(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) From Coq Require Import ssreflect ssrfun ssrbool. From mathcomp Require Import ssrnat eqtype choice order ssralg ssrnum ssrint. Require Import boolp. (******************************************************************************) (* This file develops tools to make the manipulation of numbers with a known *) (* sign easier, thanks to canonical structures. This adds types like *) (* {posnum R} for positive values in R, a notation e%:pos that infers the *) (* positivity of expression e according to existing canonical instances and *) (* %:num to cast back from type {posnum R} to R. *) (* For instance, given x, y : {posnum R}, we have *) (* ((x%:num + y%:num) / 2)%:pos : {posnum R} automatically inferred. *) (* *) (* * types for values with known sign *) (* {posnum R} == interface type for elements in R that are positive; R *) (* must have a zmodType structure. *) (* Allows to solve automatically goals of the form x > 0 if *) (* x is canonically a {posnum R}. {posnum R} is canonically *) (* stable by common operations. All positive natural numbers *) (* ((n.+1)%:R) are also canonically in {posnum R} *) (* {nonneg R} == interface types for elements in R that are non-negative; *) (* R must have a zmodType structure. Automatically solves *) (* goals of the form x >= 0. {nonneg R} is stable by *) (* common operations. All natural numbers n%:R are also *) (* canonically in {nonneg R}. *) (* {compare x0 & nz & cond} == more generic type of values comparing to *) (* x0 : T according to nz and cond (see below). T must have *) (* a porderType structure. This type is shown to be a *) (* porderType. It is also an orderTpe, as soon as T is a *) (* numDomainType. *) (* {num R & nz & cond} == {compare 0%R : R & nz & cond}. T must have a *) (* zmodType structure. *) (* {= x0} == {compare x0 & ?=0 & =0} *) (* {= x0 : T} == same with an explicit type T *) (* {> x0} == {compare x0 & !=0 & >=0} *) (* {> x0 : T} == same with an explicit type T *) (* {< x0} == {compare x0 & !=0 & <=0} *) (* {< x0 : T} == same with an explicit type T *) (* {>= x0} == {compare x0 & ?=0 & >=0} *) (* {>= x0 : T} == same with an explicit type T *) (* {<= x0} == {compare x0 & ?=0 & <=0} *) (* {<= x0 : T} == same with an explicit type T *) (* {>=< x0} == {compare x0 & ?=0 & >=<0} *) (* {>=< x0 : T} == same with an explicit type T *) (* {>< x0} == {compare x0 & !=0 & >=<0} *) (* {>< x0 : T} == same with an explicit type T *) (* {!= x0} == {compare x0 & !=0 & >?<0} *) (* {!= x0 : T} == same with an explicit type T *) (* {?= x0} == {compare x0 & ?=0 & >?<0} *) (* {?= x0 : T} == same with an explicit type T *) (* *) (* * casts from/to values with known sign *) (* x%:pos == explicitly casts x to {posnum R}, triggers the inference *) (* of a {posnum R} structure for x. *) (* x%:nng == explicitly casts x to {nonneg R}, triggers the inference *) (* of a {nonneg R} structure for x. *) (* x%:sgn == explicitly casts x to the most precise known *) (* {compare x0 & nz & cond} according to existing canonical *) (* instances. *) (* x%:num == explicit cast from {compare x0 & nz & cond} to R. In *) (* particular this works from {posnum R} and {nonneg R} to R.*) (* x%:posnum == explicit cast from {posnum R} to R. *) (* x%:nngnum == explicit cast from {nonneg R} to R. *) (* *) (* * nullity conditions nz *) (* All nz above can be the following (in scope snum_nullity_scope delimited *) (* by %snum_nullity) *) (* !=0 == to encode x != 0 *) (* ?=0 == unknown nullity *) (* *) (* * reality conditions cond *) (* All cond above can be the following (in scope snum_sign_scope delimited by *) (* by %snum_sign) *) (* =0 == to encode x == 0 *) (* >=0 == to encode x >= 0 *) (* <=0 == to encode x <= 0 *) (* >=<0 == to encode x >=< 0 *) (* >?<0 == unknown reality *) (* *) (* * sign proofs *) (* [sgn of x] == proof that x is of sign inferred by x%:sgn *) (* [gt0 of x] == proof that x > 0 *) (* [lt0 of x] == proof that x < 0 *) (* [ge0 of x] == proof that x >= 0 *) (* [le0 of x] == proof that x <= 0 *) (* [cmp0 of x] == proof that 0 >=< x *) (* [neq0 of x] == proof that x != 0 *) (* *) (* * constructors *) (* PosNum xgt0 == builds a {posnum R} from a proof xgt0 : x > 0 where x : R *) (* NngNum xge0 == builds a {posnum R} from a proof xgt0 : x >= 0 where x : R*) (* Signed.mk p == builds a {compare x0 & nz & cond} from a proof p that *) (* some x satisfies sign conditions encoded by nz and cond *) (* *) (* * misc *) (* !! x == triggers pretyping to fill the holes of the term x. The *) (* main use case is to trigger typeclass inference in the *) (* body of a ssreflect have := !! body. *) (* Credits: Enrico Tassi. *) (* 2 == notation for 2%:R. *) (* *) (* --> A number of canonical instances are provided for common operations, if *) (* your favorite operator is missing, look below for examples on how to add *) (* the appropriate Canonical. *) (* --> Canonical instances are also provided according to types, as a *) (* fallback when no known operator appears in the expression. Look to *) (* nat_snum below for an example on how to add your favorite type. *) (******************************************************************************) Reserved Notation "{ 'compare' x0 & nz & cond }" (at level 0, x0 at level 200, nz at level 200, format "{ 'compare' x0 & nz & cond }"). Reserved Notation "{ 'num' R & nz & cond }" (at level 0, R at level 200, nz at level 200, format "{ 'num' R & nz & cond }"). Reserved Notation "{ = x0 }" (at level 0, format "{ = x0 }"). Reserved Notation "{ > x0 }" (at level 0, format "{ > x0 }"). Reserved Notation "{ < x0 }" (at level 0, format "{ < x0 }"). Reserved Notation "{ >= x0 }" (at level 0, format "{ >= x0 }"). Reserved Notation "{ <= x0 }" (at level 0, format "{ <= x0 }"). Reserved Notation "{ >=< x0 }" (at level 0, format "{ >=< x0 }"). Reserved Notation "{ >< x0 }" (at level 0, format "{ >< x0 }"). Reserved Notation "{ != x0 }" (at level 0, format "{ != x0 }"). Reserved Notation "{ ?