import topology.algebra.ordered import for_mathlib.filter import for_mathlib.topology import valuation.linear_ordered_comm_group_with_zero /-! # The topology on linearly ordered commutative groups with zero Let Γ₀ be a linearly ordered commutative group to which we have adjoined a zero element. Then Γ₀ may naturally be endowed with a topology that turns Γ₀ into a topological monoid. The topology is the following: A subset U ⊆ Γ₀ is open if 0 ∉ U or if there is an invertible γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ U. -/ local attribute [instance, priority 0] classical.DLO open_locale topological_space namespace linear_ordered_comm_group_with_zero open topological_space filter set linear_ordered_structure variables (Γ₀ : Type*) [linear_ordered_comm_group_with_zero Γ₀] /--The neighbourhoods around γ ∈ Γ₀, used in the definition of the topology on Γ₀. These neighbourhoods are defined as follows: A set s is a neighbourhood of 0 if there is an invertible γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ s. If γ ≠ 0, then every set that contains γ is a neighbourhood of γ. -/ def nhds_fun : Γ₀ → filter Γ₀ := (λ x : Γ₀, if x = 0 then ⨅ (γ₀ : units Γ₀), principal {γ | γ < γ₀} else pure x) /--The topology on a linearly ordered commutative group with a zero element adjoined. A subset U is open if 0 ∉ U or if there is an invertible element γ₀ such that {γ | γ < γ₀} ⊆ U. -/ protected def topological_space : topological_space Γ₀ := topological_space.mk_of_nhds (nhds_fun Γ₀) local attribute [instance] linear_ordered_comm_group_with_zero.topological_space /--The neighbourhoods {γ | γ < γ₀} of 0 form a directed set indexed by the invertible elements γ₀.-/ @[nolint] lemma directed_lt : directed (≥) (λ (γ₀ : units Γ₀), principal {γ : Γ₀ | γ < ↑γ₀}) := begin intros γ₁ γ₂, use min γ₁ γ₂, split, { change principal {γ : Γ₀ | γ < ↑(min γ₁ γ₂)} ≤ principal {γ : Γ₀ | γ < ↑γ₁}, rw [principal_mono, coe_min], intros x x_in, calc x < min ↑γ₁ ↑γ₂ : x_in ... ≤ γ₁ : min_le_left _ _ }, { change principal {γ : Γ₀ | γ < ↑(min γ₁ γ₂)} ≤ principal {γ : Γ₀ | γ < ↑γ₂}, rw [principal_mono, coe_min], intros x x_in, calc x < min ↑γ₁ ↑γ₂ : x_in ... ≤ γ₂ : min_le_right _ _ } end -- We need two auxilliary lemmas to show that nhds_fun accurately describes the neighbourhoods -- coming from the topology (that is defined in terms of nhds_fun). /--At all points of a linearly ordered commutative group with a zero element adjoined, the pure filter is smaller than the filter given by nhds_fun.-/ private lemma pure_le_nhds_fun : pure ≤ nhds_fun Γ₀ := λ x, by { by_cases hx : x = 0; simp [hx, nhds_fun] } /--For every point Γ₀, and every “neighbourhood” s of it (described by nhds_fun), there is a smaller “neighbourhood” t ⊆ s, such that s is a “neighbourhood“ of all the points in t.-/ private lemma nhds_fun_ok : ∀ (x : Γ₀) (s ∈ nhds_fun Γ₀ x), (∃ t ∈ nhds_fun Γ₀ x, t ⊆ s ∧ ∀ y ∈ t, s ∈ nhds_fun Γ₀ y) := begin intros x U U_in, by_cases hx : x = 0, { simp [hx, nhds_fun] at U_in ⊢, change U ∈ ⨅ (γ₀ : units Γ₀), principal {γ : Γ₀ | γ < ↑γ₀} at U_in, rw mem_infi (directed_lt Γ₀) ⟨1⟩ at U_in, cases U_in with γ₀ h, use {γ : Γ₀ | γ < ↑γ₀}, rw mem_principal_sets at h, split, { apply mem_infi_sets γ₀, rw mem_principal_sets}, { refine ⟨h, _⟩, intros y y_in, by_cases hy : y = 0 ; simp [hy, h y_in], { apply mem_infi_sets γ₀, rwa mem_principal_sets } } }, { simp [hx, nhds_fun] at U_in ⊢, use {x}, refine ⟨mem_singleton _, singleton_subset_iff.2 U_in, _⟩, intros y y_in, rw mem_singleton_iff at y_in, rw y_in, simpa [hx] } end variables {Γ₀} /--The neighbourhood filter of an invertible element consists of all sets containing that element.