(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) From mathcomp Require Import all_ssreflect ssralg matrix finmap order ssrnum. From mathcomp Require Import ssrint interval. Require Import mathcomp_extra boolp. (******************************************************************************) (* This file develops a basic theory of sets and types equipped with a *) (* canonical inhabitant (pointed types). *) (* *) (* --> A decidable equality is defined for any type. It is thus possible to *) (* define an eqType structure for any type using the mixin gen_eqMixin. *) (* --> This file adds the possibility to define a choiceType structure for *) (* any type thanks to an axiom gen_choiceMixin giving a choice mixin. *) (* --> We chose to have generic mixins and no global instances of the eqType *) (* and choiceType structures to let the user choose which definition of *) (* equality to use and to avoid conflict with already declared instances. *) (* *) (* * Sets: *) (* set T == type of sets on T. *) (* (x \in P) == boolean membership predicate from ssrbool *) (* for set P, available thanks to a canonical *) (* predType T structure on sets on T. *) (* [set x : T | P] == set of points x : T such that P holds. *) (* [set x | P] == same as before with T left implicit. *) (* [set E | x in A] == set defined by the expression E for x in *) (* set A. *) (* [set E | x in A & y in B] == same as before for E depending on 2 *) (* variables x and y in sets A and B. *) (* setT == full set. *) (* set0 == empty set. *) (* range f == the range of f, i.e. [set f x | x in setT] *) (* [set a] == set containing only a. *) (* [set a : T] == same as before with the type of a made *) (* explicit. *) (* A `|` B == union of A and B. *) (* a |` A == A extended with a. *) (* [set a1; a2; ..; an] == set containing only the n elements ai. *) (* A `&` B == intersection of A and B. *) (* A `*` B == product of A and B, i.e. set of pairs (a,b) *) (* such that A a and B b. *) (* A.`1 == set of points a such that there exists b so *) (* that A (a, b). *) (* A.`2 == set of points a such that there exists b so *) (* that A (b, a). *) (* ~` A == complement of A. *) (* [set~ a] == complement of [set a]. *) (* A `\` B == complement of B in A. *) (* A `\ a == A deprived of a. *) (* \bigcup_(i in P) F == union of the elements of the family F whose *) (* index satisfies P. *) (* \bigcup_(i : T) F == union of the family F indexed on T. *) (* \bigcup_i F == same as before with T left implicit. *) (* \bigcap_(i in P) F == intersection of the elements of the family *) (* F whose index satisfies P. *) (* \bigcap_(i : T) F == union of the family F indexed on T. *) (* \bigcap_i F == same as before with T left implicit. *) (* smallest C G := \bigcap_(A in [set M | C M /\ G `<=` M]) A *) (* A `<=` B <-> A is included in B. *) (* A `<=>` B <-> double inclusion A `<=` B and B `<=` A. *) (* f @^-1` A == preimage of A by f. *) (* f @` A == image of A by f. Notation for `image A f`. *) (* A !=set0 := exists x, A x. *) (* [set` p] == a classical set corresponding to the *) (* predType p *) (* `[a, b] := [set` `[a, b]], i.e., a classical set *) (* corresponding to the interval `[a, b]. *) (* `]a, b] := [set` `]a, b]] *) (* `[a, b[ := [set` `[a, b[] *) (* `]a, b[ := [set` `]a, b[] *) (* `]-oo, b] := [set` `]-oo, b]] *) (* `]-oo, b[ := [set` `]-oo, b[] *) (* `[a, +oo[ := [set` `[a, +oo[] *) (* `]a, +oo[ := [set` `]a, +oo[] *) (* `]-oo, +oo[ := [set` `]-oo, +oo[] *) (* `I_n := [set k | k < n] *) (* is_subset1 A <-> A contains only 1 element. *) (* is_fun f <-> for each a, f a contains only 1 element. *) (* is_total f <-> for each a, f a is non empty. *) (* is_totalfun f <-> conjunction of is_fun and is_total. *) (* xget x0 P == point x in P if it exists, x0 otherwise; *) (* P must be a set on a choiceType. *) (* fun_of_rel f0 f == function that maps x to an element of f x *) (* if there is one, to f0 x otherwise. *) (* F `#` G <-> intersections beween elements of F an G are *) (* all non empty. *) (* *) (* * Pointed types: *) (* pointedType == interface type for types equipped with a *) (* canonical inhabitant. *) (* PointedType T m == packs the term m : T to build a *) (* pointedType; T must have a choiceType *) (* structure. *) (* [pointedType of T for cT] == T-clone of the pointedType structure cT. *) (* [pointedType of T] == clone of a canonical pointedType structure *) (* on T. *) (* point == canonical inhabitant of a pointedType. *) (* get P == point x in P if it exists, point otherwise; *) (* P must be a set on a pointedType. *) (* *) (* --> Thanks to this basic set theory, we proved Zorn's Lemma, which states *) (* that any ordered set such that every totally ordered subset admits an *) (* upper bound has a maximal element. We also proved an analogous version *) (* for preorders, where maximal is replaced with premaximal: t is *) (* premaximal if whenever t < s we also have s < t. *) (* *) (* $| T | == T : Type is inhabited *) (* squash x == proof of $| T | (with x : T) *) (* unsquash s == extract a witness from s : $| T | *) (* --> Tactic: *) (* - squash x: *) (* solves a goal $| T | by instantiating with x or [the T of x] *) (* *) (* trivIset D F == the sets F i, where i ranges over D : set I,*) (* are pairwise-disjoint *) (* cover D F := \bigcup_(i in D) F i *) (* partition D F A == the non-empty sets F i,where i ranges over *) (* D : set I, form a partition of A *) (* pblock_index D F x == index i such that i \in D and x \in F i *) (* pblock D F x := F (pblock_index D F x) *) (* *) (* * Upper and lower bounds: *) (* ubound A == the set of upper bounds of the set A *) (* lbound A == the set of lower bounds of the set A *) (* Predicates to express existence conditions of supremum and infimum of *) (* sets of real numbers: *) (* has_ubound A := ubound A != set0 *) (* has_sup A := A != set0 /\ has_ubound A *) (* has_lbound A := lbound A != set0 *) (* has_inf A := A != set0 /\ has_lbound A *) (* *) (* isLub A m := m is a least upper bound of the set A *) (* supremums A := set of supremums of the set A *) (* supremum x0 A == supremum of A or x0 if A is empty *) (* infimums A := set of infimums of the set A *) (* infimum x0 A == infimum of A or x0 if A is empty *) (* *) (* F `#` G := the classes of sets F and G intersect *) (* *) (* * sections: *) (* xsection A x == with A : set (T1 * T2) and x : T1 is the *) (* x-section of A *) (* ysection A y == with A : set (T1 * T2) and y : T2 is the *) (* y-section of A *) (* *) (* * About the naming conventions in this file: *) (* - use T, T', T1, T2, etc., aT (domain type), rT (return type) for names of *) (* variables in Type (or choiceType/pointedType/porderType) *) (* + use the same suffix or prefix for the sets as their containing type *) (* (e.g., A1 in T1, etc.) *) (* + as a consequence functions are rather of type aT -> rT *) (* - use I, J when the type corresponds to an index *) (* - sets are named A, B, C, D, etc., or Y when it is ostensibly an image set *) (* (i.e., of type set rT) *) (* - indexed sets are rather named F *) (* *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope classical_set_scope. Reserved Notation "[ 'set' x : T | P ]" (at level 0, x at level 99, only parsing). Reserved Notation "[ 'set' x | P ]" (at level 0, x, P at level 99, format "[ 'set' x | P ]"). Reserved Notation "[ 'set' E | x 'in' A ]" (at level 0, E, x at level 99, format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'"). Reserved Notation "[ 'set' E | x 'in' A & y 'in' B ]" (at level 0, E, x at level 99, format "[ '[hv' 'set' E '/ ' | x 'in' A & y 'in' B ] ']'"). Reserved Notation "[ 'set' a ]" (at level 0, a at level 99, format "[ 'set' a ]"). Reserved Notation "[ 'set' : T ]" (at level 0, format "[ 'set' : T ]"). Reserved Notation "[ 'set' a : T ]" (at level 0, a at level 99, format "[ 'set' a : T ]"). Reserved Notation "A `|` B" (at level 52, left associativity). Reserved Notation "a |` A" (at level 52, left associativity). Reserved Notation "[ 'set' a1 ; a2 ; .. ; an ]" (at level 0, a1 at level 99, format "[ 'set' a1 ; a2 ; .. ; an ]"). Reserved Notation "A `&` B" (at level 48, left associativity). Reserved Notation "A `*` B" (at level 46, left associativity). Reserved Notation "A `*`` B" (at level 46, left associativity). Reserved Notation "A ``*` B" (at level 46, left associativity). Reserved Notation "A .`1" (at level 2, left associativity, format "A .`1"). Reserved Notation "A .`2" (at level 2, left associativity, format "A .`2"). Reserved Notation "~` A" (at level 35, right associativity). Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]"). Reserved Notation "A `\` B" (at level 50, left associativity). Reserved Notation "A `\ b" (at level 50, left associativity). (* Reserved Notation "A `+` B" (at level 54, left associativity). Reserved Notation "A +` B" (at level 54, left associativity). *) Reserved Notation "\bigcup_ ( i 'in' P ) F" (at level 41, F at level 41, i, P at level 50, format "'[' \bigcup_ ( i 'in' P ) '/ ' F ']'"). Reserved Notation "\bigcup_ ( i : T ) F" (at level 41, F at level 41, i at level 50, format "'[' \bigcup_ ( i : T ) '/ ' F ']'"). Reserved Notation "\bigcup_ i F" (at level 41, F at level 41, i at level 0, format "'[' \bigcup_ i '/ ' F ']'"). Reserved Notation "\bigcap_ ( i 'in' P ) F" (at level 41, F at level 41, i, P at level 50, format "'[' \bigcap_ ( i 'in' P ) '/ ' F ']'"). Reserved Notation "\bigcap_ ( i : T ) F" (at level 41, F at level 41, i at level 50, format "'[' \bigcap_ ( i : T ) '/ ' F ']'"). Reserved Notation "\bigcap_ i F" (at level 41, F at level 41, i at level 0, format "'[' \bigcap_ i '/ ' F ']'"). Reserved Notation "A `<` B" (at level 70, no associativity). Reserved Notation "A `<=` B" (at level 70, no associativity). Reserved Notation "A `<=>` B" (at level 70, no associativity). Reserved Notation "f @^-1` A" (at level 24). Reserved Notation "f @` A" (at level 24). Reserved Notation "A !