= x0 }" (at level 0, format "{ ?= x0 }"). Reserved Notation "{ = x0 : T }" (at level 0, format "{ = x0 : T }"). Reserved Notation "{ > x0 : T }" (at level 0, format "{ > x0 : T }"). Reserved Notation "{ < x0 : T }" (at level 0, format "{ < x0 : T }"). Reserved Notation "{ >= x0 : T }" (at level 0, format "{ >= x0 : T }"). Reserved Notation "{ <= x0 : T }" (at level 0, format "{ <= x0 : T }"). Reserved Notation "{ >=< x0 : T }" (at level 0, format "{ >=< x0 : T }"). Reserved Notation "{ >< x0 : T }" (at level 0, format "{ >< x0 : T }"). Reserved Notation "{ != x0 : T }" (at level 0, format "{ != x0 : T }"). Reserved Notation "{ ?= x0 : T }" (at level 0, format "{ ?= x0 : T }"). Reserved Notation "=0" (at level 0, format "=0"). Reserved Notation ">=0" (at level 0, format ">=0"). Reserved Notation "<=0" (at level 0, format "<=0"). Reserved Notation ">=<0" (at level 0, format ">=<0"). Reserved Notation ">?<0" (at level 0, format ">?<0"). Reserved Notation "!=0" (at level 0, format "!=0"). Reserved Notation "?=0" (at level 0, format "?=0"). Reserved Notation "x %:sgn" (at level 2, format "x %:sgn"). Reserved Notation "x %:num" (at level 2, format "x %:num"). Reserved Notation "x %:posnum" (at level 2, format "x %:posnum"). Reserved Notation "x %:nngnum" (at level 2, format "x %:nngnum"). Reserved Notation "[ 'sgn' 'of' x ]" (format "[ 'sgn' 'of' x ]"). Reserved Notation "[ 'gt0' 'of' x ]" (format "[ 'gt0' 'of' x ]"). Reserved Notation "[ 'lt0' 'of' x ]" (format "[ 'lt0' 'of' x ]"). Reserved Notation "[ 'ge0' 'of' x ]" (format "[ 'ge0' 'of' x ]"). Reserved Notation "[ 'le0' 'of' x ]" (format "[ 'le0' 'of' x ]"). Reserved Notation "[ 'cmp0' 'of' x ]" (format "[ 'cmp0' 'of' x ]"). Reserved Notation "[ 'neq0' 'of' x ]" (format "[ 'neq0' 'of' x ]"). Reserved Notation "{ 'posnum' R }" (at level 0, format "{ 'posnum' R }"). Reserved Notation "{ 'nonneg' R }" (at level 0, format "{ 'nonneg' R }"). Reserved Notation "x %:pos" (at level 2, format "x %:pos"). Reserved Notation "x %:nng" (at level 2, format "x %:nng"). Reserved Notation "!! x" (at level 100, only parsing). Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import Order.TTheory Order.Syntax. Import GRing.Theory Num.Theory. Local Open Scope ring_scope. Local Open Scope order_scope. Declare Scope snum_scope. Delimit Scope snum_scope with snum. Declare Scope snum_sign_scope. Delimit Scope snum_sign_scope with snum_sign. Declare Scope snum_nullity_scope. Delimit Scope snum_nullity_scope with snum_nullity. Notation "!! x" := (ltac:(refine x)) (only parsing). (* infer class to help typeclass inference on the fly *) Class infer (P : Prop) := Infer : P. #[global] Hint Mode infer ! : typeclass_instances. #[global] Hint Extern 0 (infer _) => (exact) : typeclass_instances. Lemma inferP (P : Prop) : P -> infer P. Proof. by []. Qed. Module Import KnownSign. Variant nullity := NonZero | MaybeZero. Coercion nullity_bool nz := if nz is NonZero then true else false. Definition nz_of_bool b := if b then NonZero else MaybeZero. Variant sign := EqZero | NonNeg | NonPos. Variant real := Sign of sign | AnySign. Variant reality := Real of real | Arbitrary. Definition wider_nullity xnz ynz := match xnz, ynz with | MaybeZero, _ | NonZero, NonZero => true | NonZero, MaybeZero => false end. Definition wider_sign xs ys := match xs, ys with | NonNeg, NonNeg | NonNeg, EqZero | NonPos, NonPos | NonPos, EqZero | EqZero, EqZero => true | NonNeg, NonPos | NonPos, NonNeg | EqZero, NonPos | EqZero, NonNeg => false end. Definition wider_real xr yr := match xr, yr with | AnySign, _ => true | Sign sx, Sign sy => wider_sign sx sy | Sign _, AnySign => false end. Definition wider_reality xr yr := match xr, yr with | Arbitrary, _ => true | Real xr, Real yr => wider_real xr yr | Real _, Arbitrary => false end. End KnownSign. Module Signed. Section Signed. Context (disp : unit) (T : porderType disp) (x0 : T). Local Coercion is_real r := if r is Real _ then true else false. Definition reality_cond (n : reality) (x : T) := match n with | Real (Sign EqZero) => x == x0 | Real (Sign NonNeg) => x >= x0 | Real (Sign NonPos) => x <= x0 | Real AnySign => (x0 <= x) || (x <= x0) | Arbitary => true end. Record def (nz : nullity) (cond : reality) := Def { r :> T; #[canonical=no] P : (nz ==> (r != x0)) && reality_cond cond r }. End Signed. Notation spec x0 nz cond x := ((nullity_bool nz%snum_nullity ==> (x != x0)) && (reality_cond x0 cond%snum_sign x)). Record typ d nz cond := Typ { sort : porderType d; #[canonical=no] sort_x0 : sort; #[canonical=no] allP : forall x : sort, spec sort_x0 nz cond x }. Definition mk {d T} x0 nz cond r P : @def d T x0 nz cond := @Def d T x0 nz cond r P. Definition from {d T x0 nz cond} {x : @def d T x0 nz cond} (phx : phantom T x) := x. Definition fromP {d T x0 nz cond} {x : @def d T x0 nz cond} (phx : phantom T x) := P x. Module Exports. Coercion Sign : sign >-> real. Coercion Real : real >-> reality. Coercion is_real : reality >-> bool. Bind Scope snum_sign_scope with sign. Bind Scope snum_sign_scope with reality. Bind Scope snum_nullity_scope with nullity. Notation "=0" := EqZero : snum_sign_scope. Notation ">=0" := NonNeg : snum_sign_scope. Notation "<=0" := NonPos : snum_sign_scope. Notation ">=<0" := AnySign : snum_sign_scope. Notation ">?