-/ @[simp] lemma nhds_coe (γ : units Γ₀) : 𝓝 (γ : Γ₀) = pure (γ : Γ₀) := calc 𝓝 (γ : Γ₀) = nhds_fun Γ₀ γ : nhds_mk_of_nhds (nhds_fun Γ₀) γ (pure_le_nhds_fun Γ₀) (nhds_fun_ok Γ₀) ... = pure (γ : Γ₀) : if_neg (group_with_zero.unit_ne_zero γ) /--The neighbourhood filter of a nonzero element consists of all sets containing that element.-/ @[simp] lemma nhds_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : 𝓝 γ = pure γ := nhds_coe (group_with_zero.mk₀ _ h) /--If γ is an invertible element of a linearly ordered group with zero element adjoined, then {γ} is a neighbourhood of γ.-/ lemma singleton_nhds_of_units (γ : units Γ₀) : ({γ} : set Γ₀) ∈ 𝓝 (γ : Γ₀) := by simp /--If γ is a nonzero element of a linearly ordered group with zero element adjoined, then {γ} is a neighbourhood of γ.-/ lemma singleton_nhds_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : ({γ} : set Γ₀) ∈ 𝓝 (γ : Γ₀) := by simp [h] /--If U is a neighbourhood of 0 in a linearly ordered group with zero element adjoined, then there exists an invertible element γ₀ such that {γ | γ < γ₀} ⊆ U. -/ lemma nhds_zero_mem (U : set Γ₀) : U ∈ 𝓝 (0 : Γ₀) ↔ ∃ γ₀ : units Γ₀, {γ : Γ₀ | γ < γ₀} ⊆ U := begin rw nhds_mk_of_nhds (nhds_fun Γ₀) 0 (pure_le_nhds_fun Γ₀) (nhds_fun_ok Γ₀), simp [nhds_fun], rw mem_infi (directed_lt Γ₀) ⟨1⟩, { split, { rintro ⟨γ₀, H⟩, rw mem_principal_sets at H, use [γ₀, H] }, { rintro ⟨γ₀, H⟩, use γ₀, rwa mem_principal_sets } } end /--If γ is an invertible element of a linearly ordered group with zero element adjoined, then {x | x < γ} is a neighbourhood of 0.-/ lemma nhds_zero_of_units (γ : units Γ₀) : {x : Γ₀ | x < γ} ∈ 𝓝 (0 : Γ₀) := by { rw nhds_zero_mem, use γ } /--If γ is a nonzero element of a linearly ordered group with zero element adjoined, then {x | x < γ} is a neighbourhood of 0.-/ lemma nhds_zero_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : {x : Γ₀ | x < γ} ∈ 𝓝 (0 : Γ₀) := nhds_zero_of_units (group_with_zero.mk₀ _ h) variable (Γ₀) /--The topology on a linearly ordered group with zero element adjoined is compatible with the order structure.-/ lemma ordered_topology : order_closed_topology Γ₀ := { is_closed_le' := begin show is_open {p : Γ₀ × Γ₀ | ¬p.fst ≤ p.snd}, simp only [not_le], rw is_open_iff_mem_nhds, rintros ⟨a,b⟩ hab, change b < a at hab, have ha : a ≠ 0 := ne_zero_of_lt hab, rw [nhds_prod_eq, mem_prod_iff], by_cases hb : b = 0, { subst b, use [{a}, singleton_nhds_of_ne_zero _ ha, {x : Γ₀ | x < a}, nhds_zero_of_ne_zero _ ha], intros p p_in, cases mem_prod.1 p_in with h1 h2, rw mem_singleton_iff at h1, change p.2 < p.1, rwa h1 }, { use [{a}, singleton_nhds_of_ne_zero _ ha, {b}, singleton_nhds_of_ne_zero _ hb], intros p p_in, cases mem_prod.1 p_in with h1 h2, rw mem_singleton_iff at h1 h2, change p.2 < p.1, rwa [h1, h2] } end } local attribute [instance] ordered_topology /--The topology on a linearly ordered group with zero element adjoined is T₂ (aka Hausdorff).-/ lemma t2_space : t2_space Γ₀ := order_closed_topology.to_t2_space local attribute [instance] t2_space /--The topology on a linearly ordered group with zero element adjoined is T₃ (aka regular).