=set0" (at level 80). Reserved Notation "[ 'set`' p ]" (at level 0, format "[ 'set`' p ]"). Reserved Notation "[ 'disjoint' A & B ]" (at level 0, format "'[hv' [ 'disjoint' '/ ' A '/' & B ] ']'"). Reserved Notation "F `#` G" (at level 48, left associativity, format "F `#` G"). Reserved Notation "'`I_' n" (at level 8, n at level 2, format "'`I_' n"). Definition set T := T -> Prop. (* we use fun x => instead of pred to prevent inE from working *) (* we will then extend inE with in_setE to make this work *) Definition in_set T (A : set T) : pred T := (fun x => `[]). Canonical set_predType T := @PredType T (set T) (@in_set T). Lemma in_setE T (A : set T) x : x \in A = A x :> Prop. Proof. by rewrite propeqE; split => [] /asboolP. Qed. Definition inE := (inE, in_setE). Bind Scope classical_set_scope with set. Local Open Scope classical_set_scope. Delimit Scope classical_set_scope with classic. Definition mkset {T} (P : T -> Prop) : set T := P. Arguments mkset _ _ _ /. Notation "[ 'set' x : T | P ]" := (mkset (fun x : T => P)) : classical_set_scope. Notation "[ 'set' x | P ]" := [set x : _ | P] : classical_set_scope. Definition image {T rT} (A : set T) (f : T -> rT) := [set y | exists2 x, A x & f x = y]. Arguments image _ _ _ _ _ /. Notation "[ 'set' E | x 'in' A ]" := (image A (fun x => E)) : classical_set_scope. Definition image2 {TA TB rT} (A : set TA) (B : set TB) (f : TA -> TB -> rT) := [set z | exists2 x, A x & exists2 y, B y & f x y = z]. Arguments image2 _ _ _ _ _ _ _ /. Notation "[ 'set' E | x 'in' A & y 'in' B ]" := (image2 A B (fun x y => E)) : classical_set_scope. Section basic_definitions. Context {T rT : Type}. Implicit Types (T : Type) (A B : set T) (f : T -> rT) (Y : set rT). Definition preimage f Y : set T := [set t | Y (f t)]. Definition setT := [set _ : T | True]. Definition set0 := [set _ : T | False]. Definition set1 (t : T) := [set x : T | x = t]. Definition setI A B := [set x | A x /\ B x]. Definition setU A B := [set x | A x \/ B x]. Definition nonempty A := exists a, A a. Definition setC A := [set a | ~ A a]. Definition setD A B := [set x | A x /\ ~ B x]. Definition setM T1 T2 (A1 : set T1) (A2 : set T2) := [set z | A1 z.1 /\ A2 z.2]. Definition fst_set T1 T2 (A : set (T1 * T2)) := [set x | exists y, A (x, y)]. Definition snd_set T1 T2 (A : set (T1 * T2)) := [set y | exists x, A (x, y)]. Definition setMR T1 T2 (A1 : set T1) (A2 : T1 -> set T2) := [set z | A1 z.1 /\ A2 z.1 z.2]. Definition setML T1 T2 (A1 : T2 -> set T1) (A2 : set T2) := [set z | A1 z.2 z.1 /\ A2 z.2]. Lemma mksetE (P : T -> Prop) x : [set x | P x] x = P x. Proof. by []. Qed. Definition bigcap T I (P : set I) (F : I -> set T) := [set a | forall i, P i -> F i a]. Definition bigcup T I (P : set I) (F : I -> set T) := [set a | exists2 i, P i & F i a]. Definition subset A B := forall t, A t -> B t. Local Notation "A `<=` B" := (subset A B). Definition disj_set A B := setI A B == set0. Definition proper A B := A `<=` B /\ ~ (B `<=` A). End basic_definitions. Arguments preimage T rT f Y t /. Arguments set0 _ _ /. Arguments setT _ _ /. Arguments set1 _ _ _ /. Arguments setI _ _ _ _ /. Arguments setU _ _ _ _ /. Arguments setC _ _ _ /. Arguments setD _ _ _ _ /. Arguments setM _ _ _ _ _ /. Arguments setMR _ _ _ _ _ /. Arguments setML _ _ _ _ _ /. Arguments fst_set _ _ _ _ /. Arguments snd_set _ _ _ _ /. Notation range F := [set F i | i in setT]. Notation "[ 'set' a ]" := (set1 a) : classical_set_scope. Notation "[ 'set' a : T ]" := [set (a : T)] : classical_set_scope. Notation "[ 'set' : T ]" := (@setT T) : classical_set_scope. Notation "A `|` B" := (setU A B) : classical_set_scope. Notation "a |` A" := ([set a] `|` A) : classical_set_scope. Notation "[ 'set' a1 ; a2 ; .. ; an ]" := (setU .. (a1 |` [set a2]) .. [set an]) : classical_set_scope. Notation "A `&` B" := (setI A B) : classical_set_scope. Notation "A `*` B" := (setM A B) : classical_set_scope. Notation "A .`1" := (fst_set A) : classical_set_scope. Notation "A .`2" := (snd_set A) : classical_set_scope. Notation "A `*`` B" := (setMR A B) : classical_set_scope. Notation "A ``*` B" := (setML A B) : classical_set_scope. Notation "~` A" := (setC A) : classical_set_scope. Notation "[ 'set' ~ a ]" := (~` [set a]) : classical_set_scope. Notation "A `\` B" := (setD A B) : classical_set_scope. Notation "A `\ a" := (A `\` [set a]) : classical_set_scope. Notation "[ 'disjoint' A & B ]" := (disj_set A B) : classical_set_scope. Notation "\bigcup_ ( i 'in' P ) F" := (bigcup P (fun i => F)) : classical_set_scope. Notation "\bigcup_ ( i : T ) F" := (\bigcup_(i in @setT T) F) : classical_set_scope. Notation "\bigcup_ i F" := (\bigcup_(i : _) F) : classical_set_scope. Notation "\bigcap_ ( i 'in' P ) F" := (bigcap P (fun i => F)) : classical_set_scope. Notation "\bigcap_ ( i : T ) F" := (\bigcap_(i in @setT T) F) : classical_set_scope. Notation "\bigcap_ i F" := (\bigcap_(i : _) F) : classical_set_scope. Notation "A `<=` B" := (subset A B) : classical_set_scope. Notation "A `<` B" := (proper A B) : classical_set_scope. Notation "A `<=>` B" := ((A `<=` B) /\ (B `<=` A)) : classical_set_scope. Notation "f @^-1` A" := (preimage f A) : classical_set_scope. Notation "f @` A" := (image A f) (only parsing) : classical_set_scope. Notation "A !=set0" := (nonempty A) : classical_set_scope. Notation "[ 'set`' p ]":= [set x | is_true (x \in p)] : classical_set_scope. Notation pred_set := (fun i => [set` i]). Notation "`[ a , b ]" := [set` Interval (BLeft a) (BRight b)] : classical_set_scope. Notation "`] a , b ]" := [set` Interval (BRight a) (BRight b)] : classical_set_scope. Notation "`[ a , b [" := [set` Interval (BLeft a) (BLeft b)] : classical_set_scope. Notation "`] a , b [" := [set` Interval (BRight a) (BLeft b)] : classical_set_scope. Notation "`] '-oo' , b ]" := [set` Interval -oo%O (BRight b)] : classical_set_scope. Notation "`] '-oo' , b [" := [set` Interval -oo%O (BLeft b)] : classical_set_scope. Notation "`[ a , '+oo' [" := [set` Interval (BLeft a) +oo%O] : classical_set_scope. Notation "`] a , '+oo' [" := [set` Interval (BRight a) +oo%O] : classical_set_scope. Notation "`] -oo , '+oo' [" := [set` Interval -oo%O +oo%O] : classical_set_scope. Lemma preimage_itv T (d : unit) (rT : porderType d) (f : T -> rT) (i : interval rT) (x : T) : ((f @^-1` [set` i]) x) = (f x \in i). Proof. by rewrite inE. Qed. Lemma preimage_itv_o_infty T (d : unit) (rT : porderType d) (f : T -> rT) y : f @^-1` `]y, +oo[%classic = [set x | (y < f x)%O]. Proof. by rewrite predeqE => t; split => [|?]; rewrite /= in_itv/= andbT. Qed. Lemma preimage_itv_c_infty T (d : unit) (rT : porderType d) (f : T -> rT) y : f @^-1` `[y, +oo[%classic = [set x | (y <= f x)%O]. Proof. by rewrite predeqE => t; split => [|?]; rewrite /= in_itv/= andbT. Qed. Lemma preimage_itv_infty_o T (d : unit) (rT : orderType d) (f : T -> rT) y : f @^-1` `]-oo, y[%classic = [set x | (f x < y)%O]. Proof. by rewrite predeqE => t; split => [|?]; rewrite /= in_itv. Qed. Lemma preimage_itv_infty_c T (d : unit) (rT : orderType d) (f : T -> rT) y : f @^-1` `]-oo, y]%classic = [set x | (f x <= y)%O]. Proof. by rewrite predeqE => t; split => [|?]; rewrite /= in_itv. Qed. Notation "'`I_' n" := [set k | is_true (k < n)%N]. Lemma eq_set T (P Q : T -> Prop) : (forall x : T, P x = Q x) -> [set x | P x] = [set x | Q x]. Proof. by move=> /funext->. Qed. Coercion set_type T (A : set T) := {x : T | x \in A}. Definition SigSub {T} {pT : predType T} {P : pT} x : x \in P -> {x | x \in P} := exist (fun x => x \in P) x. Lemma set0fun {P T : Type} : @set0 T -> P. Proof. by case=> x; rewrite inE. Qed. Section basic_lemmas. Context {T : Type}. Implicit Types A B C D : set T. Lemma mem_set {A} {u : T} : A u -> u \in A. Proof. by rewrite inE. Qed. Lemma set_mem {A} {u : T} : u \in A -> A u. Proof. by rewrite inE. Qed. Lemma mem_setT (u : T) : u \in [set: T]. Proof. by rewrite inE. Qed. Lemma mem_setK {A} {u : T} : cancel (@mem_set A u) set_mem. Proof. by []. Qed. Lemma set_memK {A} {u : T} : cancel (@set_mem A u) mem_set. Proof. by []. Qed. Lemma memNset (A : set T) (u : T) : ~ A u -> u \in A = false. Proof. by apply: contra_notF; rewrite inE. Qed. Lemma notin_set (A : set T) x : (x \notin A : Prop) = ~ (A x). Proof. by apply/propext; split=> /asboolPn. Qed. Lemma setTPn (A : set T) : A != setT <-> exists t, ~ A t. Proof. split => [/negP|[t]]; last by apply: contra_notP => /negP/negPn/eqP ->. apply: contra_notP => /forallNP h. by apply/eqP; rewrite predeqE => t; split => // _; apply: contrapT. Qed. #[deprecated(note="Use setTPn instead")] Notation setTP := setTPn. Lemma in_set0 (x : T) : (x \in set0) = false. Proof. by rewrite memNset. Qed. Lemma in_setT (x : T) : x \in setT. Proof. by rewrite mem_set. Qed. Lemma in_setC (x : T) A : (x \in ~` A) = (x \notin A). Proof. by apply/idP/idP; rewrite inE notin_set. Qed. Lemma in_setI (x : T) A B : (x \in A `&` B) = (x \in A) && (x \in B). Proof. by apply/idP/andP; rewrite !inE. Qed. Lemma in_setD (x : T) A B : (x \in A `\` B) = (x \in A) && (x \notin B). Proof. by apply/idP/andP; rewrite !inE notin_set. Qed. Lemma in_setU (x : T) A B : (x \in A `|` B) = (x \in A) || (x \in B). Proof. by apply/idP/orP; rewrite !inE. Qed. Lemma in_setM T' (x : T * T') A E : (x \in A `*` E) = (x.1 \in A) && (x.2 \in E). Proof. by apply/idP/andP; rewrite !inE. Qed. Lemma set_valP {A} (x : A) : A (val x). Proof. by apply: set_mem; apply: valP. Qed. Lemma eqEsubset A B : (A = B) = (A `<=>` B). Proof. rewrite propeqE; split => [->|[AB BA]]; [by split|]. by rewrite predeqE => t; split=> [/AB|/BA]. Qed. Lemma seteqP A B : (A = B) <-> (A `<=>` B). Proof. by rewrite eqEsubset. Qed. Lemma set_true : [set` predT] = setT :> set T. Proof. by apply/seteqP; split. Qed. Lemma set_false : [set` pred0] = set0 :> set T. Proof. by apply/seteqP; split. Qed. Lemma set_andb (P Q : {pred T}) : [set` predI P Q] = [set` P] `&` [set` Q]. Proof. by apply/predeqP => x; split; rewrite /= inE => /andP. Qed. Lemma set_orb (P Q : {pred T}) : [set` predU P Q] = [set` P] `|` [set` Q]. Proof. by apply/predeqP => x; split; rewrite /= inE => /orP. Qed. Lemma fun_true : (fun=> true) = setT :> set T. Proof. by rewrite [LHS]set_true. Qed. Lemma fun_false : (fun=> false) = set0 :> set T. Proof. by rewrite [LHS]set_false. Qed. Lemma set_mem_set A : [set` A] = A. Proof. by apply/seteqP; split=> x/=; rewrite inE. Qed. Lemma mem_setE (P : pred T) : mem [set` P] = mem P. Proof. by congr Mem; apply/funext=> x; apply/asboolP/idP. Qed. Lemma subset_trans B A C : A `<=` B -> B `<=` C -> A `<=` C. Proof. by move=> sAB sBC ? ?; apply/sBC/sAB. Qed. Lemma sub0set A : set0 `<=` A. Proof. by []. Qed. Lemma setC0 : ~` set0 = setT :> set T. Proof. by rewrite predeqE; split => ?. Qed. Lemma setCK : involutive (@setC T). Proof. by move=> A; rewrite funeqE => t; rewrite /setC; exact: notLR. Qed. Lemma setCT : ~` setT = set0 :> set T. Proof. by rewrite -setC0 setCK. Qed. Definition setC_inj := can_inj setCK. Lemma setIC : commutative (@setI T). Proof. by move=> A B; rewrite predeqE => ?; split=> [[]|[]]. Qed. Lemma setIS C A B : A `<=` B -> C `&` A `<=` C `&` B. Proof. by move=> sAB t [Ct At]; split => //; exact: sAB. Qed. Lemma setSI C A B : A `<=` B -> A `&` C `<=` B `&` C. Proof. by move=> sAB; rewrite -!