r (ring_add r (ring_1 r) z)) /\ (!r z:A. ring_nilpotent r z ==> ring_unit r (ring_add r z (ring_1 r))) /\ (!r z:A. ring_nilpotent r z ==> ring_unit r (ring_sub r (ring_1 r) z)) /\ (!r z:A. ring_nilpotent r z ==> ring_unit r (ring_sub r z (ring_1 r)))`, SIMP_TAC[RING_NILPOTENT_IN_CARRIER; RING_RULE `z IN ring_carrier r ==> ring_add r z (ring_1 r) = ring_add r (ring_1 r) z /\ ring_sub r z (ring_1 r) = ring_neg r (ring_sub r (ring_1 r) z)`] THEN SIMP_TAC[RING_UNIT_NEG_EQ; RING_SUB; RING_1; RING_NILPOTENT_IN_CARRIER] THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ p /\ q`) THEN SIMP_TAC[RING_NILPOTENT_IN_CARRIER; RING_NILPOTENT_NEG; RING_RULE `z IN ring_carrier r ==> ring_add r (ring_1 r) z = ring_sub r (ring_1 r) (ring_neg r z)`] THEN REPEAT GEN_TAC THEN REWRITE_TAC[ring_nilpotent; ring_unit] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC)) THEN ASM_SIMP_TAC[RING_SUB; RING_1] THEN EXISTS_TAC `ring_sum r {i | i < n} (\i. ring_pow r z i):A` THEN REWRITE_TAC[RING_SUM] THEN GEN_REWRITE_TAC RAND_CONV [RING_RULE `ring_1 r = ring_sub r (ring_1 r) (ring_0 r)`] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM th]) THEN UNDISCH_THEN `~(n = 0)` (K ALL_TAC) THEN SPEC_TAC(`n:num`,`k:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NUMSEG_CLAUSES_LT] THEN ASM_SIMP_TAC[RING_SUM_CLAUSES; FINITE_NUMSEG_LT] THEN ASM_SIMP_TAC[ring_pow; RING_SUB_REFL; RING_MUL_RZERO; RING_SUB; RING_1; IN_ELIM_THM; LT_REFL; RING_POW] THEN ASM_SIMP_TAC[RING_ADD_LDISTRIB; RING_MUL; RING_SUB; RING_1; RING_SUM; RING_POW] THEN RING_TAC THEN REWRITE_TAC[RING_SUM]);; let RING_UNIT_NILPOTENT_CLAUSES = prove (`(!r u z:A. ring_unit r u /\ ring_nilpotent r z ==> ring_unit r (ring_add r u z)) /\ (!r u z:A. ring_nilpotent r z /\ ring_unit r u ==> ring_unit r (ring_add r z u)) /\ (!r u z:A. ring_unit r u /\ ring_nilpotent r z ==> ring_unit r (ring_sub r u z)) /\ (!r u z:A. ring_nilpotent r z /\ ring_unit r u ==> ring_unit r (ring_sub r z u))`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_unit]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `v:A` STRIP_ASSUME_TAC)) THEN MP_TAC(RING_RULE `u IN ring_carrier r /\ v IN ring_carrier r /\ z IN ring_carrier r /\ ring_mul r u v:A = ring_1 r ==> ring_add r u z = ring_mul r u (ring_add r (ring_1 r) (ring_mul r v z)) /\ ring_add r z u = ring_mul r u (ring_add r (ring_1 r) (ring_mul r v z)) /\ ring_sub r u z = ring_mul r u (ring_sub r (ring_1 r) (ring_mul r v z)) /\ ring_sub r z u = ring_mul r u (ring_neg r (ring_sub r (ring_1 r) (ring_mul r v z)))`) THEN ASM_SIMP_TAC[RING_NILPOTENT_IN_CARRIER] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC RING_UNIT_MUL THEN ASM_SIMP_TAC[RING_UNIT_NILPOTENT_CLAUSES_1; RING_UNIT_NEG; RING_NILPOTENT_NEG; RING_NILPOTENT_LMUL] THEN ASM_MESON_TAC[RING_UNIT_MUL_EQ; RING_UNIT_1]);; (* ------------------------------------------------------------------------- *) (* UFDs. We use Kaplansky's characterization as the initial definition, *) (* since it has a nice compact and explicit form, but then we derive *) (* several other common definitions as "UFD if and only if ..." theorems. *) (* ------------------------------------------------------------------------- *) let UFD = new_definition `UFD (r:A ring) <=> integral_domain r /\ !j. prime_ideal r j /\ ~(j = {ring_0 r}) ==> ?p. ring_prime r p /\ p IN j`;; let UFD_IMP_INTEGRAL_DOMAIN = prove (`!r:A ring. UFD r ==> integral_domain r`, SIMP_TAC[UFD]);; let PID_IMP_UFD = prove (`!r:A ring. PID r ==> UFD r`, GEN_TAC THEN REWRITE_TAC[PID; UFD] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `j:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:A->bool`) THEN ANTS_TAC THENL [ASM_MESON_TAC[prime_ideal; proper_ideal]; SIMP_TAC[principal_ideal]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST_ALL_TAC o SYM)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [PRIME_IDEAL_SING]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [IDEAL_GENERATED_EQ_0]) THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC_GEN; IN_SING]);; let FIELD_IMP_UFD = prove (`!r:A ring. field r ==> UFD r`, SIMP_TAC[FIELD_IMP_PID; PID_IMP_UFD]);; let ISOMORPHIC_RING_UFDNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (UFD r <=> UFD r')`, let lemma = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> UFD r ==> UFD r'`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[UFD] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ASM_MESON_TAC[ISOMORPHIC_RING_INTEGRAL_DOMAINNESS]; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `f:A->B` o REWRITE_RULE[isomorphic_ring]) THEN DISCH_TAC THEN X_GEN_TAC `k:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN ring_carrier r /\ (f:A->B) x IN k}`) THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC PRIME_IDEAL_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[RING_ISOMORPHISM_IMP_HOMOMORPHISM]; RULE_ASSUM_TAC(REWRITE_RULE[RING_ISOMORPHISM; ring_homomorphism]) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_IDEAL_IMP_SUBSET) THEN ASM SET_TAC[]]; REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[RING_PRIME_ISOMORPHIC_IMAGE_EQ]]) in REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN ASM_REWRITE_TAC[]);; let UFD_EQ_PRIMEFACT = prove (`!r:A ring. UFD r <=> integral_domain r /\ !x. x IN ring_carrier r /\ ~(x = ring_0 r) ==> ?n p. (!i. 1 <= i /\ i <= n ==> ring_prime r (p i)) /\ ring_associates r (ring_product r (1..n) p) x`, GEN_TAC THEN REWRITE_TAC[UFD] THEN ASM_CASES_TAC `integral_domain(r:A ring)` THEN ASM_REWRITE_TAC[] THEN (X_CHOOSE_THEN `pp:A->bool` MP_TAC o prove_inductive_relations_exist) `(!u:A. ring_unit r u ==> pp u) /\ !p a. ring_prime r p /\ pp a ==> pp (ring_mul r p a)` THEN DISCH_THEN(MP_TAC o CONJUNCT1 o ONCE_REWRITE_RULE[CONJ_ASSOC]) THEN DISCH_THEN(fun th -> MP_TAC(CONJUNCT1 th) THEN MP_TAC(derive_strong_induction(CONJ_PAIR th))) THEN MP_TAC(ISPEC `pp:A->bool` IN) THEN DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN STRIP_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x:A. x IN pp ==> x IN ring_carrier r` ASSUME_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN SIMP_TAC[ring_unit; ring_prime; RING_MUL]; ALL_TAC] THEN SUBGOAL_THEN `(!x u:A. x IN pp /\ ring_unit r u ==> ring_mul r x u IN pp) /\ (!u x:A. ring_unit r u /\ x IN pp ==> ring_mul r u x IN pp)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_UNIT_IN_CARRIER; RING_MUL_SYM]; REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM]] THEN GEN_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[RING_UNIT_MUL; RING_MUL_AC; RING_PRIME_IN_CARRIER]; ALL_TAC] THEN SUBGOAL_THEN `!p:A. ring_prime r p ==> p IN pp` ASSUME_TAC THENL [ASM_MESON_TAC[RING_UNIT_1; RING_MUL_RID; RING_PRIME_IN_CARRIER]; ALL_TAC] THEN SUBGOAL_THEN `!x y:A. x IN ring_carrier r /\ y IN ring_carrier r ==> (ring_mul r x y IN pp <=> x IN pp /\ y IN pp)` ASSUME_TAC THENL [SUBGOAL_THEN `!x:A. x IN pp ==> !y. y IN pp ==> ring_mul r x y IN pp` ASSUME_TAC THENL [GEN_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[RING_MUL_AC; RING_PRIME_IN_CARRIER]; ALL_TAC] THEN SUBGOAL_THEN `!z:A. z IN pp ==> !x y:A. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_mul r x y = z ==> x IN pp /\ y IN pp` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_UNIT_MUL_EQ]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:A`; `z:A`] THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_MUL; RING_PRIME_IN_CARRIER] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_prime]) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_REFL] THEN REWRITE_TAC[ring_divides] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `w:A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THENL [SUBGOAL_THEN `(w:A) IN pp /\ y IN pp` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]; SUBGOAL_THEN `(x:A) IN pp /\ w IN pp` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC INTEGRAL_DOMAIN_MUL_LCANCEL THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `p:A`] THEN ASM_SIMP_TAC[RING_MUL] THEN ASM_MESON_TAC[RING_MUL_AC; RING_MUL]; ALL_TAC] THEN TRANS_TAC EQ_TRANS `!x:A. x IN ring_carrier r /\ ~(x = ring_0 r) ==> x IN pp` THEN CONJ_TAC THENL [SUBGOAL_THEN `!j. prime_ideal r j ==> !x:A. x IN pp ==> x IN j /\ ~(ring_unit r x) ==> ?p. ring_prime r p /\ p IN pp /\ p IN j` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SIMP_TAC[] THEN MAP_EVERY X_GEN_TAC [`p:A`; `a:A`] THEN ASM_SIMP_TAC[RING_MUL_IN_PRIME_IDEAL; RING_PRIME_IN_CARRIER; RING_UNIT_MUL_EQ] THEN ASM_CASES_TAC `(p:A) IN j` THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[ring_prime]; REPEAT STRIP_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [prime_ideal]) THEN ASM_REWRITE_TAC[PROPER_IDEAL_UNIT; prime_ideal] THEN ASM SET_TAC[]; REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN FIRST_X_ASSUM(K ALL_TAC o SPEC `ring_carrier r:A->bool`) THEN STRIP_TAC] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `x:A` THEN STRIP_TAC THEN ASM_CASES_TAC `(x:A) IN pp` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`r:A ring`; `pp:A->bool`; `ideal_generated r {x:A}`] PRIME_SUPERIDEAL_EXCLUDING_EXISTS) THEN REWRITE_TAC[NOT_IMP; RING_IDEAL_IDEAL_GENERATED] THEN REWRITE_TAC[GSYM CONJ_ASSOC; ring_multsys; SUBSET] THEN ASM_SIMP_TAC[RING_UNIT_1; IDEAL_GENERATED_SING_ALT] THEN REWRITE_TAC[SET_RULE `DISJOINT s t <=> !x. x IN s ==> ~(x IN t)`] THEN ASM_SIMP_TAC[FORALL_IN_GSPEC] THEN DISCH_THEN(X_CHOOSE_THEN `j:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:A->bool`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `ring_mul r x (ring_1 r):A`) THEN ASM_MESON_TAC[RING_1; IN_SING; RING_MUL_RID]; ASM_MESON_TAC[RING_MUL_RID; RING_UNIT_1; RING_PRIME_IN_CARRIER]]; X_GEN_TAC `j:A->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `?z:A. z IN j /\ z IN ring_carrier r /\ ~(z = ring_0 r) /\ ~(ring_unit r z)` STRIP_ASSUME_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [prime_ideal]) THEN REWRITE_TAC[PROPER_IDEAL_UNIT; ring_ideal] THEN ASM SET_TAC[]]; ALL_TAC] THEN MATCH_MP_TAC(MESON[] `(!x. R x ==> Q x) /\ (!x. Q x ==> R x) ==> ((!x. P x ==> Q x) <=> (!x. P x ==> R x))`) THEN CONJ_TAC THENL [FIRST_X_ASSUM(K ALL_TAC o SPEC `ring_carrier r:A->bool`) THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_ASSOCIATES] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`z:A`; `n:num`; `p:num->A`; `u:A`] THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (SUBST1_TAC o SYM)) THEN SUBGOAL_THEN `!m:num. m <= n ==> ring_product r (1..m) p:A IN pp` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LE_REFL]] THEN INDUCT_TAC THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_SIMP_TAC[RING_UNIT_1] THEN ASM_MESON_TAC[ARITH_RULE `SUC m <= n ==> m <= n`; RING_PRODUCT; RING_PRIME_IN_CARRIER; ARITH_RULE `1 <= SUC n`]; FIRST_X_ASSUM MATCH_MP_TAC] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN EXISTS_TAC `0` THEN REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`] THEN REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT; ARITH_EQ] THEN ASM_REWRITE_TAC[RING_ASSOCIATES_1]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:A`; `z:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n:num`; `q:num->A`] THEN STRIP_TAC THEN EXISTS_TAC `SUC n` THEN EXISTS_TAC `\i. if i = SUC n then p else (q:num->A) i` THEN REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT; ARITH_RULE `1 <= SUC n`] THEN CONJ_TAC THENL [ASM_MESON_TAC[LE]; ASM_SIMP_TAC[RING_PRIME_IN_CARRIER]] THEN MATCH_MP_TAC RING_ASSOCIATES_MUL THEN ASM_SIMP_TAC[RING_ASSOCIATES_REFL; RING_PRIME_IN_CARRIER] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `ring_associates r x z ==> y = x ==> ring_associates r y z`)) THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN REWRITE_TAC[IN_NUMSEG] THEN MESON_TAC[ARITH_RULE `~(SUC n <= n)`]);; let UFD_EQ_PRIMEFACT_NONUNIT = prove (`!r:A ring. UFD r <=> integral_domain r /\ !x. x IN ring_carrier r /\ ~(x = ring_0 r) /\ ~(ring_unit r x) ==> ?n p. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> ring_prime r (p i)) /\ ring_product r (1..n) p = x`, GEN_TAC THEN REWRITE_TAC[UFD_EQ_PRIMEFACT] THEN ASM_CASES_TAC `integral_domain(r:A ring)` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC MONO_EXISTS THEN MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT; ARITH_EQ] THEN ASM_REWRITE_TAC[RING_ASSOCIATES_1; ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `p:num->A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[ARITH_RULE `1 <= SUC n`; LE_REFL; RING_PRIME_IN_CARRIER] THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_ASSOCIATES] THEN DISCH_THEN(X_CHOOSE_THEN `u:A` (CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) o CONJUNCT2) THEN EXISTS_TAC `\i. if i = SUC n then ring_mul r u (p(SUC n):A) else p i` THEN ASM_SIMP_TAC[RING_MUL; RING_PRIME_IN_CARRIER; ARITH_RULE `1 <= SUC n`; LE_REFL; RING_UNIT_IN_CARRIER] THEN CONJ_TAC THENL [X_GEN_TAC `i:num` THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LE] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `SUC n`) THEN ANTS_TAC THENL [ARITH_TAC; MATCH_MP_TAC EQ_IMP] THEN MATCH_MP_TAC RING_ASSOCIATES_PRIME THEN MATCH_MP_TAC RING_ASSOCIATES_LMUL THEN ASM_SIMP_TAC[ARITH_RULE `1 <= SUC n`; LE_REFL; RING_PRIME_IN_CARRIER]; MATCH_MP_TAC(MESON[] `f (f u q) p' = f (f q p') u /\ p' = p ==> f (f u q) p = f (f q p') u`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_MUL_AC; RING_PRODUCT; RING_UNIT_IN_CARRIER; ARITH_RULE `1 <= SUC n`; LE_REFL; RING_PRIME_IN_CARRIER]; MATCH_MP_TAC RING_PRODUCT_EQ THEN GEN_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`]]]; ASM_CASES_TAC `ring_unit r (x:A)` THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `0` THEN REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`] THEN REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT; ARITH_EQ] THEN ASM_REWRITE_TAC[RING_ASSOCIATES_1]; MESON_TAC[RING_ASSOCIATES_REFL; RING_PRODUCT]]]);; let UFD_PRIME_FACTOR_EXISTS = prove (`!r x:A. UFD r /\ x IN ring_carrier r /\ ~(x = ring_0 r) /\ ~(ring_unit r x) ==> ?p. ring_prime r p /\ ring_divides r p x`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [UFD_EQ_PRIMEFACT]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n:num`; `xs:num->A`] THEN DISJ_CASES_TAC(ARITH_RULE `n = 0 \/ 1 <= n`) THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES_NUMSEG; ARITH_EQ; RING_ASSOCIATES_1] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES_LEFT; LE_REFL; RING_PRIME_IN_CARRIER] THEN DISCH_THEN(MP_TAC o MATCH_MP RING_DIVIDES_ASSOCIATES) THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] RING_DIVIDES_RMUL_REV))) THEN ASM_MESON_TAC[RING_PRODUCT; LE_REFL; RING_PRIME_IN_CARRIER]);; let UFD_IRREDUCIBLE_EQ_PRIME = prove (`!r p:A. UFD r ==> (ring_irreducible r p <=> ring_prime r p)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[UFD; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]] THEN ASM_MESON_TAC[RING_PRIME_DIVIDES_IRREDUCIBLE; UFD_PRIME_FACTOR_EXISTS; ring_irreducible]);; let UFD_EQ_ATOMIC = prove (`!r:A ring. UFD r <=> integral_domain r /\ (!p. ring_irreducible r p ==> ring_prime r p) /\ (!x. x IN ring_carrier r /\ ~(x = ring_0 r) ==> ?n p. (!i. 1 <= i /\ i <= n ==> ring_irreducible r (p i)) /\ ring_associates r (ring_product r (1..n) p) x)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `!p:A. ring_irreducible r p <=> ring_prime r p` THENL [ASM_REWRITE_TAC[UFD_EQ_PRIMEFACT]; ASM_MESON_TAC[UFD_IRREDUCIBLE_EQ_PRIME; UFD; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]]);; let UFD_EQ_ATOMIC_NONUNIT = prove (`!r:A ring. UFD r <=> integral_domain r /\ (!p. ring_irreducible r p ==> ring_prime r p) /\ (!x. x IN ring_carrier r /\ ~(x = ring_0 r) /\ ~(ring_unit r x) ==> ?n p. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> ring_irreducible r (p i)) /\ ring_product r (1..n) p = x)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `!p:A. ring_irreducible r p <=> ring_prime r p` THENL [ASM_REWRITE_TAC[UFD_EQ_PRIMEFACT_NONUNIT]; ASM_MESON_TAC[UFD_IRREDUCIBLE_EQ_PRIME; UFD; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]]);; let UFD_EQ_UNIQUE_FACTORIZATION = prove (`!r:A ring. UFD r <=> integral_domain r /\ !x. x IN ring_carrier r /\ ~(x = ring_0 r) ==> ?n p. (!i. 1 <= i /\ i <= n ==> ring_irreducible r (p i)) /\ ring_associates r (ring_product r (1..n) p) x /\ !m q. (!j. 1 <= j /\ j <= m ==> ring_irreducible r (q j)) /\ ring_associates r (ring_product r (1..m) q) x ==> ?f. IMAGE f (1..n) = 1..m /\ (!i j. 1 <= i /\ i <= n /\ 1 <= j /\ j <= n ==> (f i = f j <=> i = j)) /\ (!i. 1 <= i /\ i <= n ==> ring_associates r (p i) (q(f i)))`, GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [UFD_EQ_PRIMEFACT]) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_SIMP_TAC[UFD_IRREDUCIBLE_EQ_PRIME] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num->A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`m:num`; `q:num->A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `1..n`; `p:num->A`; `1..m`; `q:num->A`] RING_ASSOCIATES_PRIMEFACTS_BIJECTION) THEN REWRITE_TAC[INJECTIVE_ON_ALT] THEN ASM_REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; CARD_NUMSEG_1] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[RING_ASSOCIATES_TRANS; RING_ASSOCIATES_SYM; UFD_IRREDUCIBLE_EQ_PRIME]; STRIP_TAC THEN ASM_REWRITE_TAC[UFD_EQ_ATOMIC] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]] THEN X_GEN_TAC `p:A` THEN DISCH_TAC THEN REWRITE_TAC[ring_prime] THEN REWRITE_TAC[CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[ring_irreducible]; STRIP_TAC] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_divides]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[RING_MUL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_REWRITE_TAC[RING_DIVIDES_0] THEN ASM_CASES_TAC `b:A = ring_0 r` THEN ASM_REWRITE_TAC[RING_DIVIDES_0] THEN ASM_CASES_TAC `c:A = ring_0 r` THENL [ASM_MESON_TAC[RING_MUL_RZERO; integral_domain]; ALL_TAC] THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `c:A` th) THEN MP_TAC(SPEC `b:A` th) THEN MP_TAC(SPEC `a:A` th) THEN MP_TAC(SPEC `ring_mul r a b:A` th)) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[integral_domain; RING_MUL]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n_ab:num`; `p_ab:num->A`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`n_a:num`; `p_a:num->A`] THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(K ALL_TAC) THEN MAP_EVERY X_GEN_TAC [`n_b:num`; `p_b:num->A`] THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(K ALL_TAC) THEN MAP_EVERY X_GEN_TAC [`n_c:num`; `p_c:num->A`] THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(K ALL_TAC) THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPECL [`n_a + n_b:num`; `\i. if i <= n_a then (p_a:num->A) i else p_b(i - n_a)`] th) THEN MP_TAC(SPECL [`SUC n_c`; `\i. if i = SUC n_c then p else (p_c:num->A) i`] th)) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[LE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT; ARITH_RULE `1 <= SUC n`] THEN MATCH_MP_TAC RING_ASSOCIATES_MUL THEN ASM_REWRITE_TAC[RING_ASSOCIATES_REFL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] RING_ASSOCIATES_TRANS)) THEN MATCH_MP_TAC(MESON[RING_ASSOCIATES_REFL] `y IN ring_carrier r /\ x = y ==> ring_associates r x y`) THEN REWRITE_TAC[RING_PRODUCT] THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN GEN_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= n_ab /\ ring_associates r (p_ab k) (p:A)` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `f:num->num` MP_TAC) THEN REWRITE_TAC[numseg] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= n_ab /\ f(k) = SUC n_c` MP_TAC THENL [MP_TAC(ARITH_RULE `1 <= SUC n_c /\ SUC n_c <= SUC n_c`); ALL_TAC] THEN ASM SET_TAC[]; FIRST_X_ASSUM(K ALL_TAC o check (is_exists o concl))] THEN ANTS_TAC THENL [CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN SIMP_TAC[NUMSEG_ADD_SPLIT; ARITH_RULE `1 <= n + 1`] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_UNION o lhand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[FINITE_NUMSEG; DISJOINT; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; IN_INTER; IN_NUMSEG] THEN ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN SUBST1_TAC(SYM(ASSUME `ring_mul r a b:A = ring_mul r p c`)) THEN MATCH_MP_TAC RING_ASSOCIATES_MUL THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] RING_ASSOCIATES_TRANS)) THEN MATCH_MP_TAC(MESON[RING_ASSOCIATES_REFL] `y IN ring_carrier r /\ x = y ==> ring_associates r x y`) THEN REWRITE_TAC[RING_PRODUCT] THENL [MATCH_MP_TAC RING_PRODUCT_EQ THEN GEN_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_IMAGE o lhand o snd) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN GEN_TAC THEN ASM_REWRITE_TAC[IN_NUMSEG; o_THM] THEN STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_SUB] THEN ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f:num->num` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN DISCH_TAC THENL [DISJ1_TAC THEN TRANS_TAC RING_DIVIDES_TRANS `(p_ab:num->A) k` THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_DIVIDES_ASSOCIATES; RING_ASSOCIATES_SYM]; ALL_TAC] THEN TRANS_TAC RING_DIVIDES_TRANS `ring_product r {f(k:num)} (p_a:num->A)` THEN CONJ_TAC THENL [REWRITE_TAC[RING_PRODUCT_SING; o_DEF] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_DIVIDES_ASSOCIATES] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT `~p ==> p ==> q`)) THEN MATCH_MP_TAC RING_IRREDUCIBLE_IN_CARRIER THEN FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[numseg]) THEN ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC RING_DIVIDES_TRANS `ring_product r (1..n_a) (p_a:num->A)` THEN ASM_SIMP_TAC[RING_DIVIDES_ASSOCIATES] THEN MATCH_MP_TAC RING_DIVIDES_PRODUCT_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG; SING_SUBSET; IN_NUMSEG] THEN RULE_ASSUM_TAC(REWRITE_RULE[numseg]) THEN ASM SET_TAC[]; DISJ2_TAC THEN TRANS_TAC RING_DIVIDES_TRANS `(p_ab:num->A) k` THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_DIVIDES_ASSOCIATES; RING_ASSOCIATES_SYM]; ALL_TAC] THEN TRANS_TAC RING_DIVIDES_TRANS `ring_product r {f(k:num) - n_a} (p_b:num->A)` THEN CONJ_TAC THENL [REWRITE_TAC[RING_PRODUCT_SING; o_DEF] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_DIVIDES_ASSOCIATES] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT `~p ==> p ==> q`)) THEN MATCH_MP_TAC RING_IRREDUCIBLE_IN_CARRIER THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC(ARITH_RULE `1 <= k /\ k <= a + b /\ ~(k <= a) ==> 1 <= k - a /\ k - a <= b`) THEN RULE_ASSUM_TAC(REWRITE_RULE[numseg]) THEN ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC RING_DIVIDES_TRANS `ring_product r (1..n_b) (p_b:num->A)` THEN ASM_SIMP_TAC[RING_DIVIDES_ASSOCIATES] THEN MATCH_MP_TAC RING_DIVIDES_PRODUCT_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG; SING_SUBSET; IN_NUMSEG] THEN MATCH_MP_TAC(ARITH_RULE `1 <= k /\ k <= a + b /\ ~(k <= a) ==> 1 <= k - a /\ k - a <= b`) THEN RULE_ASSUM_TAC(REWRITE_RULE[numseg]) THEN ASM SET_TAC[]]);; let UFD_COPRIME = prove (`!r a b:A. UFD r ==> (ring_coprime r (a,b) <=> a IN ring_carrier r /\ b IN ring_carrier r /\ ~(a = ring_0 r /\ b = ring_0 r) /\ !p. ring_prime r p ==> ~(ring_divides r p a /\ ring_divides r p b))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `a:A = ring_0 r /\ b = ring_0 r` THENL [ASM_REWRITE_TAC[RING_0; RING_COPRIME_00; RING_DIVIDES_0] THEN ASM_MESON_TAC[UFD; integral_domain; TRIVIAL_RING_10]; ALL_TAC] THEN ASM_REWRITE_TAC[ring_coprime] THEN EQ_TAC THENL [MESON_TAC[ring_prime]; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN X_GEN_TAC `d:A` THEN ASM_CASES_TAC `d:A = ring_0 r` THEN ASM_REWRITE_TAC[RING_DIVIDES_ZERO] THEN STRIP_TAC THEN ASM_CASES_TAC `ring_unit r (d:A)` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`r:A ring`; `d:A`] UFD_PRIME_FACTOR_EXISTS) THEN ASM_MESON_TAC[RING_DIVIDES_TRANS; RING_DIVIDES_IN_CARRIER]);; let UFD_PRIME_FACTOR_INDUCT = prove (`!r P:A->bool. UFD r /\ P(ring_0 r) /\ (!u. ring_unit r u ==> P u) /\ (!p a. ring_prime r p /\ a IN ring_carrier r /\ P a ==> P(ring_mul r p a)) ==> !a. a IN ring_carrier r ==> P a`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `ring_unit r (a:A)` THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `!(p:num->A) n. (!i. 1 <= i /\ i <= n ==> ring_prime r (p i)) ==> P(ring_product r (1..n) p)` MP_TAC THENL [GEN_TAC; FIRST_ASSUM(MP_TAC o SPEC `a:A` o CONJUNCT2 o GEN_REWRITE_RULE I [UFD_EQ_PRIMEFACT_NONUNIT]) THEN ASM_MESON_TAC[]] THEN INDUCT_TAC THEN REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG_ALT; ARITH_EQ] THEN ASM_SIMP_TAC[RING_UNIT_1; LE_REFL; ARITH_RULE `1 <= SUC n`; RING_PRIME_IN_CARRIER] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[LE_REFL; ARITH_RULE `1 <= SUC n`] THEN REWRITE_TAC[RING_PRODUCT] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC);; let UFD_IMP_GCD_EXISTS = prove (`!r a b:A. UFD r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ?d. d IN ring_carrier r /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC UFD_PRIME_FACTOR_INDUCT THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[RING_DIVIDES_0] THEN MESON_TAC[RING_DIVIDES_REFL]; SIMP_TAC[RING_DIVIDES_UNIT] THEN MESON_TAC[RING_DIVIDES_UNIT; RING_UNIT_DIVIDES_ANY; RING_DIVIDES_REFL]; MAP_EVERY X_GEN_TAC [`p:A`; `m:A`] THEN STRIP_TAC THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN MP_TAC(ISPECL [`r:A ring`; `p:A`; `b:A`] INTEGRAL_DOMAIN_PRIME_DIVIDES_OR_COPRIME) THEN ASM_SIMP_TAC[UFD_IMP_INTEGRAL_DOMAIN]] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_divides]) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `n:A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:A`) THEN ASM_REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `d:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_mul r p d:A` THEN ASM_SIMP_TAC[RING_MUL; RING_DIVIDES_MUL2; RING_DIVIDES_REFL]; FIRST_X_ASSUM(MP_TAC o SPEC `b:A`) THEN ASM_REWRITE_TAC[IMP_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[RING_DIVIDES_LMUL; RING_PRIME_IN_CARRIER]] THEN X_GEN_TAC `e:A` THEN (ASM_CASES_TAC `(e:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]]) THEN ASM_CASES_TAC `ring_divides r (p:A) e` THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_PRIME_LMUL; UFD_IMP_INTEGRAL_DOMAIN] THEN UNDISCH_TAC `ring_divides r (p:A) e` THEN GEN_REWRITE_TAC LAND_CONV [ring_divides] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `d':A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_LMUL2; UFD_IMP_INTEGRAL_DOMAIN] THEN ASM_MESON_TAC[ring_prime; RING_DIVIDES_RMUL_REV; INTEGRAL_DOMAIN_PRIME_COPRIME_EQ; UFD_IMP_INTEGRAL_DOMAIN]);; let PID_EQ_UFD_PRIME_MAXIMAL = prove (`!r:A ring. PID r <=> UFD r /\ !j. prime_ideal r j /\ ~(j = {ring_0 r}) ==> maximal_ideal r j`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PID_IMP_UFD; PID_MAXIMAL_EQ_PRIME_IDEAL] THEN STRIP_TAC THEN REWRITE_TAC[PID_EQ_INTEGRAL_DOMAIN_PRIME_PRINCIPAL] THEN ASM_SIMP_TAC[UFD_IMP_INTEGRAL_DOMAIN] THEN X_GEN_TAC `j:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `j = {ring_0 r:A}` THEN ASM_REWRITE_TAC[PRINCIPAL_IDEAL_0] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [UFD]) THEN DISCH_THEN(MP_TAC o SPEC `j:A->bool` o CONJUNCT2) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `p:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(p:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_IDEAL_IMP_SUBSET; SUBSET]; ALL_TAC] THEN REWRITE_TAC[principal_ideal] THEN EXISTS_TAC `p:A` THEN FIRST_X_ASSUM(MP_TAC o SPEC `ideal_generated r {p:A}`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[IDEAL_GENERATED_EQ_0; ring_prime; RING_PRIME_IDEAL]; REWRITE_TAC[maximal_ideal; NOT_EXISTS_THM]] THEN DISCH_THEN(MP_TAC o SPEC `j:A->bool` o CONJUNCT2) THEN ASM_SIMP_TAC[PRIME_IMP_PROPER_IDEAL] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> ~(s PSUBSET t) ==> s = t`) THEN ASM_SIMP_TAC[IDEAL_GENERATED_MINIMAL_EQ; PRIME_IMP_RING_IDEAL] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Euclidean rings. *) (* ------------------------------------------------------------------------- *) let euclidean_ring = new_definition `euclidean_ring r <=> ?n:A->num. !a b. a IN ring_carrier r /\ b IN ring_carrier r /\ ~(b = ring_0 r) ==> ?q t. q IN ring_carrier r /\ t IN ring_carrier r /\ ring_add r (ring_mul r b q) t = a /\ (t = ring_0 r \/ n(t) < n(b))`;; let EUCLIDEAN_RING = prove (`!r:A ring. euclidean_ring r <=> ?n:A->num. !a b. a IN ring_carrier r /\ b IN ring_carrier r /\ ~(b = ring_0 r) /\ n(b) <= n(a) ==> ?q. q IN ring_carrier r /\ (ring_mul r b q = a \/ n(ring_sub r a (ring_mul r b q)) < n a)`, GEN_TAC THEN REWRITE_TAC[euclidean_ring] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `n:A->num` THEN REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:A` THEN DISCH_THEN(X_CHOOSE_THEN `t:A` MP_TAC) THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `t:A = ring_0 r` THEN ASM_SIMP_TAC[RING_MUL; RING_ADD_RZERO] THEN STRIP_TAC THEN DISJ2_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE `t:num < b ==> b <= a /\ u = t ==> u < a`)) THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[RING_EQ_SUB_RADD; RING_MUL] THEN ASM_MESON_TAC[RING_ADD_SYM; RING_MUL]; ALL_TAC] THEN ASM_CASES_TAC `ring_divides r b (a:A)` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_divides]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN EXISTS_TAC `ring_0 r:A` THEN ASM_SIMP_TAC[RING_0; RING_ADD_RZERO; RING_MUL]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [ring_divides]) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM; MESON[] `(!x. ~(P x /\ a = f x)) <=> !x. P x ==> ~(f x = a)`] THEN DISCH_TAC] THEN MP_TAC(fst(EQ_IMP_RULE(SPEC `\m. m IN IMAGE (n:A->num) {ring_sub r a (ring_mul r b q) | q | q IN ring_carrier r}` num_WOP))) THEN REWRITE_TAC[EXISTS_IN_IMAGE; EXISTS_IN_GSPEC] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC; NOT_LT] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:A` THEN STRIP_TAC THEN EXISTS_TAC `ring_sub r a (ring_mul r b q):A` THEN ASM_SIMP_TAC[GSYM RING_EQ_SUB_LADD; RING_MUL; RING_SUB] THEN CONJ_TAC THENL [ASM_SIMP_TAC[ring_sub; RING_NEG_ADD; RING_NEG; RING_MUL; RING_NEG_NEG; RING_ADD_ASSOC; RING_ADD_RNEG; RING_ADD_LZERO]; DISJ2_TAC THEN REWRITE_TAC[GSYM NOT_LE] THEN DISCH_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`ring_sub r a (ring_mul r b q):A`; `b:A`]) THEN ASM_SIMP_TAC[RING_MUL; RING_SUB; RING_SUB_EQ_0] THEN DISCH_THEN(X_CHOOSE_THEN `p:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_EQ_SUB_LADD; RING_MUL; GSYM RING_ADD_LDISTRIB] THEN ASM_SIMP_TAC[RING_ADD]; ASM_SIMP_TAC[ring_sub; GSYM RING_NEG_ADD; GSYM RING_ADD_ASSOC; RING_NEG; RING_MUL; GSYM RING_ADD_LDISTRIB; NOT_LT] THEN ASM_SIMP_TAC[GSYM ring_sub; RING_ADD]]);; let EUCLIDEAN_RING_ALT = prove (`!r:A ring. euclidean_ring r <=> ?n:A->num. (!a b. ring_divides r a b /\ (b = ring_0 r ==> a = ring_0 r) ==> n(a) <= n(b)) /\ (!a b. a IN ring_carrier r /\ b IN ring_carrier r /\ ~(b = ring_0 r) ==> ?q t. q IN ring_carrier r /\ t IN ring_carrier r /\ ring_add r (ring_mul r b q) t = a /\ (t = ring_0 r \/ n(t) < n(b)))`, GEN_TAC THEN REWRITE_TAC[euclidean_ring] THEN EQ_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]] THEN DISCH_THEN(X_CHOOSE_TAC `n:A->num`) THEN ASSUME_TAC(ISPEC `r:A ring` RING_0) THEN SUBGOAL_THEN `!a. a IN ring_carrier r /\ ~(a = ring_0 r) ==> ?m. m IN { (n:A->num) (ring_mul r a b) | b | b IN ring_carrier r /\ ~(ring_mul r a b = ring_0 r)}` MP_TAC THENL [X_GEN_TAC `a:A` THEN STRIP_TAC THEN GEN_REWRITE_TAC BINDER_CONV [TAUT `p <=> p /\ T`] THEN PURE_REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `ring_1 r:A` THEN ASM_SIMP_TAC[RING_MUL_RID; RING_1]; GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o RAND_CONV) [num_WOP]] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN REWRITE_TAC[FORALL_IN_GSPEC; LEFT_IMP_EXISTS_THM; SKOLEM_THM; NOT_LT] THEN REWRITE_TAC[FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN X_GEN_TAC `dd:A->A` THEN STRIP_TAC THEN EXISTS_TAC `(n:A->num) o (\x. ring_mul r x (dd x))` THEN REWRITE_TAC[o_THM] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN REWRITE_TAC[ring_divides; LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `c:A` THEN DISCH_TAC THEN DISCH_THEN SUBST1_TAC THEN ASM_CASES_TAC `a:A = ring_0 r` THEN ASM_SIMP_TAC[RING_MUL_LZERO; LE_REFL] THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; RING_MUL] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN UNDISCH_THEN `!a b. a IN ring_carrier r /\ b IN ring_carrier r /\ ~(b = ring_0 r) ==> (?q t. q IN ring_carrier r /\ t IN ring_carrier r /\ ring_add r (ring_mul r b q) t = a /\ (t = ring_0 r \/ (n:A->num) t < n b))` (MP_TAC o SPECL [`a:A`; `ring_mul r b (dd b):A`]) THEN ASM_SIMP_TAC[RING_MUL; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`q:A`; `t:A`] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`ring_mul r ((dd:A->A) b) q`; `t:A`] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (TAUT `p \/ q ==> p \/ ~p /\ q`)) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`t:A`; `ring_1 r:A`]) THEN ASM_SIMP_TAC[RING_MUL_RID; RING_1]);; let EUCLIDEAN_IMP_PRINCIPAL_IDEAL_RING = prove (`!r j:A->bool. euclidean_ring r /\ ring_ideal r j ==> principal_ideal r j`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [euclidean_ring]) THEN DISCH_THEN(X_CHOOSE_TAC `n:A->num`) THEN ASM_CASES_TAC `j = {ring_0 r:A}` THEN ASM_REWRITE_TAC[PRINCIPAL_IDEAL_0] THEN MP_TAC(SPEC `\m. m IN IMAGE (n:A->num) (j DELETE ring_0 r)` num_WOP) THEN REWRITE_TAC[EXISTS_IN_IMAGE; MEMBER_NOT_EMPTY; IMAGE_EQ_EMPTY] THEN MATCH_MP_TAC(TAUT `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL [MP_TAC(ISPECL[`r:A ring`; `j:A->bool`] IN_RING_IDEAL_0) THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`]] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_DELETE; principal_ideal] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(b:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[RING_IDEAL_IMP_SUBSET; SUBSET]; ASM_REWRITE_TAC[]] THEN ASM_SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; IDEAL_GENERATED_MINIMAL_EQ] THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SUBSET]] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(a:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[RING_IDEAL_IMP_SUBSET; SUBSET]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`]) THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:A` THEN DISCH_THEN(X_CHOOSE_THEN `t:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `t:A = ring_0 r` THEN ASM_SIMP_TAC[RING_MUL; RING_ADD_RZERO] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN SUBGOAL_THEN `t = ring_add r (ring_neg r (ring_mul r b q)) (ring_add r (ring_mul r b q) t):A` SUBST1_TAC THENL [FIRST_X_ASSUM(K ALL_TAC o SYM) THEN ASM_SIMP_TAC[RING_ADD_ASSOC; RING_ADD_LNEG; RING_MUL; RING_NEG; RING_ADD_LZERO]; MATCH_MP_TAC IN_RING_IDEAL_ADD THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IN_RING_IDEAL_NEG THEN ASM_SIMP_TAC[IN_RING_IDEAL_RMUL]]);; let EUCLIDEAN_DOMAIN_IMP_PID = prove (`!r:A ring. integral_domain r /\ euclidean_ring r ==> PID r`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[PID] THEN ASM_SIMP_TAC[EUCLIDEAN_IMP_PRINCIPAL_IDEAL_RING]);; let