(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum matrix. From mathcomp Require Import interval rat. Require Import mathcomp_extra boolp reals ereal nsatz_realtype classical_sets. Require Import signed functions topology normedtype landau sequences derive. Require Import realfun. (******************************************************************************) (* Theory of exponential/logarithm functions *) (* *) (* This file defines exponential and logarithm functions and develops their *) (* theory. *) (* *) (* * Differentiability of series (Section PseriesDiff) *) (* This formalization is inspired by HOL-Light (transc.ml). This part is *) (* temporary: it should be subsumed by a proper theory of power series. *) (* pseries f x == [series f n * x ^ n]_n *) (* pseries_diffs f i == (i + 1) * f (i + 1) *) (* *) (* ln x == the natural logarithm *) (* a `^ x == exponential functions *) (* riemannR a == sequence n |-> 1 / (n.+1) `^ a where a has a type *) (* of type realType *) (* *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import Order.TTheory GRing.Theory Num.Def Num.Theory. Import numFieldNormedType.Exports. Local Open Scope classical_set_scope. Local Open Scope ring_scope. (* PR to mathcomp in progress *) Lemma normr_nneg (R : numDomainType) (x : R) : `|x| \is Num.nneg. Proof. by rewrite qualifE. Qed. #[global] Hint Resolve normr_nneg : core. (* /PR to mathcomp in progress *) Section PseriesDiff. Variable R : realType. Definition pseries f (x : R) := [series f i * x ^+ i]_i. Fact is_cvg_pseries_inside_norm f (x z : R) : cvg (pseries f x) -> `|z| < `|x| -> cvg (pseries (fun i => `|f i|) z). Proof. move=> Cx zLx; have [K [Kreal Kf]] := cvg_series_bounded Cx. have Kzxn n : 0 <= `|K + 1| * `|z ^+ n| / `|x ^+ n| by rewrite !mulr_ge0. apply: normed_cvg. apply: series_le_cvg Kzxn _ _ => [//=| /= n|]. rewrite (_ : `|_ * _| = `|f n * x ^+ n| * `|z ^+ n| / `|x ^+ n|); last first. rewrite !normrM normr_id mulrAC mulfK // normr_eq0 expf_eq0 andbC. by case: ltrgt0P zLx; rewrite //= normr_lt0. do! (apply: ler_pmul || apply: mulr_ge0 || rewrite invr_ge0) => //. by apply Kf => //; rewrite (lt_le_trans _ (ler_norm _))// ltr_addl. have F : `|z / x| < 1. by rewrite normrM normfV ltr_pdivr_mulr ?mul1r // (le_lt_trans _ zLx). rewrite (_ : (fun _ => _) = geometric `|K + 1| `|z / x|); last first. by apply/funext => i /=; rewrite normrM exprMn mulrA normfV !normrX exprVn. by apply: is_cvg_geometric_series; rewrite normr_id. Qed. Fact is_cvg_pseries_inside f (x z : R) : cvg (pseries f x) -> `|z| < `|x| -> cvg (pseries f z). Proof. move=> Cx zLx. apply: normed_cvg; rewrite /normed_series_of /=. rewrite (_ : (fun _ => _) = (fun i => `|f i| * `|z| ^+ i)); last first. by apply/funext => i; rewrite normrM normrX. by apply: is_cvg_pseries_inside_norm Cx _; rewrite normr_id. Qed. Definition pseries_diffs (f : nat -> R) i := i.