(setIC C); apply setIS. Qed. Lemma setISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D. Proof. by move=> /(@setSI B) /subset_trans sAC /(@setIS C) /sAC. Qed. Lemma setIT : right_id setT (@setI T). Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed. Lemma setTI : left_id setT (@setI T). Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed. Lemma setI0 : right_zero set0 (@setI T). Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed. Lemma set0I : left_zero set0 (@setI T). Proof. by move=> A; rewrite setIC setI0. Qed. Lemma setICl : left_inverse set0 setC (@setI T). Proof. by move=> A; rewrite predeqE => ?; split => // -[]. Qed. Lemma setICr : right_inverse set0 setC (@setI T). Proof. by move=> A; rewrite setIC setICl. Qed. Lemma setIA : associative (@setI T). Proof. by move=> A B C; rewrite predeqE => ?; split=> [[? []]|[[]]]. Qed. Lemma setICA : left_commutative (@setI T). Proof. by move=> A B C; rewrite setIA [A `&` _]setIC -setIA. Qed. Lemma setIAC : right_commutative (@setI T). Proof. by move=> A B C; rewrite setIC setICA setIA. Qed. Lemma setIACA : @interchange (set T) setI setI. Proof. by move=> A B C D; rewrite -setIA [B `&` _]setICA setIA. Qed. Lemma setIid : idempotent (@setI T). Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed. Lemma setIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C). Proof. by rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed. Lemma setIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C). Proof. by rewrite !(setIC A) setIIl. Qed. Lemma setUC : commutative (@setU T). Proof. move=> p q; rewrite /setU/mkset predeqE => a; tauto. Qed. Lemma setUS C A B : A `<=` B -> C `|` A `<=` C `|` B. Proof. by move=> sAB t [Ct|At]; [left|right; exact: sAB]. Qed. Lemma setSU C A B : A `<=` B -> A `|` C `<=` B `|` C. Proof. by move=> sAB; rewrite -!(setUC C); apply setUS. Qed. Lemma setUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D. Proof. by move=> /(@setSU B) /subset_trans sAC /(@setUS C) /sAC. Qed. Lemma setTU : left_zero setT (@setU T). Proof. by move=> A; rewrite predeqE => t; split; [case|left]. Qed. Lemma setUT : right_zero setT (@setU T). Proof. by move=> A; rewrite predeqE => t; split; [case|right]. Qed. Lemma set0U : left_id set0 (@setU T). Proof. by move=> A; rewrite predeqE => t; split; [case|right]. Qed. Lemma setU0 : right_id set0 (@setU T). Proof. by move=> A; rewrite predeqE => t; split; [case|left]. Qed. Lemma setUCl : left_inverse setT setC (@setU T). Proof. move=> A. by rewrite predeqE => t; split => // _; case: (pselect (A t)); [right|left]. Qed. Lemma setUCr : right_inverse setT setC (@setU T). Proof. by move=> A; rewrite setUC setUCl. Qed. Lemma setUA : associative (@setU T). Proof. move=> p q r; rewrite /setU/mkset predeqE => a; tauto. Qed. Lemma setUCA : left_commutative (@setU T). Proof. by move=> A B C; rewrite setUA [A `|` _]setUC -setUA. Qed. Lemma setUAC : right_commutative (@setU T). Proof. by move=> A B C; rewrite setUC setUCA setUA. Qed. Lemma setUACA : @interchange (set T) setU setU. Proof. by move=> A B C D; rewrite -setUA [B `|` _]setUCA setUA. Qed. Lemma setUid : idempotent (@setU T). Proof. move=> p; rewrite /setU/mkset predeqE => a; tauto. Qed. Lemma setUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C). Proof. by rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed. Lemma setUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C). Proof. by rewrite !(setUC A) setUUl. Qed. Lemma setDE A B : A `\` B = A `&` ~` B. Proof. by []. Qed. Lemma setDUK A B : A `<=` B -> A `|` (B `\` A) = B. Proof. move=> AB; apply/seteqP; split=> [x [/AB//|[//]]|x Bx]. by have [Ax|nAx] := pselect (A x); [left|right]. Qed. Lemma setDKU A B : A `<=` B -> (B `\` A) `|` A = B. Proof. by move=> /setDUK; rewrite setUC. Qed. Lemma setDv A : A `\` A = set0. Proof. by rewrite predeqE => t; split => // -[]. Qed. Lemma setUv A : A `|` ~` A = setT. Proof. by apply/predeqP => x; split=> //= _; apply: lem. Qed. Lemma setIv A : A `&` ~` A = set0. Proof. by rewrite -setDE setDv. Qed. Lemma setvU A : ~` A `|` A = setT. Proof. by rewrite setUC setUv. Qed. Lemma setvI A : ~` A `&` A = set0. Proof. by rewrite setIC setIv. Qed. Lemma setUCK A B : (A `|` B) `|` ~` B = setT. Proof. by rewrite -setUA setUv setUT. Qed. Lemma setUKC A B : ~` A `|` (A `|` B) = setT. Proof. by rewrite setUA setvU setTU. Qed. Lemma setICK A B : (A `&` B) `&` ~` B = set0. Proof. by rewrite -setIA setIv setI0. Qed. Lemma setIKC A B : ~` A `&` (A `&` B) = set0. Proof. by rewrite setIA setvI set0I. Qed. Lemma setDIK A B : A `&` (B `\` A) = set0. Proof. by rewrite setDE setICA -setDE setDv setI0. Qed. Lemma setDKI A B : (B `\` A) `&` A = set0. Proof. by rewrite setIC setDIK. Qed. Lemma setD1K a A : A a -> a |` A `\ a = A. Proof. by move=> Aa; rewrite setDUK//= => x ->. Qed. Lemma setI1 A a : A `&` [set a] = if a \in A then [set a] else set0. Proof. by apply/predeqP => b; case: ifPn; rewrite (inE, notin_set) => Aa; split=> [[]|]//; [move=> -> //|move=> /[swap] -> /Aa]. Qed. Lemma set1I A a : [set a] `&` A = if a \in A then [set a] else set0. Proof. by rewrite setIC setI1. Qed. Lemma subset0 A : (A `<=` set0) = (A = set0). Proof. by rewrite eqEsubset propeqE; split=> [A0|[]//]; split. Qed. Lemma subTset A : (setT `<=` A) = (A = setT). Proof. by rewrite eqEsubset propeqE; split=> [|[]]. Qed. Lemma subsetT A : A `<=` setT. Proof. by []. Qed. Lemma subsetW {A B} : A = B -> A `<=` B. Proof. by move->. Qed. Definition subsetCW {A B} : A = B -> B `<=` A := subsetW \o esym. Lemma disj_set2E A B : [disjoint A & B] = (A `&` B == set0). Proof. by []. Qed. Lemma disj_set2P {A B} : reflect (A `&` B = set0) [disjoint A & B]%classic. Proof. exact/eqP. Qed. Lemma disj_setPS {A B} : reflect (A `&` B `<=` set0) [disjoint A & B]%classic. Proof. by rewrite subset0; apply: disj_set2P. Qed. Lemma disj_set_sym A B : [disjoint B & A] = [disjoint A & B]. Proof. by rewrite !disj_set2E setIC. Qed. Lemma disj_setPCl {A B} : reflect (A `<=` B) [disjoint A & ~` B]%classic. Proof. apply: (iffP disj_setPS) => [P t ?|P t [/P//]]. by apply: contrapT => ?; apply: (P t). Qed. Lemma disj_setPCr {A B} : reflect (A `<=` B) [disjoint ~` B & A]%classic. Proof. by rewrite disj_set_sym; apply: disj_setPCl. Qed. Lemma disj_setPLR {A B} : reflect (A `<=` ~` B) [disjoint A & B]%classic. Proof. by apply: (equivP idP); rewrite (rwP disj_setPCl) setCK. Qed. Lemma disj_setPRL {A B} : reflect (B `<=` ~` A) [disjoint A & B]%classic. Proof. by apply: (equivP idP); rewrite (rwP disj_setPCr) setCK. Qed. Lemma subsets_disjoint A B : A `<=` B <-> A `&` ~` B = set0. Proof. by rewrite (rwP disj_setPCl) (rwP eqP). Qed. Lemma disjoints_subset A B : A `&` B = set0 <-> A `<=` ~` B. Proof. by rewrite subsets_disjoint setCK. Qed. Lemma subsetC1 x A : (A `<=` [set~ x]) = (x \in ~` A). Proof. rewrite !inE; apply/propext; split; first by move/[apply]; apply. by move=> NAx y; apply: contraPnot => ->. Qed. Lemma setSD C A B : A `<=` B -> A `\` C `<=` B `\` C. Proof. by rewrite !setDE; apply: setSI. Qed. Lemma setTD A : setT `\` A = ~` A. Proof. by rewrite predeqE => t; split => // -[]. Qed. Lemma set0P A : (A != set0) <-> (A !=set0). Proof. split=> [/negP A_neq0|[t tA]]; last by apply/negP => /eqP A0; rewrite A0 in tA. apply: contrapT => /asboolPn/forallp_asboolPn A0; apply/A_neq0/eqP. by rewrite eqEsubset; split. Qed. Lemma setF_eq0 : (T -> False) -> all_equal_to (set0 : set T). Proof. by move=> TF A; rewrite -subset0 => x; have := TF x. Qed. Lemma subset_nonempty A B : A `<=` B -> A !=set0 -> B !=set0. Proof. by move=> sAB [x Ax]; exists x; apply: sAB. Qed. Lemma subsetC A B : A `<=` B -> ~` B `<=` ~` A. Proof. by move=> sAB ? nBa ?; apply/nBa/sAB. Qed. Lemma subsetCl A B : ~` A `<=` B -> ~` B `<=` A. Proof. by move=> /subsetC; rewrite setCK. Qed. Lemma subsetCr A B : A `<=` ~` B -> B `<=` ~` A. Proof. by move=> /subsetC; rewrite setCK. Qed. Lemma subsetC2 A B : ~` A `<=` ~` B -> B `<=` A. Proof. by move=> /subsetC; rewrite !setCK. Qed. Lemma subsetCP A B : ~` A `<=` ~` B <-> B `<=` A. Proof. by split=> /subsetC; rewrite ?setCK. Qed. Lemma subsetCPl A B : ~` A `<=` B <-> ~` B `<=` A. Proof. by split=> /subsetC; rewrite ?setCK. Qed. Lemma subsetCPr A B : A `<=` ~` B <-> B `<=` ~` A. Proof. by split=> /subsetC; rewrite ?setCK. Qed. Lemma subsetUl A B : A `<=` A `|` B. Proof. by move=> x; left. Qed. Lemma subsetUr A B : B `<=` A `|` B. Proof. by move=> x; right. Qed. Lemma subUset A B C : (B `|` C `<=` A) = ((B `<=` A) /\ (C `<=` A)). Proof. rewrite propeqE; split => [|[BA CA] x]; last by case; [exact: BA | exact: CA]. by move=> sBC_A; split=> x ?; apply sBC_A; [left | right]. Qed. Lemma setIidPl A B : A `&` B = A <-> A `<=` B. Proof. rewrite predeqE; split=> [AB t /AB [] //|AB t]. by split=> [[]//|At]; split=> //; exact: AB. Qed. Lemma setIidPr A B : A `&` B = B <-> B `<=` A. Proof. by rewrite setIC setIidPl. Qed. Lemma setIidl A B : A `<=` B -> A `&` B = A. Proof. by rewrite setIidPl. Qed. Lemma setIidr A B : B `<=` A -> A `&` B = B. Proof. by rewrite setIidPr. Qed. Lemma setUidPl A B : A `|` B = A <-> B `<=` A. Proof. split=> [<- ? ?|BA]; first by right. rewrite predeqE => t; split=> [[//|/BA//]|?]; by left. Qed. Lemma setUidPr A B : A `|` B = B <-> A `<=` B. Proof. by rewrite setUC setUidPl. Qed. Lemma setUidl A B : B `<=` A -> A `|` B = A. Proof. by rewrite setUidPl. Qed. Lemma setUidr A B : A `<=` B -> A `|` B = B. Proof. by rewrite setUidPr. Qed. Lemma subsetI A B C : (A `<=` B `&` C) = ((A `<=` B) /\ (A `<=` C)). Proof. rewrite propeqE; split=> [H|[y z ??]]; split; by [move=> ?