(* ========================================================================= *) (* Mapping from Edwards to Montgomery form (and back as applicable). *) (* ========================================================================= *) needs "EC/edwards.ml";; needs "EC/montgomery.ml";; (* ------------------------------------------------------------------------- *) (* Map from Edwards(a,d) to Montgomery(A,B) where *) (* *) (* A = 2 * (a + d) / (a - d) *) (* B = (4 / (a - d)) / c^2 *) (* *) (* defined by *) (* *) (* (x,y) |-> ((1 + y) / (1 - y), c * (1 + y) / ((1 - y) * x)) *) (* *) (* Here c is an arbitrary (nonzero) parameter giving a scaling factor. *) (* ------------------------------------------------------------------------- *) let mcurve_of_ecurve = define `mcurve_of_ecurve (f,(a:A),d) c = (f, ring_div f (ring_mul f (ring_of_num f 2) (ring_add f a d)) (ring_sub f a d), ring_div f (ring_div f (ring_of_num f 4) (ring_sub f a d)) (ring_pow f c 2))`;; let montgomery_of_edwards = define `montgomery_of_edwards(f:A ring) c (x,y) = if (x,y) = (ring_0 f,ring_1 f) then NONE else if (x,y) = (ring_0 f,ring_neg f (ring_1 f)) then SOME(ring_0 f,ring_0 f) else SOME(ring_div f (ring_add f (ring_1 f) y) (ring_sub f (ring_1 f) y), ring_mul f c (ring_div f (ring_add f (ring_1 f) y) (ring_mul f x (ring_sub f (ring_1 f) y))))`;; (* ------------------------------------------------------------------------- *) (* Mapping from Montgomery(A,B) to Edwards(a,d) where *) (* *) (* a = ((A + 2) / B) / c^2 *) (* d = ((A - 2) / B) / c^2 *) (* *) (* defined by *) (* (x,y) |-> (c * x / y, (x - 1) / (x + 1)) *) (* *) (* Here c is an arbitrary (nonzero) parameter giving a scaling factor. *) (* ------------------------------------------------------------------------- *) let ecurve_of_mcurve = define `ecurve_of_mcurve (f,A:A,B) c = (f, ring_div f (ring_div f (ring_add f A (ring_of_num f 2)) B) (ring_pow f c 2), ring_div f (ring_div f (ring_sub f A (ring_of_num f 2)) B) (ring_pow f c 2))`;; let edwards_of_montgomery = define `edwards_of_montgomery(f:A ring) c NONE = (ring_0 f,ring_1 f) /\ edwards_of_montgomery(f:A ring) c (SOME(x,y)) = if (x,y) = (ring_0 f,ring_0 f) then (ring_0 f,ring_neg f (ring_1 f)) else ring_mul f c (ring_div f x y), ring_div f (ring_sub f x (ring_of_num f 1)) (ring_add f x (ring_of_num f 1))`;; (* ------------------------------------------------------------------------- *) (* Curve mapping interactions, in particular with respect to singularity. *) (* ------------------------------------------------------------------------- *) let ECURVE_OF_MCURVE_OF_ECURVE = prove (`!f a d c:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(c = ring_0 f) /\ ~(a = d) ==> ecurve_of_mcurve (mcurve_of_ecurve (f,a,d) c) c = (f,a,d)`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[mcurve_of_ecurve; ecurve_of_mcurve; PAIR_EQ] THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MCURVE_OF_ECURVE_OF_MCURVE = prove (`!f A B c:A. field f /\ ~(ring_char f = 2) /\ A IN ring_carrier f /\ B IN ring_carrier f /\ c IN ring_carrier f /\ ~(c = ring_0 f) /\ ~(B = ring_0 f) ==> mcurve_of_ecurve (ecurve_of_mcurve (f,A,B) c) c = (f,A,B)`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[mcurve_of_ecurve; ecurve_of_mcurve; PAIR_EQ] THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MCURVE_OF_ECURVE_STRONGLY_NONSINGULAR_EQ = prove (`!f a d c:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(c = ring_0 f) ==> (montgomery_strongly_nonsingular(mcurve_of_ecurve(f,a,d) c) <=> ~(?z. z IN ring_carrier f /\ ring_pow f z 2 = ring_mul f a d))`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[montgomery_strongly_nonsingular; mcurve_of_ecurve] THEN MATCH_MP_TAC(TAUT `!p'. (p' <=> p) /\ (p' ==> r) /\ (~p' ==> (q <=> r)) ==> (~p /\ ~q <=> ~r)`) THEN EXISTS_TAC `a:A = d` THEN REPEAT CONJ_TAC THENL [FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; ASM_MESON_TAC[RING_POW_2]; DISCH_TAC] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THENL [EXISTS_TAC `ring_mul f (z:A) (ring_div f (ring_sub f a d) (ring_of_num f 4))`; EXISTS_TAC `ring_mul f (z:A) (ring_div f (ring_of_num f 4) (ring_sub f a d) )`] THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MCURVE_OF_ECURVE_NONSINGULAR_EQ = prove (`!f a d c:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(c = ring_0 f) ==> (montgomery_nonsingular(mcurve_of_ecurve(f,a,d) c) <=> ~(a = d) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f))`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[montgomery_nonsingular; mcurve_of_ecurve] THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MCURVE_OF_ECURVE_STRONGLY_NONSINGULAR = prove (`!f a d c:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(c = ring_0 f) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ edwards_nonsingular(f,a,d) ==> montgomery_strongly_nonsingular(mcurve_of_ecurve(f,a,d) c)`, SIMP_TAC[MCURVE_OF_ECURVE_STRONGLY_NONSINGULAR_EQ] THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[edwards_nonsingular; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[CONTRAPOS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:A` THEN STRIP_TAC THEN EXISTS_TAC `ring_div f z b:A` THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MCURVE_OF_ECURVE_NONSINGULAR = prove (`!f a d c:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(c = ring_0 f) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ edwards_nonsingular(f,a,d) ==> montgomery_nonsingular(mcurve_of_ecurve(f,a,d) c)`, REPEAT STRIP_TAC THEN REWRITE_TAC[mcurve_of_ecurve] THEN MATCH_MP_TAC MONTGOMERY_STRONGLY_NONSINGULAR_IMP_NONSINGULAR THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN REWRITE_TAC[GSYM mcurve_of_ecurve] THEN MATCH_MP_TAC MCURVE_OF_ECURVE_STRONGLY_NONSINGULAR THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Interrelations of the mappings themselves. *) (* ------------------------------------------------------------------------- *) let MONTGOMERY_OF_EDWARDS = prove (`!f (a:A) d c p. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(c = ring_0 f) /\ edwards_curve(f,a,d) p ==> montgomery_curve (mcurve_of_ecurve(f,a,d) c) (montgomery_of_edwards f c p)`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `c:A`; `x:A`; `y:A`] THEN REWRITE_TAC[edwards_curve; mcurve_of_ecurve; montgomery_of_edwards] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[PAIR_EQ] THEN ASM_CASES_TAC `x:A = ring_0 f` THEN ASM_REWRITE_TAC[montgomery_curve] THENL [COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_curve] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_curve] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC; REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC]);; let EDWARDS_OF_MONTGOMERY_OF_EDWARDS = prove (`!