/- Presheaf of toplogical rings. -/ import topology.algebra.ring import sheaves.presheaf_of_rings universes u v open topological_space -- Definition of a presheaf of topological rings. structure presheaf_of_topological_rings (α : Type u) [topological_space α] extends presheaf_of_rings α := (Ftop : ∀ (U), topological_space (F U)) (Ftop_ring : ∀ (U), topological_ring (F U)) (res_continuous : ∀ (U V) (HVU : V ⊆ U), continuous (res U V HVU)) instance presheaf_of_topological_rings.has_coe {α : Type u} [topological_space α] : has_coe (presheaf_of_topological_rings α) (presheaf α) := ⟨λ F, F.to_presheaf⟩ instance presheaf_of_topological_rings.topological_space_sections {α : Type u} [topological_space α] (F : presheaf_of_topological_rings α) (U : opens α) : topological_space (F U) := F.Ftop U attribute [instance] presheaf_of_topological_rings.Ftop attribute [instance] presheaf_of_topological_rings.Ftop_ring instance presheaf_of_topological_rings.comm_ring {X : Type u} [topological_space X] (F : presheaf_of_topological_rings X) (U : opens X) : comm_ring (F U) := F.Fring U namespace presheaf_of_topological_rings variables {α : Type u} {β : Type v} [topological_space α] [topological_space β] -- Morphism of presheaf of topological rings. structure morphism (F G : presheaf_of_topological_rings α) extends presheaf.morphism F.to_presheaf G.to_presheaf := (ring_homs : ∀ (U), is_ring_hom (map U)) (continuous_homs : ∀ (U), continuous (map U)) local infix `⟶`:80 := morphism def identity (F : presheaf_of_topological_rings α) : F ⟶ F := { ring_homs := λ U, is_ring_hom.id, continuous_homs := λ U, continuous_id, ..presheaf.id F.to_presheaf } -- Isomorphic presheaves of rings. local infix `⊚`:80 := presheaf.comp structure iso (F G : presheaf_of_topological_rings α) := (mor : F ⟶ G) (inv : G ⟶ F) (mor_inv_id : mor.to_morphism ⊚ inv.to_morphism = presheaf.id F.to_presheaf) (inv_mor_id : inv.to_morphism ⊚ mor.to_morphism = presheaf.id G.to_presheaf) end presheaf_of_topological_rings