/H[]|apply y|apply z]. Qed. Lemma setDidPl A B : A `\` B = A <-> A `&` B = set0. Proof. rewrite setDE disjoints_subset predeqE; split => [AB t|AB t]. by rewrite -AB => -[]. by split=> [[]//|At]; move: (AB t At). Qed. Lemma setDidl A B : A `&` B = set0 -> A `\` B = A. Proof. by move=> /setDidPl. Qed. Lemma subIset A B C : A `<=` C \/ B `<=` C -> A `&` B `<=` C. Proof. case=> sub a; by [move=> [/sub] | move=> [_ /sub]]. Qed. Lemma subIsetl A B : A `&` B `<=` A. Proof. by move=> x []. Qed. Lemma subIsetr A B : A `&` B `<=` B. Proof. by move=> x []. Qed. Lemma subDsetl A B : A `\` B `<=` A. Proof. by rewrite setDE; apply: subIsetl. Qed. Lemma subDsetr A B : A `\` B `<=` ~` B. Proof. by rewrite setDE; apply: subIsetr. Qed. Lemma subsetI_neq0 A B C D : A `<=` B -> C `<=` D -> A `&` C !=set0 -> B `&` D !=set0. Proof. by move=> AB CD [x [/AB Bx /CD Dx]]; exists x. Qed. Lemma subsetI_eq0 A B C D : A `<=` B -> C `<=` D -> B `&` D = set0 -> A `&` C = set0. Proof. by move=> AB /(subsetI_neq0 AB); rewrite -!set0P => /contra_eq. Qed. Lemma setD_eq0 A B : (A `\` B = set0) = (A `<=` B). Proof. rewrite propeqE; split=> [ADB0 a|sAB]. by apply: contraPP => nBa xA; rewrite -[False]/(set0 a) -ADB0. by rewrite predeqE => ?; split=> // - [?]; apply; apply: sAB. Qed. Lemma properEneq A B : (A `<` B) = (A != B /\ A `<=` B). Proof. rewrite /proper andC propeqE; split => [[BA AB]|[/eqP]]. by split => //; apply/negP; apply: contra_not BA => /eqP ->. by rewrite eqEsubset => AB BA; split => //; exact: contra_not AB. Qed. Lemma nonsubset A B : ~ (A `<=` B) -> A `&` ~` B !=set0. Proof. by rewrite -setD_eq0 setDE -set0P => /eqP. Qed. Lemma setU_eq0 A B : (A `|` B = set0) = ((A = set0) /\ (B = set0)). Proof. by rewrite -!subset0 subUset. Qed. Lemma setCS A B : (~` A `<=` ~` B) = (B `<=` A). Proof. rewrite propeqE; split => [|BA]. by move/subsets_disjoint; rewrite setCK setIC => /subsets_disjoint. by apply/subsets_disjoint; rewrite setCK setIC; apply/subsets_disjoint. Qed. Lemma setDT A : A `\` setT = set0. Proof. by rewrite setDE setCT setI0. Qed. Lemma set0D A : set0 `\` A = set0. Proof. by rewrite setDE set0I. Qed. Lemma setD0 A : A `\` set0 = A. Proof. by rewrite setDE setC0 setIT. Qed. Lemma setDS C A B : A `<=` B -> C `\` B `<=` C `\` A. Proof. by rewrite !setDE -setCS; apply: setIS. Qed. Lemma setDSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D. Proof. by move=> /(@setSD B) /subset_trans sAC /(@setDS C) /sAC. Qed. Lemma setCU A B : ~`(A `|` B) = ~` A `&` ~` B. Proof. rewrite predeqE => z. by apply: asbool_eq_equiv; rewrite asbool_and !asbool_neg asbool_or negb_or. Qed. Lemma setCI A B : ~` (A `&` B) = ~` A `|` ~` B. Proof. by rewrite -[in LHS](setCK A) -[in LHS](setCK B) -setCU setCK. Qed. Lemma setDUr A B C : A `\` (B `|` C) = (A `\` B) `&` (A `\` C). Proof. by rewrite !setDE setCU setIIr. Qed. Lemma setIUl : left_distributive (@setI T) (@setU T). Proof. move=> A B C; rewrite predeqE => t; split. by move=> [[At|Bt] Ct]; [left|right]. by move=> [[At Ct]|[Bt Ct]]; split => //; [left|right]. Qed. Lemma setIUr : right_distributive (@setI T) (@setU T). Proof. by move=> A B C; rewrite ![A `&` _]setIC setIUl. Qed. Lemma setUIl : left_distributive (@setU T) (@setI T). Proof. move=> A B C; rewrite predeqE => t; split. by move=> [[At Bt]|Ct]; split; by [left|right]. by move=> [[At|Ct] [Bt|Ct']]; by [left|right]. Qed. Lemma setUIr : right_distributive (@setU T) (@setI T). Proof. by move=> A B C; rewrite ![A `|` _]setUC setUIl. Qed. Lemma setUK A B : (A `|` B) `&` A = A. Proof. by rewrite eqEsubset; split => [t []//|t ?]; split => //; left. Qed. Lemma setKU A B : A `&` (B `|` A) = A. Proof. by rewrite eqEsubset; split => [t []//|t ?]; split => //; right. Qed. Lemma setIK A B : (A `&` B) `|` A = A. Proof. by rewrite eqEsubset; split => [t [[]//|//]|t At]; right. Qed. Lemma setKI A B : A `|` (B `&` A) = A. Proof. by rewrite eqEsubset; split => [t [//|[]//]|t At]; left. Qed. Lemma setDUl : left_distributive setD (@setU T). Proof. by move=> A B C; rewrite !setDE setIUl. Qed. Lemma setUKD A B : A `&` B `<=` set0 -> (A `|` B) `\` A = B. Proof. by move=> AB0; rewrite setDUl setDv set0U setDidl// -subset0 setIC. Qed. Lemma setUDK A B : A `&` B `<=` set0 -> (B `|` A) `\` A = B. Proof. by move=> *; rewrite setUC setUKD. Qed. Lemma setIDA A B C : A `&` (B `\` C) = (A `&` B) `\` C. Proof. by rewrite !setDE setIA. Qed. Lemma setDD A B : A `\` (A `\` B) = A `&` B. Proof. by rewrite 2!setDE setCI setCK setIUr setICr set0U. Qed. Lemma setDDl A B C : (A `\` B) `\` C = A `\` (B `|` C). Proof. by rewrite !setDE setCU setIA. Qed. Lemma setDDr A B C : A `\` (B `\` C) = (A `\` B) `|` (A `&` C). Proof. by rewrite !setDE setCI setIUr setCK. Qed. Lemma setDIr A B C : A `\` B `&` C = (A `\` B) `|` (A `\` C). Proof. by rewrite !setDE setCI setIUr. Qed. Lemma setUIDK A B : (A `&` B) `|` A `\` B = A. Proof. by rewrite setUC -setDDr setDv setD0. Qed. Lemma setM0 T' (A : set T) : A `*` set0 = set0 :> set (T * T'). Proof. by rewrite predeqE => -[t u]; split => // -[]. Qed. Lemma set0M T' (A : set T') : set0 `*` A = set0 :> set (T * T'). Proof. by rewrite predeqE => -[t u]; split => // -[]. Qed. Lemma setMTT T' : setT `*` setT = setT :> set (T * T'). Proof. exact/predeqP. Qed. Lemma setMT T1 T2 (A : set T1) : A `*` @setT T2 = fst @^-1` A. Proof. by rewrite predeqE => -[x y]; split => //= -[]. Qed. Lemma setTM T1 T2 (B : set T2) : @setT T1 `*` B = snd @^-1` B. Proof. by rewrite predeqE => -[x y]; split => //= -[]. Qed. Lemma setMI T1 T2 (X1 : set T1) (X2 : set T2) (Y1 : set T1) (Y2 : set T2) : (X1 `&` Y1) `*` (X2 `&` Y2) = X1 `*` X2 `&` Y1 `*` Y2. Proof. by rewrite predeqE => -[x y]; split=> [[[? ?] [*]//]|[] [? ?] [*]]. Qed. Lemma setSM T1 T2 (C D : set T1) (A B : set T2) : A `<=` B -> C `<=` D -> C `*` A `<=` D `*` B. Proof. by move=> AB CD x [] /CD Dx1 /AB Bx2. Qed. Lemma setM_bigcupr T1 T2 I (F : I -> set T2) (P : set I) (A : set T1) : A `*` \bigcup_(i in P) F i = \bigcup_(i in P) (A `*` F i). Proof. rewrite predeqE => -[x y]; split; first by move=> [/= Ax [n Pn Fny]]; exists n. by move=> [n Pn [/= Ax Fny]]; split => //; exists n. Qed. Lemma setM_bigcupl T1 T2 I (F : I -> set T2) (P : set I) (A : set T1) : \bigcup_(i in P) F i `*` A = \bigcup_(i in P) (F i `*` A). Proof. rewrite predeqE => -[x y]; split; first by move=> [[n Pn Fnx] Ax]; exists n. by move=> [n Pn [/= Ax Fny]]; split => //; exists n. Qed. Lemma bigcupM1l T1 T2 (A1 : set T1) (A2 : T1 -> set T2) : \bigcup_(i in A1) ([set i] `*` (A2 i)) = A1 `*`` A2. Proof. by apply/predeqP => -[i j]; split=> [[? ? [/= -> //]]|[]]; exists i. Qed. Lemma bigcupM1r T1 T2 (A1 : T2 -> set T1) (A2 : set T2) : \bigcup_(i in A2) (A1 i `*` [set i]) = A1 ``*` A2. Proof. by apply/predeqP => -[i j]; split=> [[? ? [? /= -> //]]|[]]; exists j. Qed. Lemma pred_oappE (D : {pred T}) : pred_oapp D = mem (some @` D). Proof. apply/funext=> -[x|]/=; apply/idP/idP; rewrite /pred_oapp/= inE //=. - by move=> xD; exists x. - by move=> [// + + [<-]]. - by case. Qed. Lemma pred_oapp_set (D : set T) : pred_oapp (mem D) = mem (some @` D). Proof. by rewrite pred_oappE; apply/funext => x/=; apply/idP/idP; rewrite ?inE; move=> [y/= ]; rewrite ?in_setE; exists y; rewrite ?in_setE. Qed. End basic_lemmas. #[global] Hint Resolve subsetUl subsetUr subIsetl subIsetr subDsetl subDsetr : core. Lemma image2E {TA TB rT : Type} (A : set TA) (B : set TB) (f : TA -> TB -> rT) : [set f x y | x in A & y in B] = uncurry f @` (A `*` B). Proof. apply/predeqP => x; split=> [[a ? [b ? <-]]|[[a b] [? ? <-]]]/=; by [exists (a, b) | exists a => //; exists b]. Qed. Lemma set_nil (T : choiceType) : [set` [::]] = @set0 T. Proof. by rewrite predeqP. Qed. Lemma set_seq_eq0 (T : eqType) (S : seq T) : ([set` S] == set0) = (S == [::]). Proof. apply/eqP/eqP=> [|->]; rewrite predeqE //; case: S => // h t /(_ h). by rewrite /= mem_head => -[/(_ erefl)]. Qed. Lemma set_fset_eq0 (T : choiceType) (S : {fset T}) : ([set` S] == set0) = (S == fset0). Proof. by rewrite set_seq_eq0. Qed. Section InitialSegment. Lemma II0 : `I_0 = set0. Proof. by rewrite predeqE. Qed. Lemma II1 : `I_1 = [set 0%N]. Proof. by rewrite predeqE; case. Qed. Lemma IIn_eq0 n : `I_n = set0 -> n = 0%N. Proof. by case: n => // n; rewrite predeqE; case/(_ 0%N); case. Qed. Lemma IIS n : `I_n.+1 = `I_n `|` [set n]. Proof. rewrite /mkset predeqE => i; split => [|[|->//]]. by rewrite ltnS leq_eqVlt => /orP[/eqP ->|]; by [left|right]. by move/ltn_trans; apply. Qed. Lemma setI_II m n : `I_m `&` `I_n = `I_(minn m n). Proof. by case: leqP => mn; [rewrite setIidl// | rewrite setIidr//] => k /= /leq_trans; apply => //; apply: ltnW. Qed. Lemma setU_II m n : `I_m `|` `I_n = `I_(maxn m n). Proof. by case: leqP => mn; [rewrite setUidr// | rewrite setUidl//] => k /= /leq_trans; apply => //; apply: ltnW. Qed. Lemma Iiota (n : nat) : [set` iota 0 n] = `I_n. Proof. by apply/seteqP; split => [|] ?; rewrite /= mem_iota add0n. Qed. Definition ordII {n} (k : 'I_n) : `I_n := SigSub (@mem_set _ `I_n _ (ltn_ord k)). Definition IIord {n} (k : `I_n) := Ordinal (set_valP k). Definition ordIIK {n} : cancel (@ordII n) IIord. Proof. by move=> k; apply/val_inj. Qed. Lemma IIordK {n} : cancel (@IIord n) ordII. Proof. by move=> k; apply/val_inj. Qed. End InitialSegment. Lemma set_bool : [set: bool] = [set true; false]. Proof. by rewrite eqEsubset; split => // [[]] // _; [left|right]. Qed. (* TODO: other lemmas that relate fset and classical sets *) Lemma fdisjoint_cset (T : choiceType) (A B : {fset T}) : [disjoint A & B]%fset = [disjoint [set` A] & [set` B]]. Proof. rewrite -fsetI_eq0; apply/idP/idP; apply: contraLR. by move=> /set0P[t [tA tB]]; apply/fset0Pn; exists t; rewrite inE; apply/andP. by move=> /fset0Pn[t]; rewrite inE => /andP[tA tB]; apply/set0P; exists t. Qed. Section SetFset. Context {T : choiceType}. Implicit Types (x y : T) (A B : {fset T}). Lemma set_fset0 : [set y : T | y \in fset0] = set0. Proof. by rewrite -subset0 => x. Qed. Lemma set_fset1 x : [set y | y \in [fset x]%fset] = [set x]. Proof. by rewrite predeqE => y; split; rewrite /= inE => /eqP. Qed. Lemma set_fsetI A B : [set` (A `&` B)%fset] = [set` A] `&` [set` B]. Proof. by rewrite predeqE => x; split; rewrite /= !inE; [case/andP|case=> -> ->]. Qed. Lemma set_fsetIr (P : {pred T}) (A : {fset T}) : [set` [fset x | x in A & P x]%fset] = [set` A] `&` [set` P]. Proof. by apply/predeqP => x /=; split; rewrite 2!inE/= => /andP. Qed. Lemma