(f:A ring) a d c p. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(c = ring_0 f) /\ edwards_curve(f,a,d) p ==> edwards_of_montgomery f c (montgomery_of_edwards f c p) = p`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`f:A ring`;`a:A`; `d:A`; `c:A`; `x:A`; `y:A`] THEN REWRITE_TAC[edwards_curve; montgomery_of_edwards; PAIR_EQ] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `x:A = ring_0 f` THEN ASM_REWRITE_TAC[edwards_of_montgomery] THENL [COND_CASES_TAC THEN ASM_REWRITE_TAC[edwards_of_montgomery] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[edwards_of_montgomery] THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN FIELD_TAC; REWRITE_TAC[PAIR_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PAIR_EQ] THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC]);; let EDWARDS_OF_MONTGOMERY = prove (`!f (A:A) B c p. field f /\ ~(ring_char f = 2) /\ A IN ring_carrier f /\ B IN ring_carrier f /\ c IN ring_carrier f /\ ~(B = ring_0 f) /\ ~(c = ring_0 f) /\ montgomery_strongly_nonsingular(f,A,B) /\ edwards_nonsingular(ecurve_of_mcurve(f,A,B) c) /\ montgomery_curve(f,A,B) p ==> edwards_curve (ecurve_of_mcurve(f,A,B) c) (edwards_of_montgomery f c p)`, MAP_EVERY X_GEN_TAC [`f:A ring`; `A:A`; `B:A`; `c:A`] THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN CONJ_TAC THENL [REWRITE_TAC[edwards_curve; ecurve_of_mcurve; edwards_of_montgomery] THEN REWRITE_TAC[montgomery_curve] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`]] THEN REWRITE_TAC[montgomery_curve; edwards_of_montgomery; PAIR_EQ] THEN STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[edwards_curve; ecurve_of_mcurve] THENL [REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC; ALL_TAC] THEN REPEAT(CONJ_TAC THENL [RING_CARRIER_TAC; ALL_TAC]) THEN ASM_CASES_TAC `y:A = ring_0 f` THENL [MP_TAC(ISPECL [`f:A ring`; `A:A`; `B:A`] MONTGOMERY_STRONGLY_NONSINGULAR) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[DIVIDES_REFL]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[montgomery_curve] THEN ASM_MESON_TAC[]; FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM])] THEN ASM_CASES_TAC `x:A = ring_neg f (ring_1 f)` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC(TAUT `F ==> p`); REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[edwards_nonsingular; ecurve_of_mcurve]) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL [FIELD_TAC; ALL_TAC] THEN EXISTS_TAC `ring_div f y c:A` THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MONTGOMERY_OF_EDWARDS_OF_MONTGOMERY = prove (`!f (A:A) B c p. field f /\ ~(ring_char f = 2) /\ A IN ring_carrier f /\ B IN ring_carrier f /\ c IN ring_carrier f /\ ~(B = ring_0 f) /\ ~(c = ring_0 f) /\ montgomery_strongly_nonsingular(f,A,B) /\ edwards_nonsingular(ecurve_of_mcurve(f,A,B) c) /\ montgomery_curve(f,A,B) p ==> montgomery_of_edwards f c (edwards_of_montgomery f c p) = p`, MAP_EVERY X_GEN_TAC [`f:A ring`; `A:A`; `B:A`; `c:A`] THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; montgomery_curve] THEN