+1%:R * f i.+1. Lemma pseries_diffsN (f : nat -> R) : pseries_diffs (- f) = -(pseries_diffs f). Proof. by apply/funext => i; rewrite /pseries_diffs /= -mulrN. Qed. Lemma pseries_diffs_inv_fact : pseries_diffs (fun n => (n`!%:R)^-1) = (fun n => (n`!%:R)^-1 : R). Proof. apply/funext => i. by rewrite /pseries_diffs factS natrM invfM mulrA mulfV ?mul1r. Qed. Lemma pseries_diffs_sumE n f x : \sum_(0 <= i < n) pseries_diffs f i * x ^+ i = (\sum_(0 <= i < n) i%:R * f i * x ^+ i.-1) + n%:R * f n * x ^+ n.-1. Proof. case: n => [|n]; first by rewrite !big_nil !mul0r add0r. under eq_bigr do unfold pseries_diffs. by rewrite big_nat_recr //= big_nat_recl //= !mul0r add0r. Qed. Lemma pseries_diffs_equiv f x : let s i := i%:R * f i * x ^+ i.-1 in cvg (pseries (pseries_diffs f) x) -> series s --> lim (pseries (pseries_diffs f) x). Proof. move=> s Cx; rewrite -[lim _]subr0 /pseries [X in X --> _]/series /=. rewrite [X in X --> _](_ : _ = (fun n => \sum_(0 <= i < n) pseries_diffs f i * x ^+ i - n%:R * f n * x ^+ n.-1)); last first. by rewrite funeqE => n; rewrite pseries_diffs_sumE addrK. by apply: cvgB => //; rewrite -cvg_shiftS; exact: cvg_series_cvg_0. Qed. Lemma is_cvg_pseries_diffs_equiv f x : cvg (pseries (pseries_diffs f) x) -> cvg [series i%:R * f i * x ^+ i.-1]_i. Proof. by by move=> Cx; have := pseries_diffs_equiv Cx; move/(cvg_lim _) => -> //. Qed. Let pseries_diffs_P1 m (z h : R) : \sum_(0 <= i < m) ((h + z) ^+ (m - i) * z ^+ i - z ^+ m) = \sum_(0 <= i < m) z ^+ i * ((h + z) ^+ (m - i) - z ^+ (m - i)). Proof. rewrite !big_mkord; apply: eq_bigr => i _. by rewrite mulrDr mulrN -exprD mulrC addnC subnK // ltnW. Qed. Let pseries_diffs_P2 n (z h : R) : h != 0 -> ((h + z) ^+ n - (z ^+ n)) / h - n%:R * z ^+ n.-1 = h * \sum_(0 <= i < n.-1) z ^+ i * \sum_(0 <= j < n.-1 - i) (h + z) ^+ j * z ^+ (n.-2 - i - j). Proof. move=> hNZ; apply: (mulfI hNZ). rewrite mulrBr mulrC divfK //. case: n => [|n]. by rewrite !expr0 !(mul0r, mulr0, subr0, subrr, big_geq). rewrite subrXX addrK -mulrBr; congr (_ * _). rewrite -(big_mkord xpredT (fun i : nat => (h + z) ^+ (n - i) * z ^+ i)). rewrite big_nat_recr //= subnn expr0 -addrA -mulrBl. rewrite -add1n natrD opprD addrA subrr sub0r mulNr. rewrite mulr_natl -[in X in _ *+ X](subn0 n) -sumr_const_nat -sumrB. rewrite pseries_diffs_P1 mulr_sumr !big_mkord; apply: eq_bigr => i _. rewrite mulrCA; congr (_ * _). rewrite subrXX addrK big_nat_rev /= big_mkord; congr (_ * _). by apply: eq_bigr => k _; rewrite -!predn_sub subKn // -subnS. Qed. Let pseries_diffs_P3 (z h : R) n K : h != 0 -> `|z| <= K -> `|h + z| <= K -> `|((h +z) ^+ n - z ^+ n) / h - n%:R * z ^+ n.-1| <= n%:R * n.-1%:R * K ^+ n.-2 * `|h|. Proof. move=> hNZ zLK zhLk. rewrite pseries_diffs_P2// normrM mulrC. rewrite ler_pmul2r ?normr_gt0//. rewrite (le_trans (ler_norm_sum _ _ _))//. rewrite -mulrA mulrC -mulrA mulr_natl -[X in _ *+ X]subn0 -sumr_const_nat. apply ler_sum_nat => i /=. case: n => //= n ni. rewrite normrM. pose d := (n.