/- Copyright (c) 2020 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import algebra.support /-! # Indicator function - `indicator (s : set α) (f : α → β) (a : α)` is `f a` if `a ∈ s` and is `0` otherwise. - `mul_indicator (s : set α) (f : α → β) (a : α)` is `f a` if `a ∈ s` and is `1` otherwise. ## Implementation note In mathematics, an indicator function or a characteristic function is a function used to indicate membership of an element in a set `s`, having the value `1` for all elements of `s` and the value `0` otherwise. But since it is usually used to restrict a function to a certain set `s`, we let the indicator function take the value `f x` for some function `f`, instead of `1`. If the usual indicator function is needed, just set `f` to be the constant function `λx, 1`. The indicator function is implemented non-computably, to avoid having to pass around `decidable` arguments. This is in contrast with the design of `pi.single` or `set.piecewise`. ## Tags indicator, characteristic -/ open_locale big_operators open function variables {α β ι M N : Type*} namespace set section has_one variables [has_one M] [has_one N] {s t : set α} {f g : α → M} {a : α} /-- `indicator s f a` is `f a` if `a ∈ s`, `0` otherwise. -/ noncomputable def indicator {M} [has_zero M] (s : set α) (f : α → M) : α → M | x := by haveI := classical.dec_pred (∈ s); exact if x ∈ s then f x else 0 /-- `mul_indicator s f a` is `f a` if `a ∈ s`, `1` otherwise. -/ @[to_additive] noncomputable def mul_indicator (s : set α) (f : α → M) : α → M | x := by haveI := classical.dec_pred (∈ s); exact if x ∈ s then f x else 1 @[simp, to_additive] lemma piecewise_eq_mul_indicator [decidable_pred (∈ s)] : s.piecewise f 1 = s.mul_indicator f := funext $ λ x, @if_congr _ _ _ _ (id _) _ _ _ _ iff.rfl rfl rfl @[to_additive] lemma mul_indicator_apply (s : set α) (f : α → M) (a : α) [decidable (a ∈ s)] : mul_indicator s f a = if a ∈ s then f a else 1 := by convert rfl @[simp, to_additive] lemma mul_indicator_of_mem (h : a ∈ s) (f : α → M) : mul_indicator s f a = f a := by { letI := classical.dec (a ∈ s), exact if_pos h } @[simp, to_additive] lemma mul_indicator_of_not_mem (h : a ∉ s) (f : α → M) : mul_indicator s f a = 1 := by { letI := classical.dec (a ∈ s), exact if_neg h } @[to_additive] lemma mul_indicator_eq_one_or_self (s : set α) (f : α → M) (a : α) : mul_indicator s f a = 1 ∨ mul_indicator s f a = f a := begin by_cases h : a ∈ s, { exact or.inr (mul_indicator_of_mem h f) }, { exact or.inl (mul_indicator_of_not_mem h f) } end @[simp, to_additive] lemma mul_indicator_apply_eq_self : s.mul_indicator f a = f a ↔ (a ∉ s → f a = 1) := by letI := classical.dec (a ∈ s); exact ite_eq_left_iff.trans (by rw [@eq_comm _ (f a)]) @[simp, to_additive] lemma mul_indicator_eq_self : s.mul_indicator f = f ↔ mul_support f ⊆ s := by simp only [funext_iff, subset_def, mem_mul_support, mul_indicator_apply_eq_self, not_imp_comm] @[to_additive] lemma mul_indicator_eq_self_of_superset (h1 : s.mul_indicator f = f) (h2 : s ⊆ t) : t.mul_indicator f = f := by { rw mul_indicator_eq_self at h1 ⊢, exact subset.trans h1 h2 } @[simp, to_additive] lemma mul_indicator_apply_eq_one : mul_indicator s f a = 1 ↔ (a ∈ s → f a = 1) := by letI := classical.dec (a ∈ s); exact ite_eq_right_iff @[simp, to_additive] lemma mul_indicator_eq_one : mul_indicator s f = (λ x, 1) ↔ disjoint (mul_support f) s := by simp only [funext_iff, mul_indicator_apply_eq_one, set.disjoint_left, mem_mul_support, not_imp_not] @[simp, to_additive] lemma mul_indicator_eq_one' : mul_indicator s f = 1 ↔ disjoint (mul_support f) s := mul_indicator_eq_one @[to_additive] lemma mul_indicator_apply_ne_one {a : α} : s.mul_indicator f a ≠ 1 ↔ a ∈ s ∩ mul_support f := by simp only [ne.def, mul_indicator_apply_eq_one, not_imp, mem_inter_eq, mem_mul_support] @[simp, to_additive] lemma mul_support_mul_indicator : function.mul_support (s.mul_indicator f) = s ∩ function.mul_support f := ext $ λ x, by simp [function.mem_mul_support, mul_indicator_apply_eq_one] /-- If a multiplicative indicator function is not equal to `1` at a point, then that point is in the set. -/ @[to_additive "If an additive indicator function is not equal to `0` at a point, then that point is in the set."] lemma mem_of_mul_indicator_ne_one (h : mul_indicator s f a ≠ 1) : a ∈ s := not_imp_comm.1 (λ hn, mul_indicator_of_not_mem hn f) h @[to_additive] lemma eq_on_mul_indicator : eq_on (mul_indicator s f) f s := λ x hx, mul_indicator_of_mem hx f @[to_additive] lemma mul_support_mul_indicator_subset : mul_support (s.mul_indicator f) ⊆ s := λ x hx, hx.imp_symm (λ h, mul_indicator_of_not_mem h f) @[simp, to_additive] lemma mul_indicator_mul_support : mul_indicator (mul_support f) f = f := mul_indicator_eq_self.2 subset.rfl @[simp, to_additive] lemma mul_indicator_range_comp {ι : Sort*} (f : ι → α) (g : α → M) : mul_indicator (range f) g ∘ f = g ∘ f := by letI := classical.dec_pred (∈ range f); exact piecewise_range_comp _ _ _ @[to_additive] lemma mul_indicator_congr (h : eq_on f g s) : mul_indicator s f = mul_indicator s g := funext $ λx, by { simp only [mul_indicator], split_ifs, { exact h h_1 }, refl } @[simp, to_additive] lemma mul_indicator_univ (f : α → M) : mul_indicator (univ : set α) f = f := mul_indicator_eq_self.2 $ subset_univ _ @[simp, to_additive] lemma mul_indicator_empty (f : α → M) : mul_indicator (∅ : set α) f = λa, 1 := mul_indicator_eq_one.2 $ disjoint_empty _ @[to_additive] lemma mul_indicator_empty' (f : α → M) : mul_indicator (∅ : set α) f = 1 := mul_indicator_empty f variable (M) @[simp, to_additive] lemma mul_indicator_one (s : set α) : mul_indicator s (λx, (1:M)) = λx, (1:M) := mul_indicator_eq_one.2 $ by simp only [mul_support_one, empty_disjoint] @[simp, to_additive] lemma mul_indicator_one' {s : set α} : s.mul_indicator (1 : α → M) = 1 := mul_indicator_one M s variable {M} @[to_additive] lemma mul_indicator_mul_indicator (s t : set α) (f : α → M) : mul_indicator