(* ========================================================================= *) (* Specific formulas for evaluating Jacobian coordinate point operations. *) (* ========================================================================= *) needs "EC/jacobian.ml";; (* ------------------------------------------------------------------------- *) (* Point doubling in Jacobian coordinates. *) (* *) (* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3 ***) let ja_dbl_2007_bl = new_definition `ja_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) = let xx = ring_pow f x1 2 in let yy = ring_pow f y1 2 in let yyyy = ring_pow f yy 2 in let zz = ring_pow f z1 2 in let t0 = ring_add f x1 yy in let t1 = ring_pow f t0 2 in let t2 = ring_sub f t1 xx in let t3 = ring_sub f t2 yyyy in let s = ring_mul f (ring_of_num f 2) t3 in let t4 = ring_pow f zz 2 in let t5 = ring_mul f a t4 in let t6 = ring_mul f (ring_of_num f 3) xx in let m = ring_add f t6 t5 in let t7 = ring_pow f m 2 in let t8 = ring_mul f (ring_of_num f 2) s in let t = ring_sub f t7 t8 in let x3 = t in let t9 = ring_sub f s t in let t10 = ring_mul f (ring_of_num f 8) yyyy in let t11 = ring_mul f m t9 in let y3 = ring_sub f t11 t10 in let t12 = ring_add f y1 z1 in let t13 = ring_pow f t12 2 in let t14 = ring_sub f t13 yy in let z3 = ring_sub f t14 zz in (x3,y3,z3)`;; let JA_DBL_2007_BL = prove (`!f a b x1 y1 z1:A. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) ==> jacobian_eq f (ja_dbl_2007_bl (f,a,b) (x1,y1,z1)) (jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN REWRITE_TAC[ja_dbl_2007_bl; jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let JA_DBL_2007_BL' = prove (`!f a b x1 y1 z1:A. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) /\ (z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b)) ==> ja_dbl_2007_bl (f,a,b) (x1,y1,z1) = jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ; jacobian_neg; jacobian_0; ja_dbl_2007_bl] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Point doubling in Jacobian coordinates assuming a = -3. *) (* *) (* Source: Bernstein [2001] "A software implementation of NIST P-224". *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-3/doubling/dbl-2001-b.op3 ***) let j3_dbl_2001_b = new_definition `j3_dbl_2001_b (f:A ring,a:A,b:A) (x1,y1,z1) = let delta = ring_pow f z1 2 in let gamma = ring_pow f y1 2 in let beta = ring_mul f x1 gamma in let t0 = ring_sub f x1 delta in let t1 = ring_add f x1 delta in let t2 = ring_mul f t0 t1 in let alpha = ring_mul f (ring_of_num f 3) t2 in let t3 = ring_pow f alpha 2 in let t4 = ring_mul f (ring_of_num f 8) beta in let x3 = ring_sub f t3 t4 in let t5 = ring_add f y1 z1 in let t6 = ring_pow f t5 2 in let t7 = ring_sub f t6 gamma in let z3 = ring_sub f t7 delta in let t8 = ring_mul f (ring_of_num f 4) beta in let t9 = ring_sub f t8 x3 in let t10 = ring_pow f gamma 2 in let t11 = ring_mul f (ring_of_num f 8) t10 in let t12 = ring_mul f alpha t9 in let y3 = ring_sub f t12 t11 in (x3,y3,z3)`;; let J3_DBL_2001_B = prove (`!f a b x1 y1 z1:A. field f /\ a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) ==> jacobian_eq f (j3_dbl_2001_b (f,a,b) (x1,y1,z1)) (jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[j3_dbl_2001_b; jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let J3_DBL_2001_B' = prove (`!f a b x1 y1 z1:A. field f /\ a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) /\ (z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b)) ==> j3_dbl_2001_b (f,a,b) (x1,y1,z1) = jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ; jacobian_neg; jacobian_0; j3_dbl_2001_b] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Point doubling in Jacobian coordinates assuming a = 0. *) (* *) (* Source: Lange [2009]. *) (* ------------------------------------------------------------------------- *) (*** *** https://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 ***) let j0_dbl_2009_l = new_definition `j0_dbl_2009_l (f:A ring,a:A,b:A) (x1,y1,z1) = let a = ring_pow f x1 2 in let b = ring_pow f y1 2 in let c = ring_pow f b 2 in let t0 = ring_add f x1 b in let t1 = ring_pow f t0 2 in let t2 = ring_sub f t1 a in let t3 = ring_sub f t2 c in let d = ring_mul f (ring_of_num f 2) t3 in let e = ring_mul f (ring_of_num f 3) a in let g = ring_pow f e 2 in let t4 = ring_mul f (ring_of_num f 2) d in let x3 = ring_sub f g t4 in let t5 = ring_sub f d x3 in let t6 = ring_mul f (ring_of_num f 8) c in let t7 = ring_mul f e t5 in let y3 = ring_sub f t7 t6 in let t8 = ring_mul f y1 z1 in let z3 = ring_mul f (ring_of_num f 2) t8 in (x3,y3,z3)`;; let J0_DBL_2009_L = prove (`!f a b x1 y1 z1:A. field f /\ a = ring_0 f /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) ==> jacobian_eq f (j0_dbl_2009_l (f,a,b) (x1,y1,z1)) (jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[j0_dbl_2009_l; jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let