<0" := Arbitrary : snum_sign_scope. Notation "!=0" := NonZero : snum_nullity_scope. Notation "?=0" := MaybeZero : snum_nullity_scope. Notation "{ 'compare' x0 & nz & cond }" := (def x0 nz cond) : type_scope. Notation "{ 'num' R & nz & cond }" := (def (0%R : R) nz cond) : ring_scope. Notation "{ = x0 : T }" := (def (x0 : T) MaybeZero EqZero) : type_scope. Notation "{ > x0 : T }" := (def (x0 : T) NonZero NonNeg) : type_scope. Notation "{ < x0 : T }" := (def (x0 : T) NonZero NonPos) : type_scope. Notation "{ >= x0 : T }" := (def (x0 : T) MaybeZero NonNeg) : type_scope. Notation "{ <= x0 : T }" := (def (x0 : T) MaybeZero NonPos) : type_scope. Notation "{ >< x0 : T }" := (def (x0 : T) NonZero Real) : type_scope. Notation "{ >=< x0 : T }" := (def (x0 : T) MaybeZero Real) : type_scope. Notation "{ != x0 : T }" := (def (x0 : T) NonZero Arbitrary) : type_scope. Notation "{ ?= x0 : T }" := (def (x0 : T) MaybeZero Arbitrary) : type_scope. Notation "{ = x0 }" := (def x0 MaybeZero EqZero) : type_scope. Notation "{ > x0 }" := (def x0 NonZero NonNeg) : type_scope. Notation "{ < x0 }" := (def x0 NonZero NonPos) : type_scope. Notation "{ >= x0 }" := (def x0 MaybeZero NonNeg) : type_scope. Notation "{ <= x0 }" := (def x0 MaybeZero NonPos) : type_scope. Notation "{ >< x0 }" := (def x0 NonZero Real) : type_scope. Notation "{ >=< x0 }" := (def x0 MaybeZero Real) : type_scope. Notation "{ != x0 }" := (def x0 NonZero Arbitrary) : type_scope. Notation "{ ?= x0 }" := (def x0 MaybeZero Arbitrary) : type_scope. Notation "x %:sgn" := (from (Phantom _ x)) : ring_scope. Notation "[ 'sgn' 'of' x ]" := (fromP (Phantom _ x)) : ring_scope. Notation num := r. Notation "x %:num" := (r x) : ring_scope. Definition posnum (R : numDomainType) of phant R := {> 0%R : R}. Notation "{ 'posnum' R }" := (@posnum _ (Phant R)) : ring_scope. Notation "x %:posnum" := (@num _ _ 0%R !=0 >=0 x) : ring_scope. Definition nonneg (R : numDomainType) of phant R := {>= 0%R : R}. Notation "{ 'nonneg' R }" := (@nonneg _ (Phant R)) : ring_scope. Notation "x %:nngnum" := (@num _ _ 0%R ?=0 >=0 x) : ring_scope. Notation "2" := 2%:R : ring_scope. Arguments r {disp T x0 nz cond}. End Exports. End Signed. Export Signed.Exports. Section POrder. Variables (d : unit) (T : porderType d) (x0 : T) (nz : nullity) (cond : reality). Local Notation sT := {compare x0 & nz & cond}. Canonical signed_subType := [subType for @Signed.r d T x0 nz cond]. Definition signed_eqMixin := [eqMixin of sT by <:]. Canonical signed_eqType := EqType sT signed_eqMixin. Definition signed_choiceMixin := [choiceMixin of sT by <:]. Canonical signed_choiceType := ChoiceType sT signed_choiceMixin. Definition signed_porderMixin := [porderMixin of sT by <:]. Canonical signed_porderType := POrderType d sT signed_porderMixin. End POrder. Lemma top_typ_subproof d (T : porderType d) (x0 x : T) : Signed.spec x0 ?=0 >?<0 x. Proof. by []. Qed. Canonical top_typ d (T : porderType d) (x0 : T) := Signed.Typ (top_typ_subproof x0). Lemma real_domain_typ_subproof (R : realDomainType) (x : R) : Signed.spec 0%R ?=0 >=<0 x. Proof. by rewrite /= -realE num_real. Qed. Canonical real_domain_typ (R : realDomainType) := Signed.Typ (@real_domain_typ_subproof R). Lemma real_field_typ_subproof (R : realFieldType) (x : R) : Signed.spec 0%R ?=0 >=<0 x. Proof. exact: real_domain_typ_subproof. Qed. Canonical real_field_typ (R : realFieldType) := Signed.Typ (@real_field_typ_subproof R). Lemma nat_typ_subproof (x : nat) : Signed.spec 0%N ?=0 >=0 x. Proof. by []. Qed. Canonical nat_typ := Signed.Typ nat_typ_subproof. Lemma typ_snum_subproof d nz cond (xt : Signed.typ d nz cond) (x : Signed.sort xt) : Signed.spec (Signed.sort_x0 xt) nz cond x. Proof. by move: xt x => []. Qed. (* This adds _ <- Signed.r ( typ_snum ) to canonical projections (c.f., Print Canonical Projections Signed.r) meaning that if no other canonical instance (with a registered head symbol) is found, a canonical instance of Signed.typ, like the ones above, will be looked for. *) Canonical typ_snum d nz cond (xt : Signed.typ d nz cond) (x : Signed.sort xt) := Signed.mk (typ_snum_subproof x). (* Section Order. *) (* Variables (d : unit) (T : orderType d) (x0 : T) (nz : nullity) (cond : reality). *) (* Local Notation sT := {compare x0 & nz & cond}. *) (* Lemma signed_le_total : totalPOrderMixin [porderType of sT]. *) (* Proof. by move=> x y; apply: le_total. Qed. *) (* Canonical signed_latticeType := LatticeType sT signed_le_total. *) (* Canonical signed_distrLatticeType := DistrLatticeType sT signed_le_total. *) (* Canonical signed_orderType := OrderType sT signed_le_total. *) (* End Order. *) Class unify {T} f (x y : T) := Unify : f x y = true. #[global] Hint Mode unify - - - + : typeclass_instances. Class unify' {T} f (x y : T) := Unify' : f x y = true. #[global] Instance unify'P {T} f (x y : T) : unify' f x y -> unify f x y := id. #[global] Hint Extern 0 (unify' _ _ _) => vm_compute; reflexivity : typeclass_instances. Notation unify_nz nzx nzy := (unify wider_nullity nzx%snum_nullity nzy%snum_nullity). Notation unify_r rx ry := (unify wider_reality rx%snum_sign ry%snum_sign). #[global] Instance anysign_wider_real sign : unify_r (Real AnySign) (Real sign). Proof. by []. Qed. #[global] Instance any_reality_wider_eq0 cond : unify_r cond =0. Proof. by case: cond => [[[]|]|]. Qed. Section Theory. Context {d : unit} {T : porderType d} {x0 : T} {nz : nullity} {cond : reality}. Local Notation sT := {compare x0 & nz & cond}. Implicit Type x : sT. Lemma signed_intro {x} : x%:num = x%:num :> T. Proof. by []. Qed. Lemma bottom x : unify_nz !