EUCLIDEAN_RING_UNIVERSAL_SIDE_DIVISOR = prove (`!r:A ring. euclidean_ring r /\ ~trivial_ring r /\ ~field r ==> ?a. a IN ring_carrier r /\ ~(a = ring_0 r) /\ ~(ring_unit r a) /\ !b. b IN ring_carrier r ==> ?u. (ring_unit r u \/ u = ring_0 r) /\ ring_divides r a (ring_sub r b u)`, SIMP_TAC[IMP_CONJ; FIELD_EQ_ALL_UNITS; TRIVIAL_RING_10] THEN GEN_TAC THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [euclidean_ring]) THEN DISCH_THEN(X_CHOOSE_TAC `n:A->num`) THEN MP_TAC(fst(EQ_IMP_RULE(ISPEC `\m. m IN IMAGE (n:A->num) {x | x IN ring_carrier r /\ ~(x = ring_0 r) /\ ~ring_unit r x}` num_WOP))) THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM; NOT_LT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`b:A`; `a:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `q:A` MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A` THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) MP_TAC) THEN ASM_SIMP_TAC[ring_sub; GSYM RING_ADD_ASSOC; RING_MUL; RING_NEG; RING_ADD_RNEG; RING_ADD_RZERO] THEN ASM_SIMP_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_REFL] THEN ASM_CASES_TAC `u:A = ring_0 r` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NOT_LT]);; let EUCLIDEAN_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ euclidean_ring r ==> euclidean_ring r'`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_epimorphism; euclidean_ring] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN DISCH_THEN(X_CHOOSE_THEN `n:A->num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\y. minimal p. p IN IMAGE n {x | x IN ring_carrier r /\ (f:A->B) x = y}` THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN MP_TAC(REWRITE_RULE[] (fst(EQ_IMP_RULE(ISPEC `\p:num. p IN IMAGE n {x | x IN ring_carrier r /\ (f:A->B) x = f b}` MINIMAL)))) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[]] THEN SPEC_TAC (`minimal p. p IN IMAGE n {x | x IN ring_carrier r /\ (f:A->B) x = f b}`, `c:num`) THEN ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; IN_ELIM_THM; NOT_LT] THEN X_GEN_TAC `b':A` THEN DISCH_TAC THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `b:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b':A`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[RING_HOMOMORPHISM_0]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:A` THEN DISCH_THEN(X_CHOOSE_THEN `t:A` (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN MP_TAC(REWRITE_RULE[] (fst(EQ_IMP_RULE(ISPEC `\p:num. p IN IMAGE n {x | x IN ring_carrier r /\ (f:A->B) x = f t}` MINIMAL)))) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[]] THEN ABBREV_TAC `v = minimal p. p IN IMAGE n {x | x IN ring_carrier r /\ (f:A->B) x = f t}` THEN ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM; NOT_LT] THEN GEN_REWRITE_TAC I [IMP_CONJ] THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `t':A` (CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `t:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN EXISTS_TAC `t':A` THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_IMAGE; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_HOMOMORPHISM_MUL; RING_HOMOMORPHISM_ADD; RING_MUL]; ALL_TAC] THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [ASM_MESON_TAC[RING_HOMOMORPHISM_0]; ASM_MESON_TAC[LET_TRANS]]);; let EUCLIDEAN_QUOTIENT_RING = prove (`!r j:A->bool. euclidean_ring r /\ ring_ideal r j ==> euclidean_ring (quotient_ring r j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EUCLIDEAN_RING_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[RING_EPIMORPHISM_RING_COSET]);; let ISOMORPHIC_RING_EUCLIDEANNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (euclidean_ring r <=> euclidean_ring r')`, REPEAT GEN_TAC THEN REWRITE_TAC[isomorphic_ring] THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[EUCLIDEAN_RING_EPIMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_EPIMORPHISM]);; (* ------------------------------------------------------------------------- *) (* A bit more about Noetherian rings. *) (* ------------------------------------------------------------------------- *) let NOETHERIAN_RING = prove (`!r:A ring. noetherian_ring r <=> WF(\j j'. ring_ideal r j /\ ring_ideal r j' /\ j' PSUBSET j)`, GEN_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> ~q) /\ (p ==> q) ==> (p <=> q)`) THEN CONJ_TAC THENL [REWRITE_TAC[noetherian_ring; WF_DCHAIN; NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `j:A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?s:num->A->bool. (!n. FINITE(s n) /\ s n SUBSET j) /\ (!n. ideal_generated r (s n) PSUBSET ideal_generated r (s(SUC n)))` STRIP_ASSUME_TAC THENL [ALL_TAC; EXISTS_TAC `\n. ideal_generated r ((s:num->A->bool) n)` THEN ASM_REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED]] THEN MATCH_MP_TAC DEPENDENT_CHOICE THEN CONJ_TAC THENL [MESON_TAC[EMPTY_SUBSET; FINITE_RULES]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`n:num`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [finitely_generated_ideal]) THEN REWRITE_TAC[NOT_EXISTS_THM; GSYM SUBSET_ANTISYM_EQ] THEN DISCH_THEN(MP_TAC o SPEC `k:A->bool`) THEN ASM_SIMP_TAC[IDEAL_GENERATED_MINIMAL_EQ] THEN MATCH_MP_TAC(TAUT `(p /\ q) /\ (~r ==> s) ==> ~(p /\ q /\ r) ==> s`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[ring_ideal]) THEN ASM SET_TAC[]; REWRITE_TAC[SET_RULE `~(s SUBSET t) <=> ?x. x IN s /\ ~(x IN t)`]] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(a:A) INSERT k` THEN ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET] THEN SIMP_TAC[PSUBSET_ALT; IDEAL_GENERATED_MONO; SET_RULE `s SUBSET a INSERT s`] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IDEAL_GENERATED_INC_GEN THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_ideal]) THEN ASM SET_TAC[]; REWRITE_TAC[noetherian_ring; WF_DCHAIN; FORALL_AND_THM] THEN DISCH_TAC THEN DISCH_THEN(X_CHOOSE_THEN `s:num->A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `UNIONS (IMAGE (s:num->A->bool) (:num))`) THEN ANTS_TAC THENL [MATCH_MP_TAC RING_IDEAL_UNIONS THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_IMAGE_2; IN_UNIV] THEN MATCH_MP_TAC(MESON[LE_CASES] `(!m n. m <= n ==> (s:num->A->bool) m SUBSET s n) ==> !m n. s m SUBSET s n \/ s n SUBSET s m`) THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM SET_TAC[]; REWRITE_TAC[finitely_generated_ideal; NOT_EXISTS_THM]] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`IMAGE (s:num->A->bool) (:num)`; `k:A->bool`] FINITE_SUBSET_UNIONS_CHAIN) THEN ASM_REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE_2; IN_UNIV; NOT_IMP] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[IDEAL_GENERATED_SUBSET_CARRIER_SUBSET]; SET_TAC[]; MATCH_MP_TAC(MESON[LE_CASES] `(!m n. m <= n ==> (s:num->A->bool) m SUBSET s n) ==> !m n. s m SUBSET s n \/ s n SUBSET s m`) THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM SET_TAC[]; DISCH_THEN(X_CHOOSE_TAC `m:num`) THEN SUBGOAL_THEN `(s:num->A->bool) (SUC m) SUBSET s(m)` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN TRANS_TAC SUBSET_TRANS `ideal_generated r k:A->bool` THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC IDEAL_GENERATED_MINIMAL THEN ASM_REWRITE_TAC[]]]);; let NOETHERIAN_RING_EQ_ACC = prove (`!r:A ring. noetherian_ring r <=> ~(?j. (!n. ring_ideal r (j n)) /\ (!n. j n PSUBSET j(n + 1)))`, REWRITE_TAC[NOETHERIAN_RING; WF_DCHAIN; ADD1] THEN MESON_TAC[]);; let NOETHERIAN_RING_EQ_MAXIMAL = prove (`!r:A ring. noetherian_ring r <=> !u. ~(u = {}) /\ (!j. j IN u ==> ring_ideal r j) ==> ?k. k IN u /\ !j. j IN u ==> ~(k PSUBSET j)`, GEN_TAC THEN REWRITE_TAC[NOETHERIAN_RING; WF] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM SET_TAC[]);; let NOETHERIAN_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ noetherian_ring r ==> noetherian_ring r'`, REPEAT STRIP_TAC THEN REWRITE_TAC[noetherian_ring] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP RING_EPIMORPHISM_IDEAL_CORRESPONDENCE th]) THEN X_GEN_TAC `k:B->bool` THEN DISCH_THEN(X_CHOOSE_THEN `j:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:A->bool` o REWRITE_RULE[noetherian_ring]) THEN ASM_REWRITE_TAC[finitely_generated_ideal] THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (f:A->B) s` THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[ring_epimorphism]) THEN ASM SET_TAC[]; ASM_MESON_TAC[IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE]]);; let NOETHERIAN_QUOTIENT_RING = prove (`!r j:A->bool. noetherian_ring r /\ ring_ideal r j ==> noetherian_ring (quotient_ring r j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NOETHERIAN_RING_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[RING_EPIMORPHISM_RING_COSET]);; let ISOMORPHIC_RING_NOETHERIANNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (noetherian_ring r <=> noetherian_ring r')`, REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NOETHERIAN_RING_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[ISOMORPHIC_RING_SYM; isomorphic_ring; RING_ISOMORPHISM_IMP_EPIMORPHISM]);; let NOETHERIAN_PROD_RING = prove (`!(r1:A ring) (r2:B ring). noetherian_ring(prod_ring r1 r2) <=> noetherian_ring r1 /\ noetherian_ring r2`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NOETHERIAN_RING_EPIMORPHIC_IMAGE) THEN MESON_TAC[RING_EPIMORPHISM_FST; RING_EPIMORPHISM_SND]; STRIP_TAC] THEN REWRITE_TAC[noetherian_ring] THEN ONCE_REWRITE_TAC[RING_IDEAL_PROD_RING] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:A#B->bool`; `k1:A->bool`; `k2:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN FIRST_ASSUM(MP_TAC o SPEC `k2:B->bool` o REWRITE_RULE[noetherian_ring]) THEN FIRST_ASSUM(MP_TAC o SPEC `k1:A->bool` o REWRITE_RULE[noetherian_ring]) THEN ASM_REWRITE_TAC[finitely_generated_ideal; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `s1:A->bool` THEN STRIP_TAC THEN X_GEN_TAC `s2:B->bool` THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN EXISTS_TAC `(ring_0 r1 INSERT s1:A->bool) CROSS (ring_0 r2 INSERT s2:B->bool)` THEN ASM_SIMP_TAC[IDEAL_GENERATED_CROSS; PROD_RING; SUBSET_CROSS; INSERT_SUBSET; RING_0; NOT_INSERT_EMPTY] THEN REWRITE_TAC[IDEAL_GENERATED_INSERT_ZERO] THEN MATCH_MP_TAC FINITE_CROSS THEN ASM_REWRITE_TAC[FINITE_INSERT]);; let NOETHERIAN_PRODUCT_RING = prove (`!(r:K->A ring) k. noetherian_ring(product_ring k r) <=> FINITE {i | i IN k /\ ~trivial_ring(r i)} /\ !i. i IN k ==> noetherian_ring (r i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN CONJ_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] NOETHERIAN_RING_EPIMORPHIC_IMAGE)) THEN ASM_MESON_TAC[RING_EPIMORPHISM_PRODUCT_PROJECTION]] THEN REWRITE_TAC[MESON[INFINITE] `FINITE s <=> ~INFINITE s`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [noetherian_ring]) THEN DISCH_THEN(MP_TAC o SPEC `{x | x IN ring_carrier(product_ring k (r:K->A ring)) /\ FINITE {i | i IN k /\ ~(x i = ring_0(r i))}}`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [REWRITE_TAC[ring_ideal; SUBSET_RESTRICT] THEN SIMP_TAC[IN_ELIM_THM; RING_0; RING_NEG; RING_ADD; RING_MUL] THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL [MATCH_MP_TAC(MESON[FINITE_EMPTY; MEMBER_NOT_EMPTY] `(!x. x IN s ==> F) ==> FINITE s`) THEN SIMP_TAC[IN_ELIM_THM; PRODUCT_RING; RESTRICTION] THEN MESON_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC); DISCH_THEN(CONJUNCTS_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION]; REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[CONTRAPOS_THM; IN_UNION; IN_ELIM_THM; GSYM DE_MORGAN_THM] THEN ASM_REWRITE_TAC[PRODUCT_RING; RESTRICTION] THEN RULE_ASSUM_TAC(REWRITE_RULE[PRODUCT_RING; IN_CARTESIAN_PRODUCT]) THEN ASM_SIMP_TAC[RING_NEG_0; RING_ADD_LZERO; RING_0; RING_MUL_RZERO]; REWRITE_TAC[finitely_generated_ideal] THEN DISCH_THEN(X_CHOOSE_THEN `s:(K->A)->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!x. x IN ideal_generated (product_ring k (r:K->A ring)) s ==> {i | i IN k /\ ~(x i = ring_0(r i))} SUBSET UNIONS {{i | i IN k /\ ~(y i = ring_0(r i))} | y | y IN s}` MP_TAC THENL [MATCH_MP_TAC IDEAL_GENERATED_INDUCT THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]; SIMP_TAC[PRODUCT_RING; RESTRICTION] THEN SET_TAC[]; GEN_TAC; REPEAT GEN_TAC THEN REWRITE_TAC[GSYM UNION_SUBSET]; REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[CONTRAPOS_THM; IN_UNION; IN_ELIM_THM; GSYM DE_MORGAN_THM] THEN ASM_REWRITE_TAC[PRODUCT_RING; RESTRICTION] THEN RULE_ASSUM_TAC(REWRITE_RULE[PRODUCT_RING; IN_CARTESIAN_PRODUCT]) THEN ASM_SIMP_TAC[RING_NEG_0; RING_ADD_LZERO; RING_0; RING_MUL_RZERO]; ASM_REWRITE_TAC[NOT_FORALL_THM; IN_ELIM_THM]] THEN ABBREV_TAC `k' = UNIONS {{i | i IN k /\ ~(y i = ring_0((r:K->A ring) i))} | y | y IN s}` THEN SUBGOAL_THEN `FINITE(k':K->bool)` ASSUME_TAC THENL [EXPAND_TAC "k'" THEN REWRITE_TAC[FINITE_UNIONS] THEN ASM_SIMP_TAC[FINITE_IMAGE; SIMPLE_IMAGE; FORALL_IN_IMAGE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `ideal_generated r s = s' ==> s SUBSET ideal_generated r s /\ (!x. x IN s' ==> P x) ==> !x. x IN s ==> P x`)) THEN ASM_SIMP_TAC[IDEAL_GENERATED_SUBSET_CARRIER_SUBSET; IN_ELIM_THM]; ALL_TAC] THEN SUBGOAL_THEN `~({i | i IN k /\ ~trivial_ring ((r:K->A ring) i)} SUBSET k')` MP_TAC THENL [ASM_MESON_TAC[INFINITE; FINITE_SUBSET]; ALL_TAC] THEN REWRITE_TAC[SUBSET; NOT_IMP; IN_ELIM_THM; NOT_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_THEN `a:K` STRIP_ASSUME_TAC) THEN EXISTS_TAC `RESTRICTION k (\i. if i IN a INSERT k' then ring_1(r i) else ring_0((r:K->A ring) i))` THEN REWRITE_TAC[PRODUCT_RING; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REPEAT CONJ_TAC THENL [MESON_TAC[RING_0; RING_1]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `(a:K) INSERT k'` THEN SIMP_TAC[RESTRICTION; FINITE_INSERT] THEN ASM SET_TAC[]; EXISTS_TAC `a:K` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[RESTRICTION; IN_INSERT; GSYM TRIVIAL_RING_10]]]; STRIP_TAC] THEN REWRITE_TAC[noetherian_ring] THEN FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP RING_IDEAL_PRODUCT_RING th]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`d:(K->A)->bool`; `j:K->A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN SUBGOAL_THEN `!i. i IN k ==> finitely_generated_ideal ((r:K->A ring) i) (j i)` MP_TAC THENL [ASM_MESON_TAC[noetherian_ring]; ALL_TAC] THEN REWRITE_TAC[finitely_generated_ideal] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN X_GEN_TAC `s:K->(A->bool)` THEN STRIP_TAC THEN EXISTS_TAC `cartesian_product k (\i. ring_0 ((r:K->A ring) i) INSERT s i)` THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[FINITE_CARTESIAN_PRODUCT; FINITE_INSERT] THEN DISJ2_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[CONTRAPOS_THM; trivial_ring] THEN ASM SET_TAC[]; REWRITE_TAC[PRODUCT_RING; SUBSET_CARTESIAN_PRODUCT] THEN ASM_SIMP_TAC[INSERT_SUBSET; RING_0]; ASM_SIMP_TAC[IDEAL_GENERATED_CARTESIAN_PRODUCT; INSERT_SUBSET; RING_0] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; NOT_INSERT_EMPTY] THEN ASM_SIMP_TAC[CARTESIAN_PRODUCT_EQ; IDEAL_GENERATED_INSERT_ZERO]]);; (* ------------------------------------------------------------------------- *) (* The special case of ACC for principal ideals (ACCP), which holds in UFDs. *) (* ------------------------------------------------------------------------- *) let RING_ACCP = prove (`!r:A ring. WF (\j j'. principal_ideal r j /\ principal_ideal r j' /\ j' PSUBSET j) <=> WF (\x y. ring_divides r x y /\ ~(ring_divides r y x))`, GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o ISPEC `\x:A. ideal_generated r {x}` o MATCH_MP WF_MEASURE_GEN) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] WF_SUBSET) THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[PRINCIPAL_IDEAL_IDEAL_GENERATED_SING] THEN STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP RING_DIVIDES_IN_CARRIER) THEN ASM_SIMP_TAC[PSUBSET_IDEALS_GENERATED_SING]; SUBGOAL_THEN `?g. !j. principal_ideal r j ==> g j IN ring_carrier r /\ ideal_generated r {g j:A} = j` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM SKOLEM_THM; principal_ideal] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o ISPEC `g:(A->bool)->A` o MATCH_MP (INST_TYPE [`:B->bool`,`:A`] WF_MEASURE_GEN)) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] WF_SUBSET) THEN REWRITE_TAC[] THEN ASM_MESON_TAC[PSUBSET_IDEALS_GENERATED_SING]]);; let RING_DIVIDES_WF = prove (`!r:A ring. noetherian_ring r \/ UFD r ==> WF (\x y. ring_divides r x y /\ ~(ring_divides r y x))`, REPEAT STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOETHERIAN_RING]) THEN REWRITE_TAC[GSYM RING_ACCP] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] WF_SUBSET) THEN SIMP_TAC[PRINCIPAL_IMP_RING_IDEAL]; FIRST_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o GEN_REWRITE_RULE I [UFD_EQ_PRIMEFACT]) THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n:A->num`; `p:A->num->A`] THEN STRIP_TAC THEN MP_TAC(ISPEC `\x. (if x = ring_0 r then 1 else 0),(n:A->num) x` (MATCH_MP WF_MEASURE_GEN (MATCH_MP WF_LEX (CONJ WF_num WF_num)))) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] WF_SUBSET) THEN REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN ASM_CASES_TAC `(x:A) IN ring_carrier r /\ y IN ring_carrier r` THENL [FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC); ASM_MESON_TAC[ring_divides]] THEN ASM_CASES_TAC `x:A = ring_0 r` THEN ASM_SIMP_TAC[RING_DIVIDES_0] THEN ASM_CASES_TAC `y:A = ring_0 r` THEN ASM_REWRITE_TAC[ARITH] THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `1..n(x:A)`; `(p:A->num->A) x`; `1..n(y:A)`; `(p:A->num->A) y`] RING_DIVIDES_PRIMEFACTS_LT) THEN ASM_REWRITE_TAC[CARD_NUMSEG_1] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `y:A` th) THEN MP_TAC(SPEC `x:A` th)) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[IN_NUMSEG; FINITE_NUMSEG; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE] THEN ASM_MESON_TAC[RING_ASSOCIATES_DIVIDES]]);; let RING_PRINCIPAL_IDEALS_WF = prove (`!r:A ring. noetherian_ring r \/ UFD r ==> WF (\j j'. principal_ideal r j /\ principal_ideal r j' /\ j' PSUBSET j)`, REWRITE_TAC[RING_ACCP; RING_DIVIDES_WF]);; let ACCP_RING_PROPER_DIVISOR_INDUCT = prove (`!r P:A->bool. WF (\x y. ring_divides r x y /\ ~(ring_divides r y x)) /\ (!a. a IN ring_carrier r /\ (!d. ring_divides r d a /\ ~(ring_divides r a d) ==> P d) ==> P a) ==> !a. a IN ring_carrier r ==> P a`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF_IND]) THEN REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[ring_divides]);; let RING_PROPER_DIVISOR_INDUCT = prove (`!r P:A->bool. (noetherian_ring r \/ UFD r) /\ (!a. a IN ring_carrier r /\ (!d. ring_divides r d a /\ ~(ring_divides r a d) ==> P d) ==> P a) ==> !a. a IN ring_carrier r ==> P a`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC ACCP_RING_PROPER_DIVISOR_INDUCT THEN ASM_SIMP_TAC[RING_DIVIDES_WF]);; let ACCP_DOMAIN_ATOMIC = prove (`!r a:A. integral_domain r /\ WF (\x y. ring_divides r x y /\ ~ring_divides r y x) /\ a IN ring_carrier r /\ ~(a = ring_0 r) ==> ?n p. (!i. 1 <= i /\ i <= n ==> ring_irreducible r (p i)) /\ ring_associates r (ring_product r (1..n) p) a`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC ACCP_RING_PROPER_DIVISOR_INDUCT THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `a:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[IMP_CONJ] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `ring_unit r (a:A)` THENL [MAP_EVERY EXISTS_TAC [`0`; `(\i. ring_0 r):num->A`] THEN REWRITE_TAC[RING_PRODUCT_CLAUSES_NUMSEG; ARITH_EQ; RING_0] THEN ASM_REWRITE_TAC[RING_ASSOCIATES_1] THEN ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `ring_irreducible r (a:A)` THENL [MAP_EVERY EXISTS_TAC [`1`; `(\i. a):num->A`] THEN ASM_REWRITE_TAC[NUMSEG_SING; RING_PRODUCT_SING; RING_ASSOCIATES_REFL]; RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP; GSYM CONJ_ASSOC])] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [ring_irreducible]) THEN ASM_REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; DE_MORGAN_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`b:A`; `c:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun t -> MP_TAC(SPEC `c:A` t) THEN MP_TAC(SPEC `b:A` t)) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(a:A = ring_0 r)` THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_MUL_EQ_0; DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_LMUL; RING_DIVIDES_REFL] THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_MUL_SELF; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n1:num`; `p1:num->A`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`n2:num`; `p2:num->A`] THEN STRIP_TAC THEN EXISTS_TAC `n1 + n2:num` THEN EXISTS_TAC `\i. if i <= n1 then (p1:num->A) i else p2(i - n1)` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; SIMP_TAC[NUMSEG_ADD_SPLIT; ARITH_RULE `1 <= n + 1`]] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_UNION o lhand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[FINITE_NUMSEG; DISJOINT; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; IN_INTER; IN_NUMSEG] THEN ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC RING_ASSOCIATES_MUL THEN CONJ_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_PRODUCT_IMAGE o lhand o snd) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ARITH_TAC; DISCH_THEN SUBST1_TAC]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] RING_ASSOCIATES_TRANS)) THEN MATCH_MP_TAC(MESON[RING_ASSOCIATES_REFL] `y IN ring_carrier r /\ x = y ==> ring_associates r x y`) THEN REWRITE_TAC[RING_PRODUCT] THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN GEN_TAC THEN REWRITE_TAC[IN_NUMSEG; o_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_SUB] THEN ASM_ARITH_TAC);; let ACCP_DOMAIN_IRREDUCIBLE_FACTOR_EXISTS = prove (`!r x:A. integral_domain r /\ WF (\x y. ring_divides r x y /\ ~ring_divides r y x) /\ x IN ring_carrier r /\ ~(x = ring_0 r) /\ ~(ring_unit r x) ==> ?p. ring_irreducible r p /\ ring_divides r p x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `x:A`] ACCP_DOMAIN_ATOMIC) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES_NUMSEG; ARITH_EQ; RING_ASSOCIATES_1; ARITH_RULE `1 <= SUC n`; LE_REFL; RING_IRREDUCIBLE_IN_CARRIER] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `q:num->A` THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN EXISTS_TAC `q(SUC n):A` THEN ASM_SIMP_TAC[ARITH_RULE `1 <= SUC n`; LE_REFL] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] RING_ASSOCIATES_DIVIDES)) THEN REPEAT(DISCH_THEN(MP_TAC o SPEC `q(SUC n):A`)) THEN ASM_SIMP_TAC[ARITH_RULE `1 <= SUC n`; LE_REFL; RING_IRREDUCIBLE_IN_CARRIER; RING_ASSOCIATES_REFL; RING_DIVIDES_LMUL; RING_DIVIDES_REFL; RING_PRODUCT]);; let NOETHERIAN_DOMAIN_ATOMIC = prove (`!r a:A. integral_domain r /\ (noetherian_ring r \/ UFD r) /\ a IN ring_carrier r /\ ~(a = ring_0 r) ==> ?n p. (!i. 1 <= i /\ i <= n ==> ring_irreducible r (p i)) /\ ring_associates r (ring_product r (1..n) p) a`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC ACCP_DOMAIN_ATOMIC THEN ASM_SIMP_TAC[RING_DIVIDES_WF]);; let NOETHERIAN_DOMAIN_IRREDUCIBLE_FACTOR_EXISTS = prove (`!r x:A. integral_domain r /\ (noetherian_ring r \/ UFD r) /\ x IN ring_carrier r /\ ~(x = ring_0 r) /\ ~(ring_unit r x) ==> ?p. ring_irreducible r p /\ ring_divides r p x`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC ACCP_DOMAIN_IRREDUCIBLE_FACTOR_EXISTS THEN ASM_SIMP_TAC[RING_DIVIDES_WF]);; let UFD_EQ_ACCP = prove (`!r:A ring. UFD r <=> integral_domain r /\ (!p. ring_irreducible r p ==> ring_prime r p) /\ WF (\x y. ring_divides r x y /\ ~ring_divides r y x)`, GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[UFD_IMP_INTEGRAL_DOMAIN; UFD_IRREDUCIBLE_EQ_PRIME; RING_DIVIDES_WF]; STRIP_TAC THEN ASM_REWRITE_TAC[UFD_EQ_ATOMIC] THEN ASM_SIMP_TAC[ACCP_DOMAIN_ATOMIC]]);; (* ------------------------------------------------------------------------- *) (* An actual (somewhat carefully totalized) function for the ring gcd. *) (* We try to make most of the properties true without any restrictions, *) (* and force to 1 in the coprime case to maintain the common idiom of using *) (* gcd(a,b) = 1 <=> coprime(a,b), and we also force a preference for the *) (* injection of N, just so we get the nonnegative integers in integer_ring. *) (* ------------------------------------------------------------------------- *) let ring_gcd = new_definition `ring_gcd (r:A ring) (a,b) = if a IN ring_carrier r /\ b IN ring_carrier r ==> ring_coprime r (a,b) then ring_1 r else if ?d. d IN IMAGE (ring_of_num r) (:num) /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d then @d. d IN IMAGE (ring_of_num r) (:num) /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d else if ?d. d IN ring_carrier r /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d then @d. d IN ring_carrier r /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d else @d. ring_divides r d a /\ ring_divides r d b /\ ~(ring_unit r d)`;; let RING_GCD_WORKS = prove (`!r a b:A. ring_gcd r (a,b) IN ring_carrier r /\ ring_divides r (ring_gcd r (a,b)) a /\ ring_divides r (ring_gcd r (a,b)) b /\ (!d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' (ring_gcd r (a,b))) <=> ?d. d IN ring_carrier r /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[]; DISCH_TAC] THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN ASM_CASES_TAC `(b:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN ASM_CASES_TAC `ring_coprime r (a:A,b)` THEN ASM_REWRITE_TAC[ring_gcd] THENL [REWRITE_TAC[RING_DIVIDES_1; RING_1; RING_DIVIDES_ONE] THEN ASM_REWRITE_TAC[GSYM ring_coprime]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SELECT_RULE) THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RING_OF_NUM]);; let RING_GCD_UNIQUE = prove (`!r a b d:A. ring_divides r d a /\ ring_divides r d b /\ (!d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d) ==> ring_associates r (ring_gcd r (a,b)) d`, REPEAT STRIP_TAC THEN MP_TAC(snd(EQ_IMP_RULE (ISPECL [`r:A ring`; `a:A`; `b:A`] RING_GCD_WORKS))) THEN ANTS_TAC THENL [ASM_MESON_TAC[ring_divides]; ALL_TAC] THEN REWRITE_TAC[ring_associates] THEN ASM_MESON_TAC[]);; let RING_GCD_REFL = prove (`!r a:A. a IN ring_carrier r ==> ring_associates r (ring_gcd r (a,a)) a`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_GCD_UNIQUE THEN ASM_REWRITE_TAC[RING_DIVIDES_REFL]);; let RING_GCD = prove (`!r a b:A. ring_gcd r (a,b) IN ring_carrier r`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] RING_GCD_WORKS) THEN MATCH_MP_TAC(TAUT `(p ==> r) /\ (~q ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL [SIMP_TAC[]; DISCH_TAC] THEN ASM_REWRITE_TAC[ring_gcd] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RING_1] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [NOT_IMP]) THEN COND_CASES_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `(?x. P x) ==> (!x. P x ==> Q x) ==> ~(!x. ~(Q x))`)) THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE; RING_OF_NUM]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [ring_coprime]) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[ring_divides]]);; let RING_GCD_EQ = prove (`!r a b a' b':A. (!d. d IN ring_carrier r ==> (ring_divides r d a /\ ring_divides r d b <=> ring_divides r d a' /\ ring_divides r d b')) ==> ring_gcd r (a,b) = ring_gcd r (a',b')`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[] `(!d. P d ==> Q d) ==> (!d. ~(P d) ==> Q d) ==> (!d. Q d)`)) THEN ANTS_TAC THENL [SIMP_TAC[ring_divides]; DISCH_TAC] THEN REWRITE_TAC[ring_gcd; ring_coprime] THEN REWRITE_TAC[TAUT `p /\ q /\ r /\ s <=> p /\ (q /\ r) /\ s`] THEN REWRITE_TAC[TAUT `ring_divides r d a /\ ring_divides r d b /\ q <=> (ring_divides r d a /\ ring_divides r d b) /\ q`] THEN ASM_REWRITE_TAC[] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o SPEC `ring_1 r:A`) THEN SIMP_TAC[RING_DIVIDES_1]);; let RING_GCD_SYM = prove (`!r a b:A. ring_gcd r (a,b) = ring_gcd r (b,a)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_GCD_EQ THEN CONV_TAC TAUT);; let RING_GCD_DIVIDES = prove (`(!r a b:A. ring_divides r (ring_gcd r (a,b)) a <=> a IN ring_carrier r) /\ (!r a b:A. ring_divides r (ring_gcd r (a,b)) b <=> b IN ring_carrier r)`, REPEAT STRIP_TAC THEN (EQ_TAC THENL [MESON_TAC[RING_DIVIDES_IN_CARRIER]; DISCH_TAC]) THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] RING_GCD_WORKS) THEN MATCH_MP_TAC(TAUT `(p ==> r) /\ (~q ==> r) ==> (p <=> q) ==> r`) THEN (CONJ_TAC THENL [SIMP_TAC[]; DISCH_TAC]) THEN ASM_REWRITE_TAC[ring_gcd] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RING_DIVIDES_1] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [NOT_IMP]) THEN (COND_CASES_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `(?x. P x) ==> (!x. P x ==> Q x) ==> ~(!x. ~(Q x))`)) THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE; RING_OF_NUM]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [ring_coprime]) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[ring_divides]]));; let RING_UNIT_GCD = prove (`!r a b:A. ring_unit r (ring_gcd r (a,b)) <=> a IN ring_carrier r /\ b IN ring_carrier r ==> ring_coprime r (a,b)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[ring_gcd; RING_UNIT_1]] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] RING_GCD_WORKS) THEN MATCH_MP_TAC(TAUT `(p ==> r) /\ (~q ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL [STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [ring_coprime]) THEN ASM_REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP] THEN X_GEN_TAC `d:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `d:A`) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN ASM_SIMP_TAC[RING_DIVIDES_UNIT]; DISCH_TAC] THEN ASM_REWRITE_TAC[ring_gcd] THEN COND_CASES_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `(?x. P x) ==> (!x. P x ==> Q x) ==> ~(!x. ~(Q x))`)) THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE; RING_OF_NUM]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [ring_coprime]) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[ring_divides]);; let RING_GCD_EQ_1 = prove (`!r a b:A. ring_gcd r (a,b) = ring_1 r <=> a IN ring_carrier r /\ b IN ring_carrier r ==> ring_coprime r (a,b)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[ring_gcd]] THEN REWRITE_TAC[GSYM RING_UNIT_GCD] THEN SIMP_TAC[RING_UNIT_1]);; let UFD_DIVIDES_GCD = prove (`!r a b d:A. UFD r /\ ring_divides r d a /\ ring_divides r d b ==> ring_divides r d (ring_gcd r (a,b))`, MESON_TAC[REWRITE_RULE[GSYM RING_GCD_WORKS] UFD_IMP_GCD_EXISTS; RING_DIVIDES_IN_CARRIER]);; let UFD_DIVIDES_GCD_EQ = prove (`!r a b d:A. UFD r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_divides r d (ring_gcd r (a,b)) <=> ring_divides r d a /\ ring_divides r d b)`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[UFD_DIVIDES_GCD] THEN DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] RING_DIVIDES_TRANS) THEN ASM_REWRITE_TAC[RING_GCD_DIVIDES]);; let RING_GCD_00 = prove (`!r:A ring. ring_gcd r (ring_0 r,ring_0 r) = ring_0 r`, GEN_TAC THEN GEN_REWRITE_TAC I [GSYM(CONJUNCT1 RING_ASSOCIATES_0)] THEN MATCH_MP_TAC RING_GCD_UNIQUE THEN REWRITE_TAC[RING_DIVIDES_0; RING_0]);; let FIELD_GCD = prove (`!r a b:A. field r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ring_gcd r (a,b) = if a = ring_0 r /\ b = ring_0 r then ring_0 r else ring_1 r`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RING_GCD_00] THEN ASM_SIMP_TAC[RING_GCD_EQ_1; FIELD_COPRIME]);; (* ------------------------------------------------------------------------- *) (* Bezout rings, where gcds also work and we have Bezout identity. *) (* Note that we are not automatically assuming the integral domain property. *) (* ------------------------------------------------------------------------- *) let bezout_ring = new_definition `bezout_ring (r:A ring) <=> !j. finitely_generated_ideal r j ==> principal_ideal r j`;; let BEZOUT_RING_FINITELY_GENERATED_EQ_PRINCIPAL_IDEAL = prove (`!r j:A->bool. bezout_ring (r:A ring) ==> (finitely_generated_ideal r j <=> principal_ideal r j)`, MESON_TAC[bezout_ring; PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL]);; let PID_IMP_BEZOUT_RING = prove (`!r:A ring. PID r ==> bezout_ring r`, SIMP_TAC[PID; bezout_ring; FINITELY_GENERATED_IMP_RING_IDEAL]);; let FIELD_IMP_BEZOUT_RING = prove (`!r:A ring. field r ==> bezout_ring r`, SIMP_TAC[FIELD_IMP_PID; PID_IMP_BEZOUT_RING]);; let BEZOUT_RING_2 = prove (`!r:A ring. bezout_ring r <=> !a b. a IN ring_carrier r /\ b IN ring_carrier r ==> principal_ideal r (ideal_generated r {a,b})`, GEN_TAC THEN REWRITE_TAC[bezout_ring] THEN EQ_TAC THEN SIMP_TAC[FINITELY_GENERATED_IDEAL_GENERATED; FINITE_INSERT; FINITE_EMPTY] THEN DISCH_TAC THEN SUBGOAL_THEN `!s:A->bool. FINITE s ==> s SUBSET ring_carrier r ==> principal_ideal r (ideal_generated r s)` MP_TAC THENL [ALL_TAC; MESON_TAC[finitely_generated_ideal]] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[INSERT_SUBSET] THEN REWRITE_TAC[IDEAL_GENERATED_EMPTY; PRINCIPAL_IDEAL_0] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [principal_ideal]) THEN DISCH_THEN(X_CHOOSE_THEN `b:A` (STRIP_ASSUME_TAC o GSYM)) THEN ONCE_REWRITE_TAC[IDEAL_GENERATED_INSERT] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GSYM IDEAL_GENERATED_INSERT]);; let BEZOUT_RING_SETADD = prove (`!r:A ring. bezout_ring r <=> !j k. principal_ideal r j /\ principal_ideal r k ==> principal_ideal r (ring_setadd r j k)`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[GSYM BEZOUT_RING_FINITELY_GENERATED_EQ_PRINCIPAL_IDEAL; FINITELY_GENERATED_IDEAL_SETADD] THEN STRIP_TAC THEN REWRITE_TAC[BEZOUT_RING_2] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{a,b} = {a} UNION {b}`] THEN REWRITE_TAC[IDEAL_GENERATED_UNION] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[PRINCIPAL_IDEAL_IDEAL_GENERATED_SING]);; let PID_EQ_NOETHERIAN_BEZOUT_DOMAIN = prove (`!r:A ring. PID r <=> integral_domain r /\ noetherian_ring r /\ bezout_ring r`, REWRITE_TAC[PID; noetherian_ring; bezout_ring] THEN MESON_TAC[PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL; FINITELY_GENERATED_IMP_RING_IDEAL]);; let BEZOUT_RING_IMP_BEZOUT = prove (`!r a b:A. bezout_ring r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ?d. d IN ring_carrier r /\ ring_divides r d a /\ ring_divides r d b /\ ?x y. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r (ring_mul r a x) (ring_mul r b y) = d`, REWRITE_TAC[bezout_ring] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ideal_generated r {a:A,b}`) THEN ANTS_TAC THENL [REWRITE_TAC[finitely_generated_ideal] THEN EXISTS_TAC `{a:A,b}` THEN ASM_SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET; FINITE_RULES]; ALL_TAC] THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED; principal_ideal] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `d:A`) THEN ASM_REWRITE_TAC[RING_DIVIDES_REFL] THEN ASM_SIMP_TAC[IDEAL_GENERATED_INC; IN_INSERT; INSERT_SUBSET; EMPTY_SUBSET] THEN ONCE_REWRITE_TAC[IDEAL_GENERATED_INSERT] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT] THEN REWRITE_TAC[ring_setadd; IN_ELIM_THM] THEN MESON_TAC[]);; let RING_IMP_GCD_EXISTS = prove (`!r a b:A. (UFD r \/ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ?d. d IN ring_carrier r /\ ring_divides r d a /\ ring_divides r d b /\ !d'. ring_divides r d' a /\ ring_divides r d' b ==> ring_divides r d' d`, REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[UFD_IMP_GCD_EXISTS]; ALL_TAC] THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] BEZOUT_RING_IMP_BEZOUT) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_SIMP_TAC[RING_DIVIDES_ADD; RING_DIVIDES_RMUL]);; let BEZOUT_RING_IMP_GCD = prove (`!r a b:A. bezout_ring r /\ a IN ring_carrier r /\ b IN ring_carrier r ==> ?x y. