import ring_theory.noetherian import ring_theory.algebra_operations local attribute [instance] classical.prop_decidable namespace submodule open algebra variables {R : Type*} {A : Type*} [comm_ring R] [comm_ring A] [algebra R A] local attribute [instance] set.pointwise_mul_semiring local attribute [instance] set.singleton.is_monoid_hom set_option class.instance_max_depth 80 lemma smul_eq_smul_span_int (S : set R) (I : ideal R) : (↑(S • I) : set R) = (↑(S • (span ℤ (↑I : set R))) : set R) := begin conv_lhs {erw ← span_eq I}, dsimp only [(•)], erw [span_mul_span, span_mul_span], apply set.subset.antisymm, all_goals { intros x hx, apply span_induction hx, { intros, apply subset_span, assumption }, { apply submodule.zero_mem (span _ _) }, { intros, apply submodule.add_mem (span _ _), assumption' }, { intros a si hsi, apply span_induction hsi, { rintros _ ⟨s, hs, i, hi, rfl⟩, apply subset_span, refine ⟨s, hs, a * i, I.mul_mem_left hi, _⟩, rw [← mul_assoc, mul_comm s a, mul_assoc, smul_def''], refl }, { rw smul_zero, apply submodule.zero_mem (span _ _) }, { intros, rw smul_add, apply submodule.add_mem (span _ _), assumption' }, { intros b si hsi, rw [show a • b • si = b • a • si, by {simp}], apply submodule.smul_mem (span _ _) b hsi } } } end section variables {B : Type*} [comm_ring B] [algebra R B] variables (S : subalgebra R B) lemma span_mono' (X : set B) : (↑(span R X) : set B) ⊆ span S X := λ b hb, span_induction hb (λ x hx, subset_span hx) (span S X).zero_mem (λ x y hx hy, (span S X).add_mem hx hy) (λ r b hb, by { rw algebra.smul_def, exact (span S X).smul_mem (algebra_map S r) hb }) lemma span_span' (X : set B) : span S ↑(span R X) = span S X := le_antisymm (span_le.mpr $ span_mono' S X) (span_mono subset_span) lemma span_span_int (S' : set B) [is_subring S'] (X : set B) : span S' ↑(span ℤ X) = span S' X := le_antisymm begin rw span_le, intros x hx, refine span_induction hx (λ x hx, subset_span hx) (span S' X).zero_mem (λ x y hx hy, (span S' X).add_mem hx hy) _, intros n b hb, erw [smul_def'', ← gsmul_eq_mul], apply is_add_subgroup.gsmul_mem hb, end (span_mono subset_span) end instance mul_action_algebra : mul_action A (submodule R A) := { smul := λ a M, ({a} : set A) • M, mul_smul := λ s t P, show ({s * t} : set A) • _ = _, by { rw [is_mul_hom.map_mul (singleton : A → set A)], apply mul_smul }, one_smul := (submodule.semimodule_set R A).one_smul } end submodule