=0 nz -> unify_r =0 cond -> False. Proof. by move: x => [x /= /andP[]]; move: cond nz => [[[]|]|] [] //= /[swap] ->. Qed. Lemma gt0 x : unify_nz !=0 nz -> unify_r >=0 cond -> x0 < x%:num :> T. Proof. move: x => [x /= /andP[]]. by move: cond nz => [[[]|]|] [] //=; rewrite lt_def => -> // /eqP -> /=. Qed. Lemma le0F x : unify_nz !=0 nz -> unify_r >=0 cond -> x%:num <= x0 :> T = false. Proof. by move=> ? ?; rewrite lt_geF//; apply: gt0. Qed. Lemma lt0 x : unify_nz !=0 nz -> unify_r <=0 cond -> x%:num < x0 :> T. Proof. move: x => [x /= /andP[]]. move: cond nz => [[[]|]|] [] //=; rewrite lt_def [x0 == _]eq_sym => -> //. by move=> /eqP -> /=. Qed. Lemma ge0F x : unify_nz !=0 nz -> unify_r <=0 cond -> x0 <= x%:num :> T = false. Proof. by move=> ? ?; rewrite lt_geF//; apply: lt0. Qed. Lemma ge0 x : unify_r >=0 cond -> x0 <= x%:num :> T. Proof. by case: x => [x /= /andP[]]; move: cond nz => [[[]|]|] [] //= _ /eqP ->. Qed. Lemma lt0F x : unify_r >=0 cond -> x%:num < x0 :> T = false. Proof. by move=> ?; rewrite le_gtF//; apply: ge0. Qed. Lemma le0 x : unify_r <=0 cond -> x0 >= x%:num :> T. Proof. by case: x => [x /= /andP[]]; move: cond nz => [[[]|]|] [] //= _ /eqP ->. Qed. Lemma gt0F x : unify_r <=0 cond -> x0 < x%:num :> T = false. Proof. by move=> ?; rewrite le_gtF//; apply: le0. Qed. Lemma cmp0 x : unify_r (Real AnySign) cond -> (x0 >=< x%:num). Proof. case: x => [x /= /andP[]]. by move: cond nz => [[[]|]|] [] //= _; do ?[by move=> /eqP ->; rewrite comparablexx]; move=> sx; rewrite /Order.comparable sx// orbT. Qed. Lemma neq0 x : unify_nz !=0 nz -> x%:num != x0 :> T. Proof. by case: x => [x /= /andP[]]; move: cond nz => [[[]|]|] []. Qed. Lemma eq0F x : unify_nz !=0 nz -> x%:num == x0 :> T = false. Proof. by move=> /neq0-/(_ x)/negPf->. Qed. Lemma eq0 x : unify_r =0 cond -> x%:num = x0. Proof. by case: x => [x /= /andP[_]]; move: cond nz => [[[]|]|] [] //= /eqP ->. Qed. Lemma widen_signed_subproof x nz' cond' : unify_nz nz' nz -> unify_r cond' cond -> Signed.spec x0 nz' cond' x%:num. Proof. case: x => [x /= /andP[]]. by case: cond nz cond' nz' => [[[]|]|] [] [[[]|]|] [] //= nz'' cond''; rewrite ?nz'' ?cond'' ?orbT //; move: cond'' nz'' => /eqP ->; rewrite lexx. Qed. Definition widen_signed x nz' cond' (unz : unify_nz nz' nz) (ucond : unify_r cond' cond) := Signed.mk (widen_signed_subproof x unz ucond). Lemma widen_signedE x (unz : unify_nz nz nz) (ucond : unify_r cond cond) : @widen_signed x nz cond unz ucond = x. Proof. exact/val_inj. Qed. Lemma posE (x : sT) (unz : unify_nz !=0 nz) (ucond : unify_r >=0 cond) : (widen_signed x%:num%:sgn unz ucond)%:num = x%:num. Proof. by []. Qed. Lemma nngE (x : sT) (unz : unify_nz ?=0 nz) (ucond : unify_r >=0 cond) : (widen_signed x%:num%:sgn unz ucond)%:num = x%:num. Proof. by []. Qed. End Theory. Arguments bottom {d T x0 nz cond} _ {_ _}. Arguments gt0 {d T x0 nz cond} _ {_ _}. Arguments le0F {d T x0 nz cond} _ {_ _}. Arguments lt0 {d T x0 nz cond} _ {_ _}. Arguments ge0F {d T x0 nz cond} _ {_ _}. Arguments ge0 {d T x0 nz cond} _ {_}. Arguments lt0F {d T x0 nz cond} _ {_}. Arguments le0 {d T x0 nz cond} _ {_}. Arguments gt0F {d T x0 nz cond} _ {_}. Arguments cmp0 {d T x0 nz cond} _ {_}. Arguments neq0 {d T x0 nz cond} _ {_}. Arguments eq0F {d T x0 nz cond} _ {_}. Arguments eq0 {d T x0 nz cond} _ {_}. Arguments widen_signed {d T x0 nz cond} _ {_ _ _ _}. Arguments widen_signedE {d T x0 nz cond} _ {_ _}. Arguments posE {d T x0 nz cond} _ {_ _}. Arguments nngE {d T x0 nz cond} _ {_ _}. Notation "[ 'gt0' 'of' x ]" := (ltac:(refine (gt0 x%:sgn))). Notation "[ 'lt0' 'of' x ]" := (ltac:(refine (lt0 x%:sgn))). Notation "[ 'ge0' 'of' x ]" := (ltac:(refine (ge0 x%:sgn))). Notation "[ 'le0' 'of' x ]" := (ltac:(refine (le0 x%:sgn))). Notation "[ 'cmp0' 'of' x ]" := (ltac:(refine (cmp0 x%:sgn))). Notation "[ 'neq0' 'of' x ]" := (ltac:(refine (neq0 x%:sgn))). #[global] Hint Extern 0 (is_true (0%R < _)%O) => solve [apply: gt0] : core. #[global] Hint Extern 0 (is_true (_ < 0%R)%O) => solve [apply: lt0] : core. #[global] Hint Extern 0 (is_true (0%R <= _)%O) => solve [apply: ge0] : core. #[global] Hint Extern 0 (is_true (_ <= 0%R)%O) => solve [apply: le0] : core. #[global] Hint Extern 0 (is_true (_ \is Num.real)) => solve [apply: cmp0] : core. #[global] Hint Extern 0 (is_true (0%R >=< _)%O) => solve [apply: cmp0] : core. #[global] Hint Extern 0 (is_true (_ != 0%R)%O) => solve [apply: neq0] : core. Notation "x %:pos" := (widen_signed x%:sgn : {posnum _}) (only parsing) : ring_scope. Notation "x %:nng" := (widen_signed x%:sgn : {nonneg _}) (only parsing) : ring_scope. Notation "x %:pos" := (@widen_signed _ _ _ _ _ (@Signed.from _ _ _ _ _ _ (Phantom _ x)) !=0 (Real (Sign >=0)) _ _) (only printing) : ring_scope. Notation "x %:nng" := (@widen_signed _ _ _ _ _ (@Signed.from _ _ _ _ _ _ (Phantom _ x)) ?