/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import data.finset.pointwise /-! # Ruzsa's covering lemma This file proves the Ruzsa covering lemma. This says that, for `s`, `t` finsets, we can cover `s` with at most `(s + t).card / t.card` copies of `t - t`. ## TODO Merge this file with other prerequisites to Freiman's theorem once we have them. -/ open_locale pointwise namespace finset variables {α : Type*} [decidable_eq α] [comm_group α] (s : finset α) {t : finset α} /-- **Ruzsa's covering lemma**. -/ @[to_additive "**Ruzsa's covering lemma**"] lemma exists_subset_mul_div (ht : t.nonempty) : ∃ u : finset α, u.card * t.card ≤ (s * t).card ∧ s ⊆ u * t / t := begin haveI : Π u, decidable ((u : set α).pairwise_disjoint (• t)) := λ u, classical.dec _, set C := s.powerset.filter (λ u, (u : set α).pairwise_disjoint (• t)), obtain ⟨u, hu, hCmax⟩ := C.exists_maximal (filter_nonempty_iff.2 ⟨∅, empty_mem_powerset _, set.pairwise_disjoint_empty⟩), rw [mem_filter, mem_powerset] at hu, refine ⟨u, (card_mul_iff.2 $ pairwise_disjoint_smul_iff.1 hu.2).ge.trans (card_le_of_subset $ mul_subset_mul_right hu.1), λ a ha, _⟩, rw mul_div_assoc, by_cases hau : a ∈ u, { exact subset_mul_left _ ht.one_mem_div hau }, by_cases H : ∀ b ∈ u, disjoint (a • t) (b • t), { refine (hCmax _ _ $ ssubset_insert hau).elim, rw [mem_filter, mem_powerset, insert_subset, coe_insert], exact ⟨⟨ha, hu.1⟩, hu.2.insert $ λ b hb _, H _ hb⟩ }, push_neg at H, simp_rw [not_disjoint_iff, ←inv_smul_mem_iff] at H, obtain ⟨b, hb, c, hc₁, hc₂⟩ := H, exact mem_mul.2 ⟨_, _, hb, mem_div.2 ⟨_, _, hc₂, hc₁, by simp [div_eq_mul_inv a b]⟩, by simp⟩, end end finset