set_fsetU A B : [set` (A `|` B)%fset] = [set` A] `|` [set` B]. Proof. rewrite predeqE => x; split; rewrite /= !inE. by case/orP; [left|right]. by move=> []->; rewrite ?orbT. Qed. Lemma set_fsetU1 x A : [set y | y \in (x |` A)%fset] = x |` [set` A]. Proof. by rewrite set_fsetU set_fset1. Qed. Lemma set_fsetD A B : [set` (A `\` B)%fset] = [set` A] `\` [set` B]. Proof. rewrite predeqE => x; split; rewrite /= !inE; last by move=> [-> /negP ->]. by case/andP => /negP xNB xA. Qed. Lemma set_fsetD1 A x : [set y | y \in (A `\ x)%fset] = [set` A] `\ x. Proof. by rewrite set_fsetD set_fset1. Qed. Lemma set_imfset (key : unit) [K : choiceType] (f : T -> K) (p : finmempred T) : [set` imfset key f p] = f @` [set` p]. Proof. apply/predeqP => x; split=> [/imfsetP[i ip -> /=]|]; first by exists i. by move=> [i ip <-]; apply: in_imfset. Qed. End SetFset. Section SetMonoids. Variable (T : Type). Import Monoid. Canonical setU_monoid := Law (@setUA T) (@set0U T) (@setU0 T). Canonical setU_comoid := ComLaw (@setUC T). Canonical setU_mul_monoid := MulLaw (@setTU T) (@setUT T). Canonical setI_monoid := Law (@setIA T) (@setTI T) (@setIT T). Canonical setI_comoid := ComLaw (@setIC T). Canonical setI_mul_monoid := MulLaw (@set0I T) (@setI0 T). Canonical setU_add_monoid := AddLaw (@setUIl T) (@setUIr T). Canonical setI_add_monoid := AddLaw (@setIUl T) (@setIUr T). End SetMonoids. Section base_image_lemmas. Context {aT rT : Type}. Implicit Types (A B : set aT) (f : aT -> rT) (Y : set rT). Lemma imageP f A a : A a -> (f @` A) (f a). Proof. by exists a. Qed. Lemma imageT (f : aT -> rT) (a : aT) : range f (f a). Proof. by apply: imageP. Qed. End base_image_lemmas. #[global] Hint Extern 0 ((?f @` _) (?f _)) => solve [apply: imageP; assumption] : core. #[global] Hint Extern 0 ((?f @` setT) _) => solve [apply: imageT] : core. Section image_lemmas. Context {aT rT : Type}. Implicit Types (A B : set aT) (f : aT -> rT) (Y : set rT). Lemma image_inj {f A a} : injective f -> (f @` A) (f a) = A a. Proof. by move=> f_inj; rewrite propeqE; split => [[b Ab /f_inj <-]|/(imageP f)//]. Qed. Lemma image_id A : id @` A = A. Proof. by rewrite eqEsubset; split => a; [case=> /= x Ax <-|exists a]. Qed. Lemma homo_setP {A Y f} : {homo f : x / x \in A >-> x \in Y} <-> {homo f : x / A x >-> Y x}. Proof. by split=> fAY x; have := fAY x; rewrite !inE. Qed. Lemma image_subP {A Y f} : f @` A `<=` Y <-> {homo f : x / A x >-> Y x}. Proof. by split=> fAY x => [Ax|[y + <-]]; apply: fAY=> //; exists x. Qed. Lemma image_sub {f : aT -> rT} {A : set aT} {B : set rT} : (f @` A `<=` B) = (A `<=` f @^-1` B). Proof. by apply/propext; rewrite image_subP; split=> AB a /AB. Qed. Lemma image_setU f A B : f @` (A `|` B) = f @` A `|` f @` B. Proof. rewrite eqEsubset; split => b. - by case=> a [] Ha <-; [left | right]; apply imageP. - by case=> -[] a Ha <-; apply imageP; [left | right]. Qed. Lemma image_set0 f : f @` set0 = set0. Proof. by rewrite eqEsubset; split => b // -[]. Qed. Lemma image_set0_set0 A f : f @` A = set0 -> A = set0. Proof. move=> fA0; rewrite predeqE => t; split => // At. by have : set0 (f t) by rewrite -fA0; exists t. Qed. Lemma image_set1 f t : f @` [set t] = [set f t]. Proof. by rewrite eqEsubset; split => [b [a' -> <-] //|b ->]; exact/imageP. Qed. Lemma subset_set1 A a : A `<=` [set a] -> A = set0 \/ A = [set a]. Proof. move=> Aa; have [/eqP|/set0P[t At]] := boolP (A == set0); first by left. by right; rewrite eqEsubset; split => // ? ->; rewrite -(Aa _ At). Qed. Lemma subset_set2 A a b : A `<=` [set a; b] -> [\/ A = set0, A = [set a], A = [set b] | A = [set a; b]]. Proof. have [<-|ab Aab] := pselect (a = b). by rewrite setUid => /subset_set1[]->; [apply: Or41|apply: Or42]. have [|/nonsubset[x [/[dup] /Aab []// -> Ab _]]] := pselect (A `<=` [set a]). by move=> /subset_set1[]->; [apply: Or41|apply: Or42]. have [|/nonsubset[y [/[dup] /Aab []// -> Aa _]]] := pselect (A `<=` [set b]). by move=> /subset_set1[]->; [apply: Or41|apply: Or43]. by apply: Or44; apply/seteqP; split=> // z /= [] ->. Qed. Lemma sub_image_setI f A B : f @` (A `&` B) `<=` f @` A `&` f @` B. Proof. by move=> b [x [Aa Ba <-]]; split; apply: imageP. Qed. Lemma nonempty_image f A : f @` A !=set0 -> A !=set0. Proof. by case=> b [a]; exists a. Qed. Lemma image_subset f A B : A `<=` B -> f @` A `<=` f @` B. Proof. by move=> AB _ [a Aa <-]; exists a => //; apply/AB. Qed. Lemma preimage_set0 f : f @^-1` set0 = set0. Proof. exact/predeqP. Qed. Lemma preimage_setT f : f @^-1` setT = setT. Proof. by []. Qed. Lemma nonempty_preimage f Y : f @^-1` Y !=set0 -> Y !=set0. Proof. by case=> [t ?]; exists (f t). Qed. Lemma preimage_image f A : A `<=` f @^-1` (f @` A). Proof. by move=> a Aa; exists a. Qed. Lemma image_preimage_subset f Y : f @` (f @^-1` Y) `<=` Y. Proof. by move=> _ [t /= Yft <-]. Qed. Lemma image_preimage f Y : f @` setT = setT -> f @` (f @^-1` Y) = Y. Proof. move=> fsurj; rewrite predeqE => x; split; first by move=> [? ? <-]. move=> Yx; have : setT x by []. by rewrite -fsurj => - [y _ fy_eqx]; exists y => //=; rewrite fy_eqx. Qed. Lemma eq_imagel T1 T2 (A : set T1) (f f' : T1 -> T2) : (forall x, A x -> f x = f' x) -> f @` A = f' @` A. Proof. by move=> h; rewrite predeqE=> y; split=> [][x ? <-]; exists x=> //; rewrite h. Qed. Lemma preimage_setU f Y1 Y2 : f @^-1` (Y1 `|` Y2) = f @^-1` Y1 `|` f @^-1` Y2. Proof. exact/predeqP. Qed. Lemma preimage_setI f Y1 Y2 : f @^-1` (Y1 `&` Y2) = f @^-1` Y1 `&` f @^-1` Y2. Proof. exact/predeqP. Qed. Lemma preimage_setC f Y : ~` (f @^-1` Y) = f @^-1` (~` Y). Proof. by rewrite predeqE => a; split=> nAfa ?; apply: nAfa. Qed. Lemma preimage_subset f Y1 Y2 : Y1 `<=` Y2 -> f @^-1` Y1 `<=` f @^-1` Y2. Proof. by move=> Y12 t /Y12. Qed. Lemma nonempty_preimage_setI f Y1 Y2 : (f @^-1` (Y1 `&` Y2)) !=set0 <-> (f @^-1` Y1 `&` f @^-1` Y2) !=set0. Proof. by split; case=> t ?; exists t. Qed. Lemma preimage_bigcup {I} (P : set I) f (F : I -> set rT) : f @^-1` (\bigcup_ (i in P) F i) = \bigcup_(i in P) (f @^-1` F i). Proof. exact/predeqP. Qed. Lemma preimage_bigcap {I} (P : set I) f (F : I -> set rT) : f @^-1` (\bigcap_ (i in P) F i) = \bigcap_(i in P) (f @^-1` F i). Proof. exact/predeqP. Qed. Lemma eq_preimage {I T : Type} (D : set I) (A : set T) (F G : I -> T) : {in D, F =1 G} -> D `&` F @^-1` A = D `&` G @^-1` A. Proof. move=> eqFG; apply/predeqP => i. by split=> [] [Di FAi]; split; rewrite /preimage//= (eqFG,=^~eqFG) ?inE. Qed. Lemma notin_setI_preimage T R D (f : T -> R) i : i \notin f @` D -> D `&` f @^-1` [set i] = set0. Proof. by rewrite notin_set/=; apply: contra_notP => /eqP/set0P[t [Dt fit]]; exists t. Qed. Lemma comp_preimage T1 T2 T3 (A : set T3) (g : T1 -> T2) (f : T2 -> T3) : (f \o g) @^-1` A = g @^-1` (f @^-1` A). Proof. by []. Qed. Lemma preimage_id T (A : set T) : id @^-1` A = A. Proof. by []. Qed. Lemma preimage_comp T1 T2 (g : T1 -> rT) (f : T2 -> rT) (C : set T1) : f @^-1` [set g x | x in C] = [set x | f x \in g @` C]. Proof. rewrite predeqE => t; split => /=. by move=> -[r Cr <-]; rewrite inE; exists r. by rewrite inE => -[r Cr <-]; exists r. Qed. Lemma preimage_setI_eq0 (f : aT -> rT) (Y1 Y2 : set rT) : f @^-1` (Y1 `&` Y2) = set0 <-> f @^-1` Y1 `&` f @^-1` Y2 = set0. Proof. by split; apply: contraPP => /eqP/set0P/(nonempty_preimage_setI f _ _).2/set0P/eqP. Qed. Lemma preimage0eq (f : aT -> rT) (Y : set rT) : Y = set0 -> f @^-1` Y = set0. Proof. by move=> ->; rewrite preimage_set0. Qed. Lemma preimage0 {T R} {f : T -> R} {A : set R} : A `&` range f `<=` set0 -> f @^-1` A = set0. Proof. by rewrite -subset0 => + x /= Afx => /(_ (f x))[]; split. Qed. Lemma preimage10P {T R} {f : T -> R} {x} : ~ range f x <-> f @^-1` [set x] = set0. Proof. split => [fx|]; first by rewrite preimage0// => ? [->]. by apply: contraPnot => -[t _ <-] /seteqP[+ _] => /(_ t) /=. Qed. Lemma preimage10 {T R} {f : T -> R} {x} : ~ range f x -> f @^-1` [set x] = set0. Proof. by move/preimage10P. Qed. End image_lemmas. Arguments sub_image_setI {aT rT f A B} t _. Lemma image_comp T1 T2 T3 (f : T1 -> T2) (g : T2 -> T3) A : g @` (f @` A) = (g \o f) @` A. Proof. by rewrite eqEsubset; split => [x [b [a Aa] <- <-]|x [a Aa] <-]; [apply/imageP |apply/imageP/imageP]. Qed. Lemma some_set0 {T} : some @` set0 = set0 :> set (option T). Proof. by rewrite -subset0 => x []. Qed. Lemma some_set1 {T} (x : T) : some @` [set x] = [set some x]. Proof. by apply/seteqP; split=> [_ [_ -> <-]|_ ->]//=; exists x. Qed. Lemma some_setC {T} (A : set T) : some @` (~` A) = [set~ None] `\` (some @` A). Proof. apply/seteqP; split; first by move=> _ [x nAx <-]; split=> // -[y /[swap]-[->]]. by move=> [x [_ exAx]|[/(_ erefl)//]]; exists x => // Ax; apply: exAx; exists x. Qed. Lemma some_setT {T} : some @` [set: T] = [set~ None]. Proof. by rewrite -[setT]setCK some_setC setCT some_set0 setD0. Qed. Lemma some_setI {T} (A B : set T) : some @` (A `&` B) = some @` A `&` some @` B. Proof. apply/seteqP; split; first by move=> _ [x [Ax Bx] <-]; split; exists x. by move=> _ [[x + <-] [y By []]] => /[swap]<- Ay; exists y. Qed. Lemma some_setU {T} (A B : set T) : some @` (A `|` B) = some @` A `|` some @` B. Proof. by rewrite -[_ `|` _]setCK setCU some_setC some_setI setDIr -!some_setC !setCK. Qed. Lemma some_setD {T} (A B : set T) : some @` (A `\` B) = (some @` A) `\` (some @` B). Proof. by rewrite some_setI some_setC setIDA setIidl// => _ [? _ <-]. Qed. Lemma sub_image_some {T} (A B : set T) : some @` A `<=` some @` B -> A `<=` B. Proof. by move=> + x Ax => /(_ (Some x))[|y By [<-]]; first by exists x. Qed. Lemma sub_image_someP {T} (A B : set T) : some @` A `<=` some @` B <-> A `<=` B. Proof. by split=> [/sub_image_some//|/image_subset]. Qed. Lemma image_some_inj {T} (A B : set T) : some @` A = some @` B -> A = B. Proof. by move=> e; apply/seteqP; split; apply: sub_image_some; rewrite e. Qed. Lemma some_set_eq0 {T} (A : set T) : some @` A = set0 <-> A = set0. Proof. split=> [|->]; last by rewrite some_set0. by rewrite -!subset0 => A0 x Ax; apply: (A0 (some x)); exists x. Qed. Lemma some_preimage {aT rT} (f : aT -> rT) (A : set rT) : some @` (f @^-1` A) = omap f @^-1` (some @` A). Proof. apply/seteqP; split; first by move=> _ [a Afa <-]; exists (f a). by move=> [x|] [a Aa //= [afx]]; exists x; rewrite // -afx. Qed. Lemma some_image {aT rT} (f : aT -> rT) (A : set aT) : some @` (f @` A) = omap f @` (some @` A). Proof. by rewrite !image_comp. Qed. Lemma disj_set_some {T} {A B : set T} : [disjoint some @` A & some @` B] = [disjoint A & B]. Proof. by apply/disj_setPS/disj_setPS; rewrite -some_setI -some_set0 sub_image_someP. Qed. Section bigop_lemmas. Context {T I : Type}. Implicit Types (A : set T) (i : I) (P : set I) (F G : I -> set T). Lemma bigcup_sup i P F : P i -> F i `<=` \bigcup_(j in P) F j. Proof. by move=> Pi a Fia; exists i. Qed. Lemma bigcap_inf i P F : P i -> \bigcap_(j in P) F j `<=` F i. Proof. by move=> Pi a /(_ i); apply. Qed. Lemma subset_bigcup_r P : {homo (fun x : I -> set T => \bigcup_(i in P) x i) : F G / [set F i | i in P] `<=` [set G i | i in P] >-> F `<=` G}. Proof. move=> F G FG t [i Pi Fit]; have := FG (F i). by move=> /(_ (ex_intro2 _ _ _ Pi erefl))[j Pj ji]; exists j => //; rewrite ji. Qed. Lemma subset_bigcap_r P : {homo (fun x : I -> set T => \bigcap_(i in P) x i) : F G / [set F i | i in P] `<=` [set G i | i in P] >-> G `<=` F}. Proof. by move=> F G FG t Gt i Pi; have [|j Pj <-] := FG (F i); [exists i|apply: Gt]. Qed. Lemma eq_bigcupr P F G : (forall i, P i -> F i = G i) -> \bigcup_(i in P) F i = \bigcup_(i in P) G i. Proof. by move=> FG; rewrite eqEsubset; split; apply: subset_bigcup_r; move=> A [i ? <-]; exists i => //; rewrite FG. Qed. Lemma eq_bigcapr P F G : (forall i, P i -> F i = G i) -> \bigcap_(i in P) F i = \bigcap_(i in P) G i. Proof. by move=> FG; rewrite eqEsubset; split; apply: subset_bigcap_r; move=> A [i ? <-]; exists i => //; rewrite FG. Qed. Lemma setC_bigcup P F : ~` (\bigcup_(i in P) F i) = \bigcap_(i in P) ~` F i. Proof. by rewrite eqEsubset; split => [t PFt i Pi ?|t PFt [i Pi ?]]; [apply PFt; exists i | exact: (PFt _ Pi)]. Qed. Lemma setC_bigcap P F : ~` (\bigcap_(i in P) (F i)) = \bigcup_(i in P) ~` F i. Proof. apply: setC_inj; rewrite setC_bigcup setCK. by apply: eq_bigcapr => ?; rewrite setCK. Qed. Lemma image_bigcup rT P F (f : T -> rT) : f @` (\bigcup_(i in P) (F i)) = \bigcup_(i in P) f @` F i. Proof. apply/seteqP; split=> [_/= [x [i Pi Fix <-]]|]; first by exists i. by move=> _ [i Pi [x Fix <-]]; exists x => //; exists i. Qed. Lemma some_bigcap P F : some @` (\bigcap_(i in P) (F i)) = [set~ None] `&` \bigcap_(i in P) some @` F i. Proof. apply/seteqP; split. by move=> _ [x Fx <-]; split=> // i; exists x => //; apply: Fx. by move=> [x|[//=]] [_ Fx]; exists x => //= i /Fx [y ? [<-]]. Qed. Lemma bigcup_set_type P F : \bigcup_(i in P) F i = \bigcup_(j : P) F (val j). Proof. rewrite predeqE => x; split; last by move=> [[i/= /set_mem Pi] _ Fix]; exists i. by move=> [i Pi Fix]; exists (SigSub (mem_set Pi)). Qed. Lemma eq_bigcupl P Q F : P `<=>` Q -> \bigcup_(i in P) F i = \bigcup_(i in Q) F i. Proof. by move=> /seteqP->. Qed. Lemma eq_bigcapl P Q F : P `<=>` Q -> \bigcap_(i in P) F i = \bigcap_(i in Q) F i. Proof. by move=> /seteqP->. Qed. Lemma eq_bigcup P Q F G : P `<=>` Q -> (forall i, P i -> F i = G i) -> \bigcup_(i in P) F i = \bigcup_(i in Q) G i. Proof. by move=> /eq_bigcupl<- /eq_bigcupr->. Qed. Lemma eq_bigcap P Q F G : P `<=>` Q -> (forall i, P i -> F i = G i) -> \bigcap_(i in P) F i = \bigcap_(i in Q) G i. Proof. by move=> /eq_bigcapl<- /eq_bigcapr->. Qed. Lemma bigcupU P F G : \bigcup_(i in P) (F i `|` G i) = (\bigcup_(i in P) F i) `|` (\bigcup_(i in P) G i). Proof. apply/predeqP => x; split=> [[i Pi [Fix|Gix]]|[[i Pi Fix]|[i Pi Gix]]]; by [left; exists i|right; exists i|exists i =>//; left|exists i =>//; right]. Qed. Lemma bigcapI P F G : \bigcap_(i in P) (F i `&` G i) = (\bigcap_(i in P) F i) `&` (\bigcap_(i in P) G i). Proof. apply: setC_inj; rewrite !(setCI, setC_bigcap) -bigcupU. by apply: eq_bigcupr => *; rewrite setCI. Qed. Lemma bigcup_const P A : P !=set0 -> \bigcup_(_ in P) A = A. Proof. by case=> j ?; rewrite predeqE => x; split=> [[i //]|Ax]; exists j. Qed. Lemma bigcap_const P A : P !=set0 -> \bigcap_(_ in P) A = A. Proof. by move=> PN0; apply: setC_inj; rewrite setC_bigcap bigcup_const. Qed. Lemma bigcapIl P F A : P !=set0 -> \bigcap_(i in P) (F i `&` A) = \bigcap_(i in P) F i `&` A. Proof. by move=> PN0; rewrite bigcapI bigcap_const. Qed. Lemma bigcapIr P F A : P !=set0 -> \bigcap_(i in P) (A `&` F i) = A `&` \bigcap_(i in P) F i. Proof. by move=> PN0; rewrite bigcapI bigcap_const. Qed. Lemma bigcupUl P F A : P !=set0 -> \bigcup_(i in P) (F i `|` A) = \bigcup_(i in P) F i `|` A. Proof. by move=> PN0; rewrite bigcupU bigcup_const. Qed. Lemma bigcupUr P F A : P !=set0 -> \bigcup_(i in P) (A `|` F i) = A `|` \bigcup_(i in P) F i. Proof. by move=> PN0; rewrite bigcupU bigcup_const. Qed. Lemma bigcup_set0 F : \bigcup_(i in set0) F i = set0. Proof. by rewrite eqEsubset; split => a // []. Qed. Lemma bigcup_set1 F i : \bigcup_(j in [set i]) F j = F i. Proof. by rewrite eqEsubset; split => ? => [[] ? -> //|]; exists i. Qed. Lemma bigcap_set0 F : \bigcap_(i in set0) F i = setT. Proof. by rewrite eqEsubset; split=> a // []. Qed. Lemma bigcap_set1 F i : \bigcap_(j in [set i]) F j = F i. Proof. by rewrite eqEsubset; split => ?; [exact|move=> ? ? ->]. Qed. Lemma bigcup_nonempty P F : (\bigcup_(i in P) F i !=set0) <-> exists2 i, P i & F i !=set0. Proof. split=> [[t [i ? ?]]|[j ? [t ?]]]; by [exists i => //; exists t| exists t, j]. Qed. Lemma bigcup0 P F : (forall i, P i -> F i = set0) -> \bigcup_(i in P) F i = set0. Proof. by move=> PF; rewrite -subset0 => t -[i /PF ->]. Qed. Lemma bigcap0 P F : (exists2 i, P i & F i = set0) -> \bigcap_(i in P) F i = set0. Proof. by move=> [i Pi]; rewrite -!subset0 => Fi t Ft; apply/Fi/Ft. Qed. Lemma bigcapT P F : (forall i, P i -> F i = setT) -> \bigcap_(i in P) F i = setT. Proof. by move=> PF; rewrite -subTset => t -[i /PF ->]. Qed. Lemma bigcupT P F : (exists2 i, P i & F i = setT) -> \bigcup_(i in P) F i = setT. Proof. by move=> [i Pi F0]; rewrite -subTset => t; exists i; rewrite ?F0. Qed. Lemma bigcup0P P F : (\bigcup_(i in P) F i = set0) <-> forall i, P i -> F i = set0. Proof. split=> [|/bigcup0//]; rewrite -subset0 => F0 i Pi; rewrite -subset0. by move=> t Ft; apply: F0; exists i. Qed. Lemma bigcapTP P F : (\bigcap_(i in P) F i = setT) <-> forall i, P i -> F i = setT. Proof. split=> [|/bigcapT//]; rewrite -subTset => FT i Pi; rewrite -subTset. by move=> t _; apply: FT. Qed. Lemma setI_bigcupr F P A : A `&` \bigcup_(i in P) F i = \bigcup_(i in P) (A `&` F i). Proof. rewrite predeqE => t; split => [[At [k ? ?]]|[k ? [At ?]]]; by [exists k |split => //; exists k]. Qed. Lemma setI_bigcupl F P A : \bigcup_(i in P) F i `&` A = \bigcup_(i in P) (F i `&` A). Proof. by rewrite setIC setI_bigcupr//; under eq_bigcupr do rewrite setIC. Qed. Lemma setU_bigcapr F P A : A `|` \bigcap_(i in P) F i = \bigcap_(i in P) (A `|` F i). Proof. apply: setC_inj; rewrite setCU !setC_bigcap setI_bigcupr. by under eq_bigcupr do rewrite -setCU. Qed. Lemma setU_bigcapl F P A : \bigcap_(i in P) F i `|` A = \bigcap_(i in P) (F i `|` A). Proof. by rewrite setUC setU_bigcapr//; under eq_bigcapr do rewrite setUC. Qed. Lemma bigcup_mkcond P F : \bigcup_(i in P) F i = \bigcup_i if i \in P then F i else set0. Proof. rewrite predeqE => x; split=> [[i Pi Fix]|[i _]]. by exists i => //; case: ifPn; rewrite (inE, notin_set). by case: ifPn; rewrite (inE, notin_set) => Pi Fix; exists i. Qed. Lemma bigcup_mkcondr P Q F : \bigcup_(i in P `&` Q) F i = \bigcup_(i in P) if i \in Q then F i else set0. Proof. rewrite bigcup_mkcond [RHS]bigcup_mkcond; apply: eq_bigcupr => i _. by rewrite in_setI; case: (i \in P) (i \in Q) => [] []. Qed. Lemma bigcup_mkcondl P Q F : \bigcup_(i in P `&` Q) F i = \bigcup_(i in Q) if i \in P then F i else set0. Proof. rewrite bigcup_mkcond [RHS]bigcup_mkcond; apply: eq_bigcupr => i _. by rewrite in_setI; case: (i \in P) (i \in Q) => [] []. Qed. Lemma bigcap_mkcond F P : \bigcap_(i in P) F i = \bigcap_i if i \in P then F i else setT. Proof. apply: setC_inj; rewrite !setC_bigcap bigcup_mkcond; apply: eq_bigcupr => i _. by case: ifP; rewrite ?setCT. Qed. Lemma bigcap_mkcondr P Q F : \bigcap_(i in P `&` Q) F i = \bigcap_(i in P) if i \in Q then F i else setT. Proof. rewrite bigcap_mkcond [RHS]bigcap_mkcond; apply: eq_bigcapr => i _. by rewrite in_setI; case: (i \in P) (i \in Q) => [] []. Qed. Lemma bigcap_mkcondl P Q F : \bigcap_(i in P `&` Q) F i = \bigcap_(i in Q) if i \in P then F i else setT. Proof. rewrite bigcap_mkcond [RHS]bigcap_mkcond; apply: eq_bigcapr => i _. by rewrite in_setI; case: (i \in P) (i \in Q) => [] []. Qed. Lemma bigcup_imset1 P (f : I -> T) : \bigcup_(x in P) [set f x] = f @` P. Proof. by rewrite eqEsubset; split=>[a [i ?]->| a [i ?]<-]; [apply: imageP | exists i]. Qed. Lemma bigcup_setU F (X Y : set I) : \bigcup_(i in X `|` Y) F i = \bigcup_(i in X) F i `|` \bigcup_(i in Y) F i. Proof. rewrite predeqE => t; split=> [[z]|]. by move=> [Xz|Yz]; [left|right]; exists z. by move=> [[z Xz Fzy]|[z Yz Fxz]]; exists z => //; [left|right]. Qed. Lemma bigcap_setU F (X Y : set I) : \bigcap_(i in X `|` Y) F i = \bigcap_(i in X) F i `&` \bigcap_(i in Y) F i. Proof. by apply: setC_inj; rewrite !(setCI, setC_bigcap) bigcup_setU. Qed. Lemma bigcup_setU1 F (x : I) (X : set I) : \bigcup_(i in x |` X) F i = F x `|` \bigcup_(i in X) F i. Proof. by rewrite bigcup_setU bigcup_set1. Qed. Lemma bigcap_setU1 F (x : I) (X : set I) : \bigcap_(i in x |` X) F i = F x `&` \bigcap_(i in X) F i. Proof. by rewrite bigcap_setU bigcap_set1. Qed. Lemma bigcup_setD1 (x : I) F (X : set I) : X x -> \bigcup_(i in X) F i = F x `|` \bigcup_(i in X `\ x) F i. Proof. by move=> Xx; rewrite -bigcup_setU1 setD1K. Qed. Lemma bigcap_setD1 (x : I) F (X : set I) : X x -> \bigcap_(i in X) F i = F x `&` \bigcap_(i in X `\ x) F i. Proof. by move=> Xx; rewrite -bigcap_setU1 setD1K. Qed. Lemma setC_bigsetU U (s : seq T) (f : T -> set U) (P : pred T) : (~` \big[setU/set0]_(t <- s | P t) f t) = \big[setI/setT]_(t <- s | P t) ~` f t. Proof. by elim/big_rec2: _ => [|i X Y Pi <-]; rewrite ?setC0 ?setCU. Qed. Lemma setC_bigsetI U (s : seq T) (f : T -> set U) (P : pred T) : (~` \big[setI/setT]_(t <- s | P t) f t) = \big[setU/set0]_(t <- s | P t) ~` f t. Proof. by elim/big_rec2: _ => [|i X Y Pi <-]; rewrite ?setCT ?setCI. Qed. Lemma bigcupDr (F : I -> set T) (P : set I) (A : set T) : P !