-1 - i)%nat. rewrite -[(n - i)%nat]prednK ?subn_gt0// predn_sub -/d. rewrite -(subnK (_ : i <= n.-1)%nat) -/d; last first. by rewrite -ltnS prednK// (leq_ltn_trans _ ni). rewrite addnC exprD mulrAC -mulrA. apply: ler_pmul => //. by rewrite normrX ler_expn2r// qualifE (le_trans _ zLK). apply: le_trans (_ : d.+1%:R * K ^+ d <= _); last first. rewrite ler_wpmul2r //; first by rewrite exprn_ge0 // (le_trans _ zLK). by rewrite ler_nat ltnS /d -subn1 -subnDA leq_subr. rewrite (le_trans (ler_norm_sum _ _ _))//. rewrite mulr_natl -[X in _ *+ X]subn0 -sumr_const_nat ler_sum_nat//= => j jd1. rewrite -[in leRHS](subnK (_ : j <= d)%nat) -1?ltnS // addnC exprD normrM. by rewrite ler_pmul// normrX ler_expn2r// qualifE (le_trans _ zLK). Qed. Lemma pseries_snd_diffs (c : R^nat) K x : cvg (pseries c K) -> cvg (pseries (pseries_diffs c) K) -> cvg (pseries (pseries_diffs (pseries_diffs c)) K) -> `|x| < `|K| -> is_derive x 1 (fun x => lim (pseries c x)) (lim (pseries (pseries_diffs c) x)). Proof. move=> Ck CdK CddK xLK; rewrite /pseries. set s := (fun n : nat => _); set (f := fun x0 => _). suff hfxs : h^-1 *: (f (h + x) - f x) @[h --> 0^'] --> lim (series s). have F : f^`() x = lim (series s) by apply: cvg_lim hfxs. have Df : derivable f x 1. move: hfxs; rewrite /derivable [X in X @ _](_ : _ = (fun h => h^-1 *: (f (h%:A + x) - f x))) /=; last first. by apply/funext => i //=; rewrite [i%:A]mulr1. by move=> /(cvg_lim _) -> //. by constructor; [exact: Df|rewrite -derive1E]. pose sx := fun n : nat => c n * x ^+ n. have Csx : cvg (pseries c x) by apply: is_cvg_pseries_inside Ck _. pose shx := fun h (n : nat) => c n * (h + x) ^+ n. suff Cc : lim (h^-1 *: (series (shx h - sx))) @[h --> 0^'] --> lim (series s). apply: cvg_sub0 Cc. apply/cvg_distP => eps eps_gt0 /=; rewrite !near_simpl /=. near=> h; rewrite sub0r normrN /=. rewrite (le_lt_trans _ eps_gt0)//. rewrite normr_le0 subr_eq0 -/sx -/(shx _); apply/eqP. have Cshx' : cvg (series (shx h)). apply: is_cvg_pseries_inside Ck _. rewrite (le_lt_trans (ler_norm_add _ _))// -(subrK `|x| `|K|) ltr_add2r. near: h. apply/nbhs_ballP => /=; exists ((`|K| - `|x|) /2) => /=. by rewrite divr_gt0 // subr_gt0. move=> t; rewrite /ball /= sub0r normrN => H tNZ. rewrite (lt_le_trans H)// ler_pdivr_mulr // mulr2n mulrDr mulr1. by rewrite ler_paddr // subr_ge0 ltW. by rewrite limZr; [rewrite lim_seriesB|exact: is_cvg_seriesB]. apply: cvg_zero => /=. suff Cc : lim (series (fun n => c n * (((h + x) ^+ n - x ^+ n) / h - n%:R * x ^+ n.