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r (ring_mul r a x) (ring_mul r b y) = ring_gcd r (a,b)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] BEZOUT_RING_IMP_BEZOUT) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:A` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`; `d:A`] RING_GCD_UNIQUE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[RING_DIVIDES_ADD; RING_DIVIDES_RMUL]; GEN_REWRITE_TAC LAND_CONV [RING_ASSOCIATES_SYM]] THEN DISCH_THEN(MP_TAC o MATCH_MP RING_DIVIDES_ASSOCIATES) THEN REWRITE_TAC[ring_divides] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `u:A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN MAP_EVERY EXISTS_TAC [`ring_mul r x u:A`; `ring_mul r y u:A`] THEN ASM_SIMP_TAC[RING_MUL_ASSOC; RING_MUL; GSYM RING_ADD_RDISTRIB]);; let BEZOUT_RING_COPRIME = prove (`!r a b:A. bezout_ring r ==> (ring_coprime r (a,b) <=> a IN ring_carrier r /\ b IN ring_carrier r /\ ?x y. x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r (ring_mul r a x) (ring_mul r b y) = ring_1 r)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[ring_coprime]] THEN ASM_CASES_TAC `(b:A) IN ring_carrier r` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[ring_coprime]] THEN EQ_TAC THENL [MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] RING_GCD_EQ_1) THEN ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN MATCH_MP_TAC BEZOUT_RING_IMP_GCD THEN ASM_REWRITE_TAC[]; DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[ring_coprime; GSYM RING_DIVIDES_ONE] THEN ASM_SIMP_TAC[RING_DIVIDES_ADD; RING_DIVIDES_RMUL]]);; let BEZOUT_RING_COPRIME_COMAXIMAL = prove (`!r a b:A. bezout_ring r ==> (ring_coprime r (a,b) <=> a IN ring_carrier r /\ b IN ring_carrier r /\ ring_setadd r (ideal_generated r {a}) (ideal_generated r {b}) = ring_carrier r)`, SIMP_TAC[BEZOUT_RING_COPRIME; RING_IDEAL_EQ_CARRIER; RING_IDEAL_SETADD; RING_IDEAL_IDEAL_GENERATED] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(b:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT; ring_setadd; IN_ELIM_THM] THEN ASM_MESON_TAC[]);; let BEZOUT_RING_COMAXIMAL_COPRIME = prove (`!r j k:A->bool. bezout_ring r /\ ring_ideal r j /\ ring_ideal r k ==> (ring_setadd r j k = ring_carrier r <=> ?a b. a IN j /\ b IN k /\ ring_coprime r (a,b))`, SIMP_TAC[RING_IDEAL_EQ_CARRIER; RING_IDEAL_SETADD; BEZOUT_RING_COPRIME] THEN REWRITE_TAC[ring_setadd; IN_ELIM_THM] THEN ASM_MESON_TAC[RING_MUL_RID; SUBSET; RING_IDEAL_IMP_SUBSET; IN_RING_IDEAL_RMUL; RING_1]);; let RING_DIVIDES_GCD = prove (`!r a b d:A. (UFD r \/ bezout_ring r) /\ ring_divides r d a /\ ring_divides r d b ==> ring_divides r d (ring_gcd r (a,b))`, MESON_TAC[REWRITE_RULE[GSYM RING_GCD_WORKS] RING_IMP_GCD_EXISTS; RING_DIVIDES_IN_CARRIER]);; let RING_DIVIDES_GCD_EQ = prove (`!r a b d:A. (UFD r \/ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r ==> (ring_divides r d (ring_gcd r (a,b)) <=> ring_divides r d a /\ ring_divides r d b)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN EQ_TAC THEN ASM_SIMP_TAC[RING_DIVIDES_GCD] THEN DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] RING_DIVIDES_TRANS) THEN ASM_REWRITE_TAC[RING_GCD_DIVIDES]);; let BEZOUT_RING_IRREDUCIBLE_IMP_PRIME = prove (`!r p:A. bezout_ring r /\ ring_irreducible r p ==> ring_prime r p`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_irreducible; ring_prime] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN REWRITE_TAC[TAUT `p \/ q <=> ~p ==> q`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`p:A`; `a:A`] o MATCH_MP BEZOUT_RING_COPRIME) THEN ASM_SIMP_TAC[RING_IRREDUCIBLE_COPRIME_EQ; ring_irreducible] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN SUBGOAL_THEN `b:A = ring_mul r b (ring_1 r:A)` SUBST1_TAC THENL [ASM_MESON_TAC[RING_MUL_RID]; ASM_REWRITE_TAC[]] THEN ASM_SIMP_TAC[RING_ADD_LDISTRIB; GSYM RING_MUL_ASSOC; RING_MUL] THEN MATCH_MP_TAC RING_DIVIDES_ADD THEN ASM_MESON_TAC[RING_MUL_AC; RING_MUL; RING_DIVIDES_RMUL; RING_DIVIDES_REFL]);; let BEZOUT_DOMAIN_IRREDUCIBLE_EQ_PRIME = prove (`!r p:A. integral_domain r /\ bezout_ring r ==> (ring_irreducible r p <=> ring_prime r p)`, MESON_TAC[BEZOUT_RING_IRREDUCIBLE_IMP_PRIME; INTEGRAL_DOMAIN_PRIME_IMP_IRREDUCIBLE]);; let PID_EQ_ACCP_BEZOUT_DOMAIN = prove (`!r:A ring. PID r <=> integral_domain r /\ bezout_ring r /\ WF (\x y. ring_divides r x y /\ ~ring_divides r y x)`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PID_IMP_UFD; PID_IMP_BEZOUT_RING; RING_DIVIDES_WF; PID_IMP_INTEGRAL_DOMAIN] THEN STRIP_TAC THEN ASM_REWRITE_TAC[PID] THEN X_GEN_TAC `j:A->bool` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_IDEAL_IMP_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x:A. x IN j` o GEN_REWRITE_RULE I [WF]) THEN ASM_REWRITE_TAC[principal_ideal] THEN ANTS_TAC THENL [ASM_MESON_TAC[IN_RING_IDEAL_0]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN ASM_SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; IDEAL_GENERATED_MINIMAL_EQ] THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SUBSET]] THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING; IN_ELIM_THM] THEN SUBGOAL_THEN `(b:A) IN ring_carrier r` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_gcd r (a,b):A`) THEN ASM_SIMP_TAC[RING_GCD_DIVIDES; RING_DIVIDES_GCD_EQ] THEN ASM_REWRITE_TAC[CONTRAPOS_THM; RING_DIVIDES_REFL] THEN DISCH_THEN MATCH_MP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `a:A`; `b:A`] BEZOUT_RING_IMP_GCD) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_SIMP_TAC[IN_RING_IDEAL_ADD; IN_RING_IDEAL_RMUL]);; let PID_EQ_UFD_BEZOUT_RING = prove (`!r:A ring. PID r <=> UFD r /\ bezout_ring r`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PID_IMP_UFD; PID_IMP_BEZOUT_RING] THEN STRIP_TAC THEN ASM_REWRITE_TAC[PID_EQ_ACCP_BEZOUT_DOMAIN] THEN ASM_SIMP_TAC[UFD_IMP_INTEGRAL_DOMAIN; RING_DIVIDES_WF]);; let PID_EQ_BEZOUT_ATOMIC = prove (`!r:A ring. PID r <=> integral_domain r /\ bezout_ring r /\ !x. x IN ring_carrier r /\ ~(x = ring_0 r) ==> ?n p. (!i. 1 <= i /\ i <= n ==> ring_irreducible r (p i)) /\ ring_associates r (ring_product r (1..n) p) x`, REWRITE_TAC[PID_EQ_UFD_BEZOUT_RING; UFD_EQ_ATOMIC] THEN MESON_TAC[BEZOUT_RING_IRREDUCIBLE_IMP_PRIME]);; let BEZOUT_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ bezout_ring r ==> bezout_ring r'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[bezout_ring; finitely_generated_ideal] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN ONCE_REWRITE_TAC [SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[MESON[] `(!x. a = x ==> P x) <=> P a`] THEN REWRITE_TAC[IMP_IMP] THEN FIRST_ASSUM (SUBST1_TAC o SYM o CONJUNCT2 o REWRITE_RULE[ring_epimorphism]) THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE] THEN DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PRINCIPAL_IDEAL_EPIMORPHIC_IMAGE; IDEAL_GENERATED_BY_EPIMORPHIC_IMAGE]);; let BEZOUT_QUOTIENT_RING = prove (`!r j:A->bool. bezout_ring r /\ ring_ideal r j ==> bezout_ring (quotient_ring r j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] BEZOUT_RING_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[RING_EPIMORPHISM_RING_COSET]);; let ISOMORPHIC_RING_BEZOUTNESS = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (bezout_ring r <=> bezout_ring r')`, REPEAT GEN_TAC THEN REWRITE_TAC[isomorphic_ring] THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[BEZOUT_RING_EPIMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_EPIMORPHISM]);; (* ------------------------------------------------------------------------- *) (* More divisibility properties that need something like GCD domain. *) (* ------------------------------------------------------------------------- *) let RING_GCD_LMUL = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> ring_associates r (ring_gcd r (ring_mul r c a,ring_mul r c b)) (ring_mul r c (ring_gcd r (a,b)))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `integral_domain(r:A ring)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[UFD]] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_CASES_TAC `c:A = ring_0 r` THENL [ASM_SIMP_TAC[RING_MUL_LZERO; RING_GCD_00; RING_ASSOCIATES_REFL; RING_GCD; RING_0]; ALL_TAC] THEN SUBGOAL_THEN `ring_divides r (c:A) (ring_gcd r (ring_mul r c a,ring_mul r c b))` MP_TAC THENL [ASM_SIMP_TAC[RING_DIVIDES_GCD_EQ; RING_MUL] THEN ASM_SIMP_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_REFL]; GEN_REWRITE_TAC LAND_CONV [ring_divides]] THEN DISCH_THEN(X_CHOOSE_THEN `e:A` STRIP_ASSUME_TAC o last o CONJUNCTS) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RING_ASSOCIATES_MUL THEN ASM_REWRITE_TAC[RING_ASSOCIATES_REFL] THEN ASM_REWRITE_TAC[RING_ASSOCIATES_SAME_DIVISORS; RING_GCD] THEN X_GEN_TAC `d:A` THEN DISCH_TAC THEN TRANS_TAC EQ_TRANS `ring_divides r (ring_mul r c d) (ring_mul r c e:A)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[INTEGRAL_DOMAIN_DIVIDES_LMUL2]; ALL_TAC] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[RING_DIVIDES_GCD_EQ; RING_MUL; INTEGRAL_DOMAIN_DIVIDES_LMUL2]);; let RING_GCD_RMUL = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> ring_associates r (ring_gcd r (ring_mul r a c,ring_mul r b c)) (ring_mul r (ring_gcd r (a,b)) c)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RING_GCD_LMUL) THEN ASM_MESON_TAC[RING_MUL_SYM; RING_MUL; RING_GCD]);; let RING_COPRIME_DIVPROD_LEFT = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r /\ ring_divides r c (ring_mul r a b) /\ ring_coprime r (a,c) ==> ring_divides r c b`, REPEAT GEN_TAC THEN ASM_CASES_TAC `integral_domain(r:A ring)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[UFD]] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_CASES_TAC `(c:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN SUBGOAL_THEN `b:A = ring_mul r (ring_gcd r (a,c)) b` SUBST1_TAC THENL [ASM_MESON_TAC[RING_GCD_EQ_1; RING_MUL_LID]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rand o rand) RING_GCD_RMUL o rand o snd) THEN ASM_REWRITE_TAC[ring_associates] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] RING_DIVIDES_TRANS) THEN ASM_SIMP_TAC[RING_DIVIDES_GCD_EQ; RING_MUL] THEN ASM_SIMP_TAC[RING_DIVIDES_RMUL; RING_DIVIDES_REFL]);; let RING_COPRIME_DIVPROD_RIGHT = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r /\ ring_divides r c (ring_mul r a b) /\ ring_coprime r (b,c) ==> ring_divides r c a`, REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(ISPECL [`r:A ring`; `b:A`; `a:A`; `c:A`] RING_COPRIME_DIVPROD_LEFT) THEN ASM_MESON_TAC[RING_MUL_SYM]);; let RING_DIVIDES_MUL = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ ring_coprime r (a,b) /\ ring_divides r a c /\ ring_divides r b c ==> ring_divides r (ring_mul r a b) c`, REPEAT GEN_TAC THEN ASM_CASES_TAC `integral_domain(r:A ring)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[UFD]] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_CASES_TAC `(a:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN ASM_CASES_TAC `(b:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN ASM_CASES_TAC `(c:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN SUBGOAL_THEN `c:A = ring_mul r (ring_gcd r (a,b)) c` SUBST1_TAC THENL [ASM_MESON_TAC[RING_GCD_EQ_1; RING_MUL_LID]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rand o rand) RING_GCD_RMUL o rand o snd) THEN ASM_REWRITE_TAC[ring_associates] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] RING_DIVIDES_TRANS) THEN ASM_SIMP_TAC[RING_DIVIDES_GCD_EQ; RING_MUL] THEN ASM_MESON_TAC[RING_DIVIDES_MUL2; RING_DIVIDES_REFL; RING_MUL_SYM]);; let RING_COPRIME_LMUL = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> (ring_coprime r (ring_mul r a b,c) <=> ring_coprime r (a,c) /\ ring_coprime r (b,c))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `integral_domain(r:A ring)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[UFD]] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_SIMP_TAC[ring_coprime; RING_MUL] THEN EQ_TAC THENL [ASM_MESON_TAC[RING_DIVIDES_LMUL; RING_DIVIDES_RMUL; RING_DIVIDES_TRANS; RING_DIVIDES_REFL]; DISCH_TAC] THEN X_GEN_TAC `d:A` THEN STRIP_TAC THEN ASM_CASES_TAC `(d:A) IN ring_carrier r` THENL [ALL_TAC; ASM_MESON_TAC[ring_divides]] THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RING_COPRIME_DIVPROD_LEFT THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[ring_coprime] THEN ASM_MESON_TAC[RING_DIVIDES_TRANS]);; let RING_COPRIME_RMUL = prove (`!r a b c:A. (UFD r \/ integral_domain r /\ bezout_ring r) /\ a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r ==> (ring_coprime r (a,ring_mul r b c) <=> ring_coprime r (a,b) /\ ring_coprime r (a,c))`, ONCE_REWRITE_TAC[RING_COPRIME_SYM] THEN SIMP_TAC[RING_COPRIME_LMUL]);; (* ------------------------------------------------------------------------- *) (* The general concept of a Boolean ring. *) (* ------------------------------------------------------------------------- *) let boolean_ring = new_definition `boolean_ring (r:A ring) <=> !x. x IN ring_carrier r ==> ring_mul r x x = x`;; let BOOLEAN_RING_SQUARE = prove (`!r x:A. boolean_ring r /\ x IN ring_carrier r ==> ring_mul r x x = x`, SIMP_TAC[boolean_ring]);; let BOOLEAN_RING_DOUBLE = prove (`!r x:A. boolean_ring r /\ x IN ring_carrier r ==> ring_add r x x = ring_0 r`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_ADD_LCANCEL_IMP THEN MAP_EVERY EXISTS_TAC [`r:A ring`; `ring_add r x x :A`] THEN ASM_SIMP_TAC[RING_ADD; RING_0; RING_ADD_RZERO] THEN TRANS_TAC EQ_TRANS `ring_mul r (ring_add r x x) (ring_add r x x):A` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[boolean_ring; RING_ADD]] THEN ASM_SIMP_TAC[RING_ADD; RING_ADD_LDISTRIB; RING_ADD_RDISTRIB] THEN RULE_ASSUM_TAC(REWRITE_RULE[boolean_ring]) THEN ASM_SIMP_TAC[GSYM RING_ADD_ASSOC; RING_ADD]);; let BOOLEAN_RING_NEG = prove (`!r x:A. boolean_ring r /\ x IN ring_carrier r ==> ring_neg r x = x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_LNEG_UNIQUE THEN ASM_SIMP_TAC[BOOLEAN_RING_DOUBLE]);; let BOOLEAN_RING_POW = prove (`!r (x:A) n. boolean_ring r /\ x IN ring_carrier r ==> ring_pow r x n = if n = 0 then ring_1 r else x`, SIMP_TAC[boolean_ring; RING_POW_IDEMPOTENT]);; let BOOLEAN_RING_OF_NUM = prove (`!(r:A ring) n. boolean_ring r ==> ring_of_num r n = if ODD n then ring_1 r else ring_0 r`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[ring_of_num; ODD] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN SIMP_TAC[RING_ADD_LZERO; RING_1] THEN ASM_MESON_TAC[BOOLEAN_RING_DOUBLE; RING_1]);; let BOOLEAN_RING_CHAR = prove (`!r:A ring. boolean_ring r ==> ring_char r = if trivial_ring r then 1 else 2`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RING_CHAR_EQ_1] THEN MATCH_MP_TAC(MESON[DIVIDES_ANTISYM] `(!n:num. m divides n <=> p divides n) ==> m = p`) THEN ASM_SIMP_TAC[GSYM RING_OF_NUM_EQ_0; BOOLEAN_RING_OF_NUM] THEN REWRITE_TAC[GSYM NOT_EVEN; COND_SWAP; EVEN_EXISTS; GSYM divides] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM TRIVIAL_RING_10]);; let BOOLEAN_RING_UNIT = prove (`!r x:A. boolean_ring r ==> (ring_unit r x <=> x = ring_1 r)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[RING_UNIT_1]] THEN REWRITE_TAC[ring_unit; LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC)) THEN TRANS_TAC EQ_TRANS `ring_mul r x (ring_mul r x y):A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_MUL_RID]; ALL_TAC] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[boolean_ring]) THEN ASM_SIMP_TAC[RING_MUL_ASSOC]);; let BOOLEAN_RING_ZERODIVISOR = prove (`!r x:A. boolean_ring r ==> (ring_zerodivisor r x <=> x IN ring_carrier r /\ ~(x = ring_1 r))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `x:A = ring_1 r` THEN ASM_REWRITE_TAC[RING_ZERODIVISOR_1] THEN EQ_TAC THEN REWRITE_TAC[RING_ZERODIVISOR_IN_CARRIER] THEN DISCH_TAC THEN ASM_REWRITE_TAC[ring_zerodivisor] THEN EXISTS_TAC `ring_sub r (x:A) (ring_1 r)` THEN RULE_ASSUM_TAC(REWRITE_RULE[boolean_ring]) THEN ASM_SIMP_TAC[RING_SUB; RING_1; RING_SUB_EQ_0; RING_SUB_LDISTRIB; RING_MUL_RID]);; let BOOLEAN_RING_REGULAR = prove (`!r x:A. boolean_ring r ==> (ring_regular r x <=> x = ring_1 r)`, SIMP_TAC[ring_regular; BOOLEAN_RING_ZERODIVISOR] THEN MESON_TAC[RING_1]);; let BOOLEAN_RING_IRREDUCIBLE = prove (`!r x:A. boolean_ring r ==> ~(ring_irreducible r x)`, SIMP_TAC[ring_irreducible; BOOLEAN_RING_UNIT] THEN REWRITE_TAC[boolean_ring] THEN MESON_TAC[]);; let BOOLEAN_RING_DIVIDES = prove (`!r x y:A. boolean_ring r ==> (ring_divides r x y <=> x IN ring_carrier r /\ y IN ring_carrier r /\ ring_mul r x y = y)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_divides] THEN ASM_CASES_TAC `(x:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(y:A) IN ring_carrier r` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RING_MUL_SYM]] THEN DISCH_THEN(X_CHOOSE_THEN `z:A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN RULE_ASSUM_TAC(REWRITE_RULE[boolean_ring]) THEN ASM_SIMP_TAC[RING_MUL_ASSOC]);; let BOOLEAN_RING_NILPOTENT = prove (`!r x:A. boolean_ring r ==> (ring_nilpotent r x <=> x = ring_0 r)`, REWRITE_TAC[ring_nilpotent] THEN MESON_TAC[BOOLEAN_RING_POW; RING_POW_1; RING_0; ARITH_RULE `~(1 = 0)`]);; let BOOLEAN_RING_RADICAL = prove (`!r j:A->bool. boolean_ring r /\ ring_ideal r j ==> radical r j = j`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; RADICAL_SUBSET] THEN ASM_SIMP_TAC[RING_IDEAL_IMP_SUBSET] THEN REWRITE_TAC[SUBSET; radical; IN_ELIM_THM] THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[BOOLEAN_RING_POW]);; let TRIVIAL_IMP_BOOLEAN_RING = prove (`!r:A ring. trivial_ring r ==> boolean_ring r`, SIMP_TAC[trivial_ring; boolean_ring; IN_SING; RING_MUL_LZERO; RING_0]);; let BOOLEAN_RING_10 = prove (`!r:A ring. ring_carrier r = {ring_0 r,ring_1 r} ==> boolean_ring r`, SIMP_TAC[boolean_ring; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN SIMP_TAC[RING_MUL_LZERO; RING_MUL_LID; RING_0; RING_1]);; let BOOLEAN_RING_2 = prove (`!r:A ring. ring_carrier r HAS_SIZE 2 ==> boolean_ring r`, SIMP_TAC[RING_CARRIER_HAS_SIZE_2; BOOLEAN_RING_10]);; let ISOMORPHIC_RING_BOOLEANNESS = prove (`!r r'. r isomorphic_ring r' ==> (boolean_ring r <=> boolean_ring r')`, REWRITE_TAC[isomorphic_ring; boolean_ring; ring_isomorphism; ring_isomorphisms; ring_homomorphism] THEN SET_TAC[]);; let BOOLEAN_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ boolean_ring r ==> boolean_ring r'`, REWRITE_TAC[boolean_ring; ring_epimorphism; ring_homomorphism] THEN SET_TAC[]);; let BOOLEAN_QUOTIENT_RING = prove (`!r j:A->bool. boolean_ring r /\ ring_ideal r j ==> boolean_ring (quotient_ring r j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] BOOLEAN_RING_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[RING_EPIMORPHISM_RING_COSET]);; let BOOLEAN_RING_SUBRING_GENERATED = prove (`!r s:A->bool. boolean_ring r ==> boolean_ring (subring_generated r s)`, REPEAT GEN_TAC THEN REWRITE_TAC[boolean_ring] THEN MP_TAC(ISPECL [`r:A ring`; `s:A->bool`] RING_CARRIER_SUBRING_GENERATED_SUBSET) THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED] THEN ASM SET_TAC[]);; let BOOLEAN_RING_MONOMORPHIC_PREIMAGE = prove (`!r r' (f:A->B). ring_monomorphism(r,r') f /\ boolean_ring r' ==> boolean_ring r`, MATCH_MP_TAC SUBRING_IMP_MONOMORPHIC_PROPERTY THEN REWRITE_TAC[BOOLEAN_RING_SUBRING_GENERATED] THEN REWRITE_TAC[ISOMORPHIC_RING_BOOLEANNESS]);; let BOOLEAN_PROD_RING = prove (`!(r1:A ring) (r2:B ring). boolean_ring (prod_ring r1 r2) <=> boolean_ring r1 /\ boolean_ring r2`, REWRITE_TAC[boolean_ring; PROD_RING; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN MESON_TAC[RING_0]);; let BOOLEAN_PRODUCT_RING = prove (`!k (r:K->A ring). boolean_ring (product_ring k r) <=> !i. i IN k ==> boolean_ring (r i)`, REPEAT GEN_TAC THEN REWRITE_TAC[boolean_ring; PRODUCT_RING] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; RESTRICTION_UNIQUE] THEN SIMP_TAC[FORALL_CARTESIAN_PRODUCT_ELEMENTS_EQ; CARTESIAN_PRODUCT_EQ_EMPTY; RING_CARRIER_NONEMPTY] THEN SIMP_TAC[IN_CARTESIAN_PRODUCT] THEN MESON_TAC[]);; let BOOLEAN_IMP_BEZOUT_RING = prove (`!r:A ring. boolean_ring r ==> bezout_ring r`, REPEAT STRIP_TAC THEN REWRITE_TAC[BEZOUT_RING_2] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN REWRITE_TAC[PRINCIPAL_IDEAL_ALT] THEN EXISTS_TAC `ring_add r (ring_add r x y) (ring_mul r x y):A` THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN MATCH_MP_TAC IDEAL_GENERATED_MINIMAL THEN ASM_SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET; RING_IDEAL_IDEAL_GENERATED] THEN ASM_SIMP_TAC[IN_RING_IDEAL_ADD; IN_RING_IDEAL_MUL; IN_INSERT; RING_IDEAL_IDEAL_GENERATED; IDEAL_GENERATED_INC_GEN] THEN ASM_SIMP_TAC[IDEAL_GENERATED_SING; RING_ADD; RING_MUL; IN_ELIM_THM] THEN ASM_SIMP_TAC[ring_divides; RING_ADD; RING_MUL] THEN CONJ_TAC THENL [EXISTS_TAC `x:A`; EXISTS_TAC `y:A`] THEN ASM_SIMP_TAC[RING_ADD_RDISTRIB; RING_ADD; RING_MUL] THENL [SUBGOAL_THEN `ring_mul r (ring_mul r x y) x:A = ring_mul r y (ring_mul r x x)` SUBST1_TAC THENL [ASM_MESON_TAC[RING_MUL_AC; RING_MUL]; ALL_TAC]; SUBGOAL_THEN `ring_add r (ring_mul r x y) (ring_mul r y y):A = ring_add r (ring_mul r y y) (ring_mul r x y)` SUBST1_TAC THENL [ASM_SIMP_TAC[RING_ADD_AC; RING_MUL]; ALL_TAC]] THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; GSYM RING_ADD_ASSOC; RING_MUL] THEN ASM_SIMP_TAC[BOOLEAN_RING_SQUARE; BOOLEAN_RING_DOUBLE; RING_MUL] THEN ASM_SIMP_TAC[RING_ADD_RZERO]);; let BOOLEAN_RING_MAXIMAL_EQ_PRIME_IDEAL = prove (`!r j:A->bool. boolean_ring r ==> (maximal_ideal r j <=> prime_ideal r j)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[MAXIMAL_IMP_PRIME_IDEAL] THEN ASM_CASES_TAC `ring_ideal r (j:A->bool)` THENL [ALL_TAC; ASM_MESON_TAC[PRIME_IMP_RING_IDEAL]] THEN ASM_SIMP_TAC[GSYM INTEGRAL_DOMAIN_QUOTIENT_RING; GSYM FIELD_QUOTIENT_RING] THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p ==> q`] THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] FINITE_INTEGRAL_DOMAIN_IMP_FIELD) THEN FIRST_ASSUM(MP_TAC o MATCH_MP INTEGRAL_DOMAIN_ZERODIVISOR) THEN ASM_SIMP_TAC[BOOLEAN_RING_ZERODIVISOR; BOOLEAN_QUOTIENT_RING] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `(!a. a IN s /\ ~(a = z) <=> a = w) ==> s SUBSET {w,z}`)) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] FINITE_SUBSET) THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY]);; let BOOLEAN_RING_MULTSYS = prove (`!r x:A. boolean_ring r ==> (ring_multsys r {ring_1 r,x} <=> x IN ring_carrier r)`, REWRITE_TAC[boolean_ring] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[RING_MULTSYS_IDEMPOT] THEN REWRITE_TAC[ring_multsys] THEN ASM SET_TAC[]);; let BOOLEAN_PROPER_IDEAL_COMPLEMENT = prove (`!r j x:A. boolean_ring r /\ proper_ideal r j /\ x IN j ==> ?y. y IN ring_carrier r DIFF j /\ ring_mul r x y = ring_0 r`, REWRITE_TAC[proper_ideal] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN ring_carrier r` ASSUME_TAC THENL [ASM_MESON_TAC[ring_ideal; SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `?z:A. z IN ring_carrier r /\ ~(z IN j)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `ring_add r z (ring_mul r x z):A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[IN_DIFF; RING_ADD; RING_MUL] THEN UNDISCH_TAC `~((z:A) IN j)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `z:A = ring_sub r (ring_add r z (ring_mul r x z)) (ring_mul r x z)` SUBST1_TAC THENL [RING_TAC; MATCH_MP_TAC IN_RING_IDEAL_SUB] THEN ASM_SIMP_TAC[IN_RING_IDEAL_RMUL]; MP_TAC(ISPECL [`r:A ring`; `x:A`] BOOLEAN_RING_SQUARE) THEN MP_TAC(ISPECL [`r:A ring`; `ring_mul r x z:A`] BOOLEAN_RING_DOUBLE) THEN ASM_SIMP_TAC[RING_MUL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN RING_TAC]);; let BOOLEAN_INTEGRAL_DOMAIN = prove (`!r:A ring. boolean_ring r /\ integral_domain r <=> ring_carrier r HAS_SIZE 2`, GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[RING_CARRIER_HAS_SIZE_2] THEN SIMP_TAC[TRIVIAL_RING_10; INTEGRAL_DOMAIN_10; BOOLEAN_RING_10] THEN REWRITE_TAC[integral_domain] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `a IN s /\ b IN s /\ (!c. c IN s /\ ~(c = a) /\ ~(c = b) ==> F) ==> s = {a,b}`) THEN REWRITE_TAC[RING_0; RING_1] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `ring_sub r x (ring_1 r):A`]) THEN ASM_SIMP_TAC[RING_SUB; RING_1; RING_SUB_LDISTRIB; RING_MUL_RID] THEN ASM_SIMP_TAC[RING_SUB_EQ_0; RING_1; RING_MUL] THEN ASM_MESON_TAC[boolean_ring]);; (* ------------------------------------------------------------------------- *) (* Von Neumann regular rings. *) (* ------------------------------------------------------------------------- *) let vnregular_ring = new_definition `vnregular_ring (r:A ring) <=> !a. a IN ring_carrier r ==> ?x. x IN ring_carrier r /\ ring_mul r a (ring_mul r x a) = a`;; let FIELD_IMP_VNREGULAR_RING = prove (`!r:A ring. field r ==> vnregular_ring r`, REPEAT STRIP_TAC THEN REWRITE_TAC[vnregular_ring] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `ring_inv r x:A` THEN ASM_CASES_TAC `x:A = ring_0 r` THEN ASM_SIMP_TAC[RING_INV; RING_MUL; RING_MUL_LZERO; RING_0] THEN ASM_SIMP_TAC[FIELD_MUL_LINV; RING_MUL_RID]);; let BOOLEAN_IMP_VNREGULAR_RING = prove (`!r:A ring. boolean_ring r ==> vnregular_ring r`, GEN_TAC THEN REWRITE_TAC[boolean_ring; vnregular_ring] THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `x:A` THEN ASM_SIMP_TAC[]);; let VNREGULAR_RING_EPIMORPHIC_IMAGE = prove (`!r r' (f:A->B). ring_epimorphism(r,r') f /\ vnregular_ring r ==> vnregular_ring r'`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_epimorphism; vnregular_ring] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN DISCH_TAC THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_homomorphism]) THEN ASM_MESON_TAC[RING_MUL]);; let VNREGULAR_QUOTIENT_RING = prove (`!r j:A->bool. vnregular_ring r /\ ring_ideal r j ==> vnregular_ring (quotient_ring r j)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] VNREGULAR_RING_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[RING_EPIMORPHISM_RING_COSET]);; let ISOMORPHIC_RING_VNREGULARITY = prove (`!(r:A ring) (r':B ring). r isomorphic_ring r' ==> (vnregular_ring r <=> vnregular_ring r')`, REPEAT GEN_TAC THEN REWRITE_TAC[isomorphic_ring] THEN REWRITE_TAC[ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RING_ISOMORPHISMS_ISOMORPHISM] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[VNREGULAR_RING_EPIMORPHIC_IMAGE; RING_ISOMORPHISM_IMP_EPIMORPHISM]);; let VNREGULAR_PROD_RING = prove (`!(r1:A ring) (r2:B ring). vnregular_ring(prod_ring r1 r2) <=> vnregular_ring r1 /\ vnregular_ring r2`, REWRITE_TAC[vnregular_ring; PROD_RING] THEN REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN REWRITE_TAC[IN_CROSS; PAIR_EQ] THEN MESON_TAC[RING_0]);; let VNREGULAR_PRODUCT_RING = prove (`!(r:K->A ring) k. vnregular_ring(product_ring k r) <=> !i. i IN k ==> vnregular_ring (r i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] VNREGULAR_RING_EPIMORPHIC_IMAGE)) THEN ASM_MESON_TAC[RING_EPIMORPHISM_PRODUCT_PROJECTION]; DISCH_TAC] THEN REWRITE_TAC[vnregular_ring; PRODUCT_RING] THEN GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV) [CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN REWRITE_TAC[FORALL_IN_GSPEC; RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION] THEN REWRITE_TAC[EXISTS_CARTESIAN_PRODUCT_ELEMENT] THEN RULE_ASSUM_TAC(REWRITE_RULE[vnregular_ring]) THEN ASM SET_TAC[]);; let VNREGULAR_IMP_REDUCED_RING = prove (`!r (x:A) n. vnregular_ring r /\ x IN ring_carrier r /\ ring_pow r x n = ring_0 r ==> x = ring_0 r`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A` o REWRITE_RULE[vnregular_ring]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`r:A ring`; `ring_mul r y x:A`; `n:num`] RING_POW_IDEMPOTENT) THEN ASM_SIMP_TAC[GSYM RING_MUL_ASSOC; RING_MUL] THEN DISCH_THEN(MP_TAC o SYM) THEN ASM_SIMP_TAC[RING_MUL_POW; RING_MUL_RZERO; RING_POW] THEN COND_CASES_TAC THENL [REWRITE_TAC[GSYM TRIVIAL_RING_10; trivial_ring] THEN ASM SET_TAC[]; ASM_MESON_TAC[RING_MUL_RZERO]]);; let VNREGULAR_RING_NILPOTENT = prove (`!r x:A. vnregular_ring r ==> (ring_nilpotent r x <=> x = ring_0 r)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[RING_NILPOTENT_0] THEN REWRITE_TAC[ring_nilpotent] THEN ASM_MESON_TAC[VNREGULAR_IMP_REDUCED_RING]);; let VNREGULAR_RING_REGULAR = prove (`!r a:A. vnregular_ring r ==> (ring_regular r a <=> ring_unit r a)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[RING_UNIT_IMP_REGULAR] THEN REWRITE_TAC[ring_regular; ring_zerodivisor; ring_unit] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A` o GEN_REWRITE_RULE I [vnregular_ring]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_sub r (ring_mul r a b) (ring_1 r):A`) THEN ASM_SIMP_TAC[RING_1; RING_SUB; RING_MUL] THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN RING_TAC);; let VNREGULAR_DOMAIN = prove (`!r:A ring. vnregular_ring r /\ integral_domain r <=> field r`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FIELD_IMP_VNREGULAR_RING; FIELD_IMP_INTEGRAL_DOMAIN] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[FIELD_EQ_ALL_UNITS; GSYM VNREGULAR_RING_REGULAR] THEN SIMP_TAC[INTEGRAL_DOMAIN_EQ_ALL_REGULAR]);; let VNREGULAR_RING_PRINCIPAL_IDEALS = prove (`!r:A ring. vnregular_ring r <=> !j. principal_ideal r j ==> ?e. e IN ring_carrier r /\ ring_mul r e e = e /\ j = ideal_generated r {e}`, GEN_TAC THEN REWRITE_TAC[vnregular_ring] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `j:A->bool` THEN REWRITE_TAC[principal_ideal] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_mul r y x:A` THEN ASM_SIMP_TAC[RING_MUL; GSYM RING_MUL_ASSOC] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [SYM th]) THEN ASM_SIMP_TAC[IDEALS_GENERATED_SING_EQ; RING_MUL] THEN ASM_SIMP_TAC[ring_associates; RING_DIVIDES_REFL; RING_DIVIDES_LMUL] THEN ASM_SIMP_TAC[ring_divides; RING_MUL] THEN EXISTS_TAC `x:A` THEN ASM_MESON_TAC[RING_MUL_AC; RING_MUL]; X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ideal_generated r {x:A}`) THEN REWRITE_TAC[PRINCIPAL_IDEAL_IDEAL_GENERATED_SING] THEN DISCH_THEN(X_CHOOSE_THEN `e:A` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[IDEALS_GENERATED_SING_EQ; ring_associates] THEN ASM_REWRITE_TAC[ring_divides] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) o GSYM) THEN EXISTS_TAC `z:A` THEN ASM_MESON_TAC[RING_MUL; RING_MUL_AC]]);; let VNREGULAR_IMP_BEZOUT_RING = prove (`!r:A ring. vnregular_ring r ==> bezout_ring r`, GEN_TAC THEN REWRITE_TAC[BEZOUT_RING_SETADD; VNREGULAR_RING_PRINCIPAL_IDEALS] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`j:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `k:A->bool` th) THEN MP_TAC(SPEC `j:A->bool` th)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:A` THEN STRIP_TAC THEN X_GEN_TAC `i:A` THEN STRIP_TAC THEN REWRITE_TAC[PRINCIPAL_IDEAL_ALT] THEN EXISTS_TAC `ring_sub r (ring_add r e i) (ring_mul r e i):A` THEN ASM_REWRITE_TAC[GSYM IDEAL_GENERATED_INSERT] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[IDEAL_GENERATED_MINIMAL_EQ; RING_IDEAL_IDEAL_GENERATED] THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> s INTER t SUBSET u`) THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THENL [MATCH_MP_TAC IN_RING_IDEAL_SUB THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED] THEN CONJ_TAC THENL [MATCH_MP_TAC IN_RING_IDEAL_ADD; MATCH_MP_TAC IN_RING_IDEAL_MUL] THEN REWRITE_TAC[RING_IDEAL_IDEAL_GENERATED] THEN CONJ_TAC THEN MATCH_MP_TAC IDEAL_GENERATED_INC_GEN THEN ASM_REWRITE_TAC[IN_INSERT]; ASM_SIMP_TAC[IDEAL_GENERATED_SING_ALT; RING_SUB; RING_ADD; RING_MUL] THEN REWRITE_TAC[IN_ELIM_THM]] THEN CONJ_TAC THENL [EXISTS_TAC `e:A`; EXISTS_TAC `i:A`] THEN ASM_REWRITE_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC RING_RULE);; let VNREGULAR_RING_FINITELY_GENERATED_IDEALS = prove (`!r:A ring. vnregular_ring r <=> !j. finitely_generated_ideal r j ==> ?e. e IN ring_carrier r /\ ring_mul r e e = e /\ j = ideal_generated r {e}`, GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[BEZOUT_RING_FINITELY_GENERATED_EQ_PRINCIPAL_IDEAL; VNREGULAR_IMP_BEZOUT_RING] THEN ASM_REWRITE_TAC[GSYM VNREGULAR_RING_PRINCIPAL_IDEALS] THEN REWRITE_TAC[VNREGULAR_RING_PRINCIPAL_IDEALS] THEN ASM_MESON_TAC[PRINCIPAL_IMP_FINITELY_GENERATED_IDEAL]);; let VNREGULAR_RING_IDEAL_IDEMPOT = prove (`!r j:A->bool. vnregular_ring r /\ ring_ideal r j ==> ring_setmul r j j = j`, REWRITE_TAC[vnregular_ring] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[RING_SETMUL_SUBSET_IDEAL; RING_IDEAL_IMP_SUBSET; SUBSET_REFL] THEN REWRITE_TAC[SUBSET; ring_setmul; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_RING_IDEAL_LMUL; RING_IDEAL_IMP_SUBSET; SUBSET]);; let VNREGULAR_RING = prove (`!r:A ring. vnregular_ring (r:A ring) <=> !a. a IN ring_carrier r ==> ?x. x IN ring_carrier r /\ ring_mul r a (ring_mul r x a) = a /\ ring_mul r x (ring_mul r a x) = x`, GEN_TAC THEN REWRITE_TAC[vnregular_ring] THEN EQ_TAC THENL [DISCH_TAC; MESON_TAC[]] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_mul r x (ring_mul r a x):A` THEN ASM_SIMP_TAC[RING_MUL] THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC RING_RULE);; let VNREGULAR_RING_ALT = prove (`!r:A ring. vnregular_ring (r:A ring) <=> !a. a IN ring_carrier r ==> ?!x. x IN ring_carrier r /\ ring_mul r a (ring_mul r x a) = a /\ ring_mul r x (ring_mul r a x) = x`, GEN_TAC THEN REWRITE_TAC[VNREGULAR_RING] THEN MATCH_MP_TAC(MESON[] `(!a x y. P a /\ R a x /\ R a y ==> x = y) ==> ((!a. P a ==> ?x. R a x) <=> (!a. P a ==> ?!x. R a x))`) THEN CONV_TAC RING_RULE);; let VNREGULAR_FRACTION_RING = prove (`!r:A ring. vnregular_ring r ==> (fraction_ring r) isomorphic_ring r`, REPEAT STRIP_TAC THEN REWRITE_TAC[fraction_ring] THEN MATCH_MP_TAC RING_LOCALIZATION_UNCHANGED THEN REWRITE_TAC[RING_MULTSYS_REGULAR] THEN ASM_SIMP_TAC[VNREGULAR_RING_REGULAR; SUBSET_REFL]);; (* ------------------------------------------------------------------------- *) (* The ring of Booleans under xor, and, basically the field GF(2). *) (* ------------------------------------------------------------------------- *) let bool_ring = new_definition `bool_ring = ring((:bool),F,T,I,(\x y. ~(x <=> y)),(/\))`;; let BOOL_RING = prove (`ring_carrier bool_ring = (:bool) /\ ring_0 bool_ring = F /\ ring_1 bool_ring = T /\ ring_neg bool_ring = I /\ ring_add bool_ring = (\x y. ~(x <=> y)) /\ ring_mul bool_ring = (/\)`, PURE_REWRITE_TAC [GSYM PAIR_EQ; ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul; BETA_THM; PAIR] THEN PURE_REWRITE_TAC[bool_ring; GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC[IN_UNIV; I_THM] THEN CONV_TAC TAUT);; let FIELD_BOOL_RING = prove (`field bool_ring`, REWRITE_TAC[field; BOOL_RING; EXISTS_BOOL_THM; FORALL_BOOL_THM]);; let NOT_TRIVIAL_BOOL_RING = prove (`~trivial_ring bool_ring`, REWRITE_TAC[TRIVIAL_RING_10; BOOL_RING]);; let BOOLEAN_RING_BOOL_RING = prove (`boolean_ring