s (mul_indicator t f) = mul_indicator (s ∩ t) f := funext $ λx, by { simp only [mul_indicator], split_ifs, repeat {simp * at * {contextual := tt}} } @[simp, to_additive] lemma mul_indicator_inter_mul_support (s : set α) (f : α → M) : mul_indicator (s ∩ mul_support f) f = mul_indicator s f := by rw [← mul_indicator_mul_indicator, mul_indicator_mul_support] @[to_additive] lemma comp_mul_indicator (h : M → β) (f : α → M) {s : set α} {x : α} [decidable_pred (∈ s)] : h (s.mul_indicator f x) = s.piecewise (h ∘ f) (const α (h 1)) x := by letI := classical.dec_pred (∈ s); convert s.apply_piecewise f (const α 1) (λ _, h) @[to_additive] lemma mul_indicator_comp_right {s : set α} (f : β → α) {g : α → M} {x : β} : mul_indicator (f ⁻¹' s) (g ∘ f) x = mul_indicator s g (f x) := by { simp only [mul_indicator], split_ifs; refl } @[to_additive] lemma mul_indicator_image {s : set α} {f : β → M} {g : α → β} (hg : injective g) {x : α} : mul_indicator (g '' s) f (g x) = mul_indicator s (f ∘ g) x := by rw [← mul_indicator_comp_right, preimage_image_eq _ hg] @[to_additive] lemma mul_indicator_comp_of_one {g : M → N} (hg : g 1 = 1) : mul_indicator s (g ∘ f) = g ∘ (mul_indicator s f) := begin funext, simp only [mul_indicator], split_ifs; simp [*] end @[to_additive] lemma comp_mul_indicator_const (c : M) (f : M → N) (hf : f 1 = 1) : (λ x, f (s.mul_indicator (λ x, c) x)) = s.mul_indicator (λ x, f c) := (mul_indicator_comp_of_one hf).symm @[to_additive] lemma mul_indicator_preimage (s : set α) (f : α → M) (B : set M) : (mul_indicator s f)⁻¹' B = s.ite (f ⁻¹' B) (1 ⁻¹' B) := by letI := classical.dec_pred (∈ s); exact piecewise_preimage s f 1 B @[to_additive] lemma mul_indicator_preimage_of_not_mem (s : set α) (f : α → M) {t : set M} (ht : (1:M) ∉ t) : (mul_indicator s f)⁻¹' t = f ⁻¹' t ∩ s := by simp [mul_indicator_preimage, pi.one_def, set.preimage_const_of_not_mem ht] @[to_additive] lemma mem_range_mul_indicator {r : M} {s : set α} {f : α → M} : r ∈ range (mul_indicator s f) ↔ (r = 1 ∧ s ≠ univ) ∨ (r ∈ f '' s) := by simp [mul_indicator, ite_eq_iff, exists_or_distrib, eq_univ_iff_forall, and_comm, or_comm, @eq_comm _ r 1] @[to_additive] lemma mul_indicator_rel_mul_indicator {r : M → M → Prop} (h1 : r 1 1) (ha : a ∈ s → r (f a) (g a)) : r (mul_indicator s f a) (mul_indicator s g a) := by { simp only [mul_indicator], split_ifs with has has, exacts [ha has, h1] } end has_one section monoid variables [mul_one_class M] {s t : set α} {f g : α → M} {a : α} @[to_additive] lemma mul_indicator_union_mul_inter_apply (f : α → M) (s t : set α) (a : α) : mul_indicator (s ∪ t) f a * mul_indicator (s ∩ t) f a = mul_indicator s f a * mul_indicator t f a := by by_cases hs : a ∈ s; by_cases ht : a ∈ t; simp * @[to_additive] lemma mul_indicator_union_mul_inter (f : α → M) (s t : set α) : mul_indicator (s ∪ t) f * mul_indicator (s ∩ t) f = mul_indicator s f * mul_indicator t f := funext $ mul_indicator_union_mul_inter_apply f s t @[to_additive] lemma