=set0 -> \bigcap_(i in P) (A `\` F i) = A `\` \bigcup_(i in P) F i. Proof. by move=> PN0; rewrite setDE setC_bigcup -bigcapIr. Qed. Lemma setD_bigcupl (F : I -> set T) (P : set I) (A : set T) : \bigcup_(i in P) F i `\` A = \bigcup_(i in P) (F i `\` A). Proof. by rewrite setDE setI_bigcupl; under eq_bigcupr do rewrite -setDE. Qed. Lemma bigcup_bigcup_dep {J : Type} (F : I -> J -> set T) (P : set I) (Q : I -> set J) : \bigcup_(i in P) \bigcup_(j in Q i) F i j = \bigcup_(k in P `*`` Q) F k.1 k.2. Proof. apply/predeqP => x; split=> [[i Pi [j Pj Fijx]]|]; first by exists (i, j). by move=> [[/= i j] [Pi Qj] Fijx]; exists i => //; exists j. Qed. Lemma bigcup_bigcup {J : Type} (F : I -> J -> set T) (P : set I) (Q : set J) : \bigcup_(i in P) \bigcup_(j in Q) F i j = \bigcup_(k in P `*` Q) F k.1 k.2. Proof. exact: bigcup_bigcup_dep. Qed. Lemma bigcupID (Q : set I) (F : I -> set T) (P : set I) : \bigcup_(i in P) F i = (\bigcup_(i in P `&` Q) F i) `|` (\bigcup_(i in P `&` ~` Q) F i). Proof. by rewrite -bigcup_setU -setIUr setUv setIT. Qed. Lemma bigcapID (Q : set I) (F : I -> set T) (P : set I) : \bigcap_(i in P) F i = (\bigcap_(i in P `&` Q) F i) `&` (\bigcap_(i in P `&` ~` Q) F i). Proof. by rewrite -bigcap_setU -setIUr setUv setIT. Qed. End bigop_lemmas. Arguments bigcup_setD1 {T I} x. Arguments bigcap_setD1 {T I} x. Definition bigcup2 T (A B : set T) : nat -> set T := fun i => if i == 0%N then A else if i == 1%N then B else set0. Arguments bigcup2 T A B n /. Lemma bigcup2E T (A B : set T) : \bigcup_i (bigcup2 A B) i = A `|` B. Proof. rewrite predeqE => t; split=> [|[At|Bt]]; [|by exists 0%N|by exists 1%N]. by case=> -[_ At|[_ Bt|//]]; [left|right]. Qed. Lemma bigcup2inE T (A B : set T) : \bigcup_(i in `I_2) (bigcup2 A B) i = A `|` B. Proof. rewrite predeqE => t; split=> [|[At|Bt]]; [|by exists 0%N|by exists 1%N]. by case=> -[_ At|[_ Bt|//]]; [left|right]. Qed. Definition bigcap2 T (A B : set T) : nat -> set T := fun i => if i == 0%N then A else if i == 1%N then B else setT. Arguments bigcap2 T A B n /. Lemma bigcap2E T (A B : set T) : \bigcap_i (bigcap2 A B) i = A `&` B. Proof. apply: setC_inj; rewrite setC_bigcap setCI -bigcup2E /bigcap2 /bigcup2. by apply: eq_bigcupr => -[|[|[]]]//=; rewrite setCT. Qed. Lemma bigcap2inE T (A B : set T) : \bigcap_(i in `I_2) (bigcap2 A B) i = A `&` B. Proof. apply: setC_inj; rewrite setC_bigcap setCI -bigcup2inE /bigcap2 /bigcup2. by apply: eq_bigcupr => // -[|[|[]]]. Qed. Lemma bigcup_sub T I (F : I -> set T) (D : set T) (P : set I) : (forall i, P i -> F i `<=` D) -> \bigcup_(i in P) F i `<=` D. Proof. by move=> FD t [n Pn Fnt]; apply: (FD n). Qed. Lemma sub_bigcap T I (F : I -> set T) (D : set T) (P : set I) : (forall i, P i -> D `<=` F i) -> D `<=` \bigcap_(i in P) F i. Proof. by move=> DF t Dt n Pn; apply: DF. Qed. Lemma subset_bigcup T I [P : set I] [F G : I -> set T] : (forall i, P i -> F i `<=` G i) -> \bigcup_(i in P) F i `<=` \bigcup_(i in P) G i. Proof. by move=> FG; apply: bigcup_sub => i Pi + /(FG _ Pi); apply: bigcup_sup. Qed. Lemma subset_bigcap T I [P : set I] [F G : I -> set T] : (forall i, P i -> F i `<=` G i) -> \bigcap_(i in P) F i `<=` \bigcap_(i in P) G i. Proof. move=> FG; apply: sub_bigcap => i Pi x Fx; apply: FG => //. exact: bigcap_inf Fx. Qed. Lemma bigcup_image {aT rT I} (P : set aT) (f : aT -> I) (F : I -> set rT) : \bigcup_(x in f @` P) F x = \bigcup_(x in P) F (f x). Proof. rewrite eqEsubset; split=> x; first by case=> j [] i pi <- Xfix; exists i. by case=> i Pi Ffix; exists (f i); [exists i|]. Qed. Lemma bigcap_set_type {I T} (P : set I) (F : I -> set T) : \bigcap_(i in P) F i = \bigcap_(j : P) F (val j). Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_set_type. Qed. Lemma bigcap_image {aT rT I} (P : set aT) (f : aT -> I) (F : I -> set rT) : \bigcap_(x in f @` P) F x = \bigcap_(x in P) F (f x). Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_image. Qed. Lemma bigcup_fset {I : choiceType} {U : Type} (F : I -> set U) (X : {fset I}) : \bigcup_(i in [set i | i \in X]) F i = \big[setU/set0]_(i <- X) F i :> set U. Proof. elim/finSet_rect: X => X IHX; have [->|[x xX]] := fset_0Vmem X. by rewrite big_seq_fset0 -subset0 => x []. rewrite -(fsetD1K xX) set_fsetU set_fset1 big_fsetU1 ?inE ?eqxx//=. by rewrite bigcup_setU1 IHX// fproperD1. Qed. Lemma bigcap_fset {I : choiceType} {U : Type} (F : I -> set U) (X : {fset I}) : \bigcap_(i in [set i | i \in X]) F i = \big[setI/setT]_(i <- X) F i :> set U. Proof. by apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigcup_fset. Qed. Lemma bigcup_fsetU1 {T U : choiceType} (F : T -> set U) (x : T) (X : {fset T}) : \bigcup_(i in [set j | j \in x |` X]%fset) F i = F x `|` \bigcup_(i in [set j | j \in X]) F i. Proof. by rewrite set_fsetU1 bigcup_setU1. Qed. Lemma bigcap_fsetU1 {T U : choiceType} (F : T -> set U) (x : T) (X : {fset T}) : \bigcap_(i in [set j | j \in x |` X]%fset) F i = F x `&` \bigcap_(i in [set j | j \in X]) F i. Proof. by rewrite set_fsetU1 bigcap_setU1. Qed. Lemma bigcup_fsetD1 {T U : choiceType} (x : T) (F : T -> set U) (X : {fset T}) : x \in X -> \bigcup_(i in [set i | i \in X]%fset) F i = F x `|` \bigcup_(i in [set i | i \in X `\ x]%fset) F i. Proof. by move=> Xx; rewrite (bigcup_setD1 x)// set_fsetD1. Qed. Arguments bigcup_fsetD1 {T U} x. Lemma bigcap_fsetD1 {T U : choiceType} (x : T) (F : T -> set U) (X : {fset T}) : x \in X -> \bigcap_(i in [set i | i \in X]%fset) F i = F x `&` \bigcap_(i in [set i | i \in X `\ x]%fset) F i. Proof. by move=> Xx; rewrite (bigcap_setD1 x)// set_fsetD1. Qed. Arguments bigcup_fsetD1 {T U} x. Section bigcup_set. Variables (T : choiceType) (U : Type). Lemma bigcup_set_cond (s : seq T) (f : T -> set U) (P : pred T) : \bigcup_(t in [set x | (x \in s) && P x]) (f t) = \big[setU/set0]_(t <- s | P t) (f t). Proof. elim: s => [/=|h s ih]; first by rewrite set_nil bigcup_set0 big_nil. rewrite big_cons -ih predeqE => u; split=> [[t /andP[]]|]. - rewrite inE => /orP[/eqP ->{t} -> fhu|ts Pt ftu]; first by left. case: ifPn => Ph; first by right; exists t => //; apply/andP; split. by exists t => //; apply/andP; split. - case: ifPn => [Ph [fhu|[t /andP[ts Pt] ftu]]|Ph [t /andP[ts Pt ftu]]]. + by exists h => //; apply/andP; split => //; rewrite mem_head. + by exists t => //; apply/andP; split => //; rewrite inE orbC ts. + by exists t => //; apply/andP; split => //; rewrite inE orbC ts. Qed. Lemma bigcup_set (s : seq T) (f : T -> set U) : \bigcup_(t in [set` s]) (f t) = \big[setU/set0]_(t <- s) (f t). Proof. rewrite -(bigcup_set_cond s f xpredT); congr (\bigcup_(t in mkset _) _). by rewrite funeqE => t; rewrite andbT. Qed. Lemma bigcap_set_cond (s : seq T) (f : T -> set U) (P : pred T) : \bigcap_(t in [set x | (x \in s) && P x]) (f t) = \big[setI/setT]_(t <- s | P t) (f t). Proof. by apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigcup_set_cond. Qed. Lemma bigcap_set (s : seq T) (f : T -> set U) : \bigcap_(t in [set` s]) (f t) = \big[setI/setT]_(t <- s) (f t). Proof. by apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigcup_set. Qed. End bigcup_set. Lemma bigcup_pred [T : finType] [U : Type] (P : {pred T}) (f : T -> set U) : \bigcup_(t in [set` P]) f t = \big[setU/set0]_(t in P) f t. Proof. apply/predeqP => u; split=> [[x Px fxu]|]; first by rewrite (bigD1 x)//; left. move=> /mem_set; rewrite (@big_morph _ _ (fun X => u \in X) false orb). - by rewrite big_has_cond => /hasP[x _ /andP[xP]]; rewrite inE => ufx; exists x. - by move=> /= x y; apply/idP/orP; rewrite !inE. - by rewrite in_set0. Qed. Section smallest. Context {T} (C : set T -> Prop) (G : set T). Definition smallest := \bigcap_(A in [set M | C M /\ G `<=` M]) A. Lemma sub_smallest X : X `<=` G -> X `<=` smallest. Proof. by move=> XG A /XG GA Y /= [PY]; apply. Qed. Lemma sub_gen_smallest : G `<=` smallest. Proof. exact: sub_smallest. Qed. Lemma smallest_sub X : C X -> G `<=` X -> smallest `<=` X. Proof. by move=> XC GX A; apply. Qed. Lemma smallest_id : C G -> smallest = G. Proof. by move=> Cs; apply/seteqP; split; [apply: smallest_sub|apply: sub_smallest]. Qed. End smallest. #[global] Hint Resolve sub_gen_smallest : core. Lemma sub_smallest2r {T} (C : set T-> Prop) G1 G2 : C (smallest C G2) -> G1 `<=` G2 -> smallest C G1 `<=` smallest C G2. Proof. by move=> *; apply: smallest_sub=> //; apply: sub_smallest. Qed. Lemma sub_smallest2l {T} (C1 C2 : set T -> Prop) : (forall G, C2 G -> C1 G) -> forall G, smallest C1 G `<=` smallest C2 G. Proof. by move=> C12 G X sX M [/C12 C1M GM]; apply: sX. Qed. Section bigop_nat_lemmas. Context {T : Type}. Implicit Types (A : set T) (F : nat -> set T). Lemma bigcup_mkord n F : \bigcup_(i in `I_n) F i = \big[setU/set0]_(i < n) F i. Proof. rewrite -(big_mkord xpredT F) -bigcup_set. by apply: eq_bigcupl; split=> i; rewrite /= mem_index_iota leq0n. Qed. Lemma bigcap_mkord n F : \bigcap_(i in `I_n) F i = \big[setI/setT]_(i < n) F i. Proof. by apply: setC_inj; rewrite setC_bigsetI setC_bigcap bigcup_mkord. Qed. Lemma bigsetU_bigcup F n : \big[setU/set0]_(i < n) F i `<=` \bigcup_k F k. Proof. by rewrite -bigcup_mkord => x [k _ Fkx]; exists k. Qed. Lemma bigsetU_bigcup2 (A B : set T) : \big[setU/set0]_(i < 2) bigcup2 A B i = A `|` B. Proof. by rewrite -bigcup_mkord bigcup2inE. Qed. Lemma bigsetI_bigcap2 (A B : set T) : \big[setI/setT]_(i < 2) bigcap2 A B i = A `&` B. Proof. by rewrite -bigcap_mkord bigcap2inE. Qed. Lemma bigcup_splitn n F : \bigcup_i F i = \big[setU/set0]_(i < n) F i `|` \bigcup_i F (n + i)%N. Proof. rewrite -bigcup_mkord -(bigcup_image _ (addn n)) -bigcup_setU. apply: eq_bigcupl; split=> // k _. have [ltkn|lenk] := ltnP k n; [left => //|right]. by exists (k - n); rewrite // subnKC. Qed. Lemma bigcap_splitn n F : \bigcap_i F i = \big[setI/setT]_(i < n) F i `&` \bigcap_i F (n + i)%N. Proof. by apply: setC_inj; rewrite setCI !setC_bigcap (bigcup_splitn n) setC_bigsetI. Qed. Lemma subset_bigsetU F : {homo (fun n => \big[setU/set0]_(i < n) F i) : n m / (n <= m)%N >-> n `<=` m}. Proof. move=> m n mn; rewrite -!bigcup_mkord => x [i im Fix]. by exists i => //=; rewrite (leq_trans im). Qed. Lemma subset_bigsetI F : {homo (fun n => \big[setI/setT]_(i < n) F i) : n m / (n <= m)%N >-> m `<=` n}. Proof. move=> m n mn; rewrite -setCS !setC_bigsetI. exact: (@subset_bigsetU (setC \o F)). Qed. Lemma subset_bigsetU_cond (P : pred nat) F : {homo (fun n => \big[setU/set0]_(i < n | P i) F i) : n m / (n <= m)%N >-> n `<=` m}. Proof. move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=. exact: (@subset_bigsetU (fun i => if P i then F i else _)). Qed. Lemma subset_bigsetI_cond (P : pred nat) F : {homo (fun n => \big[setI/setT]_(i < n | P i) F i) : n m / (n <= m)%N >-> m `<=` n}. Proof. move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=. exact: (@subset_bigsetI (fun i => if P i then F i else _)). Qed. End bigop_nat_lemmas. Definition is_subset1 {T} (A : set T) := forall x y, A x -> A y -> x = y. Definition is_fun {T1 T2} (f : T1 -> T2 -> Prop) := Logic.all (is_subset1 \o f). Definition is_total {T1 T2} (f : T1 -> T2 -> Prop) := Logic.all (nonempty \o f). Definition is_totalfun {T1 T2} (f : T1 -> T2 -> Prop) := forall x, f x !=set0 /\ is_subset1 (f x). Definition xget {T : choiceType} x0 (P : set T) : T := if pselect (exists x : T, `[