bool_ring`, REWRITE_TAC[boolean_ring; BOOL_RING]);; let INTEGRAL_DOMAIN_BOOL_RING = prove (`integral_domain bool_ring`, SIMP_TAC[FIELD_BOOL_RING; FIELD_IMP_INTEGRAL_DOMAIN]);; let BOOL_RING_CARRIER_HAS_SIZE_2 = prove (`ring_carrier bool_ring HAS_SIZE 2`, REWRITE_TAC[BOOL_RING; HAS_SIZE_BOOL]);; let ISOMORPHIC_RING_BOOL_RING = prove (`(!r:A ring. r isomorphic_ring bool_ring <=> ring_carrier r HAS_SIZE 2) /\ (!r:A ring. bool_ring isomorphic_ring r <=> ring_carrier r HAS_SIZE 2)`, GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o LAND_CONV) [ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[] THEN GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ISOMORPHIC_RING_SIZE th]) THEN REWRITE_TAC[BOOL_RING_CARRIER_HAS_SIZE_2]; REWRITE_TAC[RING_CARRIER_HAS_SIZE_2; TRIVIAL_RING_10] THEN STRIP_TAC] THEN ONCE_REWRITE_TAC[ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[isomorphic_ring; BOOL_RING] THEN EXISTS_TAC `(\p. if p then ring_1 r else ring_0 r):bool->A` THEN REWRITE_TAC[RING_ISOMORPHISM; ring_homomorphism; BOOL_RING] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; I_THM; IN_UNIV; GSYM SUBSET_ANTISYM_EQ; IN_IMAGE] THEN REWRITE_TAC[FORALL_BOOL_THM; EXISTS_BOOL_THM] THEN ASM_SIMP_TAC[FORALL_IN_INSERT; RING_0; RING_1; NOT_IN_EMPTY; RING_MUL_LID; RING_ADD_LZERO; RING_MUL_LZERO; RING_MUL_RID; RING_ADD_RZERO; RING_NEG_0] THEN MATCH_MP_TAC(RING_RULE `x IN ring_carrier r /\ y IN ring_carrier r /\ ring_add r x y = ring_0 r ==> y = ring_neg r x /\ ring_0 r = ring_add r x y`) THEN REWRITE_TAC[RING_1] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s = {a,b} ==> x IN s /\ ~(x = b) ==> x = a`)) THEN ASM_SIMP_TAC[RING_ADD; RING_1; RING_ADD_EQ_LEFT]);; (* ------------------------------------------------------------------------- *) (* The ring of integers. *) (* ------------------------------------------------------------------------- *) let integer_ring = new_definition `integer_ring = ring((:int),&0,&1,( -- ),( + ),( * ))`;; let INTEGER_RING = prove (`ring_carrier integer_ring = (:int) /\ ring_0 integer_ring = &0 /\ ring_1 integer_ring = &1 /\ ring_neg integer_ring = ( -- ) /\ ring_add integer_ring = ( + ) /\ ring_mul integer_ring = ( * )`, PURE_REWRITE_TAC [GSYM PAIR_EQ; ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul; BETA_THM; PAIR] THEN PURE_REWRITE_TAC[integer_ring; GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC[IN_UNIV] THEN CONV_TAC INT_RING);; let INTEGER_RING_UNIT = prove (`!x. ring_unit integer_ring x <=> x = &1 \/ x = -- &1`, REWRITE_TAC[ring_unit; INTEGER_RING; INT_MUL_EQ_1; IN_UNIV] THEN MESON_TAC[]);; let INTEGER_RING_DIVIDES = prove (`!a b. ring_divides integer_ring a b <=> a divides b`, REWRITE_TAC[ring_divides; INTEGER_RING; IN_UNIV; int_divides]);; let NOT_TRIVIAL_INTEGER_RING = prove (`~trivial_ring integer_ring`, REWRITE_TAC[TRIVIAL_RING_10; INTEGER_RING] THEN CONV_TAC INT_REDUCE_CONV);; let NOT_FIELD_INTEGER_RING = prove (`~field integer_ring`, REWRITE_TAC[FIELD_EQ_ALL_UNITS; INTEGER_RING_UNIT; INTEGER_RING] THEN DISCH_THEN(MP_TAC o SPEC `&2:int` o CONJUNCT2) THEN REWRITE_TAC[IN_UNIV] THEN CONV_TAC INT_REDUCE_CONV);; let RING_HOMOMORPHISM_INTEGER_RING_OF_INT = prove (`!r:A ring. ring_homomorphism (integer_ring,r) (ring_of_int r)`, GEN_TAC THEN REWRITE_TAC[ring_homomorphism; INTEGER_RING] THEN REWRITE_TAC[IN_UNIV; RING_OF_INT_0; RING_OF_INT_1; RING_OF_INT_NEG] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RING_OF_INT] THEN REWRITE_TAC[RING_OF_INT_ADD; RING_OF_INT_MUL]);; let RING_MONOMORPHISM_INTEGER_RING_OF_INT = prove (`!r:A ring. ring_monomorphism (integer_ring,r) (ring_of_int r) <=> ring_char r = 0`, SIMP_TAC[RING_MONOMORPHISM_ALT; RING_HOMOMORPHISM_INTEGER_RING_OF_INT] THEN REWRITE_TAC[RING_OF_INT_EQ_0; INTEGER_RING; IN_UNIV; GSYM INT_OF_NUM_EQ] THEN MESON_TAC[INTEGER_RULE `!x:int. &0 divides x <=> x = &0`; INTEGER_RULE `!x:int. x divides x`]);; let INTEGRAL_DOMAIN_INTEGER_RING = prove (`integral_domain integer_ring`, REWRITE_TAC[integral_domain; INTEGER_RING; INT_ENTIRE; IN_UNIV] THEN CONV_TAC INT_REDUCE_CONV);; let EUCLIDEAN_INTEGER_RING = prove (`euclidean_ring integer_ring`, REWRITE_TAC[euclidean_ring; INTEGER_RING; IN_UNIV] THEN EXISTS_TAC `num_of_int o abs` THEN REWRITE_TAC[GSYM INT_OF_NUM_LT; o_DEF] THEN SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS] THEN MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`a div b:int`; `a rem b:int`] THEN MP_TAC(SPECL [`a:int`; `b:int`] INT_DIVISION) THEN ASM_REWRITE_TAC[] THEN INT_ARITH_TAC);; let PID_INTEGER_RING = prove (`PID integer_ring`, MATCH_MP_TAC EUCLIDEAN_DOMAIN_IMP_PID THEN REWRITE_TAC[INTEGRAL_DOMAIN_INTEGER_RING; EUCLIDEAN_INTEGER_RING]);; let UFD_INTEGER_RING = prove (`UFD integer_ring`, SIMP_TAC[PID_IMP_UFD; PID_INTEGER_RING]);; let BEZOUT_INTEGER_RING = prove (`bezout_ring integer_ring`, SIMP_TAC[PID_INTEGER_RING; PID_IMP_BEZOUT_RING]);; let INTEGER_RING_OF_NUM = prove (`ring_of_num integer_ring = int_of_num`, REWRITE_TAC[FUN_EQ_THM] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_of_num; INTEGER_RING; GSYM INT_OF_NUM_SUC]);; let INTEGER_RING_OF_INT = prove (`ring_of_int integer_ring = I`, REWRITE_TAC[FUN_EQ_THM; I_THM] THEN REWRITE_TAC[RING_OF_INT_CLAUSES; FORALL_INT_CASES] THEN REWRITE_TAC[INTEGER_RING_OF_NUM; INTEGER_RING]);; let INTEGER_RING_CHAR = prove (`ring_char integer_ring = 0`, SIMP_TAC[RING_CHAR_EQ_0; INTEGER_RING_OF_NUM; INTEGER_RING; INT_OF_NUM_EQ]);; let INTEGER_RING_COPRIME = prove (`ring_coprime integer_ring = coprime`, REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; int_coprime] THEN SIMP_TAC[BEZOUT_RING_COPRIME; BEZOUT_INTEGER_RING] THEN REWRITE_TAC[INTEGER_RING; IN_UNIV]);; let INTEGER_RING_ASSOCIATES = prove (`!x y. ring_associates integer_ring x y <=> x = y \/ x = --y`, SIMP_TAC[INTEGRAL_DOMAIN_ASSOCIATES; INTEGRAL_DOMAIN_INTEGER_RING] THEN REWRITE_TAC[INTEGER_RING_UNIT; INTEGER_RING; IN_UNIV] THEN REWRITE_TAC[RIGHT_OR_DISTRIB; UNWIND_THM2; EXISTS_OR_THM] THEN INT_ARITH_TAC);; let INTEGER_RING_GCD = prove (`ring_gcd integer_ring = gcd`, REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN REWRITE_TAC[ring_gcd; INTEGER_RING; IN_UNIV; INTEGER_RING_COPRIME] THEN COND_CASES_TAC THENL [MATCH_MP_TAC(INT_ARITH `&0:int <= x /\ (x = &1 \/ x = -- &1) ==> &1 = x`) THEN REWRITE_TAC[int_gcd; GSYM INTEGER_RING_ASSOCIATES] THEN REWRITE_TAC[ring_associates; INTEGER_RING_DIVIDES] THEN CONJ_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC INTEGER_RULE; ALL_TAC] THEN MATCH_MP_TAC(MESON[] `P x /\ (!x'. P x' ==> x' = x) ==> (if ?x. P x then @x. P x else a) = x`) THEN REWRITE_TAC[INTEGER_RING_DIVIDES] THEN CONJ_TAC THENL [CONJ_TAC THENL [ALL_TAC; CONV_TAC INTEGER_RULE] THEN REWRITE_TAC[IN_IMAGE; INTEGER_RING_OF_NUM; IN_UNIV] THEN REWRITE_TAC[INT_OF_NUM_EXISTS; int_gcd]; REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; INTEGER_RING_OF_NUM; IN_UNIV]] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN MATCH_MP_TAC(INT_ARITH `&0:int <= x /\ &0 <= y /\ (x = y \/ x = --y) ==> x = y`) THEN REWRITE_TAC[INT_POS; int_gcd; GSYM INTEGER_RING_ASSOCIATES] THEN REWRITE_TAC[ring_associates; INTEGER_RING_DIVIDES] THEN ASM_SIMP_TAC[INTEGER_RULE `(n:int) divides a /\ n divides b ==> n divides gcd(a,b)`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONV_TAC INTEGER_RULE);; (* ------------------------------------------------------------------------- *) (* Ring of integers mod n, defaulting to all integers when n = 0 *) (* ------------------------------------------------------------------------- *) let integer_mod_ring = new_definition `integer_mod_ring n = if n = 0 then integer_ring else ring({m | &0 <= m /\ m < &n}, &0, &1 rem &n, (\a. --a rem &n), (\a b. (a + b) rem &n), (\a b. (a * b) rem &n))`;; let INTEGER_MOD_RING = prove (`ring_carrier (integer_mod_ring 0) = (:int) /\ (!n. 0 < n ==> ring_carrier(integer_mod_ring n) = {m | &0 <= m /\ m < &n}) /\ (!n. ring_0 (integer_mod_ring n) = &0) /\ (!n. ring_1 (integer_mod_ring n) = &1 rem &n) /\ (!n. ring_neg (integer_mod_ring n) = (\a. --a rem &n)) /\ (!n. ring_add (integer_mod_ring n) = (\a b. (a + b) rem &n)) /\ (!n. ring_mul (integer_mod_ring n) = (\a b. (a * b) rem &n))`, REWRITE_TAC[integer_mod_ring; INTEGER_RING] THEN REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[INTEGER_RING; LT_REFL; INT_REM_0] THENL [REWRITE_TAC[FUN_EQ_THM]; ASM_SIMP_TAC[LE_1]] THEN PURE_REWRITE_TAC [GSYM PAIR_EQ; ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul; BETA_THM; PAIR] THEN PURE_REWRITE_TAC[integer_mod_ring; GSYM(CONJUNCT2 ring_tybij)] THEN MP_TAC(GEN `m:int` (SPECL [`m:int`; `&n:int`] INT_DIVISION)) THEN ASM_REWRITE_TAC[INT_OF_NUM_EQ; INT_ABS_NUM; FORALL_AND_THM] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[IN_ELIM_THM; INT_LE_REFL] THEN ASM_SIMP_TAC[INT_OF_NUM_LT; LE_1; INT_ADD_LID; INT_ADD_RID] THEN ONCE_REWRITE_TAC[GSYM INT_ADD_REM; GSYM INT_MUL_REM] THEN REWRITE_TAC[INT_REM_REM] THEN REWRITE_TAC[INT_ADD_REM; INT_MUL_REM] THEN SIMP_TAC[INT_MUL_LID; INT_ADD_LINV; INT_REM_ZERO; INT_REM_LT] THEN REPEAT STRIP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC INTEGER_RULE);; let IN_INTEGER_MOD_RING_CARRIER = prove (`!n a. a IN ring_carrier(integer_mod_ring n) <=> &n:int = &0 \/ &0 <= a /\ a < &n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[CONJUNCT1 INTEGER_MOD_RING; IN_UNIV; INT_OF_NUM_EQ] THEN ASM_SIMP_TAC[INTEGER_MOD_RING; LE_1; IN_ELIM_THM]);; let INTEGER_MOD_RING_CARRIER_REM = prove (`!n x. x rem &n IN ring_carrier(integer_mod_ring n)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_RING; LE_1; IN_UNIV; IN_ELIM_THM] THEN ASM_MESON_TAC[INT_DIVISION; INT_OF_NUM_EQ; INT_ABS_NUM]);; let INTEGER_MOD_RING_TRIVIAL = prove (`integer_mod_ring 0 = integer_ring`, REWRITE_TAC[integer_mod_ring]);; let INTEGER_MOD_RING_SUB = prove (`!n. ring_sub (integer_mod_ring n) = \a b. (a - b) rem &n`, REWRITE_TAC[ring_sub; INT_SUB; INTEGER_MOD_RING; FUN_EQ_THM] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[]);; let INTEGER_MOD_RING_POW = prove (`!n a k. ring_pow (integer_mod_ring n) a k = (a pow k) rem &n`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[INTEGER_MOD_RING; ring_pow; INT_POW] THEN ONCE_REWRITE_TAC[GSYM INT_MUL_REM] THEN REWRITE_TAC[INT_REM_REM]);; let INTEGER_MOD_RING_OF_NUM = prove (`!n k. ring_of_num (integer_mod_ring n) k = &k rem &n`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_of_num; INTEGER_MOD_RING; GSYM INT_OF_NUM_SUC] THEN REWRITE_TAC[INT_REM_ZERO] THEN MESON_TAC[INT_ADD_REM; INT_REM_REM]);; let INTEGER_MOD_RING_OF_INT = prove (`!n x. ring_of_int (integer_mod_ring n) x = x rem &n`, REWRITE_TAC[RING_OF_INT_CLAUSES; FORALL_INT_CASES] THEN REWRITE_TAC[INTEGER_MOD_RING_OF_NUM; INTEGER_MOD_RING; INT_NEG_REM]);; let INTEGER_MOD_RING_CLAUSES = prove (`ring_carrier (integer_mod_ring 0) = (:int) /\ (!n. 0 < n ==> ring_carrier(integer_mod_ring n) = {m | &0 <= m /\ m < &n}) /\ (!n. ring_0 (integer_mod_ring n) = &0) /\ (!n. ring_1 (integer_mod_ring n) = &1 rem &n) /\ (!n. ring_neg (integer_mod_ring n) = (\a. --a rem &n)) /\ (!n. ring_add (integer_mod_ring n) = (\a b. (a + b) rem &n)) /\ (!n. ring_sub (integer_mod_ring n) = (\a b. (a - b) rem &n)) /\ (!n. ring_mul (integer_mod_ring n) = (\a b. (a * b) rem &n)) /\ (!n. ring_pow (integer_mod_ring n) = (\a k. (a pow k) rem &n)) /\ (!n. ring_of_num (integer_mod_ring n) = (\k. &k rem &n)) /\ (!n. ring_of_int (integer_mod_ring n) = \x. x rem &n)`, REWRITE_TAC[INTEGER_MOD_RING; INTEGER_MOD_RING_SUB; FUN_EQ_THM; INTEGER_MOD_RING_POW; INTEGER_MOD_RING_OF_NUM; INTEGER_MOD_RING_OF_INT]);; let INTEGER_MOD_RING_CHAR = prove (`!n. ring_char (integer_mod_ring n) = n`, REWRITE_TAC[RING_CHAR_UNIQUE; INTEGER_MOD_RING_OF_NUM; INTEGER_MOD_RING] THEN REWRITE_TAC[num_divides] THEN REWRITE_TAC[INTEGER_RULE `(d:int) divides x <=> (x == &0) (mod d)`] THEN REWRITE_TAC[GSYM INT_REM_EQ; INT_REM_ZERO]);; let INTEGER_MOD_RING_DIVIDES = prove (`!n a b. ring_divides (integer_mod_ring n) a b <=> a IN ring_carrier(integer_mod_ring n) /\ b IN ring_carrier(integer_mod_ring n) /\ gcd(a,&n) divides b`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_ring; INTEGER_RING; INTEGER_RING_DIVIDES] THEN REWRITE_TAC[IN_UNIV] THEN CONV_TAC INTEGER_RULE; ASM_SIMP_TAC[ring_divides; INTEGER_MOD_RING; LE_1]] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC(TAUT `(p /\ q ==> (r <=> s)) ==> (p /\ q /\ r <=> p /\ q /\ s)`) THEN STRIP_TAC THEN REWRITE_TAC[INTEGER_RULE `gcd(a,n) divides b <=> ?x:int. (a * x == b) (mod n)`] THEN ASM_SIMP_TAC[GSYM INT_REM_EQ; INT_REM_LT] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `x:int`) THEN EXISTS_TAC `x rem &n` THEN ASM_SIMP_TAC[INT_LT_REM; INT_REM_POS; INT_OF_NUM_EQ; INT_OF_NUM_LT; LE_1] THEN ASM_MESON_TAC[INT_REM_REM; INT_MUL_REM]);; let INTEGER_MOD_RING_ASSOCIATES = prove (`!n x y. ring_associates (integer_mod_ring n) x y <=> x IN ring_carrier(integer_mod_ring n) /\ y IN ring_carrier(integer_mod_ring n) /\ gcd(x,&n) = gcd(y,&n)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_associates] THEN REWRITE_TAC[INTEGER_MOD_RING_DIVIDES] THEN ASM_CASES_TAC `x IN ring_carrier (integer_mod_ring n)` THEN ASM_CASES_TAC `y IN ring_carrier (integer_mod_ring n)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[INTEGER_RULE `gcd(x:int,n) divides y /\ gcd(y,n) divides x <=> gcd(x,n) divides gcd(y,n) /\ gcd(y,n) divides gcd(x,n)`] THEN REWRITE_TAC[GSYM INTEGER_RING_DIVIDES; GSYM ring_associates] THEN REWRITE_TAC[INTEGER_RING_ASSOCIATES] THEN MATCH_MP_TAC(INT_ARITH `&0:int <= x /\ &0 <= y ==> (x = y \/ x = --y <=> x = y)`) THEN REWRITE_TAC[int_gcd]);; let INTEGER_MOD_RING_UNIT = prove (`!n x. ring_unit (integer_mod_ring n) x <=> x IN ring_carrier(integer_mod_ring n) /\ coprime(x,&n)`, REPEAT GEN_TAC THEN REWRITE_TAC[RING_UNIT_DIVIDES; INTEGER_MOD_RING_DIVIDES; RING_1] THEN AP_TERM_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_ring; INTEGER_RING] THEN CONV_TAC INTEGER_RULE; ASM_SIMP_TAC[INTEGER_MOD_RING]] THEN ASM_CASES_TAC `n = 1` THENL [ASM_REWRITE_TAC[INT_REM_REFL] THEN CONV_TAC INTEGER_RULE; REWRITE_TAC[INTEGER_RULE `coprime(x:int,y) <=> gcd(x,y) divides &1`]] THEN AP_TERM_TAC THEN REWRITE_TAC[INT_REM_EQ_SELF] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM INT_OF_NUM_EQ]) THEN ASM_INT_ARITH_TAC);; let TRIVIAL_INTEGER_MOD_RING = prove (`!n. trivial_ring (integer_mod_ring n) <=> n = 1`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_ring; NOT_TRIVIAL_INTEGER_RING; ARITH_EQ]; ASM_SIMP_TAC[TRIVIAL_RING_10; INTEGER_MOD_RING]] THEN EQ_TAC THEN SIMP_TAC[INT_REM_REFL] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(INT_ARITH `x:int = &1 ==> ~(x = &0)`) THEN REWRITE_TAC[INT_REM_EQ_SELF] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM INT_OF_NUM_EQ]) THEN ASM_INT_ARITH_TAC);; let FINITE_INTEGER_MOD_RING = prove (`!n. FINITE(ring_carrier(integer_mod_ring n)) <=> ~(n = 0)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_ring; INTEGER_RING; GSYM INFINITE] THEN REWRITE_TAC[int_INFINITE]; ASM_SIMP_TAC[INTEGER_MOD_RING; LE_1; FINITE_INT_SEG]]);; let CARD_INTEGER_MOD_RING = prove (`!n. ~(n = 0) ==> CARD(ring_carrier(integer_mod_ring n)) = n`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTEGER_MOD_RING; LE_1] THEN SUBGOAL_THEN `{m:int | &0 <= m /\ m < &n} = IMAGE (&) {i | i < n}` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[IN_ELIM_THM; IN_IMAGE; INT_OF_NUM_LT; INT_POS] THEN REWRITE_TAC[GSYM INT_FORALL_POS; IMP_CONJ] THEN REWRITE_TAC[INT_OF_NUM_LT; INT_OF_NUM_EQ; UNWIND_THM1]; SIMP_TAC[CARD_IMAGE_INJ; INT_OF_NUM_EQ; FINITE_NUMSEG_LT] THEN REWRITE_TAC[CARD_NUMSEG_LT]]);; let FIELD_INTEGER_MOD_RING = prove (`!n. field (integer_mod_ring n) <=> prime n`, GEN_TAC THEN REWRITE_TAC[prime] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_ring; NOT_FIELD_INTEGER_RING] THEN DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC NUMBER_RULE; REWRITE_TAC[FIELD_EQ_ALL_UNITS; GSYM TRIVIAL_RING_10]] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[TRIVIAL_INTEGER_MOD_RING] THEN ASM_SIMP_TAC[INTEGER_MOD_RING; LE_1; INTEGER_MOD_RING_UNIT] THEN REWRITE_TAC[IN_ELIM_THM; IMP_CONJ; GSYM INT_FORALL_POS] THEN REWRITE_TAC[GSYM num_coprime; INT_OF_NUM_EQ; INT_OF_NUM_LT] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `d:num` THEN STRIP_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `d:num`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[NUMBER_RULE `0 divides n <=> n = 0`]; DISCH_TAC THEN DISJ1_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (NUMBER_RULE `coprime(d,n) ==> d divides n ==> coprime(d,d)`)) THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUMBER_RULE]; DISCH_TAC THEN REWRITE_TAC[coprime] THEN X_GEN_TAC `e:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:num`) THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE)) THEN ASM_ARITH_TAC]);; let INTEGRAL_DOMAIN_INTEGER_MOD_RING = prove (`!n. integral_domain (integer_mod_ring n) <=> n = 0 \/ prime n`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_ring; INTEGRAL_DOMAIN_INTEGER_RING]; ALL_TAC] THEN ASM_CASES_TAC `n = 1` THENL [ASM_REWRITE_TAC[prime; integral_domain; GSYM TRIVIAL_RING_10] THEN ASM_REWRITE_TAC[TRIVIAL_INTEGER_MOD_RING]; ASM_SIMP_TAC[FINITE_INTEGRAL_DOMAIN_EQ_FIELD; FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING]]);; (* ------------------------------------------------------------------------- *) (* Conversion for explicit calculation over integer_mod_ring n (nonzero n) *) (* ------------------------------------------------------------------------- *) let RING_INV_INTEGER_MOD_RING = prove (`!n a. ring_inv (integer_mod_ring n) (&a) = if (n = 0 \/ ~(n = 1) /\ a < n) /\ coprime(a,n) then &(inverse_mod n a) else &0`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_inv] THEN SIMP_TAC[INTEGER_MOD_RING; INTEGER_MOD_RING_UNIT; GSYM num_coprime] THEN ASM_CASES_TAC `coprime(a:num,n)` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_SIMP_TAC[COPRIME_0; INTEGER_MOD_RING; LE_1; inverse_mod; ARITH] THEN REWRITE_TAC[IN_UNIV; INT_MUL_LID; IN_ELIM_THM; INT_REM_0; SELECT_UNIQUE]; ASM_SIMP_TAC[INTEGER_MOD_RING; LE_1; IN_ELIM_THM] THEN REWRITE_TAC[INT_OF_NUM_LT; INT_OF_NUM_LE; LE_0] THEN DISCH_TAC] THEN ASM_CASES_TAC `a:num < n` THEN ASM_REWRITE_TAC[COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SELECT_UNIQUE THENL [REWRITE_TAC[INT_REM_1] THEN INT_ARITH_TAC; ALL_TAC] THEN X_GEN_TAC `p:int` THEN REWRITE_TAC[] THEN EQ_TAC THENL [SPEC_TAC(`p:int`,`p:int`) THEN REWRITE_TAC[IMP_CONJ; GSYM INT_FORALL_POS] THEN REWRITE_TAC[INT_OF_NUM_CLAUSES; INT_OF_NUM_REM] THEN REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC INVERSE_MOD_UNIQUE THEN ASM_SIMP_TAC[CONG; LT_IMP_LE]; DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[INT_OF_NUM_CLAUSES; INT_OF_NUM_REM; GSYM CONG] THEN REWRITE_TAC[INVERSE_MOD_BOUND; INVERSE_MOD_RMUL_EQ] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]);; let INTEGER_MOD_RING_RED_CONV = let [pth_0; pth_1; pth_num; pth_neg; pth_add; pth_sub; pth_mul; pth_pow] = (CONJUNCTS o prove) (`ring_0 (integer_mod_ring n) = &0 /\ ring_1 (integer_mod_ring n) = &1 rem &n /\ ring_of_num (integer_mod_ring n) m = &m rem &n /\ ring_neg (integer_mod_ring n) (&a) = --(&a) rem &n /\ ring_add (integer_mod_ring n) (&a) (&b) = (&a + &b) rem &n /\ ring_sub (integer_mod_ring n) (&a) (&b) = (&a - &b) rem &n /\ ring_mul (integer_mod_ring n) (&a) (&b) = (&a * &b) rem &n /\ ring_pow (integer_mod_ring n) (&a) k = (&a pow k) rem &n`, REWRITE_TAC[ring_sub; INT_SUB; INTEGER_MOD_RING_OF_NUM] THEN REWRITE_TAC[INTEGER_MOD_RING_POW; INTEGER_MOD_RING] THEN CONV_TAC INT_REM_DOWN_CONV THEN REFL_TAC) and pth_inv = SPEC_ALL RING_INV_INTEGER_MOD_RING and pth_div = prove (`ring_div (integer_mod_ring n) (&a) (&b) = if (n = 0 \/ ~(n = 1) /\ b < n) /\ coprime(b,n) then (&a * &(inverse_mod n b)) rem &n else &0`, REWRITE_TAC[ring_div; RING_INV_INTEGER_MOD_RING] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[INTEGER_MOD_RING] THEN REWRITE_TAC[INT_MUL_RZERO; INT_REM_ZERO]) in let baseconv = GEN_REWRITE_CONV I [pth_0] ORELSEC ((GEN_REWRITE_CONV I [pth_1; pth_num] ORELSEC (GEN_REWRITE_CONV I [pth_neg] THENC LAND_CONV(TRY_CONV INT_NEG_CONV)) ORELSEC (GEN_REWRITE_CONV I [pth_add] THENC LAND_CONV(TRY_CONV INT_ADD_CONV)) ORELSEC (GEN_REWRITE_CONV I [pth_sub] THENC LAND_CONV(TRY_CONV INT_SUB_CONV)) ORELSEC (GEN_REWRITE_CONV I [pth_mul] THENC LAND_CONV(TRY_CONV INT_MUL_CONV))) THENC INT_REM_CONV) ORELSEC (GEN_REWRITE_CONV I [pth_pow] THENC INT_POW_REM_CONV) ORELSEC (GEN_REWRITE_CONV I [pth_inv] THENC RATOR_CONV(LAND_CONV(DEPTH_CONV(NUM_RED_CONV ORELSEC COPRIME_CONV))) THENC (GEN_REWRITE_CONV I [CONJUNCT2(SPEC_ALL COND_CLAUSES)] ORELSEC (GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL COND_CLAUSES)] THENC RAND_CONV INVERSE_MOD_CONV))) ORELSEC (GEN_REWRITE_CONV I [pth_div] THENC RATOR_CONV(LAND_CONV(DEPTH_CONV(NUM_RED_CONV ORELSEC COPRIME_CONV))) THENC (GEN_REWRITE_CONV I [CONJUNCT2(SPEC_ALL COND_CLAUSES)] ORELSEC (GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL COND_CLAUSES)] THENC LAND_CONV(RAND_CONV(RAND_CONV INVERSE_MOD_CONV) THENC INT_MUL_CONV) THENC INT_REM_CONV))) in fun tm -> let th = baseconv tm in if is_intconst(rand(concl th)) then th else failwith "INTEGER_MOD_RING_RED_CONV";; (* ------------------------------------------------------------------------- *) (* The ring (and field) of real numbers. *) (* ------------------------------------------------------------------------- *) let real_ring = new_definition `real_ring = ring((:real),&0,&1,( -- ),( + ),( * ))`;; let REAL_RING_CLAUSES = prove (`ring_carrier real_ring = (:real) /\ ring_0 real_ring = &0 /\ ring_1 real_ring = &1 /\ ring_neg real_ring = ( -- ) /\ ring_add real_ring = ( + ) /\ ring_mul real_ring = ( * )`, PURE_REWRITE_TAC [GSYM PAIR_EQ; ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul; BETA_THM; PAIR] THEN PURE_REWRITE_TAC[real_ring; GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC[IN_UNIV] THEN CONV_TAC REAL_RING);; let FIELD_REAL_RING = prove (`field real_ring`, REWRITE_TAC[field; REAL_RING_CLAUSES; IN_UNIV] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MESON_TAC[REAL_MUL_RINV]);; let INTEGRAL_DOMAIN_REAL_RING = prove (`integral_domain real_ring`, REWRITE_TAC[integral_domain; REAL_RING_CLAUSES; REAL_ENTIRE; IN_UNIV] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let REAL_RING_OF_NUM = prove (`ring_of_num real_ring = real_of_num`, REWRITE_TAC[FUN_EQ_THM] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_of_num; REAL_RING_CLAUSES; GSYM REAL_OF_NUM_SUC]);; let REAL_RING_OF_INT = prove (`ring_of_int real_ring = real_of_int`, REWRITE_TAC[FUN_EQ_THM; I_THM] THEN REWRITE_TAC[RING_OF_INT_CLAUSES; FORALL_INT_CASES] THEN REWRITE_TAC[int_neg_th; int_of_num_th; REAL_RING_OF_NUM] THEN REWRITE_TAC[REAL_RING_CLAUSES]);; let REAL_RING_CHAR = prove (`ring_char real_ring = 0`, SIMP_TAC[RING_CHAR_EQ_0; REAL_RING_OF_NUM; REAL_RING_CLAUSES; REAL_OF_NUM_EQ]);; let REAL_RING_SUB = prove (`ring_sub real_ring = (-)`, REWRITE_TAC[FUN_EQ_THM; ring_sub; REAL_RING_CLAUSES] THEN REAL_ARITH_TAC);; let REAL_RING_INV = prove (`ring_inv real_ring = inv`, REWRITE_TAC[FUN_EQ_THM; ring_inv; REAL_RING_CLAUSES] THEN SIMP_TAC[FIELD_UNIT; FIELD_REAL_RING; REAL_RING_CLAUSES; IN_UNIV; COND_SWAP] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_INV_0] THEN MATCH_MP_TAC SELECT_UNIQUE THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);; let REAL_RING_DIV = prove (`ring_div real_ring = (/)`, REWRITE_TAC[FUN_EQ_THM; ring_div; REAL_RING_CLAUSES; REAL_RING_INV] THEN REAL_ARITH_TAC);; let REAL_RING_POW = prove (`ring_pow real_ring = (pow)`, REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; real_pow; REAL_RING_CLAUSES]);; let REAL_FIELD_CLAUSES = prove (`ring_carrier real_ring = (:real) /\ ring_0 real_ring = &0 /\ ring_1 real_ring = &1 /\ ring_neg real_ring = ( -- ) /\ ring_add real_ring = ( + ) /\ ring_mul real_ring = ( * ) /\ ring_of_num real_ring = real_of_num /\ ring_sub real_ring = (-) /\ ring_inv real_ring = inv /\ ring_div real_ring = (/) /\ ring_pow real_ring = (pow)`, REWRITE_TAC[REAL_RING_CLAUSES; REAL_RING_OF_NUM; REAL_RING_SUB; REAL_RING_INV; REAL_RING_DIV; REAL_RING_POW]);; (* ------------------------------------------------------------------------- *) (* Monoid of monomials over an arbitrary set of "variables". *) (* ------------------------------------------------------------------------- *) let monomial_1 = new_definition `monomial_1 = \i:V. 0`;; let monomial_mul = new_definition `monomial_mul (m1:V->num) (m2:V->num) = \i. m1 i + m2 i`;; let monomial_div = new_definition `monomial_div (m1:V->num) (m2:V->num) = \i. m1 i - m2 i`;; let monomial_restrict = new_definition `monomial_restrict s (m:V->num) = \i. if i IN s then m i else 0`;; let monomial_divides = new_definition `monomial_divides (m1:V->num) (m2:V->num) <=> !i. m1 i <= m2 i`;; let monomial_var = new_definition `monomial_var (v:V) = \i. if i = v then 1 else 0`;; let monomial_vars = new_definition `monomial_vars m = {i:V | ~(m i = 0)}`;; let monomial_deg = new_definition `monomial_deg m = nsum (monomial_vars m) (m:V->num)`;; let monomial = new_definition `monomial (s:V->bool) m <=> FINITE(monomial_vars m) /\ (monomial_vars m) SUBSET s`;; let MONOMIAL_POINTWISE_TAC = let monomial_eq = prove (`!m1 m2:V->num. m1 = m2 <=> !x. m1 x = m2 x`, REWRITE_TAC[FUN_EQ_THM]) in REPEAT GEN_TAC THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[monomial_eq; monomial_divides] THEN REWRITE_TAC[monomial_1; monomial_mul; monomial_div; monomial_restrict; monomial_var] THEN REWRITE_TAC[GSYM SKOLEM_THM] THEN TRY EQ_TAC THEN REWRITE_TAC[AND_FORALL_THM; IMP_IMP] THEN TRY(MATCH_MP_TAC MONO_FORALL);; let MONOMIAL_TAC = MONOMIAL_POINTWISE_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_ARITH_TAC;; let MONOMIAL_RULE tm = prove(tm,MONOMIAL_TAC);; let MONOMIAL_VARS_1 = prove (`monomial_vars (monomial_1:V->num) = {}`, REWRITE_TAC[monomial_vars; monomial_1; EMPTY_GSPEC]);; let MONOMIAL_VARS_EQ_EMPTY = prove (`!m:V->num. monomial_vars m = {} <=> m = monomial_1`, GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [EXTENSION] THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; monomial_vars; monomial_1; IN_ELIM_THM] THEN MESON_TAC[]);; let MONOMIAL_VARS_MUL = prove (`!m1 m2:V->num. monomial_vars(monomial_mul m1 m2) = monomial_vars m1 UNION monomial_vars m2`, REWRITE_TAC[monomial_vars; monomial_mul; ADD_EQ_0] THEN SET_TAC[]);; let MONOMIAL_VARS_VAR = prove (`!v:V. monomial_vars(monomial_var v) = {v}`, GEN_TAC THEN REWRITE_TAC[monomial_vars; monomial_var] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC NUM_REDUCE_CONV THEN SET_TAC[]);; let MONOMIAL_VARS_RESTRICT = prove (`!s m:V->num. monomial_vars(monomial_restrict s m) = s INTER monomial_vars m`, REWRITE_TAC[monomial_vars; monomial_restrict] THEN SET_TAC[]);; let MONOMIAL_MONO = prove (`!s t (m:V->num). monomial s m /\ s SUBSET t ==> monomial t m`, REWRITE_TAC[monomial] THEN SET_TAC[]);; let MONOMIAL_UNIV = prove (`!s m. monomial s m ==> monomial (:V) m`, REWRITE_TAC[monomial] THEN SET_TAC[]);; let MONOMIAL_1 = prove (`!s:V->bool. monomial s monomial_1`, REWRITE_TAC[monomial; monomial_1; monomial_vars; EMPTY_GSPEC] THEN REWRITE_TAC[FINITE_EMPTY; EMPTY_SUBSET]);; let MONOMIAL_MUL = prove (`!(s:V->bool) m1 m2. monomial s (monomial_mul m1 m2) <=> monomial s m1 /\ monomial s m2`, REWRITE_TAC[monomial; monomial_mul; monomial_vars; ADD_EQ_0; SET_RULE `{x | ~(P x /\ Q x)} = {x | ~P x} UNION {x | ~Q x}`] THEN REWRITE_TAC[UNION_SUBSET; FINITE_UNION] THEN REWRITE_TAC[CONJ_ACI]);; let MONOMIAL_DIVISOR = prove (`!(s:V->bool) d m. monomial s m /\ monomial_divides d m ==> monomial s d`, REPEAT GEN_TAC THEN REWRITE_TAC[monomial; monomial_vars; monomial_divides] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(MESON[FINITE_SUBSET; SUBSET_TRANS] `s SUBSET t ==> FINITE t /\ t SUBSET u ==> FINITE s /\ s SUBSET u`) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM] THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_FORALL THEN ARITH_TAC);; let MONOMIAL_VAR = prove (`!(s:V->bool) v. monomial s (monomial_var v) <=> v IN s`, REWRITE_TAC[monomial; monomial_vars; monomial_var] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN REWRITE_TAC[SING_GSPEC; FINITE_SING; SING_SUBSET]);; let MONOMIAL_RESTRICT = prove (`!(s:V->bool) m. FINITE s ==> monomial s (monomial_restrict s m)`, REWRITE_TAC[monomial; MONOMIAL_VARS_RESTRICT] THEN SIMP_TAC[FINITE_INTER; INTER_SUBSET]);; let MONOMIAL = prove (`monomial (:V) m <=> FINITE(monomial_vars m)`, REWRITE_TAC[monomial; SUBSET_UNIV]);; let MONOMIAL_DEG_1 = prove (`monomial_deg (monomial_1:V->num) = 0`, REWRITE_TAC[monomial_deg; MONOMIAL_VARS_1; NSUM_CLAUSES]);; let MONOMIAL_DEG_VAR = prove (`!v:V. monomial_deg (monomial_var v) = 1`, REWRITE_TAC[monomial_deg; MONOMIAL_VARS_VAR; NSUM_SING] THEN REWRITE_TAC[monomial_var]);; let MONOMIAL_DEG_EQ_0_ALT = prove (`!m. monomial (:V) m ==> (monomial_deg m = 0 <=> m = monomial_1)`, REWRITE_TAC[MONOMIAL] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[MONOMIAL_DEG_1] THEN ASM_SIMP_TAC[monomial_deg; NSUM_EQ_0_IFF] THEN REWRITE_TAC[GSYM MONOMIAL_VARS_EQ_EMPTY; monomial_vars] THEN SET_TAC[]);; let MONOMIAL_DEG_EQ_0 = prove (`!s m. monomial s m ==> (monomial_deg m = 0 <=> m = monomial_1)`, SIMP_TAC[monomial; SUBSET_UNIV; MONOMIAL_DEG_EQ_0_ALT]);; let MONOMIAL_DIV_DIVIDES = prove (`!m d:V->num. monomial_divides (monomial_div m d) m`, MONOMIAL_TAC);; let MONOMIAL_DIV = prove (`!s m d:V->num. monomial s m ==> monomial s (monomial_div m d)`, MESON_TAC[MONOMIAL_DIVISOR; MONOMIAL_DIV_DIVIDES]);; let MONOMIAL_DIVIDES_1 = prove (`!m:V->num. monomial_divides monomial_1 m`, MONOMIAL_TAC);; let MONOMIAL_DIVIDES_EXISTS = prove (`!m1 m2:V->num. monomial_divides m1 m2 <=> ?m. m2 = monomial_mul m1 m`, MONOMIAL_POINTWISE_TAC THEN REWRITE_TAC[UNWIND_THM2; ARITH_RULE `a:num = b + m <=> m = a - b /\ b <= a`] THEN ARITH_TAC);; let MONOMIAL_DEG_MUL = prove (`!(m1:V->num) m2. monomial (:V) m1 /\ monomial (:V) m2 ==> monomial_deg(monomial_mul m1 m2) = monomial_deg m1 + monomial_deg m2`, REWRITE_TAC[monomial; monomial_vars] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[monomial_deg; monomial_vars; monomial_mul; ADD_EQ_0] THEN REWRITE_TAC[SET_RULE `{i | ~(P i /\ Q i)} = {i | ~P i} UNION {i | ~Q i}`] THEN ASM_SIMP_TAC[NSUM_ADD; FINITE_UNION] THEN BINOP_TAC THEN MATCH_MP_TAC NSUM_SUPERSET THEN SET_TAC[]);; let MONOMIAL_DEG_LE = prove (`!