-1))) @[h --> 0^'] --> (0 : R). apply: cvg_sub0 Cc. apply/cvg_distP => eps eps_gt0 /=. rewrite !near_simpl /=. near=> h; rewrite sub0r normrN /=. rewrite (le_lt_trans _ eps_gt0)// normr_le0 subr_eq0; apply/eqP. have Cs : cvg (series s) by apply: is_cvg_pseries_inside CdK _. have Cs1 := is_cvg_pseries_diffs_equiv Cs. have Fs1 := pseries_diffs_equiv Cs. set s1 := (fun i => _) in Cs1. have Cshx : cvg (series (shx h)). apply: is_cvg_pseries_inside Ck _. rewrite (le_lt_trans (ler_norm_add _ _))// -(subrK `|x| `|K|) ltr_add2r. near: h. apply/nbhs_ballP => /=; exists ((`|K| - `|x|) /2) => /=. by rewrite divr_gt0 // subr_gt0. move=> t; rewrite /ball /= sub0r normrN => H tNZ. rewrite (lt_le_trans H)// ler_pdivr_mulr // mulr2n mulrDr mulr1. by rewrite ler_paddr // subr_ge0 ltW. have C1 := is_cvg_seriesB Cshx Csx. have Ckf := @is_cvg_seriesZ _ _ h^-1 C1. have Cu : (series (h^-1 *: (shx h - sx)) - series s1) x0 @[x0 --> \oo] --> lim (series (h^-1 *: (shx h - sx))) - lim (series s). by apply: cvgB. set w := (fun n : nat => _ in RHS). have -> : w = h^-1 *: (shx h - sx) - s1. apply: funext => i; rewrite !fctE. rewrite /w /shx /sx /s1 /= mulrBr; congr (_ - _); last first. by rewrite mulrCA !mulrA. by rewrite -mulrBr [RHS]mulrCA [_^-1 * _]mulrC. rewrite [X in X h = _]/+%R /= [X in _ + X h = _]/-%R /=. have -> : series (h^-1 *: (shx h - sx) - s1) = series (h^-1 *: (shx h - sx)) - (series s1). by apply/funext => i; rewrite /series /= sumrB. have -> : h^-1 *: series (shx h - sx) = series (h^-1 *: (shx h - sx)). by apply/funext => i; rewrite /series /= -scaler_sumr. exact/esym/cvg_lim. pose r := (`|x| + `|K|) / 2. have xLr : `|x| < r by rewrite ltr_pdivl_mulr // mulr2n mulrDr mulr1 ltr_add2l. have rLx : r < `|K| by rewrite ltr_pdivr_mulr // mulr2n mulrDr mulr1 ltr_add2r. have r_gt0 : 0 < r by apply: le_lt_trans xLr. have rNZ : r != 0by case: ltrgt0P r_gt0. apply: (@lim_cvg_to_0_linear _ (fun n => `|c n| * n%:R * (n.-1)%:R * r ^+ n.-2) (fun h n => c n * (((h + x) ^+ n - x ^+ n) / h - n%:R * x ^+ n.-1)) (r - `|x|)); first by rewrite subr_gt0. - have : cvg [series `|pseries_diffs (pseries_diffs c) n| * r ^+ n]_n. apply: is_cvg_pseries_inside_norm CddK _. by rewrite ger0_norm // ltW // (le_lt_trans _ xLr). have -> : (fun n => `|pseries_diffs (pseries_diffs c) n| * r ^+ n) = (fun n => pseries_diffs (pseries_diffs (fun m => `|c m|)) n * r ^+ n). apply/funext => i. by rewrite /pseries_diffs !normrM !mulrA ger0_norm // ger0_norm. move=> /is_cvg_pseries_diffs_equiv. rewrite /pseries_diffs. have -> : (fun n => n%:R * ((n.+1)%:R * `|c n.+1|) * r ^+ n.-1) = (fun n => pseries_diffs (fun m => (m.-1)%:R * `|c m| * r^-1) n * r ^+ n). apply/funext => n. rewrite /pseries_diffs /= mulrA. case: n => [|n /=]; first by rewrite !(mul0r, mulr0). rewrite [_%:R *_]mulrC !mulrA -[RHS]mulrA exprS. by rewrite [_^-1 * _]mulrA mulVf ?mul1r. move/is_cvg_pseries_diffs_equiv. have ->// : (fun n => n%:R * (n.-1%:R * `|c n| / r) * r ^+ n.-1) = (fun n => `|c n| * n%:R * n.-1%:R * r ^+ n.-2). apply/funext => [] [|[|i]]; rewrite ?