=0 (Real (Sign >=0)) _ _) (only printing) : ring_scope. Local Open Scope ring_scope. Section Order. Variables (R : numDomainType) (nz : nullity) (r : real). Local Notation nR := {num R & nz & r}. Lemma signed_le_total : totalPOrderMixin [porderType of nR]. Proof. by move=> x y; apply: real_comparable => /=. Qed. Canonical signed_latticeType := LatticeType nR signed_le_total. Canonical signed_distrLatticeType := DistrLatticeType nR signed_le_total. Canonical signed_orderType := OrderType nR signed_le_total. End Order. Section POrderStability. Context {disp : unit} {T : porderType disp} {x0 : T}. Definition min_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) := nz_of_bool (xnz && ynz || xnz && yr && match xr with Real (Sign <=0) => true | _ => false end || ynz && match yr with Real (Sign <=0) => true | _ => false end). Arguments min_nonzero_subdef /. Definition min_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality := match xr, yr with | Real (Sign =0), Real (Sign =0) | Real (Sign =0), Real (Sign >=0) | Real (Sign >=0), Real (Sign =0) => =0 | Real (Sign >=0), Real (Sign >=0) => >=0 | Real (Sign <=0), Real _ | Real _, Real (Sign <=0) => <=0 | Real _, Real _ => >=<0 | _, _ => >?<0 end. Arguments min_reality_subdef /. Lemma min_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr}) (rnz := min_nonzero_subdef xnz ynz xr yr) (rrl := min_reality_subdef xnz ynz xr yr) : Signed.spec x0 rnz rrl (Order.min x%:num y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; rewrite /Order.min; do ?[by case: (bottom x)|by case: (bottom y) |by case: ifP; rewrite ?eq0F// => xlty; have := !! lt_trans xlty (lt0 y); rewrite lt_neqAle => /andP[] |by rewrite ifT ?eq0F//; apply: lt_le_trans (ge0 y); exact: lt0 |by have := !! le0 y; rewrite le_eqVlt => /predU1P[->|]; rewrite ?lt0 ?eq0F//; case: ifP => _; rewrite ?eq0F// lt_neqAle => /andP[]]. have /orP[x0ley|] := !! cmp0 y. by rewrite ifT ?eq0F//; apply: lt_le_trans x0ley; exact: lt0. rewrite le_eqVlt => /predU1P[->|]; rewrite ?lt0 ?eq0F//. by case: ifP => _; rewrite ?eq0F// lt_neqAle => /andP[]. move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; do ?[by case: (bottom x)|by case: (bottom y) |by apply: comparable_minr; exact: cmp0 |by rewrite minEle; case: ifP; rewrite ge0 |by rewrite ?eq0 minEle ?ge0 |by rewrite ?eq0 minElt; case: ifP; rewrite ?eq0// lt0F |by rewrite minEle; case: ifP => [xlty|]; rewrite ?le0//; apply: (le_trans xlty); rewrite le0 |by have /orP[x0ley|] := !! cmp0 y; [rewrite minEle ifT ?le0//; apply: le_trans x0ley; exact: le0 |rewrite minEle; case: ifP => //; exact: le_trans]]. Qed. Canonical min_snum (xnz ynz : nullity) (xr yr : reality) (x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr}) := Signed.mk (min_snum_subproof x y). Definition max_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) := nz_of_bool (xnz && ynz || xnz && match xr with Real (Sign >=0) => true | _ => false end || ynz && xr && match yr with Real (Sign >=0) => true | _ => false end). Arguments max_nonzero_subdef /. Definition max_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality := match xr, yr with | Real (Sign =0), Real (Sign =0) | Real (Sign =0), Real (Sign <=0) | Real (Sign <=0), Real (Sign =0) => =0 | Real (Sign <=0), Real (Sign <=0) => <=0 | Real (Sign >=0), Real _ | Real _, Real (Sign >=0) => >=0 | Real _, Real _ => >=<0 | _, _ => >?<0 end. Arguments max_reality_subdef /. Lemma max_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr}) (rnz := max_nonzero_subdef xnz ynz xr yr) (rrl := max_reality_subdef xnz ynz xr yr) : Signed.spec x0 rnz rrl (Order.max x%:num y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; rewrite maxElt; do ?[by case: (bottom x)|by case: (bottom y) |by case: ifP => [xlty|]; rewrite ?eq0F//; do [suff : (x0 < y%:num)%O by rewrite lt_def => /andP[]]; apply: le_lt_trans xlty; exact: ge0 |by rewrite ifT ?eq0F//; apply: le_lt_trans (gt0 y); exact: le0 |by have := !! ge0 x; rewrite le_eqVlt => /predU1P[<-|]; rewrite ?gt0 ?eq0F//; case: ifP => _; rewrite ?eq0F// lt_def => /andP[]]. have /orP[|xlex0] := !! cmp0 x. rewrite le_eqVlt => /predU1P[<-|]; rewrite ?gt0 ?eq0F//. by case: ifP => _; rewrite ?eq0F// lt_def => /andP[]. by rewrite ifT ?eq0F//; apply: (le_lt_trans xlex0); exact: gt0. move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; do ?[by case: (bottom x)|by case: (bottom y) |by apply: comparable_maxr; exact: cmp0 |by rewrite ?eq0 maxEle ?le0 |by rewrite ?eq0 maxElt ifF// le_gtF// le0 |by rewrite maxEle; case: ifP; rewrite ?ge0//; exact/le_trans/ge0 |by rewrite maxElt; case: ifP => [xlty|]; rewrite ?le0// |by have /orP[|xlex0] := !! cmp0 x; [rewrite maxEle; case: ifP => // /[swap]; exact: le_trans |rewrite maxEle ifT ?ge0//; apply: (le_trans xlex0); exact: ge0]]. Qed. Canonical max_snum (xnz ynz : nullity) (xr yr : reality) (x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr}) := Signed.mk (max_snum_subproof x y). End POrderStability. Section NumDomainStability. Context {R : numDomainType}. Lemma zero_snum_subproof : Signed.spec 0 ?=0 =0 (0 : R). Proof. exact: eqxx. Qed. Canonical zero_snum := Signed.mk zero_snum_subproof. Lemma one_snum_subproof : Signed.spec 0 !=0 >=0 (1 : R). Proof. by rewrite /= oner_eq0 ler01. Qed. Canonical one_snum := Signed.mk one_snum_subproof. Definition opp_reality_subdef (xnz : nullity) (xr : reality) : reality := match xr with | Real (Sign =0) => =0 | Real (Sign >=0) => <=0 | Real (Sign <=0) => >=0 | Real AnySign => >=<0 | Arbitrary => >?