J0_DBL_2009_L' = prove (`!f a b x1 y1 z1:A. field f /\ a = ring_0 f /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) /\ (z1 = ring_0 f ==> (x1,y1,z1) = jacobian_0 (f,a,b)) ==> j0_dbl_2009_l (f,a,b) (x1,y1,z1) = jacobian_add (f,a,b) (x1,y1,z1) (x1,y1,z1)`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_0; PAIR_EQ; jacobian_neg; jacobian_0; j0_dbl_2009_l] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; jacobian_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Pure point addition in Jacobian coordinates. This sequence never uses *) (* the value of "a" so there's no special optimized version for special "a". *) (* *) (* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) (* *) (* Note the correctness is not proved in cases where the points are equal *) (* (or projectively equivalent), or either input is 0 (point at infinity). *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/addition/add-2007-bl.op3 ***) let ja_add_2007_bl = new_definition `ja_add_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) = let z1z1 = ring_pow f z1 2 in let z2z2 = ring_pow f z2 2 in let u1 = ring_mul f x1 z2z2 in let u2 = ring_mul f x2 z1z1 in let t0 = ring_mul f z2 z2z2 in let s1 = ring_mul f y1 t0 in let t1 = ring_mul f z1 z1z1 in let s2 = ring_mul f y2 t1 in let h = ring_sub f u2 u1 in let t2 = ring_mul f (ring_of_num f 2) h in let i = ring_pow f t2 2 in let j = ring_mul f h i in let t3 = ring_sub f s2 s1 in let r = ring_mul f (ring_of_num f 2) t3 in let v = ring_mul f u1 i in let t4 = ring_pow f r 2 in let t5 = ring_mul f (ring_of_num f 2) v in let t6 = ring_sub f t4 j in let x3 = ring_sub f t6 t5 in let t7 = ring_sub f v x3 in let t8 = ring_mul f s1 j in let t9 = ring_mul f (ring_of_num f 2) t8 in let t10 = ring_mul f r t7 in let y3 = ring_sub f t10 t9 in let t11 = ring_add f z1 z2 in let t12 = ring_pow f t11 2 in let t13 = ring_sub f t12 z1z1 in let t14 = ring_sub f t13 z2z2 in let z3 = ring_mul f t14 h in (x3,y3,z3)`;; let JA_ADD_2007_BL = prove (`!f a b x1 y1 z1 x2 y2 z2:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) /\ jacobian_point f (x2,y2,z2) /\ ~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\ ~(jacobian_eq f (x1,y1,z1) (x2,y2,z2)) ==> jacobian_eq f (ja_add_2007_bl (f,a,b) (x1,y1,z1) (x2,y2,z2)) (jacobian_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[jacobian_eq; ja_add_2007_bl; jacobian_add] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0; LET_DEF; LET_END_DEF]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN FIELD_TAC);; (* ------------------------------------------------------------------------- *) (* Mixed point addition in Jacobian coordinates. Here "mixed" means *) (* assuming z2 = 1, which holds if the second point was directly injected *) (* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses *) (* the value of "a" so there's no special optimized version for special "a". *) (* *) (* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) (* *) (* Note the correctness is not proved in the case where the points are equal *) (* or projectively equivalent, nor where the first is the group identity *) (* (i.e. the point at infinity, anything with z1 = 0 in projective coords). *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-3/addition/add-2007-bl.op3 ***) let ja_madd_2007_bl = new_definition `ja_madd_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) = let z1z1 = ring_pow f z1 2 in let u2 = ring_mul f x2 z1z1 in let t0 = ring_mul f z1 z1z1 in let s2 = ring_mul f y2 t0 in let h = ring_sub f u2 x1 in let hh = ring_pow f h 2 in let i = ring_mul f (ring_of_num f 4) hh in let j = ring_mul f h i in let t1 = ring_sub f s2 y1 in let r = ring_mul f (ring_of_num f 2) t1 in let v = ring_mul f x1 i in let t2 = ring_pow f r 2 in let t3 = ring_mul f (ring_of_num f 2) v in let t4 = ring_sub f t2 j in let x3 = ring_sub f t4 t3 in let t5 = ring_sub f v x3 in let t6 = ring_mul f y1 j in let t7 = ring_mul f (ring_of_num f 2) t6 in let t8 = ring_mul f r t5 in let y3 = ring_sub f t8 t7 in let t9 = ring_add f z1 h in let t10 = ring_pow f t9 2 in let t11 = ring_sub f t10 z1z1 in let z3 = ring_sub f t11 hh in (x3,y3,z3)`;; let JA_MADD_2007_BL = prove (`!f a b x1 y1 z1 x2 y2 z2:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ jacobian_point f (x1,y1,z1) /\ jacobian_point f (x2,y2,z2) /\ z2 = ring_1 f /\ ~(z1 = ring_0 f) /\ ~(jacobian_eq f (x1,y1,z1) (x2,y2,z2)) ==> jacobian_eq f (ja_madd_2007_bl (f,a,b) (x1,y1,z1) (x2,y2,z2)) (jacobian_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`, REPEAT GEN_TAC THEN REWRITE_TAC[jacobian_point] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[jacobian_eq; ja_madd_2007_bl; jacobian_add] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[jacobian_add; jacobian_eq; jacobian_neg; jacobian_0; LET_DEF; LET_END_DEF]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;