-/ lemma regular_space : regular_space Γ₀ := begin haveI : t1_space Γ₀ := t2_space.t1_space, split, intros s x s_closed x_not_in_s, by_cases hx : x = 0, { refine ⟨s, _, subset.refl _, _⟩, { subst x, rw is_open_iff_mem_nhds, intros y hy, by_cases hy' : y = 0, { subst y, contradiction }, simpa [hy'] }, { rw inf_eq_bot_iff, use -s, simp only [exists_prop, mem_principal_sets], split, exact mem_nhds_sets (by rwa is_open_compl_iff) (by rwa mem_compl_iff), exact ⟨s, subset.refl s, by simp⟩ } }, { simp only [inf_eq_bot_iff, exists_prop, mem_principal_sets], exact ⟨-{x}, is_open_compl_iff.mpr is_closed_singleton, by rwa subset_compl_singleton_iff, {x}, singleton_nhds_of_ne_zero x hx, -{x}, by simp [subset.refl]⟩ } end /--The filter basis around the 0 element of a linearly ordered group with zero element adjoined.-/ def zero_filter_basis : filter_basis Γ₀ := { sets := range (λ γ : units Γ₀, {x : Γ₀ | x < γ}), ne_empty := range_nonempty _, directed := begin intros s t hs ht, rw mem_range at hs ht, rcases hs with ⟨γs, rfl⟩, rcases ht with ⟨γt, rfl⟩, simp only [exists_prop, mem_range], rcases directed_lt Γ₀ γs γt with ⟨γ, hs, ht⟩, change principal {g : Γ₀ | g < ↑γ} ≤ principal {g : Γ₀ | g < ↑γt} at ht, change principal {g : Γ₀ | g < ↑γ} ≤ principal {g : Γ₀ | g < ↑γs} at hs, rw [le_principal_iff, mem_principal_sets] at hs ht, use [{x : Γ₀ | x < γ}, γ, rfl, subset_inter_iff.mpr ⟨hs, ht⟩] end} variable {Γ₀} -- TODO: Generalise the following definition into something like filter_basis.pure. /--The filter basis around nonzero elements of a linearly ordered group with zero element adjoined.-/ @[nolint] def ne_zero_filter_basis (x : Γ₀) : filter_basis Γ₀ := { sets := ({({x} : set Γ₀)} : set (set Γ₀)), ne_empty := by simp, directed := by finish } variable (Γ₀) /--The neighbourhood basis of a linearly ordered group with zero element adjoined.-/ def nhds_basis : nhds_basis Γ₀ := { B := λ x, if h : x = 0 then zero_filter_basis Γ₀ else ne_zero_filter_basis x, is_nhds := begin intro x, ext s, split_ifs with hx, { subst x, rw nhds_zero_mem, simp [zero_filter_basis, filter_basis.mem_filter, filter_basis.mem_iff], split, { rintros ⟨γ₀, h⟩, use [{x : Γ₀ | x < ↑γ₀}, γ₀, h] }, { rintros ⟨_, ⟨γ₀, rfl⟩, h⟩, exact ⟨γ₀, h⟩ } }, { simp [hx, filter_basis.mem_filter, filter_basis.mem_iff, ne_zero_filter_basis], } end } local attribute [instance] nhds_basis lemma mem_nhds_basis_zero {U : set Γ₀} : U ∈ nhds_basis.B (0 : Γ₀) ↔ ∃ γ : units Γ₀, U = {x : Γ₀ | x < γ } := begin dsimp [nhds_basis, zero_filter_basis], simp only [dif_pos], convert iff.rfl, simp [eq_comm] end lemma mem_nhds_basis_ne_zero {U : set Γ₀} {γ₀ : Γ₀} (h : γ₀ ≠ 0) : U ∈ nhds_basis.B γ₀ ↔ U = {γ₀} := begin dsimp [nhds_basis], simp only [dif_neg h], dsimp [filter_basis.has_mem, ne_zero_filter_basis γ₀], exact set.mem_singleton_iff end variable {Γ₀} -- until the end of this section, all linearly ordered commutative groups will be endowed with -- the discrete topology variables (α : Type*) [linear_ordered_comm_group α] /--The discrete topology on a linearly ordered commutative group.