<0 end. Lemma opp_snum_subproof (xnz : nullity) (xr : reality) (x : {num R & xnz & xr}) (r := opp_reality_subdef xnz xr) : Signed.spec 0 xnz r (- x%:num). Proof. by rewrite {}/r; case: xr x => [[[]|]|]//= [r]/=; rewrite oppr_eq0 ?(oppr_ge0, oppr_le0)// orbC. Qed. Canonical opp_snum (xnz : nullity) (xr : reality) (x : {num R & xnz & xr}) := Signed.mk (opp_snum_subproof x). Definition add_samesign_subdef (xnz ynz : nullity) (xr yr : reality) := match xr, yr with | Real (Sign >=0), Real (Sign =0) | Real (Sign =0), Real (Sign >=0) | Real (Sign <=0), Real (Sign =0) | Real (Sign =0), Real (Sign <=0) | Real (Sign =0), Real (Sign =0) | Real (Sign >=0), Real (Sign >=0) | Real (Sign <=0), Real (Sign <=0) => true | _, _ => false end. Definition add_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) := nz_of_bool (add_samesign_subdef xnz ynz xr yr && (xnz || ynz)). Arguments add_nonzero_subdef /. Definition add_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality := match xr, yr with | Real (Sign =0), Real (Sign =0) => =0 | Real (Sign >=0), Real (Sign =0) | Real (Sign =0), Real (Sign >=0) | Real (Sign >=0), Real (Sign >=0) => >=0 | Real (Sign <=0), Real (Sign =0) | Real (Sign =0), Real (Sign <=0) | Real (Sign <=0), Real (Sign <=0) => <=0 | Real _, Real _ => >=<0 | _, _ => >?<0 end. Arguments add_reality_subdef /. Lemma add_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {num R & xnz & xr}) (y : {num R & ynz & yr}) (rnz := add_nonzero_subdef xnz ynz xr yr) (rrl := add_reality_subdef xnz ynz xr yr) : Signed.spec 0 rnz rrl (x%:num + y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; by rewrite 1?addr_ss_eq0 ?(eq0F, ge0, le0, andbF, orbT). have addr_le0 a b : a <= 0 -> b <= 0 -> a + b <= 0. by rewrite -!oppr_ge0 opprD; apply: addr_ge0. move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; do ?[by rewrite addr_ge0|by rewrite addr_le0|by rewrite -realE realD |by case: (bottom x)|by case: (bottom y)|by rewrite !eq0 addr0]. Qed. Canonical add_snum (xnz ynz : nullity) (xr yr : reality) (x : {num R & xnz & xr}) (y : {num R & ynz & yr}) := Signed.mk (add_snum_subproof x y). Definition mul_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) := nz_of_bool (xnz && ynz). Arguments mul_nonzero_subdef /. Definition mul_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality := match xr, yr with | Real (Sign =0), _ | _, Real (Sign =0) => =0 | Real (Sign >=0), Real (Sign >=0) | Real (Sign <=0), Real (Sign <=0) => >=0 | Real (Sign >=0), Real (Sign <=0) | Real (Sign <=0), Real (Sign >=0) => <=0 | Real _, Real _ => >=<0 | _ , _ => >?<0 end. Arguments mul_reality_subdef /. Lemma mul_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {num R & xnz & xr}) (y : {num R & ynz & yr}) (rnz := mul_nonzero_subdef xnz ynz xr yr) (rrl := mul_reality_subdef xnz ynz xr yr) : Signed.spec 0 rnz rrl (x%:num * y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []// x y; rewrite mulf_neq0. by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []/= x y //; do ?[by rewrite mulr_ge0|by rewrite mulr_le0_ge0 |by rewrite mulr_ge0_le0|by rewrite mulr_le0|by rewrite -realE realM |by case: (bottom x)|by case: (bottom y)|by rewrite eq0 ?mulr0// mul0r]. Qed. Canonical mul_snum (xnz ynz : nullity) (xr yr : reality) (x : {num R & xnz & xr}) (y : {num R & ynz & yr}) := Signed.mk (mul_snum_subproof x y). Lemma natmul_snum_subproof (xnz nnz : nullity) (xr nr : reality) (x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr}) (rnz := mul_nonzero_subdef xnz nnz xr nr) (rrl := mul_reality_subdef xnz nnz xr nr) : Signed.spec 0 rnz rrl (x%:num *+ n%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n; rewrite mulrn_eq0//= ?eq0F. move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //; do ?[by case: (bottom x)|by case: (bottom n) |by rewrite mulrn_wge0|by rewrite mulrn_wle0|by rewrite eq0 mul0rn |by apply: real_comparable; rewrite ?real0 ?realrMn]. Qed. Canonical natmul_snum (xnz nnz : nullity) (xr nr : reality) (x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr}) := Signed.mk (natmul_snum_subproof x n). Lemma intmul_snum_subproof (xnz nnz : nullity) (xr nr : reality) (x : {num R & xnz & xr}) (n : {num int & nnz & nr}) (rnz := mul_nonzero_subdef xnz nnz xr nr) (rrl := mul_reality_subdef xnz nnz xr nr) : Signed.spec 0 rnz rrl (x%:num *~ n%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n; rewrite mulrz_neq0//= ?neq0. move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x n //; do ?[by case: (bottom x)|by case: (bottom n) |by rewrite mulrz_ge0|by rewrite mulrz_le0_ge0|by rewrite eq0 mul0rz |by rewrite mulrz_ge0_le0|by rewrite mulrz_le0|by rewrite eq0 mulr0z |by rewrite -realE rpredMz//; apply: cmp0]. Qed. Canonical intmul_snum (xnz nnz : nullity) (xr nr : reality) (x : {num R & xnz & xr}) (n : {num int & nnz & nr}) := Signed.mk (intmul_snum_subproof x n). Lemma inv_snum_subproof (xnz : nullity) (xr : reality) (x : {num R & xnz & xr}) : Signed.spec 0 xnz xr (x%:num^-1 : R). Proof. by case: xr x => [[[]|]|]//= [r]/=; rewrite invr_eq0 ?(invr_ge0, invr_le0) ?realV. Qed. Canonical inv_snum (xnz : nullity) (xr : reality) (x : {num R & xnz & xr}) := Signed.mk (inv_snum_subproof x). Definition exprn_nonzero_subdef (xnz nnz : nullity) (xr nr : reality) : nullity := nz_of_bool (xnz || match nr with Real (Sign =0) => true | _ => false end). Arguments exprn_nonzero_subdef /. Definition exprn_reality_subdef (xnz nnz : nullity) (xr nr : reality) : reality := match xr, nr with | _, Real (Sign =0) => >=0 | Real (Sign =0), _ => (if nnz then =0 else >=0)%snum_sign | Real (Sign >=0), _ => >=0 | Real _, _ => >=<0 | _, _ => >?