(mul0r, mulr0) //=. rewrite mulrA -mulrA exprS [_^-1 * _]mulrA mulVf //. rewrite mul1r !mulrA; congr (_ * _). by rewrite mulrC mulrA. - move=> h /andP[h_gt0 hLrBx] n. rewrite normrM -!mulrA ler_wpmul2l //. rewrite (le_trans (pseries_diffs_P3 _ _ (ltW xLr) _))// ?mulrA -?normr_gt0//. by rewrite (le_trans (ler_norm_add _ _))// -(subrK `|x| r) ler_add2r ltW. Unshelve. all: by end_near. Qed. End PseriesDiff. Section expR. Variable R : realType. Implicit Types x : R. Lemma expR0 : expR 0 = 1 :> R. Proof. apply: lim_near_cst => //. near=> m; rewrite -[m]prednK; last by near: m. rewrite -addn1 series_addn series_exp_coeff0 big_add1 big1 ?addr0//. by move=> i _; rewrite /exp_coeff /= expr0n mul0r. Unshelve. all: by end_near. Qed. Lemma expR_ge1Dx x : 0 <= x -> 1 + x <= expR x. Proof. move=> x_gt0; rewrite /expR. pose f (x : R) i := (i == 0%nat)%:R + x *+ (i == 1%nat). have F n : (1 < n)%nat -> \sum_(0 <= i < n) (f x i) = 1 + x. move=> /subnK<-. by rewrite addn2 !big_nat_recl //= /f /= mulr1n !mulr0n big1 ?add0r ?addr0. have -> : 1 + x = lim (series (f x)). by apply/esym/lim_near_cst => //; near=> n; apply: F; near: n. apply: ler_lim; first by apply: is_cvg_near_cst; near=> n; apply: F; near: n. exact: is_cvg_series_exp_coeff. by near=> n; apply: ler_sum => [] [|[|i]] _; rewrite /f /exp_coeff /= !(mulr0n, mulr1n, expr0, expr1, divr1, addr0, add0r) // exp_coeff_ge0. Unshelve. all: by end_near. Qed. Lemma exp_coeffE x : exp_coeff x = (fun n => (fun n => (n`!%:R)^-1) n * x ^+ n). Proof. by apply/funext => i; rewrite /exp_coeff /= mulrC. Qed. Import GRing.Theory. Local Open Scope ring_scope. Lemma expRE : expR = fun x => lim (pseries (fun n => (fun n => (n`!%:R)^-1) n) x). Proof. by apply/funext => x; rewrite /pseries -exp_coeffE. Qed. Global Instance is_derive_expR x : is_derive x 1 expR (expR x). Proof. pose s1 n := pseries_diffs (fun n => n`!%:R^-1) n * x ^+ n. rewrite expRE /= /pseries (_ : (fun _ => _) = s1); last first. by apply/funext => i; rewrite /s1 pseries_diffs_inv_fact. apply: (@pseries_snd_diffs _ _ (`|x| + 1)); rewrite /pseries. - by rewrite -exp_coeffE; apply: is_cvg_series_exp_coeff. - rewrite (_ : (fun _ => _) = exp_coeff (`|x| + 1)). exact: is_cvg_series_exp_coeff. by apply/funext => i; rewrite pseries_diffs_inv_fact exp_coeffE. - rewrite (_ : (fun _ => _) = exp_coeff (`|x| + 1)). exact: is_cvg_series_exp_coeff. by apply/funext => i; rewrite !pseries_diffs_inv_fact exp_coeffE. by rewrite [ltRHS]ger0_norm// addrC -subr_gt0 addrK. Qed. Lemma derivable_expR x : derivable expR x 1. Proof. by apply: ex_derive; apply: is_derive_exp. Qed. Lemma continuous_expR : continuous (@expR R). Proof. by move=> x; exact/differentiable_continuous/derivable1_diffP/derivable_expR. Qed. Lemma expRxDyMexpx x y : expR (x + y) * expR (- x) = expR y. Proof. set v := LHS; pattern x in v; move: @v; set f := (X in let _ := X x in _) => /=. apply: etrans (_ : f x = f 0) _; last by rewrite /f add0r