REWRITE_TAC[edwards_of_montgomery; montgomery_of_edwards; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_of_edwards; PAIR_EQ; option_DISTINCT; option_INJ]) THENL [FIELD_TAC; FIELD_TAC; FIELD_TAC; ALL_TAC] THEN ASM_CASES_TAC `y:A = ring_0 f` THENL [MP_TAC(ISPECL [`f:A ring`; `A:A`; `B:A`] MONTGOMERY_STRONGLY_NONSINGULAR) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[DIVIDES_REFL]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[montgomery_curve] THEN FIELD_TAC; FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM])] THEN ASM_CASES_TAC `x:A = ring_neg f (ring_1 f)` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC(TAUT `F ==> p`); REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[edwards_nonsingular; ecurve_of_mcurve]) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL [FIELD_TAC; ALL_TAC] THEN EXISTS_TAC `ring_div f y c:A` THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; (* ------------------------------------------------------------------------- *) (* Group isomorphisms *) (* ------------------------------------------------------------------------- *) let MONTGOMERY_OF_EDWARDS_NEG = prove (`!f (a:A) d c p. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ edwards_curve(f,a,d) p ==> montgomery_of_edwards f c (edwards_neg(f,a,d) p) = montgomery_neg (mcurve_of_ecurve(f,a,d) c) (montgomery_of_edwards f c p)`, REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `c:A`; `x:A`; `y:A`] THEN REWRITE_TAC[edwards_curve; mcurve_of_ecurve; montgomery_of_edwards] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[PAIR_EQ] THEN ASM_CASES_TAC `x:A = ring_0 f` THEN ASM_REWRITE_TAC[edwards_neg; montgomery_of_edwards] THEN ASM_SIMP_TAC[PAIR_EQ; RING_NEG_EQ_0; RING_0] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_neg]) THEN REWRITE_TAC[option_INJ; PAIR_EQ; montgomery_neg] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let GROUP_ISOMORPHISMS_EDWARDS_MONTGOMERY_GROUP = prove (`!f (a:A) d c. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ ~(c = ring_0 f) /\ edwards_nonsingular(f,a,d) ==> group_isomorphisms (edwards_group(f,a,d), montgomery_group(mcurve_of_ecurve(f,a,d) c)) (montgomery_of_edwards f c, edwards_of_montgomery f c)`, let isolemma = prove (`!(G:A group) (H:B group) f g z. abelian_group G /\ abelian_group H /\ z IN group_carrier G /\ ~(z = group_id G) /\ (!x. x IN group_carrier G ==> f(x) IN group_carrier H /\ g(f x) = x) /\ (!y. y IN group_carrier H ==> g(y) IN group_carrier G /\ f(g y) = y) /\ f(group_id G) = group_id H /\ (!x. x IN group_carrier G ==> f(group_inv G x) = group_inv H (f x)) /\ (!x. x IN group_carrier G ==> f(group_mul G z x) = group_mul H (f z) (f x)) /\ (!u v w. u IN group_carrier G /\ ~(u = group_id G) /\ ~(u = z) /\ v IN group_carrier G /\ ~(v = group_id G) /\ ~(v = z) /\ w IN group_carrier G /\ ~(w = group_id G) /\ ~(w = z) /\ group_mul G u v = w /\ ~(f v = f u) /\ ~(group_inv H (f v) = f u) ==> group_mul H (f u) (f v) = f w) ==> group_isomorphisms (G,H) (f,g)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ISOMORPHISMS] THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE] THEN SUBGOAL_THEN `!x y. x IN group_carrier G /\ y IN group_carrier G /\ ~(x = y) ==> (f:A->B) (group_mul