(m1:V->num) m2. monomial (:V) m2 /\ monomial_divides m1 m2 ==> monomial_deg m1 <= monomial_deg m2`, REPEAT GEN_TAC THEN REWRITE_TAC[MONOMIAL; CONJ_ASSOC; monomial_vars] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN REWRITE_TAC[MONOMIAL_DIVIDES_EXISTS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m:V->num` THEN DISCH_THEN SUBST1_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [monomial_mul] THEN REWRITE_TAC[ADD_EQ_0; FINITE_UNION; SET_RULE `{i | ~(P i /\ Q i)} = {i | ~P i} UNION {i | ~Q i}`] THEN SIMP_TAC[MONOMIAL_DEG_MUL; MONOMIAL; GSYM monomial_vars; LE_ADD]);; let MONOMIAL_VAR_EQ = prove (`!v w:V. monomial_var v = monomial_var w <=> v = w`, REWRITE_TAC[monomial_var; FUN_EQ_THM] THEN MESON_TAC[NUM_REDUCE_CONV `1 = 0`]);; let MONOMIAL_MUL_LID = prove (`!m:V->num. monomial_mul monomial_1 m = m`, MONOMIAL_TAC);; let MONOMIAL_MUL_RID = prove (`!m:V->num. monomial_mul m monomial_1 = m`, MONOMIAL_TAC);; let MONOMIAL_MUL_SYM = prove (`!m1 m2:V->num. monomial_mul m1 m2 = monomial_mul m2 m1`, MONOMIAL_TAC);; let MONOMIAL_MUL_ASSOC = prove (`!m1 m2 m3:V->num. monomial_mul m1 (monomial_mul m2 m3) = monomial_mul (monomial_mul m1 m2) m3`, MONOMIAL_TAC);; let MONOMIAL_MUL_AC = prove (`(!m1 m2. monomial_mul m1 m2 = monomial_mul m2 m1) /\ (!m1 m2 m3. monomial_mul (monomial_mul m1 m2) m3 = monomial_mul m1 (monomial_mul m2 m3)) /\ (!m1 m2 m3. monomial_mul m1 (monomial_mul m2 m3) = monomial_mul m2 (monomial_mul m1 m3))`, MONOMIAL_TAC);; let MONOMIAL_MUL_EQ_1 = prove (`!m1 m2:V->num. monomial_mul m1 m2 = monomial_1 <=> m1 = monomial_1 /\ m2 = monomial_1`, MONOMIAL_TAC);; let MONOMIAL_MUL_LCANCEL = prove (`!m m1 m2:V->num. monomial_mul m m1 = monomial_mul m m2 <=> m1 = m2`, MONOMIAL_TAC);; let MONOMIAL_MUL_RCANCEL = prove (`!m m1 m2:V->num. monomial_mul m1 m = monomial_mul m2 m <=> m1 = m2`, MONOMIAL_TAC);; let MONOMIAL_DIVIDES_REFL = prove (`!m:V->num. monomial_divides m m`, MONOMIAL_TAC);; let MONOMIAL_DIVIDES_TRANS = prove (`!m1 m2 m3:V->num. monomial_divides m1 m2 /\ monomial_divides m2 m3 ==> monomial_divides m1 m3`, MONOMIAL_TAC);; let MONOMIAL_DIVIDES_ANTISYM = prove (`!m1 m2:V->num. monomial_divides m1 m2 /\ monomial_divides m2 m1 <=> m1 = m2`, MONOMIAL_TAC);; let MONOMIAL_DIVIDES_LMUL = prove (`!d m1 m2:V->num. monomial_divides d m2 ==> monomial_divides d (monomial_mul m1 m2)`, MONOMIAL_TAC);; let MONOMIAL_DIVIDES_RMUL = prove (`!d m1 m2:V->num. monomial_divides d m1 ==> monomial_divides d (monomial_mul m1 m2)`, MONOMIAL_TAC);; let MONOMIAL_DIV_LMUL_EQ = prove (`!m1 m2:V->num. monomial_mul m2 (monomial_div m1 m2) = m1 <=> monomial_divides m2 m1`, MONOMIAL_TAC);; let MONOMIAL_DIV_LMUL = prove (`!m1 m2:V->num. monomial_divides m2 m1 ==> monomial_mul m2 (monomial_div m1 m2) = m1`, MONOMIAL_TAC);; let MONOMIAL_DIV_RMUL_EQ = prove (`!m1 m2:V->num. monomial_mul (monomial_div m1 m2) m2 = m1 <=> monomial_divides m2 m1`, MONOMIAL_TAC);; let MONOMIAL_DIV_RMUL = prove (`!m1 m2:V->num. monomial_divides m2 m1 ==> monomial_mul (monomial_div m1 m2) m2 = m1`, MONOMIAL_TAC);; let MONOMIAL_VAR_DIVIDES = prove (`!m v:V. monomial_divides (monomial_var v) m <=> v IN monomial_vars m`, REPEAT GEN_TAC THEN REWRITE_TAC[monomial_divides; monomial_var] THEN REWRITE_TAC[monomial_vars; IN_ELIM_THM] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `v:V`) THEN REWRITE_TAC[] THEN ARITH_TAC; DISCH_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]);; let MONOMIAL_VARS_DIVISOR = prove (`!d m:V->num. monomial_divides d m ==> monomial_vars d SUBSET monomial_vars m`, REPEAT GEN_TAC THEN REWRITE_TAC[monomial_divides; monomial_vars] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN ARITH_TAC);; let MONOMIAL_FINITE_DIVISORS = prove (`!m:V->num. FINITE {d | monomial_divides d m} <=> FINITE(monomial_vars m)`, GEN_TAC THEN EQ_TAC THENL [MP_TAC(ISPECL [`monomial_var:V->V->num`; `monomial_vars m:V->bool`] FINITE_IMAGE_INJ_EQ) THEN SIMP_TAC[MONOMIAL_VAR_EQ] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; monomial_vars; IN_ELIM_THM] THEN REWRITE_TAC[monomial_divides; monomial_var] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; REWRITE_TAC[monomial_vars] THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cartesian_product UNIV (\i:V. 0..m i)` THEN REWRITE_TAC[FINITE_CARTESIAN_PRODUCT; FINITE_NUMSEG; IN_UNIV] THEN REWRITE_TAC[SUBSET; monomial_divides; IN_CARTESIAN_PRODUCT] THEN SIMP_TAC[EXTENSIONAL_UNIV; IN_UNIV; IN_ELIM_THM; IN_NUMSEG; LE_0] THEN DISJ2_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; IN_SING] THEN MESON_TAC[LE]]);; let MONOMIAL_FINITE_DIVISORPAIRS = prove (`!m:V->num. FINITE {(m1,m2) | monomial_mul m1 m2 = m} <=> FINITE(monomial_vars m)`, GEN_TAC THEN REWRITE_TAC[GSYM MONOMIAL_FINITE_DIVISORS] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o ISPEC `FST:(V->num)#(V->num)->V->num` o MATCH_MP FINITE_IMAGE) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_IMAGE] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:V->num` THEN REWRITE_TAC[monomial_mul; monomial_divides] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`n:V->num`; `\v. (m:V->num) v - n v`] THEN ASM_REWRITE_TAC[FUN_EQ_THM; ARITH_RULE `n + m - n:num = m <=> n <= m`]; DISCH_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{d:V->num | monomial_divides d m} CROSS {d | monomial_divides d m}` THEN ASM_REWRITE_TAC[FINITE_CROSS_EQ] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_CROSS; IN_ELIM_THM] THEN MESON_TAC[MONOMIAL_DIVIDES_LMUL; MONOMIAL_DIVIDES_RMUL; MONOMIAL_DIVIDES_REFL]]);; let MONOMIAL_INDUCT = prove (`!s (P:(V->num)->bool). P monomial_1 /\ (!m v. monomial s m /\ P m /\ v IN s ==> P(monomial_mul (monomial_var v) m)) ==> !m. monomial s m ==> P m`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!d m:V->num. monomial s m /\ monomial_deg m = d ==> P m` MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL [ASM_MESON_TAC[MONOMIAL_DEG_EQ_0]; ALL_TAC] THEN X_GEN_TAC `d:num` THEN DISCH_TAC THEN X_GEN_TAC `m:V->num` THEN STRIP_TAC THEN SUBGOAL_THEN `~(monomial_vars(m:V->num) = {})` MP_TAC THENL [ASM_MESON_TAC[MONOMIAL_VARS_EQ_EMPTY; MONOMIAL_DEG_1; NOT_SUC]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `v:V` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`monomial_div m (monomial_var(v:V))`; `v:V`]) THEN ASM_SIMP_TAC[MONOMIAL_DIV_LMUL; MONOMIAL_VAR_DIVIDES] THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[MONOMIAL_DIVISOR; MONOMIAL_DIV_DIVIDES]; FIRST_X_ASSUM MATCH_MP_TAC; RULE_ASSUM_TAC(REWRITE_RULE[monomial]) THEN ASM SET_TAC[]] THEN CONJ_TAC THENL [ASM_MESON_TAC[MONOMIAL_DIVISOR; MONOMIAL_DIV_DIVIDES]; GEN_REWRITE_TAC I [GSYM SUC_INJ]] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN TRANS_TAC EQ_TRANS `monomial_deg(monomial_mul (monomial_var v) (monomial_div m (monomial_var v)):V->num)` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[MONOMIAL_DIV_LMUL; MONOMIAL_VAR_DIVIDES]] THEN W(MP_TAC o PART_MATCH (lhand o rand) MONOMIAL_DEG_MUL o rand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[GSYM MONOMIAL; MONOMIAL_VAR; IN_UNIV] THEN MATCH_MP_TAC MONOMIAL_DIV THEN ASM_MESON_TAC[MONOMIAL_UNIV]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[MONOMIAL_DEG_VAR] THEN ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* General power series / polynomial sets and operations. *) (* *) (* For the operations we use the name "poly", but they don't care about the *) (* underlying variable support sets, which are always going to be preserved. *) (* The idea is they can be used for any kind of polynomials or power series. *) (* There is also no inherent cardinality restriction on the "variables". *) (* ------------------------------------------------------------------------- *) let ring_powerseries = new_definition `ring_powerseries r p <=> (!m. p m IN ring_carrier r) /\ !m. INFINITE(monomial_vars m) ==> p m = ring_0 r`;; let ring_polynomial = new_definition `ring_polynomial r p <=> ring_powerseries r p /\ FINITE {m | ~(p m = ring_0 r)}`;; let RING_POLYNOMIAL_IMP_POWERSERIES = prove (`!r (p:(V->num)->A). ring_polynomial r p ==> ring_powerseries r p`, SIMP_TAC[ring_polynomial]);; let poly_vars = new_definition `poly_vars r p = UNIONS { monomial_vars m | ~(p m = ring_0 r)}`;; let poly_const = new_definition `poly_const (r:A ring) (c:A) = \m:V->num. if m = monomial_1 then c else ring_0 r`;; let poly_0 = new_definition `poly_0 (r:A ring) = poly_const r (ring_0 r)`;; let poly_1 = new_definition `poly_1 (r:A ring) = poly_const r (ring_1 r)`;; let poly_neg = new_definition `poly_neg (r:A ring) p = \m:V->num. ring_neg r (p m)`;; let poly_add = new_definition `poly_add (r:A ring) p1 p2 = \m:V->num. ring_add r (p1 m) (p2 m)`;; let poly_mul = new_definition `poly_mul (r:A ring) p1 p2 = \m:V->num. ring_sum r {(m1,m2) | monomial_mul m1 m2 = m} (\(m1,m2). ring_mul r (p1 m1) (p2 m2))`;; let poly_var = new_definition `poly_var (r:A ring) (v:V) = \m:V->num. if m = monomial_var v then ring_1 r else ring_0 r`;; let POLY_CONST_0 = prove (`!r:A ring. poly_const r (ring_0 r) = \x. ring_0 r`, REWRITE_TAC[poly_const; COND_ID]);; let RING_POWERSERIES_CONST = prove (`!r c. ring_powerseries r (poly_const r c :(V->num)->A) <=> c IN ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_powerseries; poly_const] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN SIMP_TAC[RING_0; MONOMIAL_VARS_1; INFINITE; FINITE_EMPTY; COND_ID] THEN MESON_TAC[]);; let RING_POWERSERIES_VAR = prove (`!r v. ring_powerseries r (poly_var r v:(V->num)->A)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_powerseries; poly_var] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN SIMP_TAC[RING_0; RING_1; MONOMIAL_VARS_VAR; INFINITE; FINITE_SING] THEN REWRITE_TAC[COND_ID]);; let RING_POWERSERIES_0 = prove (`!r. ring_powerseries r (poly_0 r:(V->num)->A)`, REWRITE_TAC[poly_0; RING_POWERSERIES_CONST; RING_0]);; let RING_POWERSERIES_1 = prove (`!r. ring_powerseries r (poly_1 r:(V->num)->A)`, REWRITE_TAC[poly_1; RING_POWERSERIES_CONST; RING_1]);; let RING_POWERSERIES_NEG = prove (`!r (p:(V->num)->A). ring_powerseries r p ==> ring_powerseries r (poly_neg r p)`, SIMP_TAC[ring_powerseries; poly_neg; RING_NEG; RING_NEG_0]);; let RING_POWERSERIES_ADD = prove (`!r p1 (p2:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 ==> ring_powerseries r (poly_add r p1 p2)`, SIMP_TAC[ring_powerseries; poly_add; RING_ADD; RING_0; RING_ADD_LZERO]);; let RING_POWERSERIES_MUL = prove (`!r p1 (p2:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 ==> ring_powerseries r (poly_mul r p1 p2)`, SIMP_TAC[ring_powerseries; poly_mul; RING_SUM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `m:V->num` THEN DISCH_TAC THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[FORALL_IN_GSPEC; IMP_CONJ] THEN REPEAT GEN_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE [MONOMIAL_VARS_MUL; INFINITE; FINITE_UNION]) THEN RULE_ASSUM_TAC(REWRITE_RULE [GSYM INFINITE; DE_MORGAN_THM]) THEN FIRST_X_ASSUM DISJ_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO]);; let RING_POLYNOMIAL_CONST = prove (`!r c. ring_polynomial r (poly_const r c :(V->num)->A) <=> c IN ring_carrier r`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_polynomial; RING_POWERSERIES_CONST] THEN MATCH_MP_TAC(TAUT `q ==> (p /\ q <=> p)`) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{(monomial_1:V->num)}` THEN REWRITE_TAC[FINITE_SING; SUBSET; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[poly_const] THEN MESON_TAC[]);; let RING_POLYNOMIAL_VAR = prove (`!r v. ring_polynomial r (poly_var r v:(V->num)->A)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_polynomial; RING_POWERSERIES_VAR] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{(monomial_var v:V->num)}` THEN REWRITE_TAC[FINITE_SING; SUBSET; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[poly_var] THEN MESON_TAC[]);; let RING_POLYNOMIAL_0 = prove (`!r. ring_polynomial r (poly_0 r:(V->num)->A)`, REWRITE_TAC[poly_0; RING_POLYNOMIAL_CONST; RING_0]);; let RING_POLYNOMIAL_1 = prove (`!r. ring_polynomial r (poly_1 r:(V->num)->A)`, REWRITE_TAC[poly_1; RING_POLYNOMIAL_CONST; RING_1]);; let RING_POLYNOMIAL_NEG = prove (`!r (p:(V->num)->A). ring_polynomial r p ==> ring_polynomial r (poly_neg r p)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_polynomial; RING_POWERSERIES_NEG] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM] THEN SIMP_TAC[poly_neg; RING_NEG_0]);; let RING_POLYNOMIAL_ADD = prove (`!r p1 (p2:(V->num)->A). ring_polynomial r p1 /\ ring_polynomial r p2 ==> ring_polynomial r (poly_add r p1 p2)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_polynomial; RING_POWERSERIES_ADD] THEN DISCH_THEN(CONJUNCTS_THEN(MP_TAC o CONJUNCT2)) THEN REWRITE_TAC[GSYM FINITE_UNION; IMP_IMP] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_UNION; GSYM DE_MORGAN_THM; IN_ELIM_THM; CONTRAPOS_THM] THEN SIMP_TAC[poly_add; RING_0; RING_ADD_LZERO]);; let RING_POLYNOMIAL_MUL = prove (`!r p1 (p2:(V->num)->A). ring_polynomial r p1 /\ ring_polynomial r p2 ==> ring_polynomial r (poly_mul r p1 p2)`, REPEAT GEN_TAC THEN SIMP_TAC[ring_polynomial; RING_POWERSERIES_MUL] THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REPEAT DISCH_TAC THEN REWRITE_TAC[poly_mul] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{ monomial_mul m1 m2 | m1 IN {m | ~((p1:(V->num)->A) m = ring_0 r)} /\ m2 IN {m | ~((p2:(V->num)->A) m = ring_0 r)}}` THEN ASM_SIMP_TAC[FINITE_PRODUCT_DEPENDENT] THEN REWRITE_TAC[IN_ELIM_THM; SUBSET] THEN X_GEN_TAC `m:V->num` THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m1:V->num`; `m2:V->num`]) THEN ASM_REWRITE_TAC[DE_MORGAN_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_powerseries]) THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO]);; let POLY_ADD_SYM = prove (`!r p1 (p2:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 ==> poly_add r p1 p2 = poly_add r p2 p1`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN RING_TAC);; let POLY_ADD_ASSOC = prove (`!r p1 p2 (p3:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 /\ ring_powerseries r p3 ==> poly_add r p1 (poly_add r p2 p3) = poly_add r (poly_add r p1 p2) p3`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN RING_TAC);; let POLY_ADD_LZERO = prove (`!r (p:(V->num)->A). ring_powerseries r p ==> poly_add r (poly_0 r) p = p`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add; poly_0; POLY_CONST_0] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN RING_TAC);; let POLY_ADD_LNEG = prove (`!r (p:(V->num)->A). ring_powerseries r p ==> poly_add r (poly_neg r p) p = poly_0 r`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add; poly_neg; poly_0; POLY_CONST_0] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN RING_TAC);; let POLY_MUL_SYM = prove (`!r p1 (p2:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 ==> poly_mul r p1 p2 = poly_mul r p2 p1`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_mul] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN MATCH_MP_TAC RING_SUM_EQ_GENERAL_INVERSES THEN REPEAT(EXISTS_TAC `\(m:V->num,m':V->num). (m',m)`) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN SIMP_TAC[] THEN CONJ_TAC THEN REPEAT(DISCH_THEN(K ALL_TAC)) THEN REPEAT GEN_TAC THENL [ALL_TAC; DISCH_TAC THEN RING_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MONOMIAL_MUL_SYM] THEN SET_TAC[]);; let POLY_ADD_LDISTRIB = prove (`!r p1 p2 (p3:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 /\ ring_powerseries r p3 ==> poly_mul r p1 (poly_add r p2 p3) = poly_add r (poly_mul r p1 p2) (poly_mul r p1 p3)`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add; poly_vars; poly_mul] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `FINITE(monomial_vars(m:V->num))` THENL [ASM_SIMP_TAC[GSYM RING_SUM_ADD; MONOMIAL_FINITE_DIVISORPAIRS; RING_MUL; FORALL_IN_GSPEC] THEN MATCH_MP_TAC RING_SUM_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN RING_TAC; MATCH_MP_TAC(MESON[RING_ADD_LZERO; RING_ADD_RZERO; RING_0] `x = ring_0 r /\ y = ring_0 r /\ z = ring_0 r ==> z = ring_add r x y`) THEN REPEAT CONJ_TAC THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE [MONOMIAL_VARS_MUL; FINITE_UNION]) THEN RULE_ASSUM_TAC(REWRITE_RULE [GSYM INFINITE; DE_MORGAN_THM]) THEN FIRST_X_ASSUM DISJ_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO; RING_ADD_LZERO; RING_0; RING_ADD]]);; let POLY_MUL_LID = prove (`!r (p:(V->num)->A). ring_powerseries r p ==> poly_mul r (poly_1 r) p = p`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_mul; poly_1; poly_const] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_LID] THEN MATCH_MP_TAC(MESON[] `!t. ring_sum r t f = a /\ ring_sum r s f = ring_sum r t f ==> ring_sum r s f = a`) THEN EXISTS_TAC `{(monomial_1:V->num,m:V->num)}` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[RING_SUM_SING]; ALL_TAC] THEN MATCH_MP_TAC RING_SUM_SUPERSET THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IMP_CONJ] THEN REWRITE_TAC[IN_SING; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN MESON_TAC[MONOMIAL_MUL_LID]);; let POLY_MUL_ASSOC = prove (`!r p1 p2 (p3:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 /\ ring_powerseries r p3 ==> poly_mul r p1 (poly_mul r p2 p3) = poly_mul r (poly_mul r p1 p2) p3`, let lemma = prove (`!r p1 p2 (p3:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 /\ ring_powerseries r p3 ==> poly_mul r p1 (poly_mul r p2 p3) = \m. ring_sum r {(m1,m2,m3) | monomial_mul m1 (monomial_mul m2 m3) = m} (\(m1,m2,m3). ring_mul r (p1 m1) (ring_mul r (p2 m2) (p3 m3)))`, REWRITE_TAC[ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_mul] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `FINITE(monomial_vars m:V->bool)` THENL [ALL_TAC; MATCH_MP_TAC(MESON[] `ring_sum r s f = ring_0 r /\ ring_sum r t g = ring_0 r ==> ring_sum r s f = ring_sum r t g`) THEN CONJ_TAC THEN REPLICATE_TAC 2 (MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE [MONOMIAL_VARS_MUL; INFINITE; FINITE_UNION]) THEN RULE_ASSUM_TAC(REWRITE_RULE [GSYM INFINITE; DE_MORGAN_THM]) THEN FIRST_X_ASSUM DISJ_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO; RING_MUL; RING_SUM] THEN MATCH_MP_TAC(MESON[RING_MUL_RZERO] `x IN ring_carrier r /\ y = ring_0 r ==> ring_mul r x y = ring_0 r`) THEN ASM_REWRITE_TAC[] THEN TRY(FIRST_X_ASSUM DISJ_CASES_TAC) THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO])] THEN MP_TAC(ISPECL [`r:A ring`; `{m1,m2 | monomial_mul m1 m2:V->num = m}`; `\(m1:V->num,m). {m2,m3 | monomial_mul m2 m3:V->num = m}`; `\(m1:V->num,m:V->num) (m2:V->num,m3:V->num). ring_mul (r:A ring) (p1 m1) (ring_mul r (p2 m2) (p3 m3))`] RING_SUM_SUM_PRODUCT) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_REWRITE_TAC[MONOMIAL_FINITE_DIVISORPAIRS] THEN ASM_SIMP_TAC[RING_MUL] THEN REPEAT GEN_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[MONOMIAL_VARS_MUL; FINITE_UNION]) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC EQ_IMP] THEN BINOP_TAC THENL [MATCH_MP_TAC RING_SUM_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[MONOMIAL_VARS_MUL; FINITE_UNION]) THEN ASM_SIMP_TAC[GSYM RING_SUM_LMUL; RING_MUL; FORALL_IN_GSPEC; MONOMIAL_FINITE_DIVISORPAIRS] THEN MATCH_MP_TAC RING_SUM_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC]; MATCH_MP_TAC RING_SUM_EQ_GENERAL_INVERSES] THEN MAP_EVERY EXISTS_TAC [`\((m1:V->num,m2:V->num),(m3:V->num,m4:V->num)). (m1,m3,m4)`; `\(m1:V->num,m3:V->num,m4:V->num). (m1,monomial_mul m3 m4),(m3,m4)`] THEN REWRITE_TAC[FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[RING_MUL] THEN REWRITE_TAC[IN_ELIM_PAIR_THM] THEN SET_TAC[]) in REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_MUL_SYM o rand o snd) THEN ASM_SIMP_TAC[RING_POWERSERIES_MUL] THEN DISCH_THEN SUBST1_TAC THEN ASM_SIMP_TAC[lemma] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[] THEN MATCH_MP_TAC RING_SUM_EQ_GENERAL_INVERSES THEN EXISTS_TAC `\(m1:V->num,m2:V->num,m3:V->num). m3,m1,m2` THEN EXISTS_TAC `\(m3:V->num,m1:V->num,m2:V->num). m1,m2,m3` THEN ASM_SIMP_TAC[FORALL_IN_GSPEC] THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_powerseries]) THEN ASM_SIMP_TAC[RING_MUL; IN_ELIM_TRIPLE_THM] THEN REWRITE_TAC[MONOMIAL_MUL_AC] THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN RING_TAC);; let POLY_VARS_CONST = prove (`!(r:A ring) c. poly_vars r (poly_const r c) = {}`, REPEAT GEN_TAC THEN REWRITE_TAC[poly_vars; poly_const] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN REWRITE_TAC[MESON[] `~(if p then q else T) <=> p /\ ~q`] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_CASES_TAC `c:A = ring_0 r` THEN ASM_REWRITE_TAC[SING_GSPEC; EMPTY_GSPEC; IMAGE_CLAUSES] THEN REWRITE_TAC[UNIONS_1; UNIONS_0; MONOMIAL_VARS_1]);; let POLY_VARS_0 = prove (`!r:A ring. poly_vars r (poly_0 r) = {}`, REWRITE_TAC[poly_0; POLY_VARS_CONST]);; let POLY_VARS_1 = prove (`!r:A ring. poly_vars r (poly_1 r) = {}`, REWRITE_TAC[poly_1; POLY_VARS_CONST]);; let POLY_VARS_VAR = prove (`!(r:A ring) (v:V). poly_vars r (poly_var r v) = if trivial_ring r then {} else {v}`, REPEAT GEN_TAC THEN REWRITE_TAC[poly_vars; poly_var; TRIVIAL_RING_10] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_REWRITE_TAC[MESON[] `~(if p then q else T) <=> p /\ ~q`] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_REWRITE_TAC[SING_GSPEC; EMPTY_GSPEC; IMAGE_CLAUSES] THEN REWRITE_TAC[UNIONS_1; UNIONS_0; MONOMIAL_VARS_1; MONOMIAL_VARS_VAR]);; let POLY_VARS_NEG = prove (`!r (p:(V->num)->A). ring_powerseries r p ==> poly_vars r (poly_neg r p) = poly_vars r p`, REWRITE_TAC[ring_powerseries; poly_vars; poly_neg] THEN SIMP_TAC[RING_NEG_EQ_0]);; let POLY_VARS_ADD = prove (`!r (p1:(V->num)->A) (p2:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 ==> poly_vars r (poly_add r p1 p2) SUBSET poly_vars r p1 UNION poly_vars r p2`, REWRITE_TAC[ring_powerseries; poly_vars; poly_add; GSYM UNIONS_UNION] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_UNIONS THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[GSYM IMAGE_UNION] THEN MATCH_MP_TAC IMAGE_SUBSET THEN REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN RING_TAC);; let POLY_VARS_MUL = prove (`!r (p1:(V->num)->A) (p2:(V->num)->A). ring_powerseries r p1 /\ ring_powerseries r p2 ==> poly_vars r (poly_mul r p1 p2) SUBSET poly_vars r p1 UNION poly_vars r p2`, REWRITE_TAC[ring_powerseries; poly_vars; poly_mul] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC] THEN X_GEN_TAC `x:V` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `m:V->num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] RING_SUM_EQ_0)) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_CONJ; FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP (RING_RULE `~(ring_mul r x y = ring_0 r) ==> x IN ring_carrier r /\ y IN ring_carrier r ==> ~(x = ring_0 r) /\ ~(y = ring_0 r)`)) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [MONOMIAL_VARS_MUL]) THEN ASM SET_TAC[]);; let FINITE_POLYNOMIAL_VARS = prove (`!r (p:(V->num)->A). ring_polynomial r p ==> FINITE(poly_vars r p)`, REWRITE_TAC[ring_polynomial; ring_powerseries; INFINITE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_vars; FINITE_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Actual polynomial and power series rings. *) (* ------------------------------------------------------------------------- *) let powser_ring = new_definition `powser_ring (r:A ring) (s:V->bool) = ring({p | ring_powerseries r p /\ poly_vars r p SUBSET s}, poly_0 r,poly_1 r,poly_neg r,poly_add r,poly_mul r)`;; let poly_ring = new_definition `poly_ring (r:A ring) (s:V->bool) = ring({p | ring_polynomial r p /\ poly_vars r p SUBSET s}, poly_0 r,poly_1 r,poly_neg r,poly_add r,poly_mul r)`;; let POWSER_RING = prove (`(!(r:A ring) (s:V->bool). ring_carrier(powser_ring r s) = {p | ring_powerseries r p /\ poly_vars r p SUBSET s}) /\ (!(r:A ring) (s:V->bool). ring_0(powser_ring r s) = poly_0 r) /\ (!(r:A ring) (s:V->bool). ring_1(powser_ring r s) = poly_1 r) /\ (!(r:A ring) (s:V->bool). ring_neg(powser_ring r s) = poly_neg r) /\ (!(r:A ring) (s:V->bool). ring_add(powser_ring r s) = poly_add r) /\ (!(r:A ring) (s:V->bool). ring_mul(powser_ring r s) = poly_mul r)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN PURE_REWRITE_TAC [GSYM PAIR_EQ; ring_carrier; ring_0; ring_1; ring_neg; ring_add; ring_mul; BETA_THM; PAIR] THEN PURE_REWRITE_TAC[powser_ring; GSYM(CONJUNCT2 ring_tybij)] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[RING_POWERSERIES_0; POLY_VARS_0; EMPTY_SUBSET; RING_POWERSERIES_1; POLY_VARS_1] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[RING_POWERSERIES_NEG; POLY_VARS_NEG]; SIMP_TAC[RING_POWERSERIES_ADD] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_VARS_ADD o lhand o snd) THEN ASM SET_TAC[]; SIMP_TAC[RING_POWERSERIES_MUL] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_VARS_MUL o lhand o snd) THEN ASM SET_TAC[]; MESON_TAC[POLY_ADD_SYM]; MESON_TAC[POLY_ADD_ASSOC]; MESON_TAC[POLY_ADD_LZERO]; MESON_TAC[POLY_ADD_LNEG]; MESON_TAC[POLY_MUL_SYM]; MESON_TAC[POLY_MUL_ASSOC]; MESON_TAC[POLY_MUL_LID]; MESON_TAC[POLY_ADD_LDISTRIB]]);; let POLY_RING_SUBRING_OF_POWSER_RING = prove (`!(r:A ring) (s:V->bool). {p | ring_polynomial r p /\ poly_vars r p SUBSET s} subring_of powser_ring r s`, REPEAT GEN_TAC THEN REWRITE_TAC[subring_of; POWSER_RING; IN_ELIM_THM] THEN REWRITE_TAC[RING_POLYNOMIAL_0; POLY_VARS_0; EMPTY_SUBSET; RING_POLYNOMIAL_1; POLY_VARS_1] THEN GEN_REWRITE_TAC LAND_CONV [SUBSET] THEN SIMP_TAC[IN_ELIM_THM; RING_POLYNOMIAL_IMP_POWERSERIES] THEN SIMP_TAC[RING_POLYNOMIAL_NEG; RING_POLYNOMIAL_ADD; RING_POLYNOMIAL_MUL] THEN SIMP_TAC[POLY_VARS_NEG; ring_polynomial] THEN REPEAT STRIP_TAC THENL [W(MP_TAC o PART_MATCH (lhand o rand) POLY_VARS_ADD o lhand o snd); W(MP_TAC o PART_MATCH (lhand o rand) POLY_VARS_MUL o lhand o snd)] THEN ASM SET_TAC[]);; let POLY_RING_AS_SUBRING = prove (`!(r:A ring) (s:V->bool). poly_ring r s = subring_generated (powser_ring r s) {p | ring_polynomial r p /\ poly_vars r p SUBSET s}`, REPEAT GEN_TAC THEN REWRITE_TAC[poly_ring; subring_generated; CONJUNCT2 POWSER_RING] THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ] THEN REWRITE_TAC[GSYM(CONJUNCT1 SUBRING_GENERATED)] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARRIER_SUBRING_GENERATED_SUBRING THEN REWRITE_TAC[POLY_RING_SUBRING_OF_POWSER_RING]);; let POLY_RING_AS_SUBRING_ALT = prove (`!(r:A ring) (s:V->bool). poly_ring r s = subring_generated (powser_ring r s) {p | ring_polynomial r p}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN REWRITE_TAC[POLY_RING_AS_SUBRING] THEN AP_TERM_TAC THEN REWRITE_TAC[POWSER_RING; ring_polynomial] THEN SET_TAC[]);; let POLY_RING_AS_SUBRING_FINITE = prove (`!(r:A ring) (s:V->bool). poly_ring r s = subring_generated (powser_ring r s) {p | FINITE {m | ~(p m = ring_0 r)}}`, REPEAT GEN_TAC THEN REWRITE_TAC[POLY_RING_AS_SUBRING_ALT] THEN ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN AP_TERM_TAC THEN REWRITE_TAC[POWSER_RING; ring_polynomial] THEN SET_TAC[]);; let POLY_CARRIER_SUBRING_OF_POWSER_RING = prove (`!(r:A ring) (s:V->bool). ring_carrier(poly_ring r s) subring_of powser_ring r s`, REWRITE_TAC[SUBRING_SUBRING_GENERATED; POLY_RING_AS_SUBRING]);; let RING_MONOMORPHISM_POLY_POWSER = prove (`!r s:A->bool. ring_monomorphism(poly_ring r s,powser_ring r s) (\x. x)`, REWRITE_TAC[POLY_RING_AS_SUBRING; RING_MONOMORPHISM_INCLUSION]);; let POLY_RING = prove (`(!(r:A ring) (s:V->bool). ring_carrier(poly_ring r s) = {p | ring_polynomial r p /\ poly_vars r p SUBSET s}) /\ (!(r:A ring) (s:V->bool). ring_0(poly_ring r s) = poly_0 r) /\ (!(r:A ring) (s:V->bool). ring_1(poly_ring r s) = poly_1 r) /\ (!(r:A ring) (s:V->bool). ring_neg(poly_ring r s) = poly_neg r) /\ (!(r:A ring) (s:V->bool). ring_add(poly_ring r s) = poly_add r) /\ (!(r:A ring) (s:V->bool). ring_mul(poly_ring r s) = poly_mul r)`, REWRITE_TAC[POLY_RING_AS_SUBRING] THEN SIMP_TAC[CARRIER_SUBRING_GENERATED_SUBRING; POLY_RING_SUBRING_OF_POWSER_RING] THEN REWRITE_TAC[SUBRING_GENERATED] THEN REWRITE_TAC[POWSER_RING]);; let FINITE_POLY_VARS = prove (`!(r:A ring) (s:V->bool) p. p IN ring_carrier(poly_ring r s) ==> FINITE(poly_vars r p)`, SIMP_TAC[FINITE_POLYNOMIAL_VARS; POLY_RING; IN_ELIM_THM]);; let RING_CARRIER_POLY_RING_FINITE = prove (`!(r:A ring) (s:V->bool). ring_carrier(poly_ring r s) = ring_carrier(powser_ring r s) INTER {p | FINITE {m | ~(p m = ring_0 r)}}`, REWRITE_TAC[POLY_RING; POWSER_RING; ring_polynomial] THEN SET_TAC[]);; let POLY_VAR = prove (`!(r:A ring) (s:V->bool) i. poly_var r i IN ring_carrier(poly_ring r s) <=> trivial_ring r \/ i IN s`, REWRITE_TAC[POLY_RING; IN_ELIM_THM; RING_POLYNOMIAL_VAR] THEN REPEAT GEN_TAC THEN REWRITE_TAC[POLY_VARS_VAR] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[EMPTY_SUBSET; SING_SUBSET]);; let POLY_CONST = prove (`!(r:A ring) (s:V->bool) c. poly_const r c IN ring_carrier(poly_ring r s) <=> c IN ring_carrier r`, REWRITE_TAC[POLY_RING; IN_ELIM_THM; RING_POLYNOMIAL_CONST] THEN REWRITE_TAC[POLY_VARS_CONST; EMPTY_SUBSET]);; let POWSER_VAR = prove (`!(r:A ring) (s:V->bool) i. poly_var r i IN ring_carrier(powser_ring r s) <=> trivial_ring r \/ i IN s`, REWRITE_TAC[POWSER_RING; IN_ELIM_THM; RING_POWERSERIES_VAR] THEN REPEAT GEN_TAC THEN REWRITE_TAC[POLY_VARS_VAR] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[EMPTY_SUBSET; SING_SUBSET]);; let POWSER_CONST = prove (`!(r:A ring) (s:V->bool) c. poly_const r c IN ring_carrier(powser_ring r s) <=> c IN ring_carrier r`, REWRITE_TAC[POWSER_RING; IN_ELIM_THM; RING_POWERSERIES_CONST] THEN REWRITE_TAC[POLY_VARS_CONST; EMPTY_SUBSET]);; let POLY_CONST_NEG = prove (`!r x. poly_const r (ring_neg r x):(V->num)->A = poly_neg r (poly_const r x)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[poly_const; poly_neg] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RING_NEG_0]);; let POLY_CONST_ADD = prove (`!r x y. poly_const r (ring_add r x y):(V->num)->A = poly_add r (poly_const r x) (poly_const r y)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[poly_const; poly_add] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[RING_ADD_RZERO; RING_0]);; let POLY_CONST_MUL = prove (`!r x y. x IN ring_carrier r /\ y IN ring_carrier r ==> poly_const r (ring_mul r x y):(V->num)->A = poly_mul r (poly_const r x) (poly_const r y)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[poly_const; poly_mul] THEN ASM_SIMP_TAC[MESON[RING_0; RING_MUL_LZERO; RING_MUL_RZERO] `x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r (if p then x else ring_0 r) (if q then y else ring_0 r) = (if p /\ q then ring_mul r x y else ring_0 r)`] THEN ASM_REWRITE_TAC[GSYM PAIR_EQ; GSYM LAMBDA_PAIR_THM] THEN ASM_SIMP_TAC[RING_SUM_DELTA; IN_ELIM_PAIR_THM; RING_MUL] THEN REWRITE_TAC[MONOMIAL_MUL_LID] THEN MESON_TAC[]);; let POLY_CONST_EQ = prove (`!r x y. poly_const r x :(V->num)->A = poly_const r y <=> x = y`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [FUN_EQ_THM] THEN REWRITE_TAC[poly_const] THEN MESON_TAC[]);; let RING_HOMOMORPHISM_POLY_CONST = prove (`!(r:A ring) (s:V->bool). ring_homomorphism (r,poly_ring r s) (poly_const r)`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[POLY_CONST; POLY_CONST_NEG; POLY_CONST_ADD; POLY_CONST_MUL] THEN REWRITE_TAC[POLY_RING; poly_0; poly_1]);; let RING_MONOMORPHISM_POLY_CONST = prove (`!(r:A ring) (s:V->bool). ring_monomorphism (r,poly_ring r s) (poly_const r)`, REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_POLY_CONST] THEN SIMP_TAC[POLY_CONST_EQ]);; let RING_HOMOMORPHISM_POWSER_CONST = prove (`!(r:A ring) (s:V->bool). ring_homomorphism (r,powser_ring r s) (poly_const r)`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[POWSER_CONST; POLY_CONST_NEG; POLY_CONST_ADD; POLY_CONST_MUL] THEN REWRITE_TAC[POWSER_RING; poly_0; poly_1]);; let RING_MONOMORPHISM_POWSER_CONST = prove (`!(r:A ring) (s:V->bool). ring_monomorphism (r,powser_ring r s) (poly_const r)`, REWRITE_TAC[ring_monomorphism; RING_HOMOMORPHISM_POWSER_CONST] THEN SIMP_TAC[POLY_CONST_EQ]);; let POWSER_SUM = prove (`!(r:A ring) (s:V->bool) f (k:K->bool). FINITE k /\ (!i. i IN k ==> f i IN ring_carrier(powser_ring r s)) ==> ring_sum (powser_ring r s) k f = \m. ring_sum r k (\i. f i m)`, REPLICATE_TAC 3 GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[POWSER_RING; poly_0; poly_add; POLY_CONST_0] THEN SIMP_TAC[ring_powerseries; IN_ELIM_THM]);; let POLY_SUM = prove (`!(r:A ring) (s:V->bool) f (k:K->bool). FINITE k /\ (!i. i IN k ==> f i IN ring_carrier(poly_ring r s)) ==> ring_sum (poly_ring r s) k f = \m. ring_sum r k (\i. f i m)`, REPLICATE_TAC 3 GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[POLY_RING; poly_0; poly_add; POLY_CONST_0] THEN SIMP_TAC[ring_polynomial; ring_powerseries; IN_ELIM_THM]);; let POLY_RING_VAR_POW = prove (`!(r:A ring) (s:V->bool) i k. ring_pow (poly_ring r s) (poly_var r i) k = \m. if m = (\j. if j = i then k else 0) then ring_1 r else ring_0 r`, REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ring_pow; POLY_RING; poly_1; poly_const; COND_ID; monomial_1; monomial_var; poly_var; poly_mul] THEN REWRITE_TAC[MESON [RING_MUL_LZERO; RING_MUL_RZERO; RING_MUL_LID; RING_MUL_RID; RING_0; RING_1] `ring_mul r (if p then ring_1 r else ring_0 r) (if q then ring_1 r else ring_0 r) = if p /\ q then ring_1 r else ring_0 r`] THEN REWRITE_TAC[GSYM PAIR_EQ; GSYM LAMBDA_PAIR_THM] THEN REWRITE_TAC[RING_SUM_DELTA; RING_1; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[monomial_mul] THEN ABS_TAC THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN AP_TERM_TAC THEN ABS_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);; let POLY_RING_PRODUCT_VAR_POW = prove (`!(r:A ring) (s:V->bool) m k. FINITE k /\ k SUBSET s ==> ring_product (poly_ring r s) k (\i. ring_pow (poly_ring r s) (poly_var r i) (m i)) = \m'. if m' = (\i. if i IN k then m i else 0) then ring_1 r else ring_0 r`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[RING_PRODUCT_CLAUSES; FORALL_IN_INSERT; INSERT_SUBSET] THEN REWRITE_TAC[POLY_RING; NOT_IN_EMPTY; poly_1; poly_const; monomial_1] THEN MAP_EVERY X_GEN_TAC [`i:V`; `k:V->bool`] THEN DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT2) THEN STRIP_TAC THEN COND_CASES_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT `~p ==> p ==> q`)) THEN REWRITE_TAC[GSYM(CONJUNCT1 POLY_RING)] THEN MATCH_MP_TAC RING_POW THEN REWRITE_TAC[POLY_RING; IN_ELIM_THM; RING_POLYNOMIAL_VAR] THEN REWRITE_TAC[POLY_VARS_VAR] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[POLY_RING_VAR_POW; poly_mul; MESON [RING_MUL_LZERO; RING_MUL_RZERO; RING_MUL_LID; RING_MUL_RID; RING_0; RING_1] `ring_mul r (if p then ring_1 r else ring_0 r) (if q then ring_1 r else ring_0 r) = if p /\ q then ring_1 r else ring_0 r`] THEN REWRITE_TAC[GSYM PAIR_EQ; GSYM LAMBDA_PAIR_THM] THEN REWRITE_TAC[RING_SUM_DELTA; RING_1; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[monomial_mul] THEN ABS_TAC THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `j:V` THEN ASM_CASES_TAC `j:V = i` THEN ASM_REWRITE_TAC[IN_INSERT; ADD_CLAUSES]);; let POLY_RING_PRODUCT_VAR = prove (`!(r:A ring) (s:V->bool) k. FINITE k /\ k SUBSET s ==> ring_product (poly_ring r s) k (poly_var r) = \m. if m = (\i. if i IN k then 1 else 0) then ring_1 r else ring_0 r`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`r:A ring`; `s:V->bool`; `\i:V. 1`; `k:V->bool`] POLY_RING_PRODUCT_VAR_POW) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[RING_POW_1; POLY_VAR]);; let POLY_RING_EXPAND = prove (`!(r:A ring) (s:V->bool) p. p IN ring_carrier (poly_ring r s) ==> ring_sum (poly_ring r s) {m | ~(p m = ring_0 r)} (\m. ring_mul (poly_ring r s) (poly_const r (p m)) (ring_product (poly_ring r s) (monomial_vars m) (\i. ring_pow (poly_ring r s) (poly_var r i) (m i)))) = p`, let lemma = prove (`!(r:A ring) (s:V->bool) m. FINITE(monomial_vars m) /\ monomial_vars m SUBSET s ==> ring_product (poly_ring r s) (monomial_vars m) (\i. ring_pow (poly_ring r s) (poly_var r i) (m i)) = \m'. if m' = m then ring_1 r else ring_0 r`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[POLY_RING_PRODUCT_VAR_POW] THEN REWRITE_TAC[monomial_vars; IN_ELIM_THM] THEN REWRITE_TAC[MESON[] `(if ~(m = 0) then m else 0) = m`] THEN REWRITE_TAC[ETA_AX]) in REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_SUM o lhand o snd) THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE [POLY_RING; ring_polynomial; ring_powerseries; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_MUL THEN REWRITE_TAC[RING_PRODUCT] THEN REWRITE_TAC[POLY_RING; IN_ELIM_THM; POLY_VARS_CONST; EMPTY_SUBSET] THEN ASM_REWRITE_TAC[RING_POLYNOMIAL_CONST]; DISCH_THEN SUBST1_TAC] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[] THEN TRANS_TAC EQ_TRANS `ring_sum r {m | ~((p:(V->num)->A) m = ring_0 r)} (\m'. ring_mul (poly_ring r s) (poly_const r (p m')) (\m''. if m'' = m' then ring_1 r else ring_0 r) (m:V->num))` THEN CONJ_TAC THENL [MATCH_MP_TAC RING_SUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `m':V->num` THEN DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC lemma THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [POLY_RING]) THEN REWRITE_TAC[IN_ELIM_THM; ring_polynomial; ring_powerseries] THEN REWRITE_TAC[INFINITE; GSYM monomial_vars; poly_vars; UNIONS_SUBSET] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE [POLY_RING; IN_ELIM_THM; ring_polynomial; ring_powerseries]) THEN ASM_SIMP_TAC[poly_const; poly_mul; POLY_RING; MESON [RING_MUL_LZERO; RING_MUL_RZERO; RING_MUL_RID; RING_0; RING_1] `x IN ring_carrier r ==> ring_mul r (if p then x else ring_0 r) (if q then ring_1 r else ring_0 r) = (if p /\ q then x else ring_0 r)`] THEN ASM_REWRITE_TAC[GSYM PAIR_EQ; GSYM LAMBDA_PAIR_THM] THEN ASM_SIMP_TAC[RING_SUM_DELTA; RING_1; IN_ELIM_PAIR_THM; MONOMIAL_MUL_LID] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]]);; let POLY_RING_INDUCT = prove (`!(r:A ring) (s:V->bool) P. (!c. c IN ring_carrier r ==> P(poly_const r c)) /\ (!i. i IN s ==> P(poly_var r i)) /\ (!x y. P x /\ P y ==> P(ring_add (poly_ring r s) x y)) /\ (!x y. P x /\ P y ==> P(ring_mul (poly_ring r s) x y)) ==> !p. p IN ring_carrier(poly_ring r s) ==> P p`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [POLY_RING]) THEN REWRITE_TAC[IN_ELIM_THM; ring_polynomial; ring_powerseries] THEN REWRITE_TAC[INFINITE; GSYM monomial_vars; poly_vars] THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM(MATCH_MP POLY_RING_EXPAND th)]) THEN MP_TAC(ASSUME `FINITE {m | ~((p:(V->num)->A) m = ring_0 r)}`) THEN SPEC_TAC(`{m | ~((p:(V->num)->A) m = ring_0 r)}`,`k:(V->num)->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[RING_SUM_CLAUSES; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `ring_0 r:A`) THEN REWRITE_TAC[RING_0; poly_0; POLY_RING]; MAP_EVERY X_GEN_TAC [`m:V->num`; `ms:(V->num)->bool`]] THEN STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(p:(V->num)->A) m = ring_0 r` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `ring_0 r:A`) THEN REWRITE_TAC[RING_0] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[GSYM poly_0] THEN SUBST1_TAC(MESON[POLY_RING] `poly_0 r:(V->num)->A = ring_0(poly_ring r s)`) THEN SIMP_TAC[RING_MUL_LZERO; RING_PRODUCT]; FIRST_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]] THEN SUBGOAL_THEN `(monomial_vars m:V->bool) SUBSET s` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `FINITE(monomial_vars m:V->bool)` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SPEC_TAC(`monomial_vars m:V->bool`,`l:V->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[RING_PRODUCT_CLAUSES; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL [REWRITE_TAC[EMPTY_SUBSET] THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_1 r:A`) THEN REWRITE_TAC[RING_1; poly_1; POLY_RING]; MAP_EVERY X_GEN_TAC [`i:V`; `ois:V->bool`]] THEN REWRITE_TAC[INSERT_SUBSET] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SPEC_TAC(`(m:V->num) i`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[ring_pow] THENL [FIRST_X_ASSUM(MP_TAC o SPEC `ring_1 r:A`) THEN REWRITE_TAC[RING_1; poly_1; POLY_RING]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]]);; let POLY_RING_INDUCT_STRONG = prove (`!