import data.equiv.algebra import group_theory.quotient_group -- Some stuff is now in mathlib namespace quotient_group theorem map_id {G : Type*} [group G] (K : set G) [normal_subgroup K] (g : quotient K) : map K K id (λ x h, h) g = g := by induction g; refl theorem map_comp {G : Type*} {H : Type*} {J : Type*} [group G] [group H] [group J] (a : G → H) [is_group_hom a] (b : H → J) [is_group_hom b] {G1 : set G} {H1 : set H} {J1 : set J} [normal_subgroup G1] [normal_subgroup H1] [normal_subgroup J1] (h1 : G1 ⊆ a ⁻¹' H1) (h2 : H1 ⊆ b ⁻¹' J1) (g : quotient G1) : map H1 J1 b h2 (map G1 H1 a h1 g) = map G1 J1 (b ∘ a) (λ _ hx, h2 $ h1 hx) g := by induction g; refl end quotient_group open quotient_group -- This version is better (than a previous, deleted version), -- but Mario points out that really I shuold be using a -- relation rather than h2 : he.to_equiv ⁻¹' K = J. def mul_equiv.quotient {G : Type*} {H : Type*} [group G] [group H] (he : G ≃* H) (J : set G) [normal_subgroup J] (K : set H) [normal_subgroup K] (h2 : he.to_equiv ⁻¹' K = J) : mul_equiv (quotient_group.quotient J) (quotient_group.quotient K) := { to_fun := quotient_group.lift J (mk ∘ he) begin unfold set.preimage at h2, intros g hg, rw ←h2 at hg, rw ←is_group_hom.mem_ker (quotient_group.mk : H → quotient_group.quotient K), rwa quotient_group.ker_mk, end, inv_fun := quotient_group.lift K (mk ∘ he.symm) begin intros h hh, rw ←is_group_hom.mem_ker (quotient_group.mk : G → quotient_group.quotient J), rw quotient_group.ker_mk, show he.to_equiv.symm h ∈ J, rw ←h2, show he.to_equiv (he.to_equiv.symm h) ∈ K, convert hh, exact he.to_equiv.right_inv h end, left_inv := λ g, begin induction g, conv begin to_rhs, rw ←he.to_equiv.left_inv g, end, refl, refl, end, right_inv := λ h, begin induction h, conv begin to_rhs, rw ←he.to_equiv.right_inv h, end, refl, refl, end, map_mul' := (quotient_group.is_group_hom_quotient_lift J _ _).map_mul }