G x y) = group_mul H (f x) (f y)` ASSUME_TAC THENL [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:A = group_id G` THENL [ASM_SIMP_TAC[GROUP_MUL_LID]; ALL_TAC] THEN ASM_CASES_TAC `x:A = z` THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `y:A = group_id G` THENL [ASM_SIMP_TAC[GROUP_MUL_RID]; ALL_TAC] THEN ASM_CASES_TAC `y:A = z` THENL [RULE_ASSUM_TAC(REWRITE_RULE[abelian_group]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `group_mul G x y:A = group_id G` THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[GROUP_RULE `group_id G = group_mul G a b <=> group_inv G b = a`]; ALL_TAC] THEN ASM_CASES_TAC `group_mul G x y:A = z` THENL [ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN POP_ASSUM MP_TAC THEN ASM_SIMP_TAC[GROUP_INV; GROUP_RULE `group_mul G x y = z <=> x = group_mul G z (group_inv G y)`]; ALL_TAC] THEN CONV_TAC SYM_CONV THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[GROUP_MUL] THEN UNDISCH_TAC `~(group_mul G x y:A = group_id G)` THEN ASM_SIMP_TAC[GSYM GROUP_RINV_EQ] THEN ASM_MESON_TAC[GROUP_INV]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:A = y` THEN ASM_SIMP_TAC[] THEN UNDISCH_THEN `x:A = y` (SUBST_ALL_TAC o SYM) THEN ASM_CASES_TAC `x:A = z` THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `(f:A->B) (group_mul G (group_mul G z x) x) = group_mul H (f(group_mul G z x)) (f x)` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[GROUP_LID_EQ; GROUP_MUL]; ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL]] THEN ASM_SIMP_TAC[GROUP_MUL_LCANCEL; GROUP_MUL]) in REPEAT STRIP_TAC THEN MATCH_MP_TAC isolemma THEN EXISTS_TAC `ring_0 f:A,ring_neg f (ring_1 f)` THEN ASM_SIMP_TAC[ABELIAN_EDWARDS_GROUP; EDWARDS_GROUP] THEN MP_TAC(ISPECL (striplist dest_pair (rand(concl mcurve_of_ecurve))) MONTGOMERY_GROUP) THEN MP_TAC(ISPECL (striplist dest_pair (rand(concl mcurve_of_ecurve))) ABELIAN_MONTGOMERY_GROUP) THEN ASM_REWRITE_TAC[GSYM mcurve_of_ecurve] THEN MATCH_MP_TAC(TAUT `p /\ (q /\ r ==> s) ==> (p ==> q) ==> (p ==> r) ==> s`) THEN CONJ_TAC THENL [REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN MATCH_MP_TAC MCURVE_OF_ECURVE_NONSINGULAR THEN ASM_REWRITE_TAC[]; DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN UNDISCH_TAC `~(ring_char(f:A ring) = 2)` THEN ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN DISCH_TAC THEN REWRITE_TAC[SET_RULE `x IN edwards_curve C <=> edwards_curve C x`] THEN REWRITE_TAC[SET_RULE `y IN montgomery_curve C <=> montgomery_curve C y`] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[edwards_curve] THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC; REWRITE_TAC[edwards_0; PAIR_EQ] THEN FIELD_TAC; ASM_MESON_TAC[EDWARDS_OF_MONTGOMERY_OF_EDWARDS; MONTGOMERY_OF_EDWARDS; RING_CHAR_DIVIDES_PRIME; PRIME_2]; MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `c:A`] ECURVE_OF_MCURVE_OF_ECURVE) THEN ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN DISCH_TAC THEN GEN_TAC THEN REWRITE_TAC[mcurve_of_ecurve] THEN REPEAT STRIP_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] EDWARDS_OF_MONTGOMERY))); FIRST_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] MONTGOMERY_OF_EDWARDS_OF_MONTGOMERY)))] THEN DISCH_THEN(MP_TAC o SPEC `c:A`) THEN ASM_REWRITE_TAC[GSYM