<0 end. Arguments exprn_reality_subdef /. Lemma exprn_snum_subproof (xnz nnz : nullity) (xr nr : reality) (x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr}) (rnz := exprn_nonzero_subdef xnz nnz xr nr) (rrl := exprn_reality_subdef xnz nnz xr nr) : Signed.spec 0 rnz rrl (x%:num ^+ n%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n; do ?[by case: (bottom x)|by case: (bottom n)]; rewrite expf_eq0/= ?eq0// ?eq0F ?andbF//. move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //; do ?[by case: (bottom x)|by case: (bottom n)|by rewrite [_ || _]realX |by rewrite eq0 expr0n|exact: exprn_ge0|by rewrite expr0 ler01]. Qed. Canonical exprn_snum (xnz nnz : nullity) (xr nr : reality) (x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr}) := Signed.mk (exprn_snum_subproof x n). Lemma norm_snum_subproof {V : normedZmodType R} (x : V) : Signed.spec 0 ?=0 >=0 `|x|. Proof. by rewrite /=. Qed. Canonical norm_snum {V : normedZmodType R} (x : V) := Signed.mk (norm_snum_subproof x). End NumDomainStability. Section RcfStability. Context {R : rcfType}. Definition sqrt_nonzero_subdef (xnz : nullity) (xr : reality) := if xr is Real (Sign >=0) then xnz else MaybeZero. Arguments sqrt_nonzero_subdef /. Lemma sqrt_snum_subproof xnz xr (x : {num R & xnz & xr}) (nz := sqrt_nonzero_subdef xnz xr) : Signed.spec 0 nz >=0 (Num.sqrt x%:num). Proof. by rewrite {}/nz; case: xnz xr x => -[[[]|]|]//= x; rewrite /= sqrtr_ge0// andbT sqrtr_eq0 le0F. Qed. Canonical sqrt_snum xnz xr (x : {num R & xnz & xr}) := Signed.mk (sqrt_snum_subproof x). End RcfStability. Section NumClosedStability. Context {R : numClosedFieldType}. Definition sqrtC_reality_subdef (xnz : nullity) (xr : reality) : reality := match xr with | Real (Sign =0) => =0 | Real (Sign >=0) => >=0 | _ => >?<0 end. Arguments sqrtC_reality_subdef /. Lemma sqrtC_snum_subproof xnz xr (x : {num R & xnz & xr}) (r := sqrtC_reality_subdef xnz xr) : Signed.spec 0 xnz r (sqrtC x%:num). Proof. rewrite {}/r; apply/andP; split. by rewrite sqrtC_eq0; case: xr xnz x => [[[]|]|] [] /=. by case: xr xnz x => [[[]|]|] []//= x; rewrite ?sqrtC_ge0// sqrtC_eq0 eq0. Qed. Canonical sqrtC_snum xnz xr (x : {num R & xnz & xr}) := Signed.mk (sqrtC_snum_subproof x). End NumClosedStability. Section NatStability. Local Open Scope nat_scope. Implicit Type (n : nat). Lemma nat_snum_subproof n : Signed.spec 0 ?=0 >=0 n. Proof. by []. Qed. Canonical nat_snum n := Signed.mk (nat_snum_subproof n). Lemma zeron_snum_subproof : Signed.spec 0 ?=0 =0 0. Proof. by []. Qed. Canonical zeron_snum := Signed.mk zeron_snum_subproof. Lemma succn_snum_subproof n : Signed.spec 0 !=0 >=0 n.+1. Proof. by []. Qed. Canonical succn_snum n := Signed.mk (succn_snum_subproof n). Lemma double_snum_subproof nz r (x : {compare 0 & nz & r}) : Signed.spec 0 nz r x%:num.*2. Proof. by move: nz r x => [] [[[]|]|] [[|n]]. Qed. Canonical double_snum nz r x := Signed.mk (@double_snum_subproof nz r x). Lemma addn_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) (rnz := add_nonzero_subdef xnz ynz xr yr) (rrl := add_reality_subdef xnz ynz xr yr) : Signed.spec 0 rnz rrl (x%:num + y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split; by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= [[|x]//= _] [[|y]]. Qed. Canonical addn_snum (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) := Signed.mk (addn_snum_subproof x y). Lemma muln_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) (rnz := mul_nonzero_subdef xnz ynz xr yr) (rrl := mul_reality_subdef xnz ynz xr yr) : Signed.spec 0 rnz rrl (x%:num * y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split; move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//=; by move=> [[|x]//= _] [[|y]//= _]; rewrite muln0. Qed. Canonical muln_snum (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) := Signed.mk (muln_snum_subproof x y). Lemma expn_snum_subproof (xnz nnz : nullity) (xr nr : reality) (x : {compare 0 & xnz & xr}) (n : {compare 0 & nnz & nr}) (rnz := exprn_nonzero_subdef xnz nnz xr nr) (rrl := exprn_reality_subdef xnz nnz xr nr) : Signed.spec 0 rnz rrl (x%:num ^ n%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split. move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n; do ?[by case: (bottom x)|by case: (bottom n) |by rewrite ?eq0 ?expn0// expn_eq0 ?eq0F]. move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //; do ?[by case: (bottom x)|by case: (bottom n)|by rewrite eq0 exp0n]. Qed. Canonical expn_snum (xnz nnz : nullity) (xr nr : reality) (x : {compare 0 & xnz & xr}) (n : {compare 0 & nnz & nr}) := Signed.mk (expn_snum_subproof x n). Lemma minn_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) (rnz := min_nonzero_subdef xnz ynz xr yr) (rrl := min_reality_subdef xnz ynz xr yr) : Signed.spec 0 rnz rrl (min x%:num y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split; by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= [[|x]//= _] [[|y]]. Qed. Canonical minn_snum (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) := Signed.mk (minn_snum_subproof x y). Lemma maxn_snum_subproof (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) (rnz := max_nonzero_subdef xnz ynz xr yr) (rrl := max_reality_subdef xnz ynz xr yr) : Signed.spec 0 rnz rrl (maxn x%:num y%:num). Proof. rewrite {}/rnz {}/rrl; apply/andP; split; move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//=; by move=> [[|x]//= _] [[|y]//= _]; rewrite maxnSS. Qed. Canonical maxn_snum (xnz ynz : nullity) (xr yr : reality) (x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) := Signed.mk (maxn_snum_subproof x y). End NatStability. Section Morph0. Context {R : numDomainType} {cond : reality}. Local Notation nR := {num R & ?