(r:A ring) (s:V->bool) P. (!c. c IN ring_carrier r ==> P(poly_const r c)) /\ (!i. i IN s ==> P(poly_var r i)) /\ (!x y. x IN ring_carrier(poly_ring r s) /\ y IN ring_carrier(poly_ring r s) /\ P x /\ P y ==> P(ring_add (poly_ring r s) x y)) /\ (!x y. x IN ring_carrier(poly_ring r s) /\ y IN ring_carrier(poly_ring r s) /\ P x /\ P y ==> P(ring_mul (poly_ring r s) x y)) ==> !p. p IN ring_carrier(poly_ring r s) ==> P p`, REPEAT GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN MATCH_MP_TAC POLY_RING_INDUCT THEN ASM_SIMP_TAC[POLY_CONST; POLY_VAR; RING_ADD; RING_MUL]);; let POLY_RING_HOMOMORPHISM_UNIQUE = prove (`!(r:A ring) (r':B ring) (s:V->bool) f g. ring_homomorphism(poly_ring r s,r') f /\ ring_homomorphism(poly_ring r s,r') g /\ (!c. c IN ring_carrier r ==> f(poly_const r c) = g(poly_const r c)) /\ (!i. i IN s ==> f(poly_var r i) = g(poly_var r i)) ==> !p. p IN ring_carrier(poly_ring r s) ==> f p = g p`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_homomorphism] THEN STRIP_TAC THEN MATCH_MP_TAC POLY_RING_INDUCT_STRONG THEN ASM_SIMP_TAC[]);; let TRIVIAL_POWSER_RING = prove (`!(r:A ring) (s:V->bool). trivial_ring(powser_ring r s) <=> trivial_ring r`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] TRIVIAL_RING_MONOMORPHIC_PREIMAGE) THEN MESON_TAC[RING_MONOMORPHISM_POWSER_CONST]; SIMP_TAC[TRIVIAL_RING_10; FUN_EQ_THM; POWSER_RING; poly_0; poly_1; poly_const]]);; let TRIVIAL_POLY_RING = prove (`!(r:A ring) (s:V->bool). trivial_ring(poly_ring r s) <=> trivial_ring r`, REWRITE_TAC[POLY_RING_AS_SUBRING; TRIVIAL_RING_SUBRING_GENERATED] THEN REWRITE_TAC[TRIVIAL_POWSER_RING]);; let RING_CARRIER_POWSER_RING = prove (`!(r:A ring) (s:V->bool). ring_carrier(powser_ring r s) = {p | (!m. p m IN ring_carrier r) /\ (!m. ~(monomial s m) ==> p m = ring_0 r)}`, REPEAT GEN_TAC THEN REWRITE_TAC[POWSER_RING] THEN REWRITE_TAC[ring_powerseries; INFINITE; poly_vars; UNIONS_SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC; monomial] THEN SET_TAC[]);; let RING_CARRIER_POLY_RING = prove (`!(r:A ring) (s:V->bool). ring_carrier(poly_ring r s) = {p | (!m. p m IN ring_carrier r) /\ FINITE {m | ~(p m = ring_0 r)} /\ (!m. ~(monomial s m) ==> p m = ring_0 r)}`, REPEAT GEN_TAC THEN REWRITE_TAC[POLY_RING] THEN REWRITE_TAC[ring_powerseries; ring_polynomial; INFINITE; poly_vars; UNIONS_SUBSET; FORALL_IN_GSPEC; monomial] THEN SET_TAC[]);; let POWSER_RING_EQ = prove (`!(r:A ring) (s:V->bool) p q. p IN ring_carrier(powser_ring r s) /\ q IN ring_carrier(powser_ring r s) ==> (p = q <=> !m. monomial s m ==> p m = q m)`, REWRITE_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]);; let POWSER_RING_EQ_IMP = prove (`!(r:A ring) (s:V->bool) p q. p IN ring_carrier(powser_ring r s) /\ q IN ring_carrier(powser_ring r s) /\ (!m. monomial s m ==> p m = q m) ==> p = q`, REWRITE_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]);; let POLY_RING_EQ = prove (`!(r:A ring) (s:V->bool) p q. p IN ring_carrier(poly_ring r s) /\ q IN ring_carrier(poly_ring r s) ==> (p = q <=> !m. monomial s m ==> p m = q m)`, REWRITE_TAC[RING_CARRIER_POLY_RING; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]);; let POLY_RING_EQ_IMP = prove (`!(r:A ring) (s:V->bool) p q. p IN ring_carrier(poly_ring r s) /\ q IN ring_carrier(poly_ring r s) /\ (!m. monomial s m ==> p m = q m) ==> p = q`, REWRITE_TAC[RING_CARRIER_POLY_RING; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* The extension of a homomorphism to one from a polynomial ring. *) (* ------------------------------------------------------------------------- *) let poly_extend = new_definition `poly_extend (r,r') (h:A->B) (x:V->B) p = ring_sum r' {m | ~(p m = ring_0 r)} (\m. ring_mul r' (h (p m)) (ring_product r' (monomial_vars m) (\i. ring_pow r' (x i) (m i))))`;; let POLY_EXTEND = prove (`!r r' (h:A->B) p (x:V->B). poly_extend (r,r') h x p IN ring_carrier r'`, REWRITE_TAC[poly_extend; RING_SUM]);; let POLY_EXTEND_SUPERSET = prove (`!s r r' (h:A->B) p (x:V->B). ring_homomorphism(r,r') h /\ {m | ~(p m = ring_0 r)} SUBSET s ==> poly_extend (r,r') h x (p:(V->num)->A) = ring_sum r' s (\m. ring_mul r' (h (p m)) (ring_product r' (monomial_vars m) (\i. ring_pow r' (x i) (m i))))`, REPEAT STRIP_TAC THEN REWRITE_TAC[poly_extend] THEN REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_SUM_SUPERSET THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_HOMOMORPHISM_0) THEN ASM_SIMP_TAC[IN_ELIM_THM; RING_MUL_LZERO; RING_PRODUCT]);; let POLY_EXTEND_CONST = prove (`!r r' (h:A->B) (x:V->B) c. ring_homomorphism(r,r') h /\ c IN ring_carrier r ==> poly_extend (r,r') h x (poly_const r c) = h c`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_extend; poly_const] THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN REWRITE_TAC[MESON[] `~(if p then q else T) <=> p /\ ~q`] THEN ASM_CASES_TAC `c:A = ring_0 r` THEN ASM_REWRITE_TAC[EMPTY_GSPEC; RING_SUM_CLAUSES] THEN REWRITE_TAC[RING_SUM_SING; SING_GSPEC; MONOMIAL_VARS_1] THEN ASM_SIMP_TAC[RING_PRODUCT_CLAUSES; RING_MUL_RID]);; let POLY_EXTEND_0 = prove (`!r r' (h:A->B) (x:V->B). ring_homomorphism(r,r') h ==> poly_extend (r,r') h x (poly_0 r) = ring_0 r'`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[poly_0; POLY_EXTEND_CONST; RING_0] THEN MATCH_MP_TAC RING_HOMOMORPHISM_0 THEN ASM_REWRITE_TAC[]);; let POLY_EXTEND_1 = prove (`!r r' (h:A->B) (x:V->B). ring_homomorphism(r,r') h ==> poly_extend (r,r') h x (poly_1 r) = ring_1 r'`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[poly_1; POLY_EXTEND_CONST; RING_1] THEN MATCH_MP_TAC RING_HOMOMORPHISM_1 THEN ASM_REWRITE_TAC[]);; let POLY_EXTEND_VAR = prove (`!r r' (h:A->B) (x:V->B) i. ring_homomorphism(r,r') h /\ x i IN ring_carrier r' ==> poly_extend (r,r') h x (poly_var r i) = x i`, REPEAT GEN_TAC THEN ASM_CASES_TAC `trivial_ring (r:A ring)` THENL [ASM_SIMP_TAC[RING_HOMOMORPHISM_FROM_TRIVIAL_RING] THEN REWRITE_TAC[trivial_ring] THEN MATCH_MP_TAC(SET_RULE `a IN s ==> (s = {z} /\ P) /\ b IN s ==> a = b`) THEN REWRITE_TAC[POLY_EXTEND]; RULE_ASSUM_TAC(REWRITE_RULE[TRIVIAL_RING_10])] THEN REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_extend; poly_var] THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_REWRITE_TAC[MESON[] `~(if p then q else T) <=> p /\ ~q`] THEN REWRITE_TAC[RING_SUM_SING; SING_GSPEC] THEN SIMP_TAC[RING_MUL_LID; RING_PRODUCT; MONOMIAL_VARS_VAR] THEN REWRITE_TAC[RING_PRODUCT_SING] THEN ASM_SIMP_TAC[RING_POW; monomial_var; RING_POW_1]);; let POLY_EXTEND_NEG = prove (`!r r' (h:A->B) (x:V->B) p. ring_homomorphism(r,r') h /\ ring_polynomial r p ==> poly_extend (r,r') h x (poly_neg r p) = ring_neg r' (poly_extend (r,r') h x p)`, REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[ring_polynomial; ring_powerseries] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[poly_extend; poly_neg] THEN ASM_SIMP_TAC[RING_NEG_EQ_0; GSYM RING_SUM_NEG; RING_MUL; RING_PRODUCT] THEN ASM_SIMP_TAC[RING_MUL_LNEG; RING_PRODUCT]);; let POLY_EXTEND_ADD = prove (`!r r' (h:A->B) (x:V->B) p1 p2. ring_homomorphism(r,r') h /\ ring_polynomial r p1 /\ ring_polynomial r p2 ==> poly_extend (r,r') h x (poly_add r p1 p2) = ring_add r' (poly_extend (r,r') h x p1) (poly_extend (r,r') h x p2)`, REWRITE_TAC[ring_polynomial; ring_powerseries] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_homomorphism]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN MP_TAC(ISPECL [`{m | ~((p1:(V->num)->A) m = ring_0 r)} UNION {m | ~((p2:(V->num)->A) m = ring_0 r)}`; `r:A ring`; `r':B ring`; `h:A->B`] POLY_EXTEND_SUPERSET) THEN ASM_SIMP_TAC[SUBSET_UNION] THEN DISCH_THEN(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[poly_add; SUBSET; IN_UNION; IN_ELIM_THM] THEN RING_TAC; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[RING_ADD_RDISTRIB; RING_PRODUCT; RING_SUM_ADD; RING_MUL; FINITE_UNION; poly_add]);; let POLY_EXTEND_MUL = prove (`!r r' (h:A->B) (x:V->B) p1 p2. ring_homomorphism(r,r') h /\ ring_polynomial r p1 /\ ring_polynomial r p2 /\ (!i. i IN poly_vars r p1 UNION poly_vars r p2 ==> x i IN ring_carrier r') ==> poly_extend (r,r') h x (poly_mul r p1 p2) = ring_mul r' (poly_extend (r,r') h x p1) (poly_extend (r,r') h x p2)`, let lemma = prove (`{x,y | P x y} = IMAGE (\(x,y). y,x) {x,y | P y x}`, REWRITE_TAC[EXTENSION; IN_IMAGE; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN REWRITE_TAC[IN_ELIM_PAIR_THM] THEN REWRITE_TAC[PAIR_EQ] THEN MESON_TAC[]) in REPEAT STRIP_TAC THEN REWRITE_TAC[poly_extend] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_homomorphism]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[ring_polynomial; ring_powerseries]) THEN ASM_SIMP_TAC[GSYM RING_SUM_LMUL; RING_SUM; RING_MUL; RING_PRODUCT] THEN ASM_SIMP_TAC[GSYM RING_SUM_RMUL; RING_SUM; RING_MUL; RING_PRODUCT] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [RING_SUM_SUM_PRODUCT; RING_MUL; RING_PRODUCT] THEN MP_TAC(ISPECL [`r':B ring`; `\(m1:V->num,m2). monomial_mul m1 m2`] RING_SUM_IMAGE_GEN) THEN ASM_SIMP_TAC[FINITE_PRODUCT_DEPENDENT] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[SET_RULE `{z | z IN {x,y | P x y} /\ Q z} = {x,y | P x y /\ Q(x,y)}`] THEN MATCH_MP_TAC(MESON[] `(rsum UNIV f = rsum s f /\ rsum UNIV g = rsum t g) /\ rsum UNIV f = rsum UNIV g ==> rsum s f = rsum t g`) THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC RING_SUM_SUPERSET THEN REWRITE_TAC[SUBSET_UNIV; IN_UNIV; IN_ELIM_THM] THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_PRODUCT] THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[RING_SUM_CLAUSES] `s = {} ==> ring_sum r s f = ring_0 r`) THEN ASM SET_TAC[]; MATCH_MP_TAC RING_SUM_EQ] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[IN_UNIV] THEN ASM_CASES_TAC `INFINITE(monomial_vars m:V->bool)` THENL [MP_TAC(ISPECL [`r:A ring`; `p1:(V->num)->A`; `p2:(V->num)->A`] RING_POLYNOMIAL_MUL) THEN ASM_SIMP_TAC[ring_polynomial; ring_powerseries] THEN STRIP_TAC THEN SIMP_TAC[RING_MUL_LZERO; RING_PRODUCT] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (SUBST_ALL_TAC o SYM)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [MONOMIAL_VARS_MUL]) THEN ASM_REWRITE_TAC[INFINITE; FINITE_UNION; monomial_vars] THEN REWRITE_TAC[GSYM INFINITE; GSYM monomial_vars; DE_MORGAN_THM] THEN ASM_MESON_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[MESON[INFINITE] `~INFINITE s <=> FINITE s`])] THEN REWRITE_TAC[poly_mul] THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP RING_HOMOMORPHISM_SUM th) o lhand o lhand o snd)) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[MONOMIAL_FINITE_DIVISORPAIRS] THEN ASM_SIMP_TAC[RING_MUL]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF]] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [LAMBDA_PAIR_THM] THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[poly_mul] THEN W(MP_TAC o PART_MATCH (rand o rand) RING_SUM_RMUL o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[RING_PRODUCT; FORALL_IN_GSPEC; RING_MUL] THEN ASM_REWRITE_TAC[MONOMIAL_FINITE_DIVISORPAIRS]; DISCH_THEN(SUBST1_TAC o SYM)] THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [lemma] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUM_IMAGE o rand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; PAIR_EQ] THEN MESON_TAC[]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [LAMBDA_PAIR_THM] THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MONOMIAL_MUL_SYM]] THEN MATCH_MP_TAC(MESON[] `rsum s f = rsum t f /\ rsum t f = rsum t g ==> rsum s f = rsum t g`) THEN CONJ_TAC THENL [MATCH_MP_TAC RING_SUM_SUPERSET THEN CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[]] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IN_ELIM_PAIR_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO; RING_PRODUCT]; MATCH_MP_TAC RING_SUM_EQ] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN STRIP_TAC THEN MATCH_MP_TAC(RING_RULE `a IN ring_carrier r /\ b IN ring_carrier r /\ c IN ring_carrier r /\ x IN ring_carrier r /\ y IN ring_carrier r /\ ring_mul r a b = c ==> ring_mul r (ring_mul r x y) c = ring_mul r (ring_mul r x a) (ring_mul r y b)`) THEN ASM_SIMP_TAC[RING_PRODUCT] THEN MATCH_MP_TAC(MESON[] `(ring_product r s f = ring_product r u f /\ ring_product r t g = ring_product r u g) /\ ring_mul r (ring_product r u f) (ring_product r u g) = ring_product r u h ==> ring_mul r (ring_product r s f) (ring_product r t g) = ring_product r u h`) THEN CONJ_TAC THENL [EXPAND_TAC "m" THEN REWRITE_TAC[MONOMIAL_VARS_MUL] THEN CONJ_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_PRODUCT_SUPERSET THEN REWRITE_TAC[SUBSET_UNION; IN_UNION] THEN REWRITE_TAC[IMP_CONJ_ALT] THEN SIMP_TAC[] THEN REWRITE_TAC[monomial_vars; IN_ELIM_THM] THEN SIMP_TAC[ring_pow]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rand o rand) RING_PRODUCT_MUL o lhand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[MESON[INFINITE] `~INFINITE s <=> FINITE s`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [X_GEN_TAC `i:V` THEN EXPAND_TAC "m" THEN REWRITE_TAC[MONOMIAL_VARS_MUL; IN_UNION] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_POW THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[poly_vars] THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC RING_PRODUCT_EQ THEN EXPAND_TAC "m" THEN REWRITE_TAC[MONOMIAL_VARS_MUL; IN_UNION] THEN REWRITE_TAC[monomial_mul] THEN REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_POW_ADD THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[poly_vars] THEN ASM SET_TAC[]);; let RING_HOMOMORPHISM_POLY_EXTEND = prove (`!r r' s (h:A->B) (x:V->B). ring_homomorphism(r,r') h /\ (!i. i IN s ==> x i IN ring_carrier r') ==> ring_homomorphism (poly_ring r s,r') (poly_extend(r,r') h x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ring_homomorphism] THEN REWRITE_TAC[POLY_RING; IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[POLY_EXTEND; POLY_EXTEND_0; POLY_EXTEND_1] THEN ASM_SIMP_TAC[POLY_EXTEND_NEG; POLY_EXTEND_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_EXTEND_MUL THEN ASM SET_TAC[]);; let POLY_EXTEND_UNIQUE = prove (`!r r' s (h:A->B) (x:V->B) k p. ring_homomorphism(r,r') h /\ ring_homomorphism(poly_ring r s,r') k /\ (!a. a IN ring_carrier r ==> k(poly_const r a) = h a) /\ (!i. i IN s ==> k(poly_var r i) = x i) /\ p IN ring_carrier(poly_ring r s) ==> poly_extend(r,r') h x p = k p`, REWRITE_TAC[CONJ_ASSOC] THEN ONCE_REWRITE_TAC [IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC POLY_RING_HOMOMORPHISM_UNIQUE THEN EXISTS_TAC `r':B ring` THEN ASM_SIMP_TAC[POLY_EXTEND_CONST; ETA_AX] THEN CONJ_TAC THENL [MATCH_MP_TAC RING_HOMOMORPHISM_POLY_EXTEND THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:V` THEN DISCH_TAC; X_GEN_TAC `i:V` THEN DISCH_TAC THEN MATCH_MP_TAC POLY_EXTEND_VAR THEN ASM_REWRITE_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:V`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ring_homomorphism])) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[POLY_VAR]);; let POLY_EXTEND_ID = prove (`!(r:A ring) (s:V->bool) p. p IN ring_carrier(poly_ring r s) ==> poly_extend (r,poly_ring r s) (poly_const r) (poly_var r) p = p`, REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_EXTEND_UNIQUE THEN EXISTS_TAC `s:V->bool` THEN ASM_REWRITE_TAC[RING_HOMOMORPHISM_ID; RING_HOMOMORPHISM_POLY_CONST]);; let POLY_EXTEND_COMPOSE = prove (`!r s r' t r'' (f:A->B) (g:B->C) (h:V->W) k p. ring_homomorphism(r,r') f /\ ring_homomorphism(r',r'') g /\ IMAGE h s SUBSET t /\ IMAGE k t SUBSET ring_carrier r'' /\ p IN ring_carrier(poly_ring r s) ==> poly_extend (r',r'') g k (poly_extend (r,poly_ring r' t) (poly_const r' o f) (poly_var r' o h) p) = poly_extend (r,r'') (g o f) (k o h) p`, REPLICATE_TAC 9 GEN_TAC THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC POLY_RING_HOMOMORPHISM_UNIQUE THEN EXISTS_TAC `r'':C ring` THEN REWRITE_TAC[ETA_AX] THEN REPEAT CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC RING_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `poly_ring (r':B ring) (t:W->bool)` THEN REWRITE_TAC[ETA_AX] THEN CONJ_TAC THEN MATCH_MP_TAC RING_HOMOMORPHISM_POLY_EXTEND THEN ASM_SIMP_TAC[POLY_VAR; o_THM] THEN MATCH_MP_TAC RING_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `r':B ring` THEN ASM_REWRITE_TAC[RING_HOMOMORPHISM_POLY_CONST]; MATCH_MP_TAC RING_HOMOMORPHISM_POLY_EXTEND THEN ASM_SIMP_TAC[o_THM] THEN MATCH_MP_TAC RING_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `r':B ring` THEN ASM_REWRITE_TAC[]; X_GEN_TAC `c:A` THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_EXTEND_CONST o rand o lhand o snd) THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_EXTEND_CONST o rand o rand o snd) THEN REPLICATE_TAC 2 (ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC RING_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `r':B ring` THEN ASM_REWRITE_TAC[RING_HOMOMORPHISM_POLY_CONST]; DISCH_THEN SUBST1_TAC]) THEN REWRITE_TAC[o_THM] THEN MATCH_MP_TAC POLY_EXTEND_CONST THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[RING_HOMOMORPHISM]) THEN ASM SET_TAC[]; X_GEN_TAC `x:V` THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_EXTEND_VAR o rand o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[o_THM; POLY_VAR] THEN MATCH_MP_TAC RING_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `r':B ring` THEN ASM_REWRITE_TAC[RING_HOMOMORPHISM_POLY_CONST]; DISCH_THEN SUBST1_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) POLY_EXTEND_VAR o rand o snd) THEN ASM_SIMP_TAC[o_THM] THEN ANTS_TAC THENL [ASM_MESON_TAC[RING_HOMOMORPHISM_COMPOSE]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[o_THM] THEN MATCH_MP_TAC POLY_EXTEND_VAR THEN ASM_SIMP_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Some "natural" isomorphisms between polynomial / power series variants. *) (* ------------------------------------------------------------------------- *) let RING_ISOMORPHISM_POWSER_RING_TRIVIAL, RING_ISOMORPHISM_POLY_RING_TRIVIAL = (CONJ_PAIR o prove) (`(!r. ring_isomorphism (r,powser_ring r {}) (poly_const r:A->(V->num)->A)) /\ (!r. ring_isomorphism (r,poly_ring r {}) (poly_const r:A->(V->num)->A))`, CONJ_TAC THEN GEN_TAC THEN REWRITE_TAC[RING_ISOMORPHISM_MONOMORPHISM_ALT] THEN REWRITE_TAC[RING_MONOMORPHISM_POLY_CONST; RING_MONOMORPHISM_POWSER_CONST; POLY_RING; POWSER_RING] THEN GEN_REWRITE_TAC I [SUBSET] THEN X_GEN_TAC `p:(V->num)->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[poly_vars; SUBSET_EMPTY; EMPTY_UNIONS; ring_polynomial; ring_powerseries] THEN REWRITE_TAC[FORALL_IN_GSPEC; MONOMIAL_VARS_EQ_EMPTY] THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE; poly_const] THEN EXISTS_TAC `(p:(V->num)->A) monomial_1` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let ISOMORPHIC_POWSER_RING_TRIVIAL = prove (`(!r. (powser_ring r {}:((V->num)->A)ring) isomorphic_ring r) /\ (!r. r isomorphic_ring (powser_ring r {}:((V->num)->A)ring))`, GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[] THEN GEN_TAC THEN REWRITE_TAC[isomorphic_ring] THEN MESON_TAC[RING_ISOMORPHISM_POWSER_RING_TRIVIAL]);; let ISOMORPHIC_POLY_RING_TRIVIAL = prove (`(!r. (poly_ring r {}:((V->num)->A)ring) isomorphic_ring r) /\ (!r. r isomorphic_ring (poly_ring r {}:((V->num)->A)ring))`, GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [ISOMORPHIC_RING_SYM] THEN REWRITE_TAC[] THEN GEN_TAC THEN REWRITE_TAC[isomorphic_ring] THEN MESON_TAC[RING_ISOMORPHISM_POLY_RING_TRIVIAL]);; let RING_ISOMORPHISMS_POWSER_RINGS = prove (`!r r' s s' (f:A->B) g (i:V->W) j. ring_isomorphisms(r,r') (f,g) /\ (!x. x IN s ==> i(x) IN s' /\ j(i x) = x) /\ (!y. y IN s' ==> j(y) IN s /\ i(j y) = y) ==> ring_isomorphisms (powser_ring r s,powser_ring r' s') ((\p m. if monomial_vars m SUBSET s' then f(p(\v. if v IN s then m(i v) else 0)) else ring_0 r'), (\q m. if monomial_vars m SUBSET s then g(q(\v. if v IN s' then m(j v) else 0)) else ring_0 r))`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ring_isomorphisms] THEN REWRITE_TAC[ring_homomorphism] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN STRIP_TAC THEN REWRITE_TAC[o_DEF; RING_ISOMORPHISMS] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[POWSER_RING; ring_powerseries; poly_vars] THEN REWRITE_TAC[FORALL_IN_GSPEC; UNIONS_SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; monomial_vars] THEN CONJ_TAC THENL [GEN_TAC THEN STRIP_TAC; X_GEN_TAC `q:(W->num)->B` THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[RING_0]; X_GEN_TAC `m:V->num` THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `IMAGE (i:V->W) {i | ~(m i = 0)}` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC INFINITE_IMAGE THEN ASM SET_TAC[]; MESON_TAC[]; ALL_TAC]] THEN (GEN_REWRITE_TAC I [FUN_EQ_THM] THEN GEN_TAC THEN ASM_SIMP_TAC[] THEN COND_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[MESON[] `~((if p then x else 0) = 0) <=> p /\ ~(x = 0)`] THEN REWRITE_TAC[SUBSET_RESTRICT] THEN MATCH_MP_TAC(MESON[] `n = m /\ g(f(p m)) = p m ==> g(f(p n)) = p m`) THEN CONJ_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]])] THEN REWRITE_TAC[RING_HOMOMORPHISM] THEN REPEAT CONJ_TAC THENL [GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[POWSER_RING; ring_powerseries; poly_vars] THEN REWRITE_TAC[FORALL_IN_GSPEC; UNIONS_SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; monomial_vars] THEN X_GEN_TAC `p:(V->num)->A` THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[RING_0]; X_GEN_TAC `m:W->num` THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `IMAGE (j:W->V) {i | ~(m i = 0)}` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC INFINITE_IMAGE THEN ASM SET_TAC[]; MESON_TAC[]]; REWRITE_TAC[POWSER_RING; poly_1; poly_const] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:W->num` THEN REWRITE_TAC[monomial_1; monomial_vars] THEN ASM_CASES_TAC `m = \v:W. 0` THEN ASM_REWRITE_TAC[] THENL [ASM_REWRITE_TAC[COND_ID; EMPTY_GSPEC; EMPTY_SUBSET]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [FUN_EQ_THM]) THEN ASM SET_TAC[]; MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN REWRITE_TAC[POWSER_RING; ring_powerseries; poly_vars] THEN REWRITE_TAC[FORALL_IN_GSPEC; UNIONS_SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; monomial_vars; INFINITE] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:W->num` THEN REWRITE_TAC[poly_add] THEN ASM_CASES_TAC `{i:W | ~(m i = 0)} SUBSET s'` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[RING_0; RING_ADD_LZERO] THEN MP_TAC(ISPECL [`r:A ring`; `r':B ring`; `f:A->B`] RING_HOMOMORPHISM_ADD) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_IMAGE]; ASM_SIMP_TAC[]]; MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN REWRITE_TAC[POWSER_RING; ring_powerseries; poly_vars] THEN REWRITE_TAC[FORALL_IN_GSPEC; UNIONS_SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; monomial_vars; INFINITE] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:W->num` THEN REWRITE_TAC[poly_mul]] THEN ASM_CASES_TAC `{i:W | ~(m i = 0)} SUBSET s'` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[FORALL_IN_GSPEC; IMP_CONJ] THEN MAP_EVERY X_GEN_TAC [`m1:W->num`; `m2:W->num`] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[monomial_mul; ADD_EQ_0]) THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[RING_MUL]) THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO; RING_0] THEN ASM SET_TAC[]] THEN SUBGOAL_THEN `{m1,m2 | monomial_mul m1 m2 = (\v. if v IN s then m (i v) else 0)} = IMAGE (\(m1,m2). (\v. if v IN s then m1 ((i:V->W) v) else 0), (\v. if v IN s then m2 (i v) else 0)) {m1,m2 | monomial_mul m1 m2 = m}` SUBST1_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_PAIR_THM; IN_IMAGE] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONJ_SYM] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN REWRITE_TAC[PAIR_EQ] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN REWRITE_TAC[FUN_EQ_THM; monomial_mul] THEN DISCH_TAC THEN EXISTS_TAC `\w. if w IN s' then m1 ((j:W->V) w) else 0` THEN EXISTS_TAC `\w. if w IN s' then m2 ((j:W->V) w) else 0` THEN REWRITE_TAC[AND_FORALL_THM] THEN ASM_SIMP_TAC[] THEN CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[ADD_CLAUSES] THEN ASM_REWRITE_TAC[GSYM ADD_EQ_0] THEN ASM SET_TAC[]; REWRITE_TAC[FUN_EQ_THM; monomial_mul] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUM_IMAGE o rand o lhand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[PAIR_EQ] THEN REWRITE_TAC[FUN_EQ_THM; monomial_mul] THEN MAP_EVERY X_GEN_TAC [`m1:W->num`; `m2:W->num`; `m1':W->num`; `m2':W->num`] THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN MATCH_MP_TAC(MESON[] `!j. (!x. P(j x) ==> Q x) ==> (!x. P x) ==> (!x. Q x)`) THEN EXISTS_TAC `j:W->V` THEN X_GEN_TAC `w:W` THEN ASM_CASES_TAC `(w:W) IN s'` THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN TRANS_TAC EQ_TRANS `0` THEN MP_TAC ADD_EQ_0 THEN ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[o_DEF] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [LAMBDA_PAIR_THM] THEN REWRITE_TAC[] THEN ASM_CASES_TAC `FINITE(monomial_vars m:W->bool)` THENL [MP_TAC(GEN `h:(W->num)#(W->num)->A` (ISPECL [`r:A ring`; `r':B ring`; `f:A->B`; `h:(W->num)#(W->num)->A`] (REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] RING_HOMOMORPHISM_SUM))) THEN DISCH_THEN(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RING_MUL; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[MONOMIAL_FINITE_DIVISORPAIRS]; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC RING_SUM_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:W->num`; `m2:W->num`] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[o_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[monomial_mul; ADD_EQ_0]) THEN REPEAT(COND_CASES_TAC THENL [ASM_REWRITE_TAC[]; ASM SET_TAC[]]) THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] RING_HOMOMORPHISM_MUL) THEN ASM_REWRITE_TAC[ring_homomorphism; SUBSET; FORALL_IN_GSPEC] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM INFINITE]) THEN REWRITE_TAC[monomial_vars] THEN DISCH_TAC THEN TRANS_TAC EQ_TRANS `ring_0 r':B` THEN CONJ_TAC THENL [FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN AP_TERM_TAC; CONV_TAC SYM_CONV] THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(RING_RULE `x IN ring_carrier r /\ y IN ring_carrier r /\ (x = ring_0 r \/ y = ring_0 r) ==> ring_mul r x y = ring_0 r`) THEN ASM_SIMP_TAC[] THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[RING_0]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[] `monomial_mul m1 m2 = m ==> (INFINITE(monomial_vars(monomial_mul m1 m2)) <=> INFINITE(monomial_vars m))`)) THEN ASM_REWRITE_TAC[MONOMIAL_VARS_MUL] THEN ASM_REWRITE_TAC[monomial_vars] THEN REWRITE_TAC[INFINITE; FINITE_UNION; DE_MORGAN_THM] THEN MATCH_MP_TAC MONO_OR THEN ASM_REWRITE_TAC[GSYM INFINITE] THEN CONJ_TAC THEN DISCH_TAC THEN TRY(FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN AP_TERM_TAC) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GSYM INFINITE] THEN MATCH_MP_TAC INFINITE_SUPERSET THENL [EXISTS_TAC `IMAGE (j:W->V) {i:W | ~(m1 i = 0)}`; EXISTS_TAC `IMAGE (j:W->V) {i:W | ~(m2 i = 0)}`; EXISTS_TAC `IMAGE (j:W->V) {i:W | ~(m1 i = 0)}`; EXISTS_TAC `IMAGE (j:W->V) {i:W | ~(m2 i = 0)}`] THEN UNDISCH_THEN `monomial_mul m1 m2:W->num = m` (SUBST_ALL_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[monomial_mul; ADD_EQ_0]) THEN (CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]]) THEN MATCH_MP_TAC INFINITE_IMAGE THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);; let ISOMORPHIC_POWSER_RINGS = prove (`!(r:A ring) (s:V->bool) (r':B ring) (s':W->bool). r isomorphic_ring r' /\ s =_c s' ==> (powser_ring r s) isomorphic_ring (powser_ring r' s')`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; EQ_C_BIJECTIONS] THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP RING_ISOMORPHISMS_POWSER_RINGS) THEN MESON_TAC[]);; let RING_ISOMORPHISMS_POLY_RINGS = prove (`!r r' s s' (f:A->B) g (i:V->W) j. ring_isomorphisms(r,r') (f,g) /\ (!x. x IN s ==> i(x) IN s' /\ j(i x) = x) /\ (!y. y IN s' ==> j(y) IN s /\ i(j y) = y) ==> ring_isomorphisms (poly_ring r s,poly_ring r' s') ((\p m. if monomial_vars m SUBSET s' then f(p(\v. if v IN s then m(i v) else 0)) else ring_0 r'), (\q m. if monomial_vars m SUBSET s then g(q(\v. if v IN s' then m(j v) else 0)) else ring_0 r))`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RING_ISOMORPHISMS_POWSER_RINGS) THEN REWRITE_TAC[POLY_RING_AS_SUBRING] THEN MATCH_MP_TAC RING_ISOMORPHISMS_BETWEEN_SUBRINGS THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (MESON[ring_isomorphisms; RING_HOMOMORPHISM] `ring_isomorphisms (r,r') (f,g) ==> IMAGE f (ring_carrier r) SUBSET ring_carrier r' /\ IMAGE g (ring_carrier r') SUBSET ring_carrier r`)) THEN REWRITE_TAC[POWSER_RING; POLY_RING; ring_polynomial] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. P x /\ Q x /\ R x /\ P'(f x) /\ R'(f x) ==> Q'(f x)) ==> IMAGE f {x | P x /\ R x} SUBSET {y | P' y /\ R' y} ==> IMAGE f {x | (P x /\ Q x) /\ R x} SUBSET {y | (P' y /\ Q' y) /\ R' y}`) THEN REWRITE_TAC[MESON[] `~((if p then x else z) = z) <=> p /\ ~(x = z)`] THENL [X_GEN_TAC `p:(V->num)->A`; X_GEN_TAC `p:(W->num)->B`] THEN REWRITE_TAC[ring_powerseries; poly_vars] THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THENL [EXISTS_TAC `IMAGE (\m v. if v IN s' then m((j:W->V) v) else 0) {m | ~(p m:A = ring_0 r)}`; EXISTS_TAC `IMAGE (\m v. if v IN s then m((i:V->W) v) else 0) {m | ~(p m:B = ring_0 r')}`] THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC] THENL [X_GEN_TAC `m:W->num`; X_GEN_TAC `m:V->num`] THEN STRIP_TAC THEN REWRITE_TAC[IN_IMAGE] THENL [EXISTS_TAC `\v. if v IN s then m((i:V->W) v) else 0`; EXISTS_TAC `\v. if v IN s' then m((j:W->V) v) else 0`] THEN REWRITE_TAC[IN_ELIM_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE [monomial_vars; ring_isomorphisms; ring_homomorphism]) THEN (CONJ_TAC THENL [GEN_REWRITE_TAC I [FUN_EQ_THM] THEN GEN_TAC THEN ASM_SIMP_TAC[] THEN COND_CASES_TAC THEN ASM SET_TAC[]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT `~p ==> (q ==> p) ==> ~q`)) THEN SIMP_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [ring_isomorphisms; ring_homomorphism]) THEN ASM_REWRITE_TAC[]]));; let ISOMORPHIC_POLY_RINGS = prove (`!(r:A ring) (s:V->bool) (r':B ring) (s':W->bool). r isomorphic_ring r' /\ s =_c s' ==> (poly_ring r s) isomorphic_ring (poly_ring r' s')`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; EQ_C_BIJECTIONS] THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP RING_ISOMORPHISMS_POLY_RINGS) THEN MESON_TAC[]);; let RING_ISOMORPHISMS_POWSER_POWSER_RING = prove (`!(r:A ring) u v:V->bool. DISJOINT u v ==> ring_isomorphisms (powser_ring (powser_ring r u) v,powser_ring r (u UNION v)) ((\p m. if monomial (u UNION v) m then p (monomial_restrict v m) (monomial_restrict u m) else ring_0 r), (\p m1 m2. if monomial v m1 /\ monomial u m2 then p(monomial_mul m1 m2) else ring_0 r))`, MAP_EVERY X_GEN_TAC [`r:A ring`; `v:V->bool`; `u:V->bool`] THEN ONCE_REWRITE_TAC[UNION_COMM; DISJOINT_SYM] THEN DISCH_TAC THEN REWRITE_TAC[monomial_restrict] THEN GEN_REWRITE_TAC I [RING_ISOMORPHISMS_SYM] THEN REWRITE_TAC[RING_ISOMORPHISMS; RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN REWRITE_TAC[CONJUNCT2 POWSER_RING] THEN REPEAT CONJ_TAC THENL [ALL_TAC; X_GEN_TAC `p:(V->num)->A` THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monomial]) THEN REWRITE_TAC[monomial; monomial_vars; SUBSET_RESTRICT; MESON[] `~((if p then x else 0) = 0) <=> p /\ ~(x = 0)`] THEN ONCE_REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = {x | x IN {y | P y} /\ x IN s}`] THEN SIMP_TAC[FINITE_RESTRICT] THEN STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; monomial_mul] THEN GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]) THEN ASM SET_TAC[]; X_GEN_TAC `q:(V->num)->(V->num)->A` THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[RING_0]; MESON_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m1:V->num` THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m2:V->num` THEN REWRITE_TAC[MONOMIAL_MUL] THEN REWRITE_TAC[monomial] THEN COND_CASES_TAC THENL [ASM_REWRITE_TAC[] THEN COND_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN BINOP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `i:V` THEN REWRITE_TAC[monomial_mul] THEN RULE_ASSUM_TAC(REWRITE_RULE[monomial; monomial_vars]) THEN COND_CASES_TAC THEN REWRITE_TAC[EQ_ADD_LCANCEL_0; EQ_ADD_RCANCEL_0] THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN REWRITE_TAC[GSYM monomial] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[poly_0; poly_const; COND_ID]]] THEN REWRITE_TAC[RING_HOMOMORPHISM] THEN GEN_REWRITE_TAC LAND_CONV [SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN X_GEN_TAC `p:(V->num)->A` THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_0]; ALL_TAC] THEN SIMP_TAC[POWSER_RING; poly_0; poly_const; COND_ID]; GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m1:V->num` THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m2:V->num` THEN REWRITE_TAC[poly_const; poly_1; POWSER_RING; MONOMIAL_MUL_EQ_1] THEN ASM_CASES_TAC `m1:V->num = monomial_1` THEN ASM_REWRITE_TAC[poly_0; poly_const; COND_ID] THEN ASM_CASES_TAC `m2:V->num = monomial_1` THEN ASM_REWRITE_TAC[MONOMIAL_1; COND_ID]; MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m1:V->num` THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m2:V->num` THEN REWRITE_TAC[POWSER_RING; poly_add] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[RING_ADD_LZERO; RING_0]; MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN REWRITE_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:V->num`] THEN ASM_CASES_TAC `monomial u (m:V->num)` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `n:V->num` THEN REWRITE_TAC[POWSER_RING] THEN REWRITE_TAC[poly_mul] THEN MATCH_MP_TAC(MESON[] `ring_0 (powser_ring r t) m = ring_0 r /\ ring_sum (powser_ring r t) s f = ring_0 (powser_ring r t) ==> ring_0 r = ring_sum (powser_ring r t) s f m`) THEN CONJ_TAC THENL [REWRITE_TAC[POWSER_RING; poly_0; poly_const; COND_ID]; ALL_TAC] THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`ma:V->num`; `mb:V->num`] THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(RING_RULE `(x IN ring_carrier r /\ y IN ring_carrier r) /\ (x = ring_0 r \/ y = ring_0 r) ==> ring_mul r x y = ring_0 r`) THEN REWRITE_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_0]; ALL_TAC] THEN UNDISCH_TAC `~monomial (u:V->bool) m` THEN EXPAND_TAC "m" THEN REWRITE_TAC[MONOMIAL_MUL; DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[POWSER_RING; poly_0; poly_const; COND_ID]] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `n:V->num` THEN REWRITE_TAC[POWSER_RING] THEN REWRITE_TAC[poly_mul] THEN W(MP_TAC o PART_MATCH (lhand o rand) POWSER_SUM o rator o rand o snd) THEN REWRITE_TAC[FORALL_IN_GSPEC; MONOMIAL_FINITE_DIVISORPAIRS] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[monomial]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RING_MUL THEN REWRITE_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN ASM_MESON_TAC[RING_0]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [LAMBDA_PAIR_THM] THEN ASM_CASES_TAC `monomial (v:V->bool) n` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; CONV_TAC SYM_CONV THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`ma:V->num`; `mb:V->num`] THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[POWSER_RING; poly_mul] THEN MATCH_MP_TAC RING_SUM_EQ_0 THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`mc:V->num`; `md:V->num`] THEN DISCH_TAC THEN DISCH_THEN(K ALL_TAC) THEN REPEAT COND_CASES_TAC THEN ASM_SIMP_TAC[RING_0; RING_MUL_LZERO; RING_MUL_RZERO] THEN UNDISCH_TAC `~monomial (v:V->bool) n` THEN EXPAND_TAC "n" THEN REWRITE_TAC[MONOMIAL_MUL; DE_MORGAN_THM] THEN ASM_REWRITE_TAC[]] THEN REWRITE_TAC[POWSER_RING; poly_mul] THEN REWRITE_TAC[LAMBDA_PAIR] THEN W(MP_TAC o PART_MATCH (lhand o rand) RING_SUM_SUM_PRODUCT o rand o snd) THEN REWRITE_TAC[MONOMIAL_FINITE_DIVISORPAIRS] THEN ANTS_TAC THENL [REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[monomial]; ALL_TAC]) THEN ASM_MESON_TAC[RING_0; RING_MUL]; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[MESON[RING_0; RING_MUL_LZERO; RING_MUL_RZERO] `x IN ring_carrier r /\ y IN ring_carrier r ==> ring_mul r (if p then x else ring_0 r) (if q then y else ring_0 r) = if p /\ q then ring_mul r x y else ring_0 r`] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [LAMBDA_PAIR] THEN REWRITE_TAC[GSYM RING_SUM_RESTRICT_SET] THEN REWRITE_TAC[SET_RULE `{x | x IN {f a b | P a b} /\ Q x} = {f a b |a,b| P a b /\ Q(f a b)}`] THEN REWRITE_TAC[SET_RULE `{f x y | (x IN {g a b | P a b} /\ y IN {h c d | Q c d}) /\ R x y} = {f (g a b) (h c d) |a,b,c,d| P a b /\ Q c d /\ R (g a b) (h c d)}`] THEN MATCH_MP_TAC RING_SUM_EQ_GENERAL_INVERSES THEN EXISTS_TAC `(\(m',n'). (monomial_restrict u m',monomial_restrict u n'), (monomial_restrict v m',monomial_restrict v n')) :(V->num)#(V->num)->((V->num)#(V->num))#((V->num)#(V->num))` THEN EXISTS_TAC `\((m1,n1),(m1',n1')). (monomial_mul m1 m1':V->num, monomial_mul n1 n1':V->num)` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_PAIR_THM; IN_ELIM_QUAD_THM] THEN ASM_SIMP_TAC[RING_MUL] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monomial])) THEN UNDISCH_TAC `DISJOINT (u:V->bool) v` THEN POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[monomial; MONOMIAL_VARS_RESTRICT; INTER_SUBSET; PAIR_EQ] THEN REPEAT(DISCH_THEN STRIP_ASSUME_TAC) THEN CONJ_TAC THEN REPEAT GEN_TAC THENL [ALL_TAC; DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `monomial_vars:(V->num)->V->bool` th) THEN MP_TAC(AP_TERM `FINITE o (monomial_vars:(V->num)->V->bool)` th))] THEN ASM_REWRITE_TAC[o_THM; MONOMIAL_VARS_MUL; FINITE_UNION] THEN ASM_SIMP_TAC[FINITE_INTER] THEN REPEAT STRIP_TAC THEN TRY(MATCH_MP_TAC(MESON[] `x = x' /\ y = y' ==> ring_mul r (p x) (q y) = ring_mul r (p x') (q y')`)) THEN REPEAT CONJ_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM])) THEN REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:V` THEN REWRITE_TAC[monomial_mul; monomial_restrict] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:V` o GEN_REWRITE_RULE I [SUBSET])) THEN REWRITE_TAC[monomial_vars; IN_ELIM_THM] THEN MAP_EVERY ASM_CASES_TAC [`(i:V) IN u`; `(i:V) IN v`] THEN ASM_REWRITE_TAC[EQ_ADD_LCANCEL_0; EQ_ADD_RCANCEL_0] THEN TRY ARITH_TAC THEN ASM SET_TAC[]);; let ISOMORPHIC_RING_POWSER_POWSER = prove (`!