mcurve_of_ecurve] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[MCURVE_OF_ECURVE_STRONGLY_NONSINGULAR; GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN FIRST_X_ASSUM(K ALL_TAC o SYM) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; REWRITE_TAC[montgomery_of_edwards; edwards_0]; ASM_SIMP_TAC[MONTGOMERY_OF_EDWARDS_NEG]; GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`x2:A`; `y2:A`] THEN REWRITE_TAC[PAIR_EQ; edwards_curve] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[montgomery_of_edwards; PAIR_EQ] THEN ASM_CASES_TAC `ring_neg f (ring_1 f):A = ring_1 f` THENL [MATCH_MP_TAC(TAUT `F ==> p`) THEN FIELD_TAC; ASM_REWRITE_TAC[]] THEN COND_CASES_TAC THEN REWRITE_TAC[edwards_add; montgomery_add; montgomery_of_edwards; mcurve_of_ecurve] THEN ASM_SIMP_TAC[RING_MUL_LZERO; RING_0; RING_1; RING_NEG; RING_MUL_RZERO; RING_ADD_LZERO; RING_ADD_RZERO; RING_MUL_LID; RING_MUL_RID; RING_MUL; RING_DIV_1; RING_SUB_RZERO; PAIR_EQ; FIELD_MUL_EQ_0; RING_NEG_EQ_0; RING_MUL_LNEG; RING_MUL_RNEG; RING_NEG_NEG] THEN ASM_SIMP_TAC[RING_NEG_EQ; RING_1; RING_RULE `ring_neg f y = ring_1 f <=> y = ring_neg f (ring_1 f)`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_add] THEN COND_CASES_TAC THENL [MATCH_MP_TAC(TAUT `F ==> p`) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; ALL_TAC] THEN ASM_SIMP_TAC[RING_1; RING_RULE `ring_add f x (ring_neg f y) = ring_sub f x y /\ ring_sub f x (ring_neg f y) = ring_add f x y`] THEN SUBGOAL_THEN `~(x2:A = ring_0 f) /\ ~(ring_sub f (ring_1 f) y2 = ring_0 f) /\ ~(ring_add f (ring_1 f) y2 = ring_0 f) /\ ~(ring_sub f a d = ring_0 f)` STRIP_ASSUME_TAC THENL [FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; REPEAT(FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]))] THEN REPLICATE_TAC 3 (RING_PULL_DIV_TAC THEN CONV_TAC(RAND_CONV let_CONV)) THEN REWRITE_TAC[option_INJ; PAIR_EQ] THEN RING_PULL_DIV_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; ALL_TAC] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`; `x3:A`; `y3:A`] THEN REWRITE_TAC[edwards_curve; edwards_0; PAIR_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `x1:A = ring_0 f \/ y1 = ring_1 f \/ y1 = ring_neg f (ring_1 f)` THENL [MATCH_MP_TAC(TAUT `p \/ q ==> ~p /\ ~q /\ r ==> s`) THEN FIELD_TAC; FIRST_X_ASSUM(CONJUNCTS_THEN STRIP_ASSUME_TAC o REWRITE_RULE[DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `x2:A = ring_0 f \/ y2 = ring_1 f \/ y2 = ring_neg f (ring_1 f)` THENL [MATCH_MP_TAC(TAUT `p \/ q ==> ~p /\ ~q /\ r ==> s`) THEN FIELD_TAC; FIRST_X_ASSUM(CONJUNCTS_THEN STRIP_ASSUME_TAC o REWRITE_RULE[DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `x3:A = ring_0 f \/ y3 = ring_1 f \/ y3 = ring_neg f (ring_1 f)` THENL [MATCH_MP_TAC(TAUT `p \/ q ==> ~p /\ ~q /\ r ==> s`) THEN FIELD_TAC; FIRST_X_ASSUM(CONJUNCTS_THEN STRIP_ASSUME_TAC o REWRITE_RULE[DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[]] THEN ABBREV_TAC `p3 = montgomery_of_edwards f (c:A) (x3,y3)` THEN ABBREV_TAC `p2 = montgomery_of_edwards f (c:A) (x2,y2)` THEN ABBREV_TAC `p1 = montgomery_of_edwards f (c:A) (x1,y1)` THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `c:A`] MONTGOMERY_OF_EDWARDS) THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> MP_TAC(end_itlist CONJ (map (fun t -> SPEC t th) [`x1:A,y1:A`; `x2:A,y2:A`; `x3:A,y3:A`]))) THEN ASM_REWRITE_TAC[edwards_curve] THEN REPLICATE_TAC 3 (POP_ASSUM MP_TAC) THEN REPLICATE_TAC 2 (ONCE_REWRITE_TAC[IMP_IMP]) THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`p3:(A#A)option`; `p2:(A#A)option`; `p1:(A#A)option`] THEN ASM_REWRITE_TAC[montgomery_of_edwards; PAIR_EQ] THEN REWRITE_TAC[FORALL_OPTION_THM; option_DISTINCT] THEN REWRITE_TAC[FORALL_PAIR_THM; option_INJ; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`u1:A`; `v1:A`; `u2:A`; `v2:A`; `u3:A`; `v3:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(u1:A) IN ring_carrier f /\ (v1:A) IN ring_carrier f /\ (u2:A) IN ring_carrier f /\ (v2:A) IN ring_carrier f /\ (u3:A) IN ring_carrier f /\ (v3:A) IN ring_carrier f` STRIP_ASSUME_TAC THENL [REPEAT CONJ_TAC THEN RING_CARRIER_TAC; ALL_TAC] THEN SUBGOAL_THEN `ring_mul f (ring_div f c x1) u1:A = v1 /\ ring_mul f (ring_div f c x2) u2:A = v2 /\ ring_mul f (ring_div f c x3) u3:A = v3` MP_TAC THENL [REPEAT CONJ_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN ASM_SIMP_TAC[ring_div; RING_INV_MUL; RING_INV; RING_POW; RING_MUL; RING_SUB; RING_1] THEN RING_TAC THEN REPEAT CONJ_TAC THEN RING_CARRIER_TAC; MAP_EVERY (fun t -> FIRST_X_ASSUM (K ALL_TAC o check (fun eq -> is_eq eq && rand eq = t) o concl)) [`v1:A`; `v2:A`; `v3:A`] THEN STRIP_TAC] THEN ASM_REWRITE_TAC[montgomery_curve; mcurve_of_ecurve] THEN MAP_EVERY ABBREV_TAC [`A:A = ring_div f (ring_mul f (ring_of_num f 2) (ring_add f a d)) (ring_sub f a d)`; `B:A = ring_div f (ring_div f (ring_of_num f 4) (ring_sub f a d)) (ring_pow f c 2)`] THEN SUBGOAL_THEN `(A:A) IN ring_carrier f /\ B IN ring_carrier f` STRIP_ASSUME_TAC THENL [CONJ_TAC THEN RING_CARRIER_TAC; ALL_TAC] THEN STRIP_TAC THEN REWRITE_TAC[edwards_add; PAIR_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN ASM_REWRITE_TAC[edwards_curve; PAIR_EQ] THEN STRIP_TAC THEN REWRITE_TAC[montgomery_neg; option_INJ; PAIR_EQ] THEN ASM_CASES_TAC `u1:A = u2` THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN; INTEGRAL_DOMAIN_RULE `~(x = y) /\ ~(ring_neg f x = y) <=> ~(ring_pow f x 2 = ring_pow f y 2)`] THEN MATCH_MP_TAC(GEN_ALL(REWRITE_RULE[IMP_IMP] (INTEGRAL_DOMAIN_RULE `~(a = ring_0 f) /\ ring_mul f a x = ring_mul f a y ==> x = y`))) THEN MAP_EVERY EXISTS_TAC [`f:A ring`; `B:A`] THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN] THEN REPEAT CONJ_TAC THEN TRY RING_CARRIER_TAC THEN EXPAND_TAC "B" THEN REWRITE_TAC[ring_div] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 8) [FIELD_MUL_EQ_0; FIELD_INV_EQ_0; FIELD_POW_EQ_0; RING_CLAUSES] THEN ASM_SIMP_TAC[RING_SUB_EQ_0; RING_OF_NUM_EQ_0] THEN NOT_RING_CHAR_DIVIDES_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[montgomery_add] THEN LET_TAC THEN SUBGOAL_THEN `(l:A) IN ring_carrier f` ASSUME_TAC THENL [RING_CARRIER_TAC; ALL_TAC] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[PAIR_EQ; option_INJ] THEN ASM_SIMP_TAC[RING_POW_2] THEN SUBGOAL_THEN `~(ring_sub f u2 u1:A = ring_0 f)` ASSUME_TAC THENL [ASM_SIMP_TAC[RING_SUB_EQ_0]; ALL_TAC] THEN EXPAND_TAC "l" THEN RING_PULL_DIV_TAC THEN SUBGOAL_THEN `~(ring_sub f a d:A = ring_0 f)` ASSUME_TAC THENL [ASM_SIMP_TAC[RING_SUB_EQ_0]; ALL_TAC] THEN MAP_EVERY EXPAND_TAC ["A"; "B"] THEN