mul_indicator_union_of_not_mem_inter (h : a ∉ s ∩ t) (f : α → M) : mul_indicator (s ∪ t) f a = mul_indicator s f a * mul_indicator t f a := by rw [← mul_indicator_union_mul_inter_apply f s t, mul_indicator_of_not_mem h, mul_one] @[to_additive] lemma mul_indicator_union_of_disjoint (h : disjoint s t) (f : α → M) : mul_indicator (s ∪ t) f = λa, mul_indicator s f a * mul_indicator t f a := funext $ λa, mul_indicator_union_of_not_mem_inter (λ ha, h ha) _ @[to_additive] lemma mul_indicator_mul (s : set α) (f g : α → M) : mul_indicator s (λa, f a * g a) = λa, mul_indicator s f a * mul_indicator s g a := by { funext, simp only [mul_indicator], split_ifs, { refl }, rw mul_one } @[to_additive] lemma mul_indicator_mul' (s : set α) (f g : α → M) : mul_indicator s (f * g) = mul_indicator s f * mul_indicator s g := mul_indicator_mul s f g @[simp, to_additive] lemma mul_indicator_compl_mul_self_apply (s : set α) (f : α → M) (a : α) : mul_indicator sᶜ f a * mul_indicator s f a = f a := classical.by_cases (λ ha : a ∈ s, by simp [ha]) (λ ha, by simp [ha]) @[simp, to_additive] lemma mul_indicator_compl_mul_self (s : set α) (f : α → M) : mul_indicator sᶜ f * mul_indicator s f = f := funext $ mul_indicator_compl_mul_self_apply s f @[simp, to_additive] lemma mul_indicator_self_mul_compl_apply (s : set α) (f : α → M) (a : α) : mul_indicator s f a * mul_indicator sᶜ f a = f a := classical.by_cases (λ ha : a ∈ s, by simp [ha]) (λ ha, by simp [ha]) @[simp, to_additive] lemma mul_indicator_self_mul_compl (s : set α) (f : α → M) : mul_indicator s f * mul_indicator sᶜ f = f := funext $ mul_indicator_self_mul_compl_apply s f @[to_additive] lemma mul_indicator_mul_eq_left {f g : α → M} (h : disjoint (mul_support f) (mul_support g)) : (mul_support f).mul_indicator (f * g) = f := begin refine (mul_indicator_congr $ λ x hx, _).trans mul_indicator_mul_support, have : g x = 1, from nmem_mul_support.1 (disjoint_left.1 h hx), rw [pi.mul_apply, this, mul_one] end @[to_additive] lemma mul_indicator_mul_eq_right {f g : α → M} (h : disjoint (mul_support f) (mul_support g)) : (mul_support g).mul_indicator (f * g) = g := begin refine (mul_indicator_congr $ λ x hx, _).trans mul_indicator_mul_support, have : f x = 1, from nmem_mul_support.1 (disjoint_right.1 h hx), rw [pi.mul_apply, this, one_mul] end @[to_additive] lemma mul_indicator_mul_compl_eq_piecewise [decidable_pred (∈ s)] (f g : α → M) : s.mul_indicator f * sᶜ.mul_indicator g = s.piecewise f g := begin ext x, by_cases h : x ∈ s, { rw [piecewise_eq_of_mem _ _ _ h, pi.mul_apply, set.mul_indicator_of_mem h, set.mul_indicator_of_not_mem (set.not_mem_compl_iff.2 h), mul_one] }, { rw [piecewise_eq_of_not_mem _ _ _ h, pi.mul_apply, set.mul_indicator_of_not_mem h, set.mul_indicator_of_mem (set.mem_compl h), one_mul] }, end /-- `set.mul_indicator` as a `monoid_hom`. -/ @[to_additive "`set.indicator` as an `add_monoid_hom`."] noncomputable def mul_indicator_hom {α} (M) [mul_one_class M] (s : set α) : (α → M) →* (α → M) := { to_fun := mul_indicator s, map_one' := mul_indicator_one M s, map_mul' := mul_indicator_mul s } end monoid section distrib_mul_action variables {A : Type*} [add_monoid A] [monoid M] [distrib_mul_action M A] lemma indicator_smul_apply (s : set α) (r : α → M) (f : α → A) (x : α) : indicator s (λ x, r x • f x) x = r x • indicator s f x := by { dunfold indicator, split_ifs, exacts [rfl, (smul_zero (r x)).symm] } lemma indicator_smul (s : set α) (r : α → M) (f : α → A) : indicator s (λ (x : α), r x • f x) = λ (x : α), r x • indicator s f x := funext $ indicator_smul_apply s r f lemma indicator_const_smul_apply (s : set α) (r : M) (f : α → A) (x : α) : indicator s (λ x, r • f x) x = r • indicator s f x := indicator_smul_apply s (λ x, r) f x lemma indicator_const_smul (s : set α) (r : M) (f : α → A) : indicator s (λ (x : α), r • f x) = λ (x : α), r • indicator s f x := funext $ indicator_const_smul_apply s r f end distrib_mul_action section group variables {G : Type*} [group G] {s t : set α} {f g : α → G} {a : α} @[to_additive] lemma mul_indicator_inv' (s : set α) (f : α → G) : mul_indicator s (f⁻¹) = (mul_indicator s f)⁻¹ := (mul_indicator_hom G s).map_inv f @[to_additive] lemma mul_indicator_inv (s : set α) (f : α → G) : mul_indicator s (λa, (f a)⁻¹) = λa, (mul_indicator s f a)⁻¹ := mul_indicator_inv' s f @[to_additive] lemma mul_indicator_div (s : set α) (f g : α → G) : mul_indicator s (λ a, f a / g a) = λ a, mul_indicator s f a / mul_indicator s g a := (mul_indicator_hom G s).map_div f g @[to_additive] lemma mul_indicator_div' (s : set α) (f g : α → G) : mul_indicator s (f / g) = mul_indicator s f / mul_indicator s g := mul_indicator_div s f g @[to_additive indicator_compl'] lemma mul_indicator_compl (s : set α) (f : α → G) : mul_indicator sᶜ f = f * (mul_indicator s f)⁻¹ := eq_mul_inv_of_mul_eq $ s.mul_indicator_compl_mul_self f lemma indicator_compl {G} [add_group G] (s : set α) (f : α → G) : indicator sᶜ f = f - indicator s f := by rw [sub_eq_add_neg, indicator_compl'] @[to_additive indicator_diff'] lemma mul_indicator_diff (h : s ⊆ t) (f : α → G) : mul_indicator (t \ s) f = mul_indicator t f * (mul_indicator s f)⁻¹ := eq_mul_inv_of_mul_eq $ by rw [pi.mul_def, ← mul_indicator_union_of_disjoint disjoint_diff.symm f, diff_union_self, union_eq_self_of_subset_right h] lemma indicator_diff {G : Type*} [add_group G] {s t : set α} (h : s ⊆ t) (f : α → G) : indicator (t \ s) f = indicator t f - indicator s f := by rw [indicator_diff' h, sub_eq_add_neg] end group section comm_monoid variables [comm_monoid M] /-- Consider a product of `g i (f i)` over a `finset`. Suppose `g` is a function such as `pow`, which maps a second argument of `1` to `1`. Then if `f` is replaced by the corresponding multiplicative indicator function, the `finset` may be replaced by a possibly larger `finset` without changing the value of the sum. -/ @[to_additive] lemma prod_mul_indicator_subset_of_eq_one [has_one N] (f : α → N) (g : α → N → M) {s t : finset