oppr0 expR0 mulr1. apply: is_derive_0_is_cst => x1. apply: trigger_derive. by rewrite /GRing.scale /= mulrN1 addr0 mulr1 mulrN addrC mulrC subrr. Qed. Lemma expRxMexpNx_1 x : expR x * expR (- x) = 1. Proof. by rewrite -[X in _ X * _ = _]addr0 expRxDyMexpx expR0. Qed. Lemma pexpR_gt1 x : 0 < x -> 1 < expR x. Proof. by move=> x_gt0; rewrite (lt_le_trans _ (expR_ge1Dx (ltW x_gt0)))// ltr_addl. Qed. Lemma expR_gt0 x : 0 < expR x. Proof. case: (ltrgt0P x) => [x_gt0|x_gt0|->]; last by rewrite expR0. - exact: lt_trans (pexpR_gt1 x_gt0). - have F : 0 < expR (- x) by rewrite (lt_trans _ (pexpR_gt1 _))// oppr_gt0. by rewrite -(pmulr_lgt0 _ F) expRxMexpNx_1. Qed. Lemma expRN x : expR (- x) = (expR x)^-1. Proof. apply: (mulfI (lt0r_neq0 (expR_gt0 x))). by rewrite expRxMexpNx_1 mulfV // (lt0r_neq0 (expR_gt0 x)). Qed. Lemma expRD x y : expR (x + y) = expR x * expR y. Proof. apply: (mulIf (lt0r_neq0 (expR_gt0 (- x)))). rewrite expRxDyMexpx expRN [_ * expR y]mulrC mulfK //. by case: ltrgt0P (expR_gt0 x). Qed. Lemma expRMm n x : expR (n%:R * x) = expR x ^+ n. Proof. elim: n x => [x|n IH x] /=; first by rewrite mul0r expr0 expR0. by rewrite exprS -add1n natrD mulrDl mul1r expRD IH. Qed. Lemma expR_gt1 x: (1 < expR x) = (0 < x). Proof. case: ltrgt0P => [x_gt0| xN|->]; last by rewrite expR0. - by rewrite (pexpR_gt1 x_gt0). - apply/idP/negP. rewrite -[x]opprK expRN -leNgt invf_cp1 ?expR_gt0 //. by rewrite ltW // pexpR_gt1 // lter_oppE. Qed. Lemma expR_lt1 x: (expR x < 1) = (x < 0). Proof. case: ltrgt0P => [x_gt0|xN|->]; last by rewrite expR0. - by apply/idP/negP; rewrite -leNgt ltW // expR_gt1. - by rewrite -[x]opprK expRN invf_cp1 ?expR_gt0 // expR_gt1 lter_oppE. Qed. Lemma expRB x y : expR (x - y) = expR x / expR y. Proof. by rewrite expRD expRN. Qed. Lemma ltr_expR : {mono (@expR R) : x y / x < y}. Proof. move=> x y. by rewrite -[in LHS](subrK x y) expRD ltr_pmull ?expR_gt0 // expR_gt1 subr_gt0. Qed. Lemma ler_expR : {mono (@expR R) : x y / x <= y}. Proof. move=> x y. case: (ltrgtP x y) => [xLy|yLx|<-]; last by rewrite lexx. - by rewrite ltW // ltr_expR. - by rewrite leNgt ltr_expR yLx. Qed. Lemma expR_inj : injective (@expR R). Proof. move=> x y exE. by have [] := (ltr_expR x y, ltr_expR y x); rewrite exE ltxx; case: ltrgtP. Qed. Lemma expR_total_gt1 x : 1 <= x -> exists y, [/\ 0 <= y, 1 + y <= x & expR y = x]. Proof. move=> x_ge1; have x_ge0 : 0 <= x by apply: le_trans x_ge1. have [x1 x1Ix| |x1 _ /eqP] := @IVT _ (fun y => expR y - x) _ _ 0 x_ge0. - apply: continuousB => // y1; last exact: cst_continuous. by apply/continuous_subspaceT=> ? _; exact: continuous_expR. - rewrite expR0; have [_| |] := ltrgtP (1- x) (expR x - x). + by rewrite subr_le0 x_ge1 subr_ge0 (le_trans _ (expR_ge1Dx _)) ?ler_addr. + by rewrite ltr_add2r expR_lt1 ltNge x_ge0. + rewrite subr_le0 x_ge1 => -> /=; rewrite subr_ge0. by rewrite (le_trans _ (expR_ge1Dx x_ge0)) ?ler_addr. - rewrite subr_eq0 => /eqP x1_x; exists x1; split => //. + by rewrite -ler_expR expR0 x1_x. + by rewrite -x1_x expR_ge1Dx // -ler_expR x1_x expR0. Qed. Lemma expR_total x : 0 < x -> exists y, expR y = x. Proof. case: (lerP 1 x) => [/expR_total_gt1[y [_ _ Hy]]|x_lt1 x_gt0]. by exists y. have /expR_total_gt1[y [H1y H2y H3y]] : 1 <= x^-1 by rewrite ltW // !invf_cp1. by exists (-y); rewrite expRN H3y invrK. Qed. End expR. Section Ln. Variable R : realType. Implicit Types x : R. Notation exp := (@expR R). Definition ln x : R := xget 0 [set y | exp y == x ]. Fact ln0 x : x <= 0 -> ln x = 0. Proof. rewrite /ln; case: xgetP => //= y _ /eqP yx x0. by have := expR_gt0 y; rewrite yx => /(le_lt_trans x0); rewrite ltxx. Qed. Lemma expK : cancel exp ln. Proof. by move=> x; rewrite /ln; case: xgetP => [x1 _ /eqP/expR_inj //|/(_ x)[]/=]. Qed. Lemma lnK : {in Num.pos, cancel ln exp}. Proof. move=> x; rewrite qualifE => x_gt0. rewrite /ln; case: xgetP=> [x1 _ /eqP// |H]. by case: (expR_total x_gt0) => y /eqP Hy; case: (H y). Qed. Lemma lnK_eq x : (exp (ln x) == x) = (0 < x). Proof. by apply/eqP/idP=> [<-|x0]; [exact: expR_gt0|rewrite lnK// in_itv/= x0]. Qed. Lemma ln1 : ln 1 = 0. Proof. by apply/expR_inj; rewrite lnK// ?expR0// qualifE. Qed. Lemma lnM : {in Num.pos &, {morph ln : x y / x * y >-> x + y}}. Proof. move=> x y x0 y0; apply: expR_inj; rewrite expRD !lnK//. by move: x0 y0; rewrite !qualifE; exact: mulr_gt0. Qed. Lemma ln_inj : {in Num.pos &, injective ln}. Proof. by move=> x y /lnK {2}<- /lnK {2}<- ->. Qed. Lemma lnV : {in Num.pos, {morph ln : x / x ^-1 >-> - x}}. Proof. move=> x x0; apply: expR_inj; rewrite lnK// ?expRN ?lnK//. by move: x0; rewrite !qualifE invr_gt0. Qed. Lemma ln_div : {in Num.pos &, {morph ln : x y / x / y >-> x - y}}. Proof. move=> x y x0 y0; rewrite (lnM x0) ?lnV//. by move: y0; rewrite !qualifE/= invr_gt0. Qed. Lemma ltr_ln : {in Num.pos &, {mono ln : x y / x < y}}. Proof. by move=> x y x_gt0 y_gt0; rewrite -ltr_expR !lnK. Qed. Lemma ler_ln : {in Num.pos &, {mono ln : x y / x <= y}}. Proof. by move=> x y x_gt0 y_gt0; rewrite -ler_expR !lnK. Qed. Lemma lnX n x : 0 < x -> ln(x ^+ n) = ln x *+ n. Proof. move=> x_gt0; elim: n => [|n ih] /=; first by rewrite expr0 ln1 mulr0n. by rewrite !exprS lnM ?qualifE// ?exprn_gt0// mulrS ih. Qed. Lemma le_ln1Dx x : 0 <= x -> ln (1 + x) <= x. Proof. move=> x_ge0; rewrite -ler_expR lnK ?expR_ge1Dx //. by apply: lt_le_trans (_ : 0 < 1) _; rewrite // ler_addl. Qed. Lemma ln_sublinear x : 0 < x -> ln x < x. Proof. move=> x_gt0; apply: lt_le_trans (_ : ln (1 + x) <= _). by rewrite -ltr_expR !lnK ?qualifE ?addr_gt0 // ltr_addr. by rewrite -ler_expR lnK ?qualifE ?addr_gt0// expR_ge1Dx // ltW. Qed. Lemma ln_ge0 x : 1 <= x -> 0 <= ln x. Proof. by move=> x_ge1; rewrite -ler_expR expR0 lnK// qualifE (lt_le_trans _ x_ge1). Qed. Lemma