(r:A ring) u v:V->bool. DISJOINT u v ==> powser_ring (powser_ring r u) v isomorphic_ring powser_ring r (u UNION v)`, MP_TAC RING_ISOMORPHISMS_POWSER_POWSER_RING THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN MESON_TAC[]);; let ISOMORPHIC_RING_POWSER_POWSER_GEN = prove (`!(r:A ring) (r':B ring) (u:U->bool) (v:V->bool) (w:W->bool). r isomorphic_ring r' /\ u +_c v =_c w ==> powser_ring (powser_ring r u) v isomorphic_ring powser_ring r' w`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_RING_TRANS `powser_ring (r:A ring) ((u:U->bool) +_c (v:V->bool))` THEN ASM_SIMP_TAC[ISOMORPHIC_POWSER_RINGS; CARD_EQ_REFL] THEN REWRITE_TAC[add_c] THEN W(MP_TAC o PART_MATCH (rand o rand) ISOMORPHIC_RING_POWSER_POWSER o rand o snd) THEN REWRITE_TAC[sum_DISTINCT; SET_RULE `DISJOINT {f x | x IN s} {g y | y IN t} <=> !x y. x IN s /\ y IN t ==> ~(f x = g y)`] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_RING_TRANS) THEN REPEAT(MATCH_MP_TAC ISOMORPHIC_POWSER_RINGS THEN CONJ_TAC) THEN REWRITE_TAC[ISOMORPHIC_RING_REFL] THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN SIMP_TAC[sum_INJECTIVE]);; let RING_CARRIER_POWSER_SUBRING_GENERATED = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> ring_carrier (powser_ring (subring_generated r s) v) = ring_carrier (powser_ring r v) INTER {p | !m. p m IN s}`, SIMP_TAC[RING_CARRIER_POWSER_RING; CARRIER_SUBRING_GENERATED_SUBRING] THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED; subring_of] THEN SET_TAC[]);; let RING_CARRIER_POLY_SUBRING_GENERATED = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> ring_carrier (poly_ring (subring_generated r s) v) = ring_carrier (poly_ring r v) INTER {p | !m. p m IN s}`, SIMP_TAC[RING_CARRIER_POLY_RING; CARRIER_SUBRING_GENERATED_SUBRING] THEN REWRITE_TAC[CONJUNCT2 SUBRING_GENERATED; subring_of] THEN SET_TAC[]);; let SUBRING_POWSER_INTO_SUBRING = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> ring_carrier (powser_ring r v) INTER {p | !m. p m IN s} subring_of powser_ring r v`, REWRITE_TAC[subring_of; INTER_SUBSET] THEN SIMP_TAC[IN_INTER; RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN REWRITE_TAC[RING_CARRIER_POWSER_RING; CONJUNCT2 POWSER_RING] THEN REWRITE_TAC[IN_ELIM_THM; poly_0; poly_1; poly_const; poly_neg; poly_add; poly_mul] THEN REPEAT GEN_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN STRIP_TAC THEN X_GEN_TAC `m:V->num` THEN MATCH_MP_TAC(REWRITE_RULE[] (ISPECL [`r:A ring`; `\x:A. x IN s`] RING_SUM_CLOSED)) THEN ASM_SIMP_TAC[FORALL_PAIR_THM]);; let SUBRING_POLY_INTO_SUBRING = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> ring_carrier (poly_ring r v) INTER {p | !m. p m IN s} subring_of poly_ring r v`, REWRITE_TAC[subring_of; INTER_SUBSET] THEN SIMP_TAC[IN_INTER; RING_0; RING_1; RING_NEG; RING_ADD; RING_MUL] THEN REWRITE_TAC[RING_CARRIER_POLY_RING; CONJUNCT2 POLY_RING] THEN REWRITE_TAC[IN_ELIM_THM; poly_0; poly_1; poly_const; poly_neg; poly_add; poly_mul] THEN REPEAT GEN_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN STRIP_TAC THEN X_GEN_TAC `m:V->num` THEN MATCH_MP_TAC(REWRITE_RULE[] (ISPECL [`r:A ring`; `\x:A. x IN s`] RING_SUM_CLOSED)) THEN ASM_SIMP_TAC[FORALL_PAIR_THM]);; let RING_ISOMORPHISMS_POWSER_SUBRING_GENERATED = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> ring_isomorphisms (powser_ring (subring_generated r s) v, subring_generated (powser_ring r v) {p | !m. p m IN s}) (I,I)`, REPEAT STRIP_TAC THEN REWRITE_TAC[RING_ISOMORPHISMS; RING_HOMOMORPHISM] THEN REWRITE_TAC[I_THM; IMAGE_I; CONJUNCT2 SUBRING_GENERATED] THEN ASM_SIMP_TAC[RING_CARRIER_POWSER_SUBRING_GENERATED] THEN GEN_REWRITE_TAC I [TAUT `(p /\ q) /\ r <=> q /\ (r /\ p)`] THEN CONJ_TAC THENL [SIMP_TAC[CONJUNCT2 POWSER_RING; CONJUNCT2 SUBRING_GENERATED; poly_1; poly_const; poly_add; poly_mul] THEN MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_SUM_SUBRING_GENERATED] THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s <=> !x. x IN s ==> P x`] THEN RULE_ASSUM_TAC(REWRITE_RULE[subring_of]) THEN ASM_SIMP_TAC[FORALL_IN_GSPEC]; REWRITE_TAC[SET_RULE `(!y. y IN t ==> y IN s) /\ s SUBSET t <=> s = t`] THEN ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARRIER_SUBRING_GENERATED_SUBRING THEN ASM_SIMP_TAC[SUBRING_POWSER_INTO_SUBRING]]);; let ISOMORPHIC_RINGS_POWSER_SUBRING_GENERATED = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> (powser_ring (subring_generated r s) v) isomorphic_ring (subring_generated (powser_ring r v) {p | !m. p m IN s})`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN REPEAT(EXISTS_TAC `I:((V->num)->A)->((V->num)->A)`) THEN ASM_SIMP_TAC[RING_ISOMORPHISMS_POWSER_SUBRING_GENERATED]);; let RING_ISOMORPHISMS_POLY_SUBRING_GENERATED = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> ring_isomorphisms (poly_ring (subring_generated r s) v, subring_generated (poly_ring r v) {p | !m. p m IN s}) (I,I)`, REPEAT STRIP_TAC THEN REWRITE_TAC[RING_ISOMORPHISMS; RING_HOMOMORPHISM] THEN REWRITE_TAC[I_THM; IMAGE_I; CONJUNCT2 SUBRING_GENERATED] THEN ASM_SIMP_TAC[RING_CARRIER_POLY_SUBRING_GENERATED] THEN GEN_REWRITE_TAC I [TAUT `(p /\ q) /\ r <=> q /\ (r /\ p)`] THEN CONJ_TAC THENL [SIMP_TAC[CONJUNCT2 POLY_RING; CONJUNCT2 SUBRING_GENERATED; poly_1; poly_const; poly_add; poly_mul] THEN MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_SIMP_TAC[RING_SUM_SUBRING_GENERATED] THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s <=> !x. x IN s ==> P x`] THEN RULE_ASSUM_TAC(REWRITE_RULE[subring_of]) THEN ASM_SIMP_TAC[FORALL_IN_GSPEC]; REWRITE_TAC[SET_RULE `(!y. y IN t ==> y IN s) /\ s SUBSET t <=> s = t`] THEN ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARRIER_SUBRING_GENERATED_SUBRING THEN ASM_SIMP_TAC[SUBRING_POLY_INTO_SUBRING]]);; let ISOMORPHIC_RINGS_POLY_SUBRING_GENERATED = prove (`!r (s:A->bool) (v:V->bool). s subring_of r ==> (poly_ring (subring_generated r s) v) isomorphic_ring (subring_generated (poly_ring r v) {p | !m. p m IN s})`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN REPEAT(EXISTS_TAC `I:((V->num)->A)->((V->num)->A)`) THEN ASM_SIMP_TAC[RING_ISOMORPHISMS_POLY_SUBRING_GENERATED]);; let RING_ISOMORPHISMS_POLY_POLY_RING = prove (`!(r:A ring) u v:V->bool. DISJOINT u v ==> ring_isomorphisms (poly_ring (poly_ring r u) v,poly_ring r (u UNION v)) ((\p m. if monomial (u UNION v) m then p (monomial_restrict v m) (monomial_restrict u m) else ring_0 r), (\p m1 m2. if monomial v m1 /\ monomial u m2 then p(monomial_mul m1 m2) else ring_0 r))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM(CONJUNCT2(SPEC_ALL I_O_ID))] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM(CONJUNCT1(SPEC_ALL I_O_ID))] THEN MATCH_MP_TAC RING_ISOMORPHISMS_COMPOSE THEN EXISTS_TAC `subring_generated (poly_ring (powser_ring r u) v) {p:(V->num)->(V->num)->A | !m. p m IN ring_carrier (poly_ring r u)}` THEN CONJ_TAC THENL [GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o LAND_CONV) [ONCE_REWRITE_RULE[SUBRING_GENERATED_RESTRICT] POLY_RING_AS_SUBRING_FINITE] THEN REWRITE_TAC[GSYM RING_CARRIER_POLY_RING_FINITE] THEN MATCH_MP_TAC RING_ISOMORPHISMS_POLY_SUBRING_GENERATED THEN REWRITE_TAC[POLY_CARRIER_SUBRING_OF_POWSER_RING]; ONCE_REWRITE_TAC[SUBRING_GENERATED_RESTRICT]] THEN REWRITE_TAC [ONCE_REWRITE_RULE[SUBRING_GENERATED_RESTRICT] POLY_RING_AS_SUBRING_FINITE] THEN REWRITE_TAC[GSYM RING_CARRIER_POLY_RING_FINITE] THEN W(MP_TAC o PART_MATCH (lhand o rand) SUBRING_GENERATED_SUBRING_GENERATED o lhand o lhand o snd) THEN REWRITE_TAC[POLY_CARRIER_SUBRING_OF_POWSER_RING] THEN REWRITE_TAC[RING_CARRIER_POLY_RING_FINITE] THEN REWRITE_TAC[GSYM SUBRING_GENERATED_RESTRICT] THEN REWRITE_TAC[GSYM POLY_RING_AS_SUBRING_FINITE] THEN REWRITE_TAC[GSYM RING_CARRIER_POLY_RING_FINITE] THEN REWRITE_TAC[SET_RULE `s INTER s INTER t = s INTER t`] THEN ANTS_TAC THENL [MATCH_MP_TAC(MESON[SUBRING_OF_SUBRING_GENERATED_REV; POLY_RING_AS_SUBRING] `t subring_of poly_ring r s ==> t subring_of powser_ring r s`) THEN MATCH_MP_TAC SUBRING_POLY_INTO_SUBRING THEN REWRITE_TAC[POLY_CARRIER_SUBRING_OF_POWSER_RING]; DISCH_THEN SUBST1_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [ONCE_REWRITE_RULE[SUBRING_GENERATED_RESTRICT] POLY_RING_AS_SUBRING_FINITE] THEN MATCH_MP_TAC RING_ISOMORPHISMS_BETWEEN_SUBRINGS THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC RING_ISOMORPHISMS_POWSER_POWSER_RING THEN ASM_REWRITE_TAC[]; REWRITE_TAC[ring_isomorphisms] THEN GEN_REWRITE_TAC LAND_CONV [CONJ_ASSOC] THEN DISCH_THEN(MP_TAC o CONJUNCT1)] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN REWRITE_TAC[ring_homomorphism] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THENL [GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV o LAND_CONV) [RING_CARRIER_POLY_RING_FINITE]; GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [RING_CARRIER_POLY_RING_FINITE]] THEN REWRITE_TAC[INTER_ASSOC] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s /\ x IN s' ==> f x IN t') ==> IMAGE f s SUBSET t ==> IMAGE f (s INTER s') SUBSET t INTER t'`) THEN REWRITE_TAC[RING_CARRIER_POLY_RING_FINITE; IN_INTER; IN_ELIM_THM] THEN REWRITE_TAC[MESON[] `~((if p then x else z) = z) <=> p /\ ~(x = z)`] THENL [X_GEN_TAC `p:(V->num)->(V->num)->A` THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{ monomial_mul m1 m2 | m1 IN {m | ~(p m = ring_0 (powser_ring r u))} /\ m2 IN {m | ~((p:(V->num)->(V->num)->A) m1 m = ring_0 r)}}` THEN ASM_SIMP_TAC[FINITE_PRODUCT_DEPENDENT] THEN GEN_REWRITE_TAC I [SUBSET] THEN X_GEN_TAC `m:V->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN EXISTS_TAC `monomial_restrict v m:V->num` THEN EXISTS_TAC `monomial_restrict u m:V->num` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[POWSER_RING; poly_0; poly_const; COND_ID] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; X_GEN_TAC `i:V`] THEN REWRITE_TAC[monomial_restrict; monomial_mul] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monomial]) THEN REWRITE_TAC[monomial_vars] THEN ASM SET_TAC[]; X_GEN_TAC `p:(V->num)->A` THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE [RING_CARRIER_POWSER_RING; monomial; IN_ELIM_THM]) THEN CONJ_TAC THENL [REWRITE_TAC[POWSER_RING; poly_0; poly_const; COND_ID] THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `UNIONS { {d | monomial_divides d m} | m IN {m | ~((p:(V->num)->A) m = ring_0 r)}}` THEN ASM_SIMP_TAC[FINITE_UNIONS; SIMPLE_IMAGE; FINITE_IMAGE] THEN REWRITE_TAC[FORALL_IN_IMAGE; UNIONS_IMAGE; FORALL_IN_GSPEC] THEN CONJ_TAC THENL [REWRITE_TAC[MONOMIAL_FINITE_DIVISORS] THEN ASM SET_TAC[]; GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:V->num` THEN REWRITE_TAC[NOT_FORALL_THM; MESON[] `~((if p then x else z) = z) <=> p /\ ~(x = z)`] THEN DISCH_THEN(X_CHOOSE_THEN `p:V->num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `monomial_mul n p:V->num` THEN ASM_SIMP_TAC[MONOMIAL_DIVIDES_RMUL; MONOMIAL_DIVIDES_REFL]]; X_GEN_TAC `m:V->num` THEN ASM_SIMP_TAC[RING_CARRIER_POWSER_RING; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[RING_0]; ALL_TAC] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `UNIONS { {d | monomial_divides d m} | m IN {m | ~((p:(V->num)->A) m = ring_0 r)}}` THEN ASM_SIMP_TAC[FINITE_UNIONS; SIMPLE_IMAGE; FINITE_IMAGE] THEN REWRITE_TAC[FORALL_IN_IMAGE; UNIONS_IMAGE; FORALL_IN_GSPEC] THEN CONJ_TAC THENL [REWRITE_TAC[MONOMIAL_FINITE_DIVISORS] THEN ASM SET_TAC[]; GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:V->num` THEN STRIP_TAC THEN EXISTS_TAC `monomial_mul m n:V->num` THEN ASM_SIMP_TAC[MONOMIAL_DIVIDES_LMUL; MONOMIAL_DIVIDES_REFL]]]]);; let ISOMORPHIC_RING_POLY_POLY = prove (`!(r:A ring) u v:V->bool. DISJOINT u v ==> poly_ring (poly_ring r u) v isomorphic_ring poly_ring r (u UNION v)`, MP_TAC RING_ISOMORPHISMS_POLY_POLY_RING THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[isomorphic_ring; ring_isomorphism] THEN MESON_TAC[]);; let ISOMORPHIC_RING_POLY_POLY_GEN = prove (`!(r:A ring) (r':B ring) (u:U->bool) (v:V->bool) (w:W->bool). r isomorphic_ring r' /\ u +_c v =_c w ==> poly_ring (poly_ring r u) v isomorphic_ring poly_ring r' w`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_RING_TRANS `poly_ring (r:A ring) ((u:U->bool) +_c (v:V->bool))` THEN ASM_SIMP_TAC[ISOMORPHIC_POLY_RINGS; CARD_EQ_REFL] THEN REWRITE_TAC[add_c] THEN W(MP_TAC o PART_MATCH (rand o rand) ISOMORPHIC_RING_POLY_POLY o rand o snd) THEN REWRITE_TAC[sum_DISTINCT; SET_RULE `DISJOINT {f x | x IN s} {g y | y IN t} <=> !x y. x IN s /\ y IN t ==> ~(f x = g y)`] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_RING_TRANS) THEN REPEAT(MATCH_MP_TAC ISOMORPHIC_POLY_RINGS THEN CONJ_TAC) THEN REWRITE_TAC[ISOMORPHIC_RING_REFL] THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN SIMP_TAC[sum_INJECTIVE]);; (* ------------------------------------------------------------------------- *) (* Monomial divisibility is a partial order, and on a *finite* set of *) (* variables any preorder extending it (in particular a "compatible" one) *) (* is automatically a WQO, hence wellfounded, and hence WO whenever total. *) (* ------------------------------------------------------------------------- *) let POSET_MONOMIAL_DIVIDES = prove (`poset(monomial_divides:(V->num)->(V->num)->bool)`, REWRITE_TAC[poset; MONOMIAL_DIVIDES_REFL] THEN REWRITE_TAC[MONOMIAL_DIVIDES_TRANS; MONOMIAL_DIVIDES_ANTISYM]);; let FLD_MONOMIAL_DIVIDES = prove (`fld(monomial_divides) = (:V->num)`, SIMP_TAC[QOSET_FLD; POSET_IMP_QOSET; POSET_MONOMIAL_DIVIDES] THEN REWRITE_TAC[MONOMIAL_DIVIDES_REFL; UNIV_GSPEC]);; let COMPATIBLE_MONOMIAL_ORDER = prove (`!(<<=) (s:V->bool). (!m. monomial s m ==> monomial_1 <<= m) /\ (!m n p. monomial s m /\ monomial s n /\ monomial s p /\ n <<= p ==> monomial_mul m n <<= monomial_mul m p) ==> !m n. monomial s m /\ monomial s n /\ monomial_divides m n ==> m <<= n`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m:V->num`; `monomial_1:V->num`; `monomial_div n m:V->num`]) THEN ASM_SIMP_TAC[MONOMIAL_DIV; MONOMIAL_DIV_LMUL] THEN REWRITE_TAC[MONOMIAL_1; MONOMIAL_MUL_RID]);; let WQOSET_COMPATIBLE_MONOMIAL_ORDER = prove (`!(<<=) (s:V->bool). FINITE s /\ qoset(<<=) /\ fld(<<=) SUBSET {m | monomial s m} /\ (!m n. monomial s m /\ monomial s n /\ monomial_divides m n ==> m <<= n) ==> wqoset(<<=)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC WQOSET_SUPERSET THEN EXISTS_TAC `\m (n:V->num). monomial s m /\ monomial s n /\ monomial_divides m n` THEN ASM_SIMP_TAC[FLD_RESTRICT_QOSET; POSET_IMP_QOSET; POSET_MONOMIAL_DIVIDES; FLD_MONOMIAL_DIVIDES; IN_UNIV; IN_GSPEC] THEN MP_TAC(ISPECL [`(<=):num->num->bool`; `s:V->bool`] WQOSET_POINTWISE) THEN ASM_REWRITE_TAC[WQOSET_num] THEN DISCH_THEN(MP_TAC o SPEC `monomial (s:V->bool)` o MATCH_MP WQOSET_RESTRICT) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; monomial; monomial_vars; monomial_divides] THEN MP_TAC(ARITH_RULE `0 <= 0`) THEN SET_TAC[]);; let WF_COMPATIBLE_MONOMIAL_ORDER = prove (`!(<<=) (s:V->bool). FINITE s /\ qoset(<<=) /\ fld(<<=) SUBSET {m | monomial s m} /\ (!m n. monomial s m /\ monomial s n /\ monomial_divides m n ==> m <<= n) ==> WF(strictly(<<=))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP WQOSET_COMPATIBLE_MONOMIAL_ORDER) THEN REWRITE_TAC[WQOSET_IMP_WF]);; let WOSET_COMPATIBLE_MONOMIAL_ORDER = prove (`!(<<=) (s:V->bool). FINITE s /\ toset(<<=) /\ fld(<<=) SUBSET {m | monomial s m} /\ (!m n. monomial s m /\ monomial s n /\ monomial_divides m n ==> m <<= n) ==> woset(<<=)`, SIMP_TAC[WOSET_WQOSET] THEN MESON_TAC[WQOSET_COMPATIBLE_MONOMIAL_ORDER; TOSET_IMP_QOSET]);; (* ------------------------------------------------------------------------- *) (* A more general monomial ordering on monomials over any set of *) (* variables (the monomials themselves are still finitely supported). *) (* This is simply the classic Dershowitz-Manna multiset ordering, which *) (* has all the main properties we want. It's parametrized by a variable *) (* ordering, which can be either a reflexive or irreflexive relation. *) (* Whatever the parametrizing "order" is, the overall monomial order is *) (* at least reflexive and transitive and compatible with multiplication. *) (* If the variable order is a partial order on variables it is also *) (* equivalent to the Huet-Oppen form, and in the case of a total order *) (* becomes a lexicographic order. It also inherits being a partial order, *) (* total order, wellorder and being wellfounded in general from the *) (* variable order. It is *not* designed to preserve any equivalences *) (* given a non-antisymmetric variable order. *) (* ------------------------------------------------------------------------- *) let monomial_le = new_definition `monomial_le (<<=) (m1:V->num) m2 <=> monomial (:V) m1 /\ monomial (:V) m2 /\ ?ma mb. monomial (:V) ma /\ monomial (:V) mb /\ monomial_mul m1 ma = monomial_mul m2 mb /\ !i. i IN monomial_vars mb ==> ?j. j IN monomial_vars ma /\ properly(<<=) i j`;; let monomial_lt = new_definition `monomial_lt (<<=) (m1:V->num) m2 <=> ~(m1 = m2) /\ monomial_le (<<=) (m1:V->num) m2`;; let PROPERLY_MONOMIAL_LE = prove (`!(<<=):V->V->bool. properly(monomial_le(<<=)) = monomial_lt(<<=)`, REWRITE_TAC[FUN_EQ_THM; properly; monomial_lt] THEN MESON_TAC[]);; let MONOMIAL_LE_MONO = prove (`!l l'. (!x y. l x y ==> l' x y) ==> (!m n. monomial_le l m n ==> monomial_le l' m n)`, REWRITE_TAC[monomial_le; properly] THEN MESON_TAC[]);; let MONOMIAL_LT_MONO = prove (`!l l'. (!x y. l x y ==> l' x y) ==> (!m n. monomial_lt l m n ==> monomial_lt l' m n)`, REWRITE_TAC[monomial_lt; monomial_le; properly] THEN MESON_TAC[]);; let MONOMIAL_LE_PROPERLY = prove (`!(<<=):V->V->bool. monomial_le (properly(<<=)) = monomial_le (<<=)`, REWRITE_TAC[FUN_EQ_THM; monomial_le; PROPERLY_PROPERLY]);; let MONOMIAL_LT_PROPERLY = prove (`!(<<=):V->V->bool. monomial_lt (properly(<<=)) = monomial_lt (<<=)`, REWRITE_TAC[FUN_EQ_THM; monomial_lt; monomial_le; PROPERLY_PROPERLY]);; let MONOMIAL_LE_IMPROPERLY = prove (`!(<<):V->V->bool. monomial_le (\x y. x << y \/ x = y) = monomial_le (<<)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MONOMIAL_LE_PROPERLY] THEN AP_TERM_TAC THEN REWRITE_TAC[properly; FUN_EQ_THM] THEN MESON_TAC[]);; let MONOMIAL_LT_IMPROPERLY = prove (`!(<<):V->V->bool. monomial_lt (\x y. x << y \/ x = y) = monomial_lt (<<)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MONOMIAL_LT_PROPERLY] THEN AP_TERM_TAC THEN REWRITE_TAC[properly; FUN_EQ_THM] THEN MESON_TAC[]);; let MONOMIAL_LE_REFL = prove (`!(<<=) m. monomial_le (<<=) m m <=> monomial (:V) m`, REPEAT GEN_TAC THEN REWRITE_TAC[monomial_le] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(EXISTS_TAC `monomial_1:V->num`) THEN REWRITE_TAC[MONOMIAL_VARS_1; MONOMIAL_MUL_LID; MONOMIAL_MUL_RID] THEN REWRITE_TAC[MONOMIAL_1; NOT_IN_EMPTY]);; let MONOMIAL_LT_REFL = prove (`!(<<) m:V->num. ~(monomial_lt (<<) m m)`, REWRITE_TAC[monomial_lt]);; let MONOMIAL_LT_IMP_LE = prove (`!(<<) m1 m2:V->num. monomial_lt (<<) m1 m2 ==> monomial_le (<<) m1 m2`, SIMP_TAC[monomial_lt]);; let MONOMIAL_LE_LT = prove (`!(<<) m1 m2:V->num. monomial_le (<<) m1 m2 <=> monomial_lt (<<) m1 m2 \/ monomial (:V) m1 /\ monomial (:V) m2 /\ m1 = m2`, REWRITE_TAC[monomial_lt] THEN MESON_TAC[MONOMIAL_LE_REFL]);; let MONOMIAL_LE_TRANS = prove (`!(<<=) m1 m2 m3:V->num. monomial_le (<<=) m1 m2 /\ monomial_le (<<=) m2 m3 ==> monomial_le (<<=) m1 m3`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[monomial_le; LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`ma:V->num`; `mb:V->num`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`mc:V->num`; `md:V->num`] THEN STRIP_TAC THEN EXISTS_TAC `monomial_mul ma mc:V->num` THEN EXISTS_TAC `monomial_mul mb md:V->num` THEN ASM_REWRITE_TAC[MONOMIAL_MUL; MONOMIAL_VARS_MUL] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN CONV_TAC MONOMIAL_RULE);; let QOSET_MONOMIAL_LE = prove (`!(<<=):V->V->bool. qoset(monomial_le (<<=))`, REWRITE_TAC[qoset; MONOMIAL_LE_TRANS; MONOMIAL_LE_REFL] THEN REWRITE_TAC[fld; monomial_le; IN_ELIM_THM] THEN MESON_TAC[]);; let FLD_MONOMIAL_LE = prove (`!(<<=). fld(monomial_le(<<=)) = {m | monomial (:V) m}`, GEN_TAC THEN REWRITE_TAC[GSYM MONOMIAL_LE_REFL] THEN MATCH_MP_TAC QOSET_FLD THEN REWRITE_TAC[QOSET_MONOMIAL_LE]);; let MONOMIAL_LE_LMUL = prove (`!(<<=) m m1 m2:V->num. monomial_le (<<=) (monomial_mul m m1) (monomial_mul m m2) <=> monomial (:V) m /\ monomial_le (<<=) m1 m2`, REPEAT GEN_TAC THEN REWRITE_TAC[monomial_le] THEN REWRITE_TAC[MONOMIAL_VARS_MUL; MONOMIAL_MUL] THEN REWRITE_TAC[GSYM MONOMIAL_MUL_ASSOC; MONOMIAL_MUL_LCANCEL] THEN REWRITE_TAC[CONJ_ACI]);; let MONOMIAL_LE_RMUL = prove (`!(<<=) m m1 m2:V->num. monomial_le (<<=) (monomial_mul m1 m) (monomial_mul m2 m) <=> monomial (:V) m /\ monomial_le (<<=) m1 m2`, ONCE_REWRITE_TAC[MONOMIAL_MUL_SYM] THEN REWRITE_TAC[MONOMIAL_LE_LMUL]);; let MONOMIAL_LT_LMUL = prove (`!(<<=) m m1 m2:V->num. monomial_lt (<<=) (monomial_mul m m1) (monomial_mul m m2) <=> monomial (:V) m /\ monomial_lt (<<=) m1 m2`, REWRITE_TAC[monomial_lt; MONOMIAL_MUL_LCANCEL; MONOMIAL_LE_LMUL] THEN MESON_TAC[]);; let MONOMIAL_LT_RMUL = prove (`!(<<=) m m1 m2:V->num. monomial_lt (<<=) (monomial_mul m1 m) (monomial_mul m2 m) <=> monomial (:V) m /\ monomial_lt (<<=) m1 m2`, REWRITE_TAC[monomial_lt; MONOMIAL_MUL_RCANCEL; MONOMIAL_LE_RMUL] THEN MESON_TAC[]);; let MONOMIAL_LE_MUL2 = prove (`!(<<=) m1 m1' m2 m2':V->num. monomial_le (<<=) m1 m1' /\ monomial_le (<<=) m2 m2' ==> monomial_le (<<=) (monomial_mul m1 m2) (monomial_mul m1' m2')`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MONOMIAL_LE_TRANS THEN EXISTS_TAC `monomial_mul m1' m2:V->num` THEN ASM_REWRITE_TAC[MONOMIAL_LE_LMUL; MONOMIAL_LE_RMUL] THEN RULE_ASSUM_TAC(REWRITE_RULE[monomial_le]) THEN ASM_REWRITE_TAC[]);; let MONOMIAL_LE_DIVISOR = prove (`!m d:V->num. monomial (:V) m /\ monomial_divides d m ==> monomial_le (<<=) d m`, REPEAT GEN_TAC THEN REWRITE_TAC[monomial_le] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[MONOMIAL_DIVISOR]; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`monomial_div m d:V->num`; `monomial_1:V->num`] THEN ASM_REWRITE_TAC[MONOMIAL_DIV_LMUL_EQ; MONOMIAL_MUL_RID] THEN ASM_SIMP_TAC[MONOMIAL_DIV; MONOMIAL_1; MONOMIAL_VARS_1; NOT_IN_EMPTY]);; let MONOMIAL_GE_1 = prove (`!(<<=) (m:V->num). monomial_le (<<=) monomial_1 m <=> monomial (:V) m`, REPEAT GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[monomial_le]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] MONOMIAL_LE_DIVISOR) THEN REWRITE_TAC[MONOMIAL_DIVIDES_1]);; let MONOMIAL_LE_VARS = prove (`!(<<=) v w:V. v <<= w ==> monomial_le (<<=) (monomial_var v) (monomial_var w)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `v:V = w` THEN ASM_REWRITE_TAC[MONOMIAL_LE_REFL] THEN REWRITE_TAC[monomial_le; MONOMIAL_VAR; IN_UNIV] THEN REWRITE_TAC[FINITE_SING] THEN MAP_EVERY EXISTS_TAC [`monomial_var(w:V)`; `monomial_var(v:V)`] THEN REWRITE_TAC[MONOMIAL_VARS_VAR; MONOMIAL_VAR; IN_UNIV] THEN REWRITE_TAC[MONOMIAL_MUL_SYM; properly] THEN ASM SET_TAC[]);; let MONOMIAL_LT_VARS = prove (`!(<<=) v w:V. properly(<<=) v w ==> monomial_lt (<<=) (monomial_var v) (monomial_var w)`, SIMP_TAC[monomial_lt; MONOMIAL_VAR_EQ; properly; MONOMIAL_LE_VARS]);; let MONOMIAL_LE_POSET = prove (`!(<<=):V->V->bool. poset(<<=) ==> monomial_le (<<=) = \m1 m2. monomial (:V) m1 /\ monomial (:V) m2 /\ !i. m2 i < m1 i ==> ?j. i <<= j /\ m1 j < m2 j`, REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN REWRITE_TAC[monomial_le; properly; MONOMIAL] THEN ASM_CASES_TAC `FINITE(monomial_vars m1:V->bool)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `FINITE(monomial_vars m2:V->bool)` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `\i. (m2:V->num) i - m1 i` THEN EXISTS_TAC `\i. (m1:V->num) i - m2 i` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `monomial_vars(m2:V->num)`; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `monomial_vars(m1:V->num)`; REWRITE_TAC[monomial_mul] THEN ABS_TAC THEN ARITH_TAC; X_GEN_TAC `i:V` THEN REWRITE_TAC[monomial_vars; IN_ELIM_THM] THEN REWRITE_TAC[ARITH_RULE `~(a - b = 0) <=> b < a`] THEN ASM_MESON_TAC[LT_ANTISYM]] THEN ASM_REWRITE_TAC[SUBSET; monomial_vars; IN_ELIM_THM] THEN ARITH_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN MAP_EVERY X_GEN_TAC [`ma:V->num`; `mb:V->num`] THEN REPLICATE_TAC 3 DISCH_TAC THEN REWRITE_TAC[monomial_vars; IN_ELIM_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `!i. (ma:V->num) i < mb i ==> (?j. i <<= j /\ mb j < ma j)` MP_TAC THENL [ALL_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN REWRITE_TAC[monomial_mul] THEN MESON_TAC[ARITH_RULE `a + b:num = c + d ==> (b < d <=> c < a) /\ (a < c <=> d < b)`]] THEN X_GEN_TAC `i:V` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN REWRITE_TAC[NOT_LT] THEN DISCH_TAC THEN MP_TAC(ISPECL [`\x y:V. x = y \/ x <<= y`; `{j:V | j IN monomial_vars mb /\ (i:V) <<= j}`] POSET_MAX) THEN ASM_SIMP_TAC[NOT_IMP; FINITE_RESTRICT] THEN REWRITE_TAC[monomial_vars] THEN REWRITE_TAC[EXISTS_IN_GSPEC; FORALL_IN_GSPEC; strictly] THEN REWRITE_TAC[IN_ELIM_THM; GSYM MEMBER_NOT_EMPTY] THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN REWRITE_TAC[poset; fld] THEN SET_TAC[]; ASM_MESON_TAC[ARITH_RULE `a < b ==> ~(b = 0)`; ARITH_RULE `a <= b /\ ~(a = 0) ==> ~(b = 0)`]; REWRITE_TAC[fld] THEN SET_TAC[]; DISCH_THEN(X_CHOOSE_THEN `j:V` STRIP_ASSUME_TAC) THEN UNDISCH_THEN `!i:V. ~(mb i = 0) ==> (?j. ~(ma j = 0) /\ i <<= j /\ ~(i = j))` (MP_TAC o SPEC `j:V`) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `k:V` THEN STRIP_TAC THEN SUBGOAL_THEN `((i:V) <<= (k:V)):bool` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[poset]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `k:V`)) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[properly] THEN RULE_ASSUM_TAC(REWRITE_RULE[poset]) THEN ASM_MESON_TAC[]]);; let MONOMIAL_LE_ANTISYM = prove (`!(<<=) m1 m2:V->num. poset(<<=) /\ monomial_le (<<=) m1 m2 /\ monomial_le (<<=) m2 m1 ==> m1 = m2`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [IMP_CONJ] THEN SIMP_TAC[MONOMIAL_LE_POSET] THEN REWRITE_TAC[poset] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN REWRITE_TAC[ARITH_RULE `m:num = n <=> ~(m < n) /\ ~(n < m)`] THEN MATCH_MP_TAC(SET_RULE `~(~({i | P i} = {})) /\ ~(~({i | Q i} = {})) ==> !i. ~(P i) /\ ~(Q i)`) THEN CONJ_TAC THEN DISCH_TAC THEN MP_TAC(ISPEC `\x y:V. x = y \/ x <<= y` POSET_MAX) THENL [DISCH_THEN(MP_TAC o SPEC `{i | (m1:V->num) i < m2 i}`); DISCH_THEN(MP_TAC o SPEC `{i | (m2:V->num) i < m1 i}`)] THEN (ASM_REWRITE_TAC[NOT_IMP; SUBSET; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[poset] THEN ASM_MESON_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[MONOMIAL]) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `monomial_vars(monomial_mul m1 m2:V->num)` THEN ASM_REWRITE_TAC[MONOMIAL_VARS_MUL; FINITE_UNION] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; monomial_vars; IN_UNION] THEN ARITH_TAC; REWRITE_TAC[fld; IN_ELIM_THM] THEN ASM_MESON_TAC[]; REWRITE_TAC[properly] THEN ASM_METIS_TAC[LT_ANTISYM]]));; let MONOMIAL_LET_ANTISYM = prove (`!(<<=) m1 m2. poset(<<=) ==> ~(monomial_le (<<=) m1 m2 /\ monomial_lt (<<=) m2 m1)`, REWRITE_TAC[monomial_lt; TAUT `~(p /\ ~q /\ r) <=> r /\ p ==> q`] THEN REWRITE_TAC[IMP_IMP; MONOMIAL_LE_ANTISYM]);; let MONOMIAL_LTE_ANTISYM = prove (`!(<<=) m1 m2. poset(<<=) ==> ~(monomial_lt (<<=) m1 m2 /\ monomial_le (<<=) m2 m1)`, REWRITE_TAC[monomial_lt; TAUT `~((~p /\ q) /\ r) <=> q /\ r ==> p`] THEN REWRITE_TAC[IMP_IMP; MONOMIAL_LE_ANTISYM]);; let MONOMIAL_LT_ANTISYM = prove (`!(<<=) m1 m2. poset(<<=) ==> ~(monomial_lt (<<=) m1 m2 /\ monomial_lt (<<=) m2 m1)`, MESON_TAC[MONOMIAL_LT_IMP_LE; MONOMIAL_LTE_ANTISYM]);; let MONOMIAL_LET_TRANS = prove (`!(<<=) m1 m2 m3:V->num. poset(<<=) /\ monomial_le (<<=) m1 m2 /\ monomial_lt (<<=) m2 m3 ==> monomial_lt (<<=) m1 m3`, REWRITE_TAC[monomial_lt] THEN MESON_TAC[MONOMIAL_LE_TRANS; MONOMIAL_LE_ANTISYM]);; let MONOMIAL_LTE_TRANS = prove (`!(<<=) m1 m2 m3. poset(<<=) /\ monomial_lt (<<=) m1 m2 /\ monomial_le (<<=) m2 m3 ==> monomial_lt (<<=) m1 m3`, REWRITE_TAC[monomial_lt] THEN MESON_TAC[MONOMIAL_LE_TRANS; MONOMIAL_LE_ANTISYM]);; let MONOMIAL_LT_TRANS = prove (`!(<<=) m1 m2 m3. poset(<<=) /\ monomial_lt (<<=) m1 m2 /\ monomial_lt (<<=) m2 m3 ==> monomial_lt (<<=) m1 m3`, MESON_TAC[MONOMIAL_LT_IMP_LE; MONOMIAL_LTE_TRANS]);; let MONOMIAL_LET_MUL2 = prove (`!(<<=) m1 m1' m2 m2':V->num. poset(<<=) /\ monomial_le (<<=) m1 m1' /\ monomial_lt (<<=) m2 m2' ==> monomial_lt (<<=) (monomial_mul m1 m2) (monomial_mul m1' m2')`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MONOMIAL_LET_TRANS THEN EXISTS_TAC `monomial_mul m1' m2:V->num` THEN ASM_REWRITE_TAC[MONOMIAL_LT_LMUL; MONOMIAL_LE_RMUL] THEN RULE_ASSUM_TAC(REWRITE_RULE[monomial_lt; monomial_le]) THEN ASM_REWRITE_TAC[]);; let MONOMIAL_LTE_MUL2 = prove (`!(<<=) m1 m1' m2 m2':V->num. poset(<<=) /\ monomial_lt (<<=) m1 m1' /\ monomial_le (<<=) m2 m2' ==> monomial_lt (<<=) (monomial_mul m1 m2) (monomial_mul m1' m2')`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[MONOMIAL_MUL_SYM] THEN MATCH_MP_TAC MONOMIAL_LET_MUL2 THEN ASM_MESON_TAC[]);; let MONOMIAL_LT_MUL2 = prove (`!(<<=) m1 m1' m2 m2':V->num. poset(<<=) /\ monomial_lt (<<=) m1 m1' /\ monomial_lt (<<=) m2 m2' ==> monomial_lt (<<=) (monomial_mul m1 m2) (monomial_mul m1' m2')`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MONOMIAL_LET_MUL2 THEN ASM_SIMP_TAC[MONOMIAL_LT_IMP_LE]);; let POSET_MONOMIAL_LE = prove (`!(<<=):V->V->bool. poset(<<=) ==> poset(monomial_le(<<=))`, REPEAT STRIP_TAC THEN REWRITE_TAC[poset; FLD_MONOMIAL_LE; MONOMIAL_LE_REFL] THEN REWRITE_TAC[IN_ELIM_THM; MONOMIAL_LE_TRANS] THEN ASM_MESON_TAC[MONOMIAL_LE_ANTISYM]);; let MONOMIAL_LE_VARS_EQ = prove (`!(<<=) v w. poset(<<=) /\ fld(<<=) = (:V) ==> (monomial_le (<<=) (monomial_var v) (monomial_var w) <=> v <<= w)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[MONOMIAL_LE_VARS] THEN ASM_SIMP_TAC[MONOMIAL_LE_POSET; MONOMIAL_VARS_VAR] THEN REWRITE_TAC[FINITE_SING; monomial_var] THEN SIMP_TAC[MESON[ARITH_RULE `0 < 1 /\ ~(1 < 0)`; LT_REFL] `(if p then 1 else 0) < (if q then 1 else 0) <=> ~p /\ q`] THEN REWRITE_TAC[CONJ_ASSOC] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2; IMP_CONJ; FORALL_UNWIND_THM2] THEN RULE_ASSUM_TAC(REWRITE_RULE[poset]) THEN ASM SET_TAC[]);; let MONOMIAL_LT_VARS_EQ = prove (`!(<<=) v w:V. poset(<<=) ==> (monomial_lt (<<=) (monomial_var v) (monomial_var w) <=> v <<= w /\ ~(v = w))`, REPEAT STRIP_TAC THEN REWRITE_TAC[monomial_lt] THEN ASM_CASES_TAC `v:V = w` THEN ASM_REWRITE_TAC[MONOMIAL_VAR_EQ] THEN ASM_SIMP_TAC[MONOMIAL_LE_POSET; MONOMIAL_VARS_VAR; MONOMIAL_VAR; IN_UNIV] THEN SIMP_TAC[monomial_var; MESON[ARITH_RULE `0 < 1 /\ ~(1 < 0)`; LT_REFL] `(if p then 1 else 0) < (if q then 1 else 0) <=> ~p /\ q`] THEN REWRITE_TAC[CONJ_ASSOC] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2; IMP_CONJ; FORALL_UNWIND_THM2] THEN ASM_REWRITE_TAC[]);; let MONOMIAL_LT_TOSET = prove (`!(<<=) m1 m2. toset (<<=) /\ fld (<<=) = (:V) ==> (monomial_lt (<<=) m1 m2 <=> monomial (:V) m1 /\ monomial (:V) m2 /\ ?i. m1 i < m2 i /\ !j. properly (<<=) i j ==> m1 j = m2 j)`, REPEAT STRIP_TAC THEN REWRITE_TAC[monomial_lt] THEN ASM_CASES_TAC `m1:V->num = m2` THEN ASM_REWRITE_TAC[LT_REFL] THEN ASM_SIMP_TAC[MONOMIAL_LE_POSET; TOSET_IMP_POSET; properly; CONJ_ASSOC] THEN REWRITE_TAC[MONOMIAL; GSYM FINITE_UNION] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MP_TAC(ISPECL [`(<<=):V->V->bool`; `{i | ~((m1:V->num) i = m2 i)}`] TOSET_MAX) THEN ASM_REWRITE_TAC[SUBSET_UNIV; IN_ELIM_THM] THEN ANTS_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION; monomial_vars] THEN ARITH_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM FUN_EQ_THM] THEN ASM_REWRITE_TAC[ETA_AX]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:V` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [toset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN REPEAT STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LT_ANTISYM]] THEN MATCH_MP_TAC(ARITH_RULE `~(a:num = b) /\ ~(a < b) ==> b < a`) THEN ASM_METIS_TAC[LT_ANTISYM; LT_TRANS]]; DISCH_THEN(X_CHOOSE_THEN `j:V` STRIP_ASSUME_TAC) THEN X_GEN_TAC `i:V` THEN DISCH_TAC THEN EXISTS_TAC `j:V` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [toset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN ASM_METIS_TAC[LT_ANTISYM; LT_TRANS]]);; let MONOMIAL_LE_TOSET = prove (`!