α} (h : s ⊆ t) (hg : ∀ a, g a 1 = 1) : ∏ i in s, g i (f i) = ∏ i in t, g i (mul_indicator ↑s f i) := begin rw ← finset.prod_subset h _, { apply finset.prod_congr rfl, intros i hi, congr, symmetry, exact mul_indicator_of_mem hi _ }, { refine λ i hi hn, _, convert hg i, exact mul_indicator_of_not_mem hn _ } end /-- Consider a sum of `g i (f i)` over a `finset`. Suppose `g` is a function such as multiplication, which maps a second argument of 0 to 0. (A typical use case would be a weighted sum of `f i * h i` or `f i • h i`, where `f` gives the weights that are multiplied by some other function `h`.) Then if `f` is replaced by the corresponding indicator function, the `finset` may be replaced by a possibly larger `finset` without changing the value of the sum. -/ add_decl_doc set.sum_indicator_subset_of_eq_zero /-- Taking the product of an indicator function over a possibly larger `finset` is the same as taking the original function over the original `finset`. -/ @[to_additive "Summing an indicator function over a possibly larger `finset` is the same as summing the original function over the original `finset`."] lemma prod_mul_indicator_subset (f : α → M) {s t : finset α} (h : s ⊆ t) : ∏ i in s, f i = ∏ i in t, mul_indicator ↑s f i := prod_mul_indicator_subset_of_eq_one _ (λ a b, b) h (λ _, rfl) @[to_additive] lemma _root_.finset.prod_mul_indicator_eq_prod_filter (s : finset ι) (f : ι → α → M) (t : ι → set α) (g : ι → α) [decidable_pred (λ i, g i ∈ t i)]: ∏ i in s, mul_indicator (t i) (f i) (g i) = ∏ i in s.filter (λ i, g i ∈ t i), f i (g i) := begin refine (finset.prod_filter_mul_prod_filter_not s (λ i, g i ∈ t i) _).symm.trans _, refine eq.trans _ (mul_one _), exact congr_arg2 (*) (finset.prod_congr rfl $ λ x hx, mul_indicator_of_mem (finset.mem_filter.1 hx).2 _) (finset.prod_eq_one $ λ x hx, mul_indicator_of_not_mem (finset.mem_filter.1 hx).2 _) end @[to_additive] lemma mul_indicator_finset_prod (I : finset ι) (s : set α) (f : ι → α → M) : mul_indicator s (∏ i in I, f i) = ∏ i in I, mul_indicator s (f i) := (mul_indicator_hom M s).map_prod _ _ @[to_additive] lemma mul_indicator_finset_bUnion {ι} (I : finset ι) (s : ι → set α) {f : α → M} : (∀ (i ∈ I) (j ∈ I), i ≠ j → disjoint (s i) (s j)) → mul_indicator (⋃ i ∈ I, s i) f = λ a, ∏ i in I, mul_indicator (s i) f a := begin classical, refine finset.induction_on I _ _, { intro h, funext, simp }, assume a I haI ih hI, funext, rw [finset.prod_insert haI, finset.set_bUnion_insert, mul_indicator_union_of_not_mem_inter, ih _], { assume i hi j hj hij, exact hI i (finset.mem_insert_of_mem hi) j (finset.mem_insert_of_mem hj) hij }, simp only [not_exists, exists_prop, mem_Union, mem_inter_eq, not_and], assume hx a' ha', refine disjoint_left.1 (hI a (finset.mem_insert_self _ _) a' (finset.mem_insert_of_mem ha') _) hx, exact (ne_of_mem_of_not_mem ha' haI).symm end @[to_additive] lemma mul_indicator_finset_bUnion_apply {ι} (I : finset ι) (s : ι → set α) {f : α → M} (h : ∀ (i ∈ I) (j ∈ I), i ≠ j → disjoint (s i) (s j)) (x : α) : mul_indicator (⋃ i ∈ I, s i) f x = ∏ i in I, mul_indicator (s i) f x := by rw set.mul_indicator_finset_bUnion I s h end comm_monoid section mul_zero_class variables [mul_zero_class M] {s t : set α} {f g : α → M} {a : α} lemma indicator_mul (s : set α) (f g : α → M) : indicator s (λa, f a * g a) = λa, indicator s f a * indicator s g a := by { funext, simp only [indicator], split_ifs, { refl }, rw mul_zero } lemma indicator_mul_left (s : set α) (f g : α → M) : indicator s (λa, f a * g a) a = indicator s f a * g a := by { simp only [indicator], split_ifs, { refl }, rw [zero_mul] } lemma indicator_mul_right (s : set α) (f g : α → M) : indicator s (λa, f a * g a) a = f a * indicator s g a := by { simp only [indicator], split_ifs, { refl }, rw [mul_zero] } lemma inter_indicator_mul {t1 t2 : set α} (f g : α → M) (x : α) : (t1 ∩ t2).indicator (λ x, f x * g x) x = t1.indicator f x * t2.indicator g x := by { rw [← set.indicator_indicator], simp [indicator] } end mul_zero_class section mul_zero_one_class variables [mul_zero_one_class M] lemma inter_indicator_one {s t : set α} : (s ∩ t).indicator (1 : _ → M) = s.indicator 1 * t.indicator 1 := funext (λ _, by simpa only [← inter_indicator_mul, pi.mul_apply, pi.one_apply, one_mul]) lemma indicator_prod_one {s : set α} {t : set β} {x : α} {y : β} : (s ×ˢ t).indicator (1 : _ → M) (x, y) = s.indicator 1 x * t.indicator 1 y := by { classical, simp [indicator_apply, ←ite_and] } variables (M) [nontrivial M] lemma indicator_eq_zero_iff_not_mem {U : set α} {x : α} : indicator U 1 x = (0 : M) ↔ x ∉ U := by { classical, simp [indicator_apply, imp_false] } lemma indicator_eq_one_iff_mem {U : set α} {x : α} : indicator U 1 x = (1 : M) ↔ x ∈ U := by { classical, simp [indicator_apply, imp_false] } lemma indicator_one_inj {U V : set α} (h : indicator U (1 : α → M) = indicator V 1) : U = V := by { ext, simp_rw [← indicator_eq_one_iff_mem M, h] } end mul_zero_one_class section order variables [has_one M] {s t : set α} {f g : α → M} {a : α} {y : M} section variables [has_le M] @[to_additive] lemma mul_indicator_apply_le' (hfg : a ∈ s → f a ≤ y) (hg : a ∉ s → 1 ≤ y) : mul_indicator s f a ≤ y := begin by_cases ha : a ∈ s, { simpa [ha] using hfg ha }, { simpa [ha] using hg ha }, end @[to_additive] lemma mul_indicator_le' (hfg : ∀ a ∈ s, f a ≤ g a) (hg : ∀ a ∉ s, 1 ≤ g a) : mul_indicator s f ≤ g := λ a, mul_indicator_apply_le' (hfg _) (hg _) @[to_additive] lemma le_mul_indicator_apply {y} (hfg : a ∈ s → y ≤ g a) (hf : a ∉ s → y ≤ 1) : y ≤ mul_indicator s g a := @mul_indicator_apply_le' α Mᵒᵈ ‹_› _ _ _ _ _ hfg hf @[to_additive] lemma le_mul_indicator (hfg : ∀ a ∈ s, f a ≤ g a) (hf : ∀ a ∉ s, f a ≤ 1) : f ≤ mul_indicator s g := λ a, le_mul_indicator_apply (hfg _) (hf _) end variables [preorder M] @[to_additive indicator_apply_nonneg] lemma one_le_mul_indicator_apply (h : a ∈ s → 1 ≤ f a) : 1 ≤ mul_indicator s f a := le_mul_indicator_apply h (λ _, le_rfl) @[to_additive