ln_gt0 x : 1 < x -> 0 < ln x. Proof. by move=> x_gt1; rewrite -ltr_expR expR0 lnK // qualifE (lt_trans _ x_gt1). Qed. Lemma continuous_ln x : 0 < x -> {for x, continuous ln}. Proof. move=> x_gt0; rewrite -[x]lnK//. apply: nbhs_singleton (near_can_continuous _ _); near=> z; first exact: expK. by apply: continuous_expR. Unshelve. all: by end_near. Qed. Global Instance is_derive1_ln (x : R) : 0 < x -> is_derive x 1 ln x^-1. Proof. move=> x_gt0; rewrite -[x]lnK//. apply: (@is_derive_inverse R expR); first by near=> z; apply: expK. by near=>z; apply: continuous_expR. by rewrite lnK // lt0r_neq0. Unshelve. all: by end_near. Qed. End Ln. Section ExpFun. Variable R : realType. Implicit Types a x : R. Definition exp_fun a x := expR (x * ln a). Local Notation "a `^ x" := (exp_fun a x). Lemma exp_fun_gt0 a x : 0 < a `^ x. Proof. by rewrite expR_gt0. Qed. Lemma exp_funr1 a : 0 < a -> a `^ 1 = a. Proof. by move=> a0; rewrite /exp_fun mul1r lnK. Qed. Lemma exp_funr0 a : 0 < a -> a `^ 0 = 1. Proof. by move=> a0; rewrite /exp_fun mul0r expR0. Qed. Lemma exp_fun1 : exp_fun 1 = fun=> 1. Proof. by rewrite funeqE => x; rewrite /exp_fun ln1 mulr0 expR0. Qed. Lemma ler_exp_fun a : 1 < a -> {homo exp_fun a : x y / x <= y}. Proof. by move=> a1 x y xy; rewrite /exp_fun ler_expR ler_pmul2r // ln_gt0. Qed. Lemma exp_funD a : 0 < a -> {morph exp_fun a : x y / x + y >-> x * y}. Proof. by move=> a0 x y; rewrite [in LHS]/exp_fun mulrDl expRD. Qed. Lemma exp_fun_inv a : 0 < a -> a `^ (-1) = a ^-1. Proof. move=> a0. apply/(@mulrI _ a); first by rewrite unitfE gt_eqF. rewrite -[X in X * _ = _](exp_funr1 a0) -exp_funD // subrr exp_funr0 //. by rewrite divrr // unitfE gt_eqF. Qed. Lemma exp_fun_mulrn a n : 0 < a -> exp_fun a n%:R = a ^+ n. Proof. move=> a0; elim: n => [|n ih]; first by rewrite mulr0n expr0 exp_funr0. by rewrite -addn1 natrD exp_funD // exprD ih exp_funr1. Qed. End ExpFun. Notation "a `^ x" := (exp_fun a x). Section riemannR_series. Variable R : realType. Implicit Types a : R. Local Open Scope ring_scope. Definition riemannR a : R ^nat := fun n => (n.+1%:R `^ a)^-1. Arguments riemannR a n /. Lemma riemannR_gt0 a i : 0 < a -> 0 < riemannR a i. Proof. move=> ?; by rewrite /riemannR invr_gt0 exp_fun_gt0. Qed. Lemma dvg_riemannR a : 0 < a <= 1 -> ~ cvg (series (riemannR a)). Proof. case/andP => a0; rewrite le_eqVlt => /orP[/eqP ->|a1]. rewrite (_ : riemannR 1 = harmonic); first exact: dvg_harmonic. by rewrite funeqE => i /=; rewrite exp_funr1. have : forall n, harmonic n <= riemannR a n. case=> /= [|n]; first by rewrite exp_fun1 invr1. rewrite -[leRHS]div1r ler_pdivl_mulr ?exp_fun_gt0 // mulrC ler_pdivr_mulr //. by rewrite mul1r -[leRHS]exp_funr1 // (ler_exp_fun) // ?ltr1n // ltW. move/(series_le_cvg harmonic_ge0 (fun i => ltW (riemannR_gt0 i a0))). by move/contra_not; apply; exact: dvg_harmonic. Qed. End riemannR_series.