RING_PULL_DIV_TAC THEN MAP_EVERY EXPAND_TAC ["v1"; "v2"; "v3"] THEN RING_PULL_DIV_TAC THEN SUBGOAL_THEN `~(ring_sub f (ring_1 f) y1:A = ring_0 f) /\ ~(ring_sub f (ring_1 f) y2:A = ring_0 f) /\ ~(ring_sub f (ring_1 f) y3:A = ring_0 f)` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[RING_SUB_EQ_0; RING_1]; ALL_TAC] THEN EXPAND_TAC "u1" THEN RING_PULL_DIV_TAC THEN EXPAND_TAC "u2" THEN RING_PULL_DIV_TAC THEN EXPAND_TAC "u3" THEN RING_PULL_DIV_TAC THEN EXPAND_TAC "x3" THEN RING_PULL_DIV_TAC THEN EXPAND_TAC "y3" THEN RING_PULL_DIV_TAC THEN MAP_EVERY UNDISCH_TAC [`ring_add f (ring_mul f a (ring_pow f x1 2)) (ring_pow f y1 2):A = ring_add f (ring_1 f) (ring_mul f d (ring_mul f (ring_pow f x1 2) (ring_pow f y1 2)))`; `ring_add f (ring_mul f a (ring_pow f x2 2)) (ring_pow f y2 2):A = ring_add f (ring_1 f) (ring_mul f d (ring_mul f (ring_pow f x2 2) (ring_pow f y2 2)))`] THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o SYM)) THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o CONV_RULE(RAND_CONV SYM_CONV))) THEN RING_TAC);; let MONTGOMERY_OF_EDWARDS_ADD = prove (`!f (a:A) d c p q. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ ~(c = ring_0 f) /\ edwards_nonsingular(f,a,d) /\ edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q ==> montgomery_of_edwards f c (edwards_add(f,a,d) p q) = montgomery_add (mcurve_of_ecurve(f,a,d) c) (montgomery_of_edwards f c p) (montgomery_of_edwards f c q)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `c:A`] GROUP_ISOMORPHISMS_EDWARDS_MONTGOMERY_GROUP) THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM] THEN ASM_SIMP_TAC[EDWARDS_GROUP; IN] THEN DISCH_THEN(K ALL_TAC) THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `c:A`] MCURVE_OF_ECURVE_NONSINGULAR) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[mcurve_of_ecurve] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] MONTGOMERY_GROUP))) THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN RING_CARRIER_TAC);; let GROUP_ISOMORPHISMS_MONTGOMERY_EDWARDS_GROUP = prove (`!f (a:A) d c. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ ~(c = ring_0 f) /\ edwards_nonsingular(f,a,d) ==> group_isomorphisms (montgomery_group(mcurve_of_ecurve(f,a,d) c), edwards_group(f,a,d)) (edwards_of_montgomery f c, montgomery_of_edwards f c)`, ONCE_REWRITE_TAC[GROUP_ISOMORPHISMS_SYM] THEN ACCEPT_TAC GROUP_ISOMORPHISMS_EDWARDS_MONTGOMERY_GROUP);; let ISOMORPHIC_EDWARDS_MONTGOMERY_GROUP = prove (`!f (a:A) d c. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ ~(c = ring_0 f) /\ edwards_nonsingular(f,a,d) ==> edwards_group(f,a,d) isomorphic_group montgomery_group(mcurve_of_ecurve(f,a,d) c)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_ISOMORPHISMS_EDWARDS_MONTGOMERY_GROUP) THEN MESON_TAC[GROUP_ISOMORPHISMS_IMP_ISOMORPHISM; isomorphic_group]);; let ISOMORPHIC_MONTGOMERY_EDWARDS_GROUP = prove (`!f (a:A) d c. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ c IN ring_carrier f /\ ~(a = d) /\ ~(a = ring_0 f) /\ ~(d = ring_0 f) /\ ~(c = ring_0 f) /\ edwards_nonsingular(f,a,d) ==> montgomery_group(mcurve_of_ecurve(f,a,d) c) isomorphic_group edwards_group(f,a,d)`, ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN MATCH_ACCEPT_TAC ISOMORPHIC_EDWARDS_MONTGOMERY_GROUP);;