(<<=) m1 m2. toset (<<=) /\ fld (<<=) = (:V) ==> (monomial_le (<<=) m1 m2 <=> monomial (:V) m1 /\ monomial (:V) m2 /\ (m1 = m2 \/ ?i. m1 i < m2 i /\ !j. properly (<<=) i j ==> m1 j = m2 j))`, SIMP_TAC[MONOMIAL_LE_LT; MONOMIAL_LT_TOSET] THEN MESON_TAC[]);; let TOSET_MONOMIAL_LE = prove (`!(<<=). toset (<<=) /\ fld (<<=) = (:V) ==> toset(monomial_le (<<=))`, REPEAT STRIP_TAC THEN REWRITE_TAC[toset; FLD_MONOMIAL_LE] THEN ASM_SIMP_TAC[MONOMIAL_LE_TOSET] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:V->num`; `y:V->num`] THEN TRY(X_GEN_TAC `z:V->num`) THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN ASM_REWRITE_TAC[properly] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [toset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN STRIP_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `i:V` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `j:V` STRIP_ASSUME_TAC) THEN DISJ2_TAC THEN SUBGOAL_THEN `(i:V) <<= (j:V) \/ j <<= i` MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN STRIP_TAC THENL [EXISTS_TAC `j:V`; EXISTS_TAC `i:V`] THEN ASM_MESON_TAC[LT_ANTISYM; LT_TRANS]; DISCH_THEN(X_CHOOSE_THEN `i:V` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `j:V` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(i:V) <<= (j:V) \/ j <<= i` MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[LT_ANTISYM; LT_TRANS]; ASM_CASES_TAC `x:V->num = y` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`(<<=):V->V->bool`; `{i | ~((x:V->num) i = y i)}`] TOSET_MAX) THEN ASM_REWRITE_TAC[SUBSET_UNIV; IN_ELIM_THM] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[toset; IN_UNIV] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[MONOMIAL]) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `monomial_vars(x:V->num) UNION monomial_vars y` THEN ASM_REWRITE_TAC[FINITE_UNION] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION; monomial_vars] THEN ARITH_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM FUN_EQ_THM] THEN ASM_REWRITE_TAC[ETA_AX]]; REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:V` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(m:num = n) ==> m < n \/ n < m`)) THEN MATCH_MP_TAC MONO_OR THEN ASM_MESON_TAC[]]]);; let WF_MONOMIAL_LT = prove (`!(<<):V->V->bool. WF(<<) ==> WF(monomial_lt(<<))`, SUBGOAL_THEN `!(<<):V->V->bool. WF(<<) /\ (\m1 m2. monomial (:V) m1 /\ monomial (:V) m2 /\ !i. m2 i < m1 i ==> ?j. i << j /\ m1 j < m2 j) = monomial_le (<<) ==> WF(monomial_lt(<<))` ASSUME_TAC THENL [ALL_TAC; X_GEN_TAC `(<<):V->V->bool` THEN STRIP_TAC THEN (X_CHOOSE_THEN `(<<<):V->V->bool` MP_TAC o prove_inductive_relations_exist) `(!x y. x << y ==> x <<< y) /\ (!(x:V) y z. x <<< y /\ y <<< z ==> x <<< z)` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o CONJUNCT1)) THEN MATCH_MP_TAC WF_SUBSET THEN EXISTS_TAC `monomial_lt((<<<):V->V->bool)` THEN CONJ_TAC THENL [MATCH_MP_TAC MONOMIAL_LT_MONO THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[WF] THEN X_GEN_TAC `P:V->bool` THEN FIRST_X_ASSUM(MP_TAC o SPEC `\y:V. ?z:V. P z /\ z <<< y` o GEN_REWRITE_RULE I [WF]) THEN SUBGOAL_THEN `!x:V z:V. x <<< z ==> x << z \/ ?y:V. x <<< y /\ y << z` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]; MESON_TAC[]]; FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [WF]) THEN DISCH_TAC] THEN ONCE_REWRITE_TAC[GSYM MONOMIAL_LE_IMPROPERLY] THEN W(MP_TAC o PART_MATCH (lhand o rand) MONOMIAL_LE_POSET o rand o snd) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP WF_ANTISYM) THEN REWRITE_TAC[poset] THEN ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[LT_ANTISYM]]] THEN X_GEN_TAC `(<<):V->V->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "D")) THEN (X_CHOOSE_THEN `w:(V->num)->bool` MP_TAC o prove_inductive_relations_exist) `!m. monomial (:V) m /\ (!m'. monomial_lt (<<) m' m ==> w m') ==> w m` THEN MP_TAC(SET_RULE `!m:V->num. w m <=> m IN w`) THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "R") MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "I") (LABEL_TAC "C" o GSYM)) THEN SUBGOAL_THEN `!m. monomial (:V) m ==> m IN w` ASSUME_TAC THENL [ALL_TAC; REWRITE_TAC[WF_IND] THEN X_GEN_TAC `P:(V->num)->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `!m:V->num. m IN w ==> P m` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE [monomial_lt; monomial_le; GSYM MONOMIAL]) THEN ASM_MESON_TAC[]]] THEN MATCH_MP_TAC MONOMIAL_INDUCT THEN REWRITE_TAC[IN_UNIV] THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[MONOMIAL_1] THEN REWRITE_TAC[monomial_lt] THEN USE_THEN "D" (SUBST1_TAC o SYM) THEN REWRITE_TAC[monomial_1; LT; FUN_EQ_THM] THEN MESON_TAC[LE_1]; GEN_REWRITE_TAC I [SWAP_FORALL_THM]] THEN SUBGOAL_THEN `!P. (!m. m IN w /\ (!m'. monomial_lt (<<) m' m ==> P m') ==> P m) ==> !m:V->num. m IN w ==> P m` (LABEL_TAC "J") THENL [GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN REMOVE_THEN "I" MATCH_MP_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[] `(!x y. Q x y ==> R x y) ==> (!x y. P x y /\ Q x y ==> R x y)`) THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [WF_IND]) THEN X_GEN_TAC `a:V` THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_FORALL_THM; IMP_IMP] THEN DISCH_TAC THEN USE_THEN "J" MATCH_MP_TAC THEN REWRITE_TAC[IMP_IMP] THEN X_GEN_TAC `m0:V->num` THEN STRIP_TAC THEN USE_THEN "R" MATCH_MP_TAC THEN REWRITE_TAC[MONOMIAL_MUL; MONOMIAL_VAR; IN_UNIV] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; X_GEN_TAC `n:V->num` THEN DISCH_TAC] THEN ASM_CASES_TAC `(n:V->num)(a) = m0(a) + 1` THENL [ABBREV_TAC `n0:V->num = \b. if b = a then m0(a) else (n:V->num) b` THEN SUBGOAL_THEN `n = monomial_mul (monomial_var a) (n0:V->num)` SUBST_ALL_TAC THENL [EXPAND_TAC "n0" THEN REWRITE_TAC[FUN_EQ_THM; monomial_mul; monomial_var] THEN X_GEN_TAC `i:V` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN ARITH_TAC; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[MONOMIAL_LT_LMUL]]; ALL_TAC] THEN ABBREV_TAC `n0:V->num = \b. if m0(b) < n(b) /\ b << (a:V) then m0(b) else n b` THEN SUBGOAL_THEN `monomial_le (<<) (n0:V->num) m0` ASSUME_TAC THENL [EXPAND_TAC "n0" THEN USE_THEN "D" (SUBST1_TAC o SYM) THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[monomial_lt]) THEN USE_THEN "D" (SUBST1_TAC o SYM) THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[MONOMIAL_MUL] THEN SIMP_TAC[MONOMIAL_VAR; IN_UNIV] THEN REWRITE_TAC[MONOMIAL; GSYM FINITE_UNION] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[monomial_vars; SUBSET; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `i:V` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LT_REFL] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[monomial_lt]) THEN USE_THEN "D" (SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `i:V` o CONJUNCT2 o CONJUNCT2) THEN ASM_REWRITE_TAC[monomial_mul; monomial_var] THEN ASM_CASES_TAC `i:V = a` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `j:V` THEN ASM_CASES_TAC `j:V = a` THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]] THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN ASM_ARITH_TAC] THEN UNDISCH_THEN `i:V = a` SUBST_ALL_TAC THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `j:V` THEN ASM_CASES_TAC `j:V = a` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ADD_CLAUSES] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `(n0:V->num) IN w` ASSUME_TAC THENL [ASM_CASES_TAC `n0:V->num = m0` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[monomial_lt]; ALL_TAC] THEN SUBGOAL_THEN `?k:V->num. monomial {b | b << (a:V)} k /\ n = monomial_mul k n0` STRIP_ASSUME_TAC THENL [EXISTS_TAC `monomial_div (n:V->num) n0` THEN GEN_REWRITE_TAC RAND_CONV [GSYM EQ_SYM_EQ] THEN REWRITE_TAC[MONOMIAL_DIV_RMUL_EQ] THEN EXPAND_TAC "n0" THEN REWRITE_TAC[monomial; monomial_div; monomial_divides] THEN CONJ_TAC THENL [ALL_TAC; ARITH_TAC] THEN REWRITE_TAC[monomial_vars; SUBSET; IN_ELIM_THM] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monomial_lt]) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN USE_THEN "D" (SUBST1_TAC o SYM) THEN REWRITE_TAC[MONOMIAL] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; monomial_vars; IN_ELIM_THM] THEN ARITH_TAC; GEN_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN SIMP_TAC[] THEN ARITH_TAC]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `monomial {b:V | b << (a:V)} k` THEN ASM_REWRITE_TAC[] THEN SPEC_TAC(`k:V->num`,`k:V->num`) THEN MATCH_MP_TAC MONOMIAL_INDUCT THEN REWRITE_TAC[IN_ELIM_THM; MONOMIAL_MUL_LID; GSYM MONOMIAL_MUL_ASSOC] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]);; let WOSET_MONOMIAL_LE = prove (`!(<<=). woset(<<=) /\ fld(<<=) = (:V) ==> woset(monomial_le(<<=))`, REPEAT STRIP_TAC THEN REWRITE_TAC[WOSET_WF] THEN CONJ_TAC THENL [MP_TAC(SPEC `(<<=):V->V->bool` TOSET_MONOMIAL_LE) THEN ASM_SIMP_TAC[WOSET_IMP_TOSET] THEN SIMP_TAC[toset]; REWRITE_TAC[PROPERLY_MONOMIAL_LE] THEN ONCE_REWRITE_TAC[GSYM MONOMIAL_LT_PROPERLY] THEN MATCH_MP_TAC WF_MONOMIAL_LT THEN ASM_MESON_TAC[WOSET_WF]]);; (* ------------------------------------------------------------------------- *) (* Cardinalities of sets of monomials, polynomials and of power series. *) (* ------------------------------------------------------------------------- *) let CARD_EQ_MONOMIALS_FINITE = prove (`!s:V->bool. FINITE s /\ ~(s = {}) ==> {m | monomial s m} =_c (:num)`, REPEAT STRIP_TAC THEN REWRITE_TAC[monomial; monomial_vars] THEN ASM_SIMP_TAC[MESON[FINITE_SUBSET] `FINITE s ==> (FINITE t /\ t SUBSET s <=> t SUBSET s)`] THEN ONCE_REWRITE_TAC[SET_RULE `{x | ~(f x = k x)} SUBSET s <=> IMAGE f s SUBSET UNIV /\ {x | ~(f x = k x)} SUBSET s`] THEN W(MP_TAC o PART_MATCH lhand CARD_EQ_FUNSPACE o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN MATCH_MP_TAC CARD_EQ_EXP_INFINITE_FINITE THEN ASM_REWRITE_TAC[num_INFINITE]);; let CARD_EQ_MONOMIALS_INFINITE = prove (`!s:V->bool. INFINITE s ==> {m | monomial s m} =_c s`, REPEAT STRIP_TAC THEN REWRITE_TAC[monomial; monomial_vars] THEN ONCE_REWRITE_TAC[SET_RULE `{m | FINITE {i | ~(m i = 0)} /\ {i | ~(m i = 0)} SUBSET s} = {m | IMAGE m s SUBSET (:num) /\ {i | ~(m i = 0)} SUBSET s /\ FINITE {i | ~(m i = 0)}}`] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_EQ_RESTRICTED_FUNSPACE_INFINITE o lhand o snd) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[SUBSET_UNIV] THEN MP_TAC(ARITH_RULE `~(1 = 0)`) THEN ASM SET_TAC[]; MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS)] THEN W(MP_TAC o PART_MATCH lhand CARD_MUL_SYM o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN MATCH_MP_TAC CARD_MUL_ABSORB THEN ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE; UNIV_NOT_EMPTY]);; let CARD_EQ_MONOMIALS_COUNTABLE = prove (`!s:V->bool. COUNTABLE s /\ ~(s = {}) ==> {m | monomial s m} =_c (:num)`, REWRITE_TAC[COUNTABLE_CASES] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARD_EQ_MONOMIALS_FINITE] THEN TRANS_TAC CARD_EQ_TRANS `s:V->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CARD_EQ_MONOMIALS_INFINITE THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_INFINITE)) THEN REWRITE_TAC[num_INFINITE]);; let CARD_EQ_POWSER_RING_COUNTABLE = prove (`!(r:A ring) (s:V->bool). COUNTABLE s /\ ~(s = {}) ==> ring_carrier(powser_ring r s) =_c (ring_carrier r) ^_c (:num)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{m | monomial (s:V->bool) m}`; `ring_carrier r:A->bool`; `(\m. ring_0 r):(V->num)->A`] CARD_EQ_FUNSPACE) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC CARD_EQ_CONG THEN ASM_SIMP_TAC[CARD_EXP_CONG; CARD_EQ_REFL; CARD_EQ_MONOMIALS_COUNTABLE] THEN MATCH_MP_TAC CARD_EQ_REFL_IMP THEN REWRITE_TAC[RING_CARRIER_POWSER_RING] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN SET_TAC[]);; let CARD_EQ_POWSER_RING_FINITE = prove (`!(r:A ring) (s:V->bool). FINITE s /\ ~(s = {}) ==> ring_carrier(powser_ring r s) =_c (ring_carrier r) ^_c (:num)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_EQ_POWSER_RING_COUNTABLE THEN ASM_SIMP_TAC[FINITE_IMP_COUNTABLE]);; let CARD_EQ_POWSER_RING_INFINITE = prove (`!(r:A ring) (s:V->bool). INFINITE s ==> ring_carrier(powser_ring r s) =_c (ring_carrier r) ^_c s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{m | monomial (s:V->bool) m}`; `ring_carrier r:A->bool`; `(\m. ring_0 r):(V->num)->A`] CARD_EQ_FUNSPACE) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC CARD_EQ_CONG THEN ASM_SIMP_TAC[CARD_EXP_CONG; CARD_EQ_REFL; CARD_EQ_MONOMIALS_INFINITE] THEN MATCH_MP_TAC CARD_EQ_REFL_IMP THEN REWRITE_TAC[RING_CARRIER_POWSER_RING] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN SET_TAC[]);; let CARD_EQ_POLY_RING_COUNTABLE = prove (`!(r:A ring) (s:V->bool). ~trivial_ring r /\ COUNTABLE s /\ ~(s = {}) ==> ring_carrier(poly_ring r s) =_c (ring_carrier r) *_c (:num)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{m | monomial (s:V->bool) m}`; `ring_carrier r:A->bool`; `(\m. ring_0 r):(V->num)->A`] CARD_EQ_RESTRICTED_FUNSPACE_INFINITE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[GSYM TRIVIAL_RING_ALT] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RING_0] THEN MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ] CARD_EQ_INFINITE) num_INFINITE) THEN MATCH_MP_TAC CARD_EQ_MONOMIALS_COUNTABLE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC CARD_EQ_CONG] THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_REFL_IMP THEN REWRITE_TAC[RING_CARRIER_POLY_RING] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN SET_TAC[]; W(MP_TAC o PART_MATCH lhand CARD_MUL_SYM o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN ASM_SIMP_TAC[CARD_MUL_CONG; CARD_EQ_REFL; CARD_EQ_MONOMIALS_COUNTABLE]]);; let CARD_EQ_POLY_RING_FINITE = prove (`!(r:A ring) (s:V->bool). ~trivial_ring r /\ FINITE s /\ ~(s = {}) ==> ring_carrier(poly_ring r s) =_c (ring_carrier r) *_c (:num)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_EQ_POLY_RING_COUNTABLE THEN ASM_SIMP_TAC[FINITE_IMP_COUNTABLE]);; let CARD_EQ_POLY_RING_INFINITE = prove (`!(r:A ring) (s:V->bool). ~trivial_ring r /\ INFINITE s ==> ring_carrier(poly_ring r s) =_c (ring_carrier r) *_c s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{m | monomial (s:V->bool) m}`; `ring_carrier r:A->bool`; `(\m. ring_0 r):(V->num)->A`] CARD_EQ_RESTRICTED_FUNSPACE_INFINITE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[GSYM TRIVIAL_RING_ALT] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RING_0] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CARD_EQ_INFINITE)) THEN MATCH_MP_TAC CARD_EQ_MONOMIALS_INFINITE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC CARD_EQ_CONG] THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_REFL_IMP THEN REWRITE_TAC[RING_CARRIER_POLY_RING] THEN MP_TAC(ISPEC `r:A ring` RING_0) THEN SET_TAC[]; W(MP_TAC o PART_MATCH lhand CARD_MUL_SYM o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN ASM_SIMP_TAC[CARD_MUL_CONG; CARD_EQ_REFL; CARD_EQ_MONOMIALS_INFINITE]]);; (* ------------------------------------------------------------------------- *) (* Zerodivisors and units in polynomial and power series rings. *) (* ------------------------------------------------------------------------- *) let INTEGRAL_DOMAIN_POWSER_RING = prove (`!(r:A ring) (s:V->bool). integral_domain(powser_ring r s) <=> integral_domain r`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] INTEGRAL_DOMAIN_MONOMORPHIC_PREIMAGE) THEN MESON_TAC[RING_MONOMORPHISM_POWSER_CONST]; REWRITE_TAC[integral_domain; GSYM TRIVIAL_RING_10]] THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[TRIVIAL_POWSER_RING] THEN REWRITE_TAC[RING_CARRIER_POWSER_RING] THEN REWRITE_TAC[POWSER_RING] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`p:(V->num)->A`; `q:(V->num)->A`] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM; FUN_EQ_THM; NOT_FORALL_THM; poly_0] THEN REWRITE_TAC[POLY_CONST_0; poly_mul] THEN DISCH_TAC THEN MP_TAC(ISPEC `(:V)` WO) THEN DISCH_THEN(X_CHOOSE_TAC `l:V->V->bool`) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP WOSET_MONOMIAL_LE) THEN FIRST_ASSUM(MP_TAC o CONJUNCT2 o GEN_REWRITE_RULE I [WOSET]) THEN REWRITE_TAC[FLD_MONOMIAL_LE] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `{m | ~((q:(V->num)->A) m = ring_0 r)}` th) THEN MP_TAC(SPEC `{m | ~((p:(V->num)->A) m = ring_0 r)}` th)) THEN ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; MONOMIAL; IN_ELIM_THM; SUBSET] THEN ANTS_TAC THENL [ASM_MESON_TAC[monomial]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `mp:V->num` STRIP_ASSUME_TAC) THEN ANTS_TAC THENL [ASM_MESON_TAC[monomial]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `mq:V->num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `monomial_mul mp mq:V->num` THEN MATCH_MP_TAC(MESON[] `!m. ~(ring_sum r {m} f = z) /\ ring_sum r s f = ring_sum r {m} f ==> ~(ring_sum r s f = z)`) THEN EXISTS_TAC `(mp:V->num),(mq:V->num)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[RING_SUM_SING; RING_MUL] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC RING_SUM_SUPERSET THEN REWRITE_TAC[SING_SUBSET; FORALL_IN_GSPEC; IMP_CONJ] THEN REWRITE_TAC[IN_ELIM_PAIR_THM; IN_SING] THEN MAP_EVERY X_GEN_TAC [`np:V->num`; `nq:V->num`] THEN DISCH_TAC THEN REWRITE_TAC[PAIR_EQ; DE_MORGAN_THM] THEN ASM_CASES_TAC `(p:(V->num)->A) np = ring_0 r` THENL [ASM_SIMP_TAC[RING_MUL_LZERO]; ALL_TAC] THEN ASM_CASES_TAC `(q:(V->num)->A) nq = ring_0 r` THENL [ASM_SIMP_TAC[RING_MUL_RZERO]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[MONOMIAL_LT_REFL] `m' = m ==> !l. ~monomial_lt l m m'`)) THEN DISCH_THEN(MP_TAC o SPEC `l:V->V->bool`) THEN REWRITE_TAC[] THENL [MATCH_MP_TAC MONOMIAL_LTE_MUL2; MATCH_MP_TAC MONOMIAL_LET_MUL2] THEN ASM_SIMP_TAC[monomial_lt; WOSET_IMP_POSET]);; let INTEGRAL_DOMAIN_POLY_RING = prove (`!(r:A ring) (s:V->bool). integral_domain(poly_ring r s) <=> integral_domain r`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; GEN_REWRITE_TAC LAND_CONV [GSYM INTEGRAL_DOMAIN_POWSER_RING]] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] INTEGRAL_DOMAIN_MONOMORPHIC_PREIMAGE) THEN MESON_TAC[RING_MONOMORPHISM_POLY_CONST; RING_MONOMORPHISM_POLY_POWSER]);; let RING_UNIT_POWSER_RING = prove (`!(r:A ring) (s:V->bool) p. ring_unit (powser_ring r s) p <=> p IN ring_carrier(powser_ring r s) /\ ring_unit r (p monomial_1)`, REPEAT GEN_TAC THEN REWRITE_TAC[ring_unit] THEN EQ_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [RING_CARRIER_POWSER_RING]) THEN SIMP_TAC[IN_ELIM_THM]; FIRST_X_ASSUM(X_CHOOSE_THEN `q:(V->num)->A` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[POWSER_RING] THEN DISCH_TAC THEN EXISTS_TAC `(q:(V->num)->A) monomial_1` THEN RULE_ASSUM_TAC(REWRITE_RULE[RING_CARRIER_POWSER_RING; IN_ELIM_THM]) THEN FIRST_X_ASSUM(MP_TAC o C AP_THM `monomial_1:V->num`) THEN ASM_REWRITE_TAC[poly_mul; poly_1; MONOMIAL_MUL_EQ_1; poly_const] THEN REWRITE_TAC[SET_RULE `{f x y | x = a /\ y = b} = {f a b}`] THEN ASM_SIMP_TAC[RING_SUM_SING; RING_MUL]]; ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN MP_TAC(ISPECL [`r:A ring`; `s:V->bool`] POWSER_RING_EQ) THEN ASM_SIMP_TAC[POWSER_RING_EQ; RING_MUL; RING_1] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[RING_CARRIER_POWSER_RING; CONJUNCT2 POWSER_RING] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [RING_CARRIER_POWSER_RING]) THEN REWRITE_TAC[IN_ELIM_THM; poly_mul; poly_1; poly_const]] THEN SUBGOAL_THEN `!(q:(V->num)->A) m. monomial s m /\ (!m. p m IN ring_carrier r) /\ (!m. q m IN ring_carrier r) ==> ring_sum r {m1,m2 | monomial_mul m1 m2 = m} (\(m1,m2). ring_mul r (p m1) (q m2)) = ring_add r (ring_mul r (p monomial_1) (q m)) (ring_sum r ({m1,m2 | monomial_mul m1 m2 = m} DELETE (monomial_1,m)) (\(m1,m2). ring_mul r (p m1) (q m2)))` MP_TAC THENL [SIMP_TAC[RING_SUM_DELETE; RING_MUL; MONOMIAL_MUL_LID; MONOMIAL_FINITE_DIVISORPAIRS; monomial; IN_ELIM_PAIR_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(RING_RULE `x IN ring_carrier r /\ y IN ring_carrier r ==> x = ring_add r y (ring_sub r x y)`) THEN ASM_SIMP_TAC[RING_SUM; RING_MUL]; SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN STRIP_TAC] THEN REWRITE_TAC[NOT_IMP; AND_FORALL_THM] THEN MP_TAC(ISPEC `(:V)` WO) THEN DISCH_THEN(X_CHOOSE_TAC `l:V->V->bool`) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP WOSET_MONOMIAL_LE) THEN FIRST_ASSUM(MP_TAC o CONJUNCT2 o GEN_REWRITE_RULE I [WOSET_WF]) THEN REWRITE_TAC[PROPERLY_MONOMIAL_LE] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC_EXISTS) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p ==> q <=> p ==> r)`) THEN REWRITE_TAC[monomial] THEN STRIP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC RING_SUM_EQ THEN REWRITE_TAC[IN_DELETE; IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`m1:V->num`; `m2:V->num`] THEN ASM_CASES_TAC `m1:V->num = monomial_1` THEN ASM_SIMP_TAC[PAIR_EQ; MONOMIAL_MUL_LID] THEN DISCH_TAC THEN AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN GEN_REWRITE_TAC LAND_CONV [GSYM MONOMIAL_MUL_LID] THEN REWRITE_TAC[MONOMIAL_LT_RMUL] THEN ASM_REWRITE_TAC[monomial_lt; MONOMIAL_GE_1] THEN ASM_MESON_TAC[MONOMIAL_MUL; MONOMIAL]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`q:(V->num)->A`; `m:V->num`] THEN REWRITE_TAC[TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN DISCH_THEN(CONJUNCTS_THEN STRIP_ASSUME_TAC o CONJUNCT1) THEN ASM_CASES_TAC `monomial s (m:V->num)` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; MESON_TAC[RING_0]] THEN SUBGOAL_THEN `!w x z:A. w IN ring_carrier r /\ x IN ring_carrier r /\ z IN ring_carrier r /\ (!z. z IN ring_carrier r ==> ?y. y IN ring_carrier r /\ ring_mul r x y = z) ==> ?y. y IN ring_carrier r /\ ring_add r (ring_mul r x y) z = w` MATCH_MP_TAC THENL [MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `c:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `ring_sub r a c:A`) THEN ASM_SIMP_TAC[RING_SUB] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN RING_TAC; ASM_REWRITE_TAC[RING_SUM]] THEN CONJ_TAC THENL [MESON_TAC[RING_0; RING_1]; ALL_TAC] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_mul r b a:A` THEN ASM_SIMP_TAC[RING_MUL; RING_MUL_ASSOC; RING_MUL_LID]);; (* ------------------------------------------------------------------------- *) (* Decision procedure for integral domains, again proceeding indirectly *) (* via a totalized form (namely the ring of polynomials). Stylistically *) (* very like RING_RULE, but may also generate side-conditions of the form *) (* "~(ring_char r divides n)" for particular numerals n. As with RING_RULE *) (* such side-conditions get absorbed if they are there clearly in the *) (* antecedent, up to shallow preprocessing. *) (* ------------------------------------------------------------------------- *) let INTEGRAL_DOMAIN_RULE = let INTEGRAL_DOMAIN_TOTALIZATION = prove (`!r:A ring. integral_domain r ==> ?r' f. integral_domain r' /\ ring_carrier r' = (:num#A) /\ ring_monomorphism(r,r') f`, REPEAT STRIP_TAC THEN MP_TAC(snd(EQ_IMP_RULE(ISPECL [`poly_ring (r:A ring) (:num#A)`; `(:num#A)`] ISOMORPHIC_COPY_OF_RING))) THEN ANTS_TAC THENL [MP_TAC(ISPECL [`r:A ring`; `(:num#A)`] CARD_EQ_POLY_RING_INFINITE) THEN ASM_REWRITE_TAC[INFINITE_CROSS_UNIV; num_INFINITE] THEN ASM_SIMP_TAC[INTEGRAL_DOMAIN_IMP_NONTRIVIAL_RING] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN MATCH_MP_TAC CARD_MUL_ABSORB THEN REWRITE_TAC[INFINITE_CROSS_UNIV; num_INFINITE; RING_CARRIER_NONEMPTY] THEN TRANS_TAC CARD_LE_TRANS `(:A)` THEN SIMP_TAC[CARD_LE_SUBSET; SUBSET_UNIV] THEN REWRITE_TAC[GSYM CROSS_UNIV; CROSS; GSYM mul_c] THEN TRANS_TAC CARD_LE_TRANS `{0} *_c (:A)` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_MUL_LID]; MATCH_MP_TAC CARD_LE_MUL THEN REWRITE_TAC[CARD_LE_REFL] THEN REWRITE_TAC[CARD_SING_LE; UNIV_NOT_EMPTY]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r':(num#A)ring` THEN STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isomorphic_ring]) THEN DISCH_THEN(X_CHOOSE_TAC `f:((num#A->num)->A)->num#A`) THEN EXISTS_TAC `(f:((num#A->num)->A)->num#A) o poly_const (r:A ring)` THEN CONJ_TAC THENL [SUBGOAL_THEN `integral_domain(poly_ring (r:A ring) (:num#A))` MP_TAC THENL [ASM_REWRITE_TAC[INTEGRAL_DOMAIN_POLY_RING]; MATCH_MP_TAC EQ_IMP] THEN MATCH_MP_TAC ISOMORPHIC_RING_INTEGRAL_DOMAINNESS THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC RING_MONOMORPHISM_COMPOSE THEN EXISTS_TAC `poly_ring (r:A ring) (:num#A)` THEN REWRITE_TAC[RING_MONOMORPHISM_POLY_CONST] THEN ASM_SIMP_TAC[RING_ISOMORPHISM_IMP_MONOMORPHISM]]) in let rec ringtypes tm = match tm with Comb(Const("!",_),Abs(_,t)) | Comb(Const("?",_),Abs(_,t)) -> ringtypes t | Comb(Const("~",_),t) -> ringtypes t | Comb(Comb(Const("/\\",_),s),t) -> union (ringtypes s) (ringtypes t) | Comb(Comb(Const("\\/",_),s),t) -> union (ringtypes s) (ringtypes t) | Comb(Comb(Const("==>",_),s),t) -> union (ringtypes s) (ringtypes t) | Comb(Comb(Const("=",_),s),t) -> let ty = type_of t in if ty = bool_ty then union (ringtypes s) (ringtypes t) else [ty] | Comb(Comb(Const("IN",_),t),Comb(Const("ring_carrier",_),r)) -> [type_of t] | _ -> [] in let imp_imp_rule = GEN_REWRITE_RULE I [IMP_IMP] and left_exists_rule = GEN_REWRITE_RULE I [LEFT_FORALL_IMP_THM] and disch_disj_rule = GEN_REWRITE_RULE I [TAUT `p ==> q <=> ~p \/ q`] and disch_ndisj_rule = GEN_REWRITE_RULE I [TAUT `~p ==> q <=> p \/ q`] in let INTEGRAL_DOMAIN_WORD tm = let dty = match ringtypes tm with [ty] -> ty | _ -> failwith "INTEGRAL_DOMAIN_RULE: can't deduce which ring" in let rty = mk_type("ring",[dty]) in let rtm = match filter ((=) rty o type_of) (frees tm) with [t] -> t | _ -> failwith "INTEGRAL_DOMAIN_RULE: can't deduce which ring" in let tvs = type_vars_in_term tm in let dty' = mk_vartype("Z"^itlist ((^) o dest_vartype) tvs "") in let rty' = mk_type("ring",[dty']) in let avvers = variables tm in let rtm' = variant avvers (mk_var("r'",rty')) and htm = variant avvers (mk_var("h",mk_fun_ty dty dty')) in let hasm = list_mk_icomb "ring_monomorphism" [mk_pair(rtm,rtm'); htm] in let hth = ASSUME hasm in let th = RING_MONOMORPHIC_IMAGE_RULE hth tm in let utm = rand(concl th) in let hvs = find_terms (fun t -> is_comb t && rator t = htm && is_var(rand t)) utm in let gvs = map (fun t -> mk_var(fst(dest_var(rand t)),type_of t)) hvs in let vtm = subst (zip gvs hvs) utm in let arty = mk_type("ring",[aty]) in let atm = vsubst [mk_var("r",arty),mk_var(fst(dest_var rtm'),arty)] (inst[aty,dty'] vtm) in let th1 = RING_INTEGRAL_DOMAIN_UNIVERSAL atm in let th2 = INST_TYPE [dty',aty] th1 in let th3 = INST [rtm',mk_var("r",rty')] th2 in let th4 = INST (zip hvs gvs) th3 in let th5 = EQ_MP (SYM th) th4 in let xtms = subtract (hyp th5) [hasm] in let th6 = funpow (length xtms) UNDISCH (SUBS [SYM(MATCH_MP RING_CHAR_MONOMORPHIC_IMAGE hth)] (itlist DISCH xtms th5)) in let ueq = mk_eq(list_mk_icomb "ring_carrier" [rtm'], mk_const("UNIV",[dty',aty])) and idt = list_mk_icomb "integral_domain" [rtm'] in let th7 = imp_imp_rule (DISCH idt (imp_imp_rule (DISCH ueq (DISCH hasm th6)))) in let th8 = left_exists_rule(GEN htm th7) in let th9 = left_exists_rule(GEN rtm' th8) in let th10 = INST_TYPE [mk_type("prod",[mk_type("num",[]);dty]),dty'] th9 in let th11 = PART_MATCH rand INTEGRAL_DOMAIN_TOTALIZATION (lhand(concl th10)) in MP th10 (UNDISCH th11) in let INTEGRAL_DOMAIN_CORE = let pth = TAUT `p ==> q <=> (p \/ q <=> q)` and ptm = `p:bool` and qtm = `q:bool` in fun tm -> let negdjs,posdjs = partition is_neg (disjuncts tm) in let hyper,nsides = partition (is_eq o rand) negdjs and concs,psides = partition is_eq posdjs in let th0 = INTEGRAL_DOMAIN_WORD (list_mk_disj(hyper @ concs)) in let th1 = itlist (fun nst th -> disch_disj_rule (DISCH (rand nst) th)) nsides th0 in let th2 = itlist (fun pst th -> disch_ndisj_rule (DISCH pst th)) (map mk_neg psides) th1 in let th3 = INST[concl th2,ptm; tm,qtm] pth in MP (EQ_MP (SYM th3) (DISJ_ACI_RULE(rand(concl th3)))) th2 in let init_conv = TOP_DEPTH_CONV BETA_CONV THENC PRESIMP_CONV THENC CONDS_ELIM_CONV THENC NNFC_CONV THENC CNF_CONV THENC SKOLEM_CONV THENC PRENEX_CONV THENC GEN_REWRITE_CONV REDEPTH_CONV [RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM DISJ_ASSOC] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM CONJ_ASSOC] in let INTEGRAL_DOMAIN_RULE_BASIC tm = let avs,bod = strip_forall tm in let th1 = init_conv bod in let tm' = rand(concl th1) in let avs',bod' = strip_forall tm' in let th2 = end_itlist CONJ (map INTEGRAL_DOMAIN_CORE (conjuncts bod')) in let th3 = EQ_MP (SYM th1) (GENL avs' th2) in let imps = hyp th3 in let th4 = if imps = [] then th3 else DISCH_ALL (itlist PROVE_HYP (CONJUNCTS(ASSUME(list_mk_conj imps))) th3) in GENL avs th4 in fun tm -> let tvs = type_vars_in_term tm in let ty = mk_vartype("Y"^itlist ((^) o dest_vartype) tvs "") in let tm' = inst[ty,aty] tm in INST_TYPE [aty,ty] (INTEGRAL_DOMAIN_RULE_BASIC tm');; (* ------------------------------------------------------------------------- *) (* An elimination-based tactic for fields analogous to REAL_FIELD etc. *) (* When this succeeds it may in general leave subgoals about characteristic. *) (* ------------------------------------------------------------------------- *) let FIELD_TAC = let carrier_tac = W(fun (asl,w) -> let vs = filter ((=) `:A` o type_of) (union (frees w) (freesl (map (concl o snd) asl))) in let cjs = map (fun x -> vsubst[x,`x:A`] `(x:A) IN ring_carrier f`) vs in if cjs = [] then ALL_TAC else SUBGOAL_THEN (list_mk_conj cjs) STRIP_ASSUME_TAC THENL [REPEAT CONJ_TAC THEN RING_CARRIER_TAC; ALL_TAC]) and rabinify_tac = let rabinowitsch_lemma = prove (`!x y:A. ~(x = y) ==> !r. field r /\ x IN ring_carrier r /\ y IN ring_carrier r ==> ?z. z IN ring_carrier r /\ ring_mul r (ring_sub r x y) z = ring_1 r`, REPEAT STRIP_TAC THEN EXISTS_TAC `ring_inv r (ring_sub r x y):A` THEN ASM_SIMP_TAC[FIELD_MUL_RINV; RING_SUB_EQ_0; RING_INV; RING_SUB]) in REPEAT (FIRST_X_ASSUM(MP_TAC o ISPEC `f:A ring` o MATCH_MP rabinowitsch_lemma) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN RING_CARRIER_TAC; STRIP_TAC]) and invelim_tac = let is_fieldinv = can (term_match [] `ring_inv f (x:A)`) and pth = prove (`!f t:A. field f ==> t IN ring_carrier f ==> ring_inv f t = ring_0 f /\ t = ring_0 f \/ (?z. z IN ring_carrier f /\ ring_inv f t = z /\ ring_mul f t z = ring_1 f)`, ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `t:A = ring_0 f` THEN ASM_SIMP_TAC[RING_INV_0; UNWIND_THM1; FIELD_MUL_RINV; RING_INV]) in W(fun (asl,w) -> let ctms = sort free_in (find_terms is_fieldinv w) in if ctms = [] then failwith "invelim_tac" else FIRST_ASSUM(MP_TAC o ISPEC (rand(hd ctms)) o MATCH_MP pth) THEN ANTS_TAC THENL [RING_CARRIER_TAC; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 (CONJUNCTS_THEN2 SUBST1_TAC MP_TAC) (CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC (CONJUNCTS_THEN2 SUBST1_TAC MP_TAC))))) in REWRITE_TAC[DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN TRY(MATCH_MP_TAC(MESON[] `(~(a = b) ==> F) ==> a = b`) THEN DISCH_TAC) THEN TRY(FIRST_ASSUM CONTR_TAC) THEN carrier_tac THEN ASM_REWRITE_TAC[] THEN rabinify_tac THEN REPEAT(FIRST_X_ASSUM(MP_TAC o check (can (find_term is_eq) o concl))) THEN REWRITE_TAC[ring_div] THEN REPEAT invelim_tac THEN W(fun (asl,w) -> let th = INTEGRAL_DOMAIN_RULE w in MATCH_ACCEPT_TAC th ORELSE MATCH_MP_TAC th) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN] THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC;; let FIELD_INV_EQ_0 = prove (`!f x:A. field f /\ x IN ring_carrier f ==> (ring_inv f x = ring_0 f <=> x = ring_0 f)`, FIELD_TAC);; let FIELD_DIV_EQ_0 = prove (`!f x y:A. field f /\ x IN ring_carrier f /\ y IN ring_carrier f ==> (ring_div f x y = ring_0 f <=> x = ring_0 f \/ y = ring_0 f)`, FIELD_TAC);; (* ------------------------------------------------------------------------- *) (* A more direct tactic to pull division terms up, but not using any *) (* intelligence on the side-conditions, just finding them in the *) (* assumptions modulo straightforward backchaining. *) (* ------------------------------------------------------------------------- *) let RING_PULL_DIV = prove (`!f:A ring. field f ==> (!x y n. x IN ring_carrier f /\ y IN ring_carrier f ==> ring_pow f (ring_div f x y) n = ring_div f (ring_pow f x n) (ring_pow f y n)) /\ (!x1 y1 x2 y2. x1 IN ring_carrier f /\ x2 IN ring_carrier f /\ y1 IN ring_carrier f /\ y2 IN ring_carrier f ==> ring_div f (ring_div f x1 y1) (ring_div f x2 y2) = ring_div f (ring_mul f x1 y2) (ring_mul f x2 y1)) /\ (!x1 x2 y. x1 IN ring_carrier f /\ x2 IN ring_carrier f /\ y IN ring_carrier f /\ ~(y = ring_0 f) ==> ring_add f (ring_div f x1 y) (ring_div f x2 y) = ring_div f (ring_add f x1 x2) y /\ ring_sub f (ring_div f x1 y) (ring_div f x2 y) = ring_div f (ring_sub f x1 x2) y /\ (ring_div f x1 y = ring_div f x2 y <=> x1 = x2) /\ ring_add f (ring_div f x1 y) x2 = ring_div f (ring_add f x1 (ring_mul f x2 y)) y /\ ring_add f x1 (ring_div f x2 y) = ring_div f (ring_add f (ring_mul f x1 y) x2) y /\ ring_sub f (ring_div f x1 y) x2 = ring_div f (ring_sub f x1 (ring_mul f x2 y)) y /\ ring_sub f x1 (ring_div f x2 y) = ring_div f (ring_sub f (ring_mul f x1 y) x2) y /\ ring_mul f (ring_div f x1 y) x2 = ring_div f (ring_mul f x1 x2) y /\ ring_mul f x1 (ring_div f x2 y) = ring_div f (ring_mul f x1 x2) y /\ (ring_div f x1 y = x2 <=> x1 = ring_mul f x2 y) /\ (x1 = ring_div f x2 y <=> ring_mul f x1 y = x2)) /\ (!x y. x IN ring_carrier f /\ y IN ring_carrier f /\ ~(x = ring_0 f) /\ ~(y = ring_0 f) ==> ~(ring_mul f x y = ring_0 f)) /\ (!x n. x IN ring_carrier f /\ ~(x = ring_0 f) ==> ~(ring_pow f x n = ring_0 f))`, SIMP_TAC[FIELD_POW_EQ_0] THEN GEN_TAC THEN DISCH_TAC THEN CONJ_TAC THENL [SIMP_TAC[ring_div; RING_MUL_POW; RING_POW_INV; RING_INV]; FIELD_TAC]);; let RING_PULL_DIV_CONV = let divthms,sidethms = chop_list 13 (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM; IMP_IMP; GSYM CONJ_ASSOC; RIGHT_IMP_FORALL_THM; TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] RING_PULL_DIV)) in let simpers = map (PART_MATCH (lhand o rand)) divthms and siders = map (PART_MATCH rand) sidethms in fun asm -> let rec sideprove t = try find (fun a -> concl a = t) asm with Failure _ -> try RING_CARRIER_RULE asm t with Failure _ -> tryfind (fun sfn -> let th = sfn t in let scs = conjuncts(fst(dest_imp(concl th))) in MP th (end_itlist CONJ (map sideprove scs))) siders in fun tm -> tryfind (fun sfn -> let th = sfn tm in let scs = conjuncts(fst(dest_imp(concl th))) in MP th (end_itlist CONJ (map sideprove scs))) simpers;; let RING_PULL_DIV_TAC (asl,w) = CONV_TAC (REDEPTH_CONV(RING_PULL_DIV_CONV (map snd asl))) (asl,w);;