=0 & cond}. Implicit Types x y : nR. Local Notation num := (@num _ _ (0 : R) ?=0 cond). Lemma num_eq0 x : (x%:num == 0) = (x == (widen_signed 0%:sgn : nR)). Proof. by []. Qed. End Morph0. Section Morph. Context {d : unit} {T : porderType d} {x0 : T} {nz : nullity} {cond : reality}. Local Notation sT := {compare x0 & nz & cond}. Implicit Types x y : sT. Local Notation num := (@num _ _ x0 nz cond). Lemma num_eq : {mono num : x y / x == y}. Proof. by []. Qed. Lemma num_le : {mono num : x y / (x <= y)%O}. Proof. by []. Qed. Lemma num_lt : {mono num : x y / (x < y)%O}. Proof. by []. Qed. Lemma num_min : {morph num : x y / Order.min x y}. Proof. by move=> x y; rewrite !minEle num_le -fun_if. Qed. Lemma num_max : {morph num : x y / Order.max x y}. Proof. by move=> x y; rewrite !maxEle num_le -fun_if. Qed. End Morph. Section MorphNum. Context {R : numDomainType} {nz : nullity} {cond : reality}. Local Notation nR := {num R & nz & cond}. Implicit Types (a : R) (x y : nR). Local Notation num := (@num _ _ (0 : R) nz cond). Lemma num_abs_eq0 a : (`|a|%:nng == 0%:nng) = (a == 0). Proof. by rewrite -normr_eq0. Qed. End MorphNum. Section MorphReal. Context {R : numDomainType} {nz : nullity} {r : real}. Local Notation nR := {num R & nz & r}. Implicit Type x y : nR. Local Notation num := (@num _ _ (0 : R) nz r). Lemma num_le_maxr a x y : a <= Num.max x%:num y%:num = (a <= x%:num) || (a <= y%:num). Proof. by rewrite -comparable_le_maxr// real_comparable. Qed. Lemma num_le_maxl a x y : Num.max x%:num y%:num <= a = (x%:num <= a) && (y%:num <= a). Proof. by rewrite -comparable_le_maxl// real_comparable. Qed. Lemma num_le_minr a x y : a <= Num.min x%:num y%:num = (a <= x%:num) && (a <= y%:num). Proof. by rewrite -comparable_le_minr// real_comparable. Qed. Lemma num_le_minl a x y : Num.min x%:num y%:num <= a = (x%:num <= a) || (y%:num <= a). Proof. by rewrite -comparable_le_minl// real_comparable. Qed. Lemma num_lt_maxr a x y : a < Num.max x%:num y%:num = (a < x%:num) || (a < y%:num). Proof. by rewrite -comparable_lt_maxr// real_comparable. Qed. Lemma num_lt_maxl a x y : Num.max x%:num y%:num < a = (x%:num < a) && (y%:num < a). Proof. by rewrite -comparable_lt_maxl// real_comparable. Qed. Lemma num_lt_minr a x y : a < Num.min x%:num y%:num = (a < x%:num) && (a < y%:num). Proof. by rewrite -comparable_lt_minr// real_comparable. Qed. Lemma num_lt_minl a x y : Num.min x%:num y%:num < a = (x%:num < a) || (y%:num < a). Proof. by rewrite -comparable_lt_minl// real_comparable. Qed. End MorphReal. Section MorphGe0. Context {R : numDomainType} {nz : nullity}. Local Notation nR := {num R & ?=0 & >=0}. Implicit Type x y : nR. Local Notation num := (@num _ _ (0 : R) ?=0 >=0). Lemma num_abs_le a x : 0 <= a -> (`|a|%:nng <= x) = (a <= x%:num). Proof. by move=> a0; rewrite -num_le//= ger0_norm. Qed. Lemma num_abs_lt a x : 0 <= a -> (`|a|%:nng < x) = (a < x%:num). Proof. by move=> a0; rewrite -num_lt/= ger0_norm. Qed. End MorphGe0. Section Posnum. Context (R : numDomainType) (x : R) (x_gt0 : 0 < x). Lemma posnum_subdef : (x != 0) && (0 <= x). Proof. by rewrite -lt_def. Qed. Definition PosNum : {posnum R} := @Signed.mk _ _ 0 !=0 >=0 _ posnum_subdef. End Posnum. Definition NngNum (R : numDomainType) (x : R) (x_ge0 : 0 <= x) : {nonneg R} := (@Signed.mk _ _ 0 ?=0 >=0 x x_ge0). CoInductive posnum_spec (R : numDomainType) (x : R) : R -> bool -> bool -> bool -> Type := | IsPosnum (p : {posnum R}) : posnum_spec x (p%:num) false true true. Lemma posnumP (R : numDomainType) (x : R) : 0 < x -> posnum_spec x x (x == 0) (0 <= x) (0 < x). Proof. move=> x_gt0; case: real_ltgt0P (x_gt0) => []; rewrite ?gtr0_real // => _ _. by rewrite -[x]/(PosNum x_gt0)%:num; constructor. Qed. CoInductive nonneg_spec (R : numDomainType) (x : R) : R -> bool -> Type := | IsNonneg (p : {nonneg R}) : nonneg_spec x (p%:num) true. Lemma nonnegP (R : numDomainType) (x : R) : 0 <= x -> nonneg_spec x x (0 <= x). Proof. by move=> xge0; rewrite xge0 -[x]/(NngNum xge0)%:num; constructor. Qed. (* Section PosnumOrder. *) (* Variables (R : numDomainType). *) (* Local Notation nR := {posnum R}. *) (* Lemma posnum_le_total : totalPOrderMixin [porderType of nR]. *) (* Proof. by move=> x y; apply: real_comparable. Qed. *) (* Canonical posnum_latticeType := LatticeType nR posnum_le_total. *) (* Canonical posnum_distrLatticeType := DistrLatticeType nR posnum_le_total. *) (* Canonical posnum_orderType := OrderType nR posnum_le_total. *) (* End PosnumOrder. *) (* Section NonnegOrder. *) (* Variables (R : numDomainType). *) (* Local Notation nR := {nonneg R}. *) (* Lemma nonneg_le_total : totalPOrderMixin [porderType of nR]. *) (* Proof. by move=> x y; apply: real_comparable. Qed. *) (* Canonical nonneg_latticeType := LatticeType nR nonneg_le_total. *) (* Canonical nonneg_distrLatticeType := DistrLatticeType nR nonneg_le_total. *) (* Canonical nonneg_orderType := OrderType nR nonneg_le_total. *) (* End NonnegOrder. *)