indicator_nonneg] lemma one_le_mul_indicator (h : ∀ a ∈ s, 1 ≤ f a) (a : α) : 1 ≤ mul_indicator s f a := one_le_mul_indicator_apply (h a) @[to_additive] lemma mul_indicator_apply_le_one (h : a ∈ s → f a ≤ 1) : mul_indicator s f a ≤ 1 := mul_indicator_apply_le' h (λ _, le_rfl) @[to_additive] lemma mul_indicator_le_one (h : ∀ a ∈ s, f a ≤ 1) (a : α) : mul_indicator s f a ≤ 1 := mul_indicator_apply_le_one (h a) @[to_additive] lemma mul_indicator_le_mul_indicator (h : f a ≤ g a) : mul_indicator s f a ≤ mul_indicator s g a := mul_indicator_rel_mul_indicator le_rfl (λ _, h) attribute [mono] mul_indicator_le_mul_indicator indicator_le_indicator @[to_additive] lemma mul_indicator_le_mul_indicator_of_subset (h : s ⊆ t) (hf : ∀ a, 1 ≤ f a) (a : α) : mul_indicator s f a ≤ mul_indicator t f a := mul_indicator_apply_le' (λ ha, le_mul_indicator_apply (λ _, le_rfl) (λ hat, (hat $ h ha).elim)) (λ ha, one_le_mul_indicator_apply (λ _, hf _)) @[to_additive] lemma mul_indicator_le_self' (hf : ∀ x ∉ s, 1 ≤ f x) : mul_indicator s f ≤ f := mul_indicator_le' (λ _ _, le_rfl) hf @[to_additive] lemma mul_indicator_Union_apply {ι M} [complete_lattice M] [has_one M] (h1 : (⊥:M) = 1) (s : ι → set α) (f : α → M) (x : α) : mul_indicator (⋃ i, s i) f x = ⨆ i, mul_indicator (s i) f x := begin by_cases hx : x ∈ ⋃ i, s i, { rw [mul_indicator_of_mem hx], rw [mem_Union] at hx, refine le_antisymm _ (supr_le $ λ i, mul_indicator_le_self' (λ x hx, h1 ▸ bot_le) x), rcases hx with ⟨i, hi⟩, exact le_supr_of_le i (ge_of_eq $ mul_indicator_of_mem hi _) }, { rw [mul_indicator_of_not_mem hx], simp only [mem_Union, not_exists] at hx, simp [hx, ← h1] } end end order section canonically_ordered_monoid variables [canonically_ordered_monoid M] @[to_additive] lemma mul_indicator_le_self (s : set α) (f : α → M) : mul_indicator s f ≤ f := mul_indicator_le_self' $ λ _ _, one_le _ @[to_additive] lemma mul_indicator_apply_le {a : α} {s : set α} {f g : α → M} (hfg : a ∈ s → f a ≤ g a) : mul_indicator s f a ≤ g a := mul_indicator_apply_le' hfg $ λ _, one_le _ @[to_additive] lemma mul_indicator_le {s : set α} {f g : α → M} (hfg : ∀ a ∈ s, f a ≤ g a) : mul_indicator s f ≤ g := mul_indicator_le' hfg $ λ _ _, one_le _ end canonically_ordered_monoid lemma indicator_le_indicator_nonneg {β} [linear_order β] [has_zero β] (s : set α) (f : α → β) : s.indicator f ≤ {x | 0 ≤ f x}.indicator f := begin intro x, classical, simp_rw indicator_apply, split_ifs, { exact le_rfl, }, { exact (not_le.mp h_1).le, }, { exact h_1, }, { exact le_rfl, }, end lemma indicator_nonpos_le_indicator {β} [linear_order β] [has_zero β] (s : set α) (f : α → β) : {x | f x ≤ 0}.indicator f ≤ s.indicator f := @indicator_le_indicator_nonneg α βᵒᵈ _ _ s f end set @[to_additive] lemma monoid_hom.map_mul_indicator {M N : Type*} [mul_one_class M] [mul_one_class N] (f : M →* N) (s : set α) (g : α → M) (x : α) : f (s.mul_indicator g x) = s.mul_indicator (f ∘ g) x := congr_fun (set.mul_indicator_comp_of_one f.map_one).symm x