-/ @[nolint] def discrete_ordered_comm_group : topological_space α := ⊥ local attribute [instance] discrete_ordered_comm_group lemma ordered_comm_group_is_discrete : discrete_topology α := ⟨rfl⟩ local attribute [instance] ordered_comm_group_is_discrete lemma comap_coe_nhds (γ : units Γ₀) : 𝓝 γ = comap coe (𝓝 (γ : Γ₀)) := begin rw [nhds_discrete, filter.comap_pure (λ _ _ h, units.ext h) γ], change comap coe (pure (γ : Γ₀)) = comap coe (𝓝 ↑γ), rw ← nhds_coe γ, end lemma tendsto_zero {α : Type*} {F : filter α} {f : α → Γ₀} : tendsto f F (𝓝 (0 : Γ₀)) ↔ ∀ γ₀ : units Γ₀, { x : α | f x < γ₀ } ∈ F := begin rw nhds_basis.tendsto_into, simp only [mem_nhds_basis_zero, exists_imp_distrib], split ; intro h, { intro γ₀, exact h {γ | γ < ↑γ₀} γ₀ rfl }, { rintros _ γ₀ rfl, exact h γ₀ } end lemma mem_nhds_zero {s} : s ∈ 𝓝 (0 : Γ₀) ↔ ∃ γ : units Γ₀, { x : Γ₀ | x < γ } ⊆ s := begin rw nhds_basis.mem_nhds_iff, simp only [exists_prop, mem_nhds_basis_zero], split, { rintros ⟨_, ⟨⟨γ, rfl⟩, h⟩⟩, exact ⟨γ, h⟩ }, { rintros ⟨γ, h⟩, exact ⟨{x : Γ₀ | x < γ}, ⟨γ, rfl⟩, h⟩ } end lemma mem_nhds_coe {s} {γ : Γ₀} (h : γ ≠ 0) : s ∈ 𝓝 γ ↔ γ ∈ s := begin rw nhds_basis.mem_nhds_iff, simp only [exists_prop, mem_nhds_basis_ne_zero _ h, h], split, { rintros ⟨_, rfl, h₂⟩, rwa singleton_subset_iff at h₂ }, { intro h, use [{γ}, rfl], rwa singleton_subset_iff }, end lemma tendsto_nonzero {α : Type*} {F : filter α} {f : α → Γ₀} {γ₀ : Γ₀} (h : γ₀ ≠ 0) : tendsto f F (𝓝 (γ₀ : Γ₀)) ↔ { x : α | f x = γ₀ } ∈ F := begin rw nhds_basis.tendsto_into, simp only [mem_nhds_basis_ne_zero _ h, forall_eq], convert iff.rfl, ext s, exact mem_singleton_iff.symm end /--A linearly ordered commutative group with zero Γ₀ is a topological monoid if it is endowed with the following topology: A subset U ⊆ Γ₀ is open if 0 ∉ U or if there is an invertible γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ U. -/ instance : topological_monoid Γ₀ := ⟨begin rw continuous_iff_continuous_at, rintros ⟨x, y⟩, by_cases hx : x = 0; by_cases hy : y = 0, all_goals { try {subst x}, try {subst y}, intros U U_in, rw nhds_prod_eq, try { simp only [_root_.mul_zero, _root_.zero_mul] at U_in}, rw mem_nhds_zero at U_in <|> rw [mem_nhds_coe] at U_in, rw mem_map, rw mem_prod_same_iff <|> rw mem_prod_iff, try { cases U_in with γ hγ } }, { cases linear_ordered_structure.exists_square_le γ with γ₀ hγ₀, simp only [mem_nhds_zero, exists_prop], refine ⟨{x : Γ₀ | x < ↑γ₀}, ⟨γ₀, subset.refl _⟩, _⟩, rw set.prod_subset_iff, intros x x_in y y_in, apply hγ, change x*y < γ, have := mul_lt_mul' x_in y_in, refine lt_of_lt_of_le this _, exact_mod_cast hγ₀ }, { simp only [set.prod_subset_iff, mem_nhds_zero, mem_nhds_coe hy, exists_prop], use [{x : Γ₀ | x < γ*y⁻¹}, γ * (group_with_zero.mk₀ y hy)⁻¹, subset.refl _, {(group_with_zero.mk₀ y hy)}, mem_singleton y], intros x x_in y' y'_in, rw mem_singleton_iff at y'_in, rw y'_in, apply hγ, change x * y < γ, simpa [hy] using mul_lt_right' y x_in hy, }, { simp only [set.prod_subset_iff, mem_nhds_zero, mem_nhds_coe hx, exists_prop], use [{(group_with_zero.mk₀ x hx)}, mem_singleton _, {y : Γ₀ | y < γ*x⁻¹}, γ * (group_with_zero.mk₀ x hx)⁻¹, subset.refl _], intros x' x'_in y y_in, rw mem_singleton_iff at x'_in, rw x'_in, apply hγ, change x * y < γ, rw mul_comm, simpa [hx] using mul_lt_right' x y_in hx, }, { simp [mem_nhds_coe, hx, hy], use [{x}, mem_singleton _, {y}, mem_singleton _], rw set.prod_subset_iff, intros x' x'_in y' y'_in, rw mem_singleton_iff at *, rw [x'_in, y'_in], simpa using U_in }, { assume H, simp at H, tauto } end⟩ end linear_ordered_comm_group_with_zero