]) isn't left exP then x0 else projT1 (sigW exP). CoInductive xget_spec {T : choiceType} x0 (P : set T) : T -> Prop -> Type := | XGetSome x of x = xget x0 P & P x : xget_spec x0 P x True | XGetNone of (forall x, ~ P x) : xget_spec x0 P x0 False. Lemma xgetP {T : choiceType} x0 (P : set T) : xget_spec x0 P (xget x0 P) (P (xget x0 P)). Proof. move: (erefl (xget x0 P)); set y := {2}(xget x0 P). rewrite /xget; case: pselect => /= [?|neqP _]. by case: sigW => x /= /asboolP Px; rewrite [P x]propT //; constructor. suff NP x : ~ P x by rewrite [P x0]propF //; constructor. by apply: contra_not neqP => Px; exists x; apply/asboolP. Qed. Lemma xgetPex {T : choiceType} x0 (P : set T) : (exists x, P x) -> P (xget x0 P). Proof. by case: xgetP=> // NP [x /NP]. Qed. Lemma xgetI {T : choiceType} x0 (P : set T) (x : T): P x -> P (xget x0 P). Proof. by move=> Px; apply: xgetPex; exists x. Qed. Lemma xget_subset1 {T : choiceType} x0 (P : set T) (x : T) : P x -> is_subset1 P -> xget x0 P = x. Proof. by move=> Px /(_ _ _ (xgetI x0 Px) Px). Qed. Lemma xget_unique {T : choiceType} x0 (P : set T) (x : T) : P x -> (forall y, P y -> y = x) -> xget x0 P = x. Proof. by move=> /xget_subset1 gPx eqx; apply: gPx=> y z /eqx-> /eqx. Qed. Lemma xgetPN {T : choiceType} x0 (P : set T) : (forall x, ~ P x) -> xget x0 P = x0. Proof. by case: xgetP => // x _ Px /(_ x). Qed. Definition fun_of_rel {aT} {rT : choiceType} (f0 : aT -> rT) (f : aT -> rT -> Prop) := fun x => xget (f0 x) (f x). Lemma fun_of_relP {aT} {rT : choiceType} (f : aT -> rT -> Prop) (f0 : aT -> rT) a : f a !=set0 -> f a (fun_of_rel f0 f a). Proof. by move=> [b fab]; rewrite /fun_of_rel; apply: xgetI fab. Qed. Lemma fun_of_rel_uniq {aT} {rT : choiceType} (f : aT -> rT -> Prop) (f0 : aT -> rT) a : is_subset1 (f a) -> forall b, f a b -> fun_of_rel f0 f a = b. Proof. by move=> fa1 b /xget_subset1 xgeteq; rewrite /fun_of_rel xgeteq. Qed. Lemma forall_sig T (A : set T) (P : {x | x \in A} -> Prop) : (forall u : {x | x \in A}, P u) = (forall u : T, forall (a : A u), P (exist _ u (mem_set a))). Proof. rewrite propeqE; split=> [+ u a|PA [u a]]; first exact. have Au : A u by rewrite inE in a. by rewrite (Prop_irrelevance a (mem_set Au)); apply: PA. Qed. Lemma in_setP {U} (A : set U) (P : U -> Prop) : {in A, forall x, P x} <-> forall x, A x -> P x. Proof. by split=> AP x; have := AP x; rewrite inE. Qed. Lemma in_set2P {U V} (A : set U) (B : set V) (P : U -> V -> Prop) : {in A & B, forall x y, P x y} <-> (forall x y, A x -> B y -> P x y). Proof. by split=> AP x y; have := AP x y; rewrite !inE. Qed. Lemma in1TT [T1] [P1 : T1 -> Prop] : {in [set: T1], forall x : T1, P1 x : Prop} -> forall x : T1, P1 x : Prop. Proof. by move=> + *; apply; rewrite !inE. Qed. Lemma in2TT [T1 T2] [P2 : T1 -> T2 -> Prop] : {in [set: T1] & [set: T2], forall (x : T1) (y : T2), P2 x y : Prop} -> forall (x : T1) (y : T2), P2 x y : Prop. Proof. by move=> + *; apply; rewrite !inE. Qed. Lemma in3TT [T1 T2 T3] [P3 : T1 -> T2 -> T3 -> Prop] : {in [set: T1] & [set: T2] & [set: T3], forall (x : T1) (y : T2) (z : T3), P3 x y z : Prop} -> forall (x : T1) (y : T2) (z : T3), P3 x y z : Prop. Proof. by move=> + *; apply; rewrite !inE. Qed. Lemma inTT_bij [T1 T2 : Type] [f : T1 -> T2] : {in [set: T1], bijective f} -> bijective f. Proof. by case=> [g /in1TT + /in1TT +]; exists g. Qed. Module Pointed. Definition point_of (T : Type) := T. Record class_of (T : Type) := Class { base : Choice.class_of T; mixin : point_of T }. Section ClassDef. Structure type := Pack { sort; _ : class_of sort }. Local Coercion sort : type >-> Sortclass. Variables (T : Type) (cT : type). Definition class := let: Pack _ c := cT return class_of cT in c. Definition clone c of phant_id class c := @Pack T c. Let xT := let: Pack T _ := cT in T. Notation xclass := (class : class_of xT). Local Coercion base : class_of >-> Choice.class_of. Definition pack m := fun bT b of phant_id (Choice.class bT) b => @Pack T (Class b m). Definition eqType := @Equality.Pack cT xclass. Definition choiceType := @Choice.Pack cT xclass. End ClassDef. Module Exports. Coercion sort : type >-> Sortclass. Coercion base : class_of >-> Choice.class_of. Coercion mixin : class_of >-> point_of. Coercion eqType : type >-> Equality.type. Canonical eqType. Coercion choiceType : type >-> Choice.type. Canonical choiceType. Notation pointedType := type. Notation PointedType T m := (@pack T m _ _ idfun). Notation "[ 'pointedType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) (at level 0, format "[ 'pointedType' 'of' T 'for' cT ]") : form_scope. Notation "[ 'pointedType' 'of' T ]" := (@clone T _ _ id) (at level 0, format "[ 'pointedType' 'of' T ]") : form_scope. End Exports. End Pointed. Export Pointed.Exports. Definition point {M : pointedType} : M := Pointed.mixin (Pointed.class M). Canonical arrow_pointedType (T : Type) (T' : pointedType) := PointedType (T -> T') (fun=> point). Definition dep_arrow_pointedType (T : Type) (T' : T -> pointedType) := Pointed.Pack (Pointed.Class (dep_arrow_choiceClass T') (fun i => @point (T' i))). Canonical bool_pointedType := PointedType bool false. Canonical Prop_pointedType := PointedType Prop False. Canonical nat_pointedType := PointedType nat 0%N. Canonical prod_pointedType (T T' : pointedType) := PointedType (T * T') (point, point). Canonical matrix_pointedType m n (T : pointedType) := PointedType 'M[T]_(m, n) (\matrix_(_, _) point)%R. Canonical option_pointedType (T : choiceType) := PointedType (option T) None. Notation get := (xget point). Notation "[ 'get' x | E ]" := (get [set x | E]) (at level 0, x name, format "[ 'get' x | E ]", only printing) : form_scope. Notation "[ 'get' x : T | E ]" := (get (fun x : T => E)) (at level 0, x name, format "[ 'get' x : T | E ]", only parsing) : form_scope. Notation "[ 'get' x | E ]" := (get (fun x => E)) (at level 0, x name, format "[ 'get' x | E ]") : form_scope. Section PointedTheory. Context {T : pointedType}. Lemma getPex (P : set T) : (exists x, P x) -> P (get P). Proof. exact: (xgetPex point). Qed. Lemma getI (P : set T) (x : T): P x -> P (get P). Proof. exact: (xgetI point). Qed. Lemma get_subset1 (P : set T) (x : T) : P x -> is_subset1 P -> get P = x. Proof. exact: (xget_subset1 point). Qed. Lemma get_unique (P : set T) (x : T) : P x -> (forall y, P y -> y = x) -> get P = x. Proof. exact: (xget_unique point). Qed. Lemma getPN (P : set T) : (forall x, ~ P x) -> get P = point. Proof. exact: (xgetPN point). Qed. End PointedTheory. Variant squashed T : Prop := squash (x : T). Arguments squash {T} x. Notation "$| T |" := (squashed T) : form_scope. Tactic Notation "squash" uconstr(x) := (exists; refine x) || match goal with |- $| ?T | => exists; refine [the T of x] end. Definition unsquash {T} (s : $|T|) : T := projT1 (cid (let: squash x := s in @ex_intro T _ x isT)). Lemma unsquashK {T} : cancel (@unsquash T) squash. Proof. by move=> []. Qed. (* Empty types *) Module Empty. Definition mixin_of T := T -> False. Section EqMixin. Variables (T : Type) (m : mixin_of T). Definition eq_op (x y : T) := true. Lemma eq_opP : Equality.axiom eq_op. Proof. by []. Qed. Definition eqMixin := EqMixin eq_opP. End EqMixin. Section ChoiceMixin. Variables (T : Type) (m : mixin_of T). Definition find of pred T & nat : option T := None. Lemma findP (P : pred T) (n : nat) (x : T) : find P n = Some x -> P x. Proof. by []. Qed. Lemma ex_find (P : pred T) : (exists x : T, P x) -> exists n : nat, find P n. Proof. by case. Qed. Lemma eq_find (P Q : pred T) : P =1 Q -> find P =1 find Q. Proof. by []. Qed. Definition choiceMixin := Choice.Mixin findP ex_find eq_find. End ChoiceMixin. Section CountMixin. Variables (T : Type) (m : mixin_of T). Definition pickle : T -> nat := fun=> 0%N. Definition unpickle : nat -> option T := fun=> None. Lemma pickleK : pcancel pickle unpickle. Proof. by []. Qed. Definition countMixin := CountMixin pickleK. End CountMixin. Section FinMixin. Variables (T : countType) (m : mixin_of T). Lemma fin_axiom : Finite.axiom ([::] : seq T). Proof. by []. Qed. Definition finMixin := FinMixin fin_axiom. End FinMixin. Section ClassDef. Set Primitive Projections. Record class_of T := Class { base : Finite.class_of T; mixin : mixin_of T }. Unset Primitive Projections. Local Coercion base : class_of >-> Finite.class_of. Structure type : Type := Pack {sort; _ : class_of sort}. Local Coercion sort : type >-> Sortclass. Variables (T : Type) (cT : type). Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. Definition clone c of phant_id class c := @Pack T c. Definition pack (m0 : mixin_of T) := fun bT b & phant_id (Finite.class bT) b => fun m & phant_id m0 m => Pack (@Class T b m). Definition eqType := @Equality.Pack cT class. Definition choiceType := @Choice.Pack cT class. Definition countType := @Countable.Pack cT class. Definition finType := @Finite.Pack cT class. End ClassDef. Module Import Exports. Coercion base : class_of >-> Finite.class_of. Coercion mixin : class_of >-> mixin_of. Coercion sort : type >-> Sortclass. Coercion eqType : type >-> Equality.type. Canonical eqType. Coercion choiceType : type >-> Choice.type. Canonical choiceType. Coercion countType : type >-> Countable.type. Canonical countType. Coercion finType : type >-> Finite.type. Canonical finType. Notation emptyType := type. Notation EmptyType T m := (@pack T m _ _ id _ id). Notation "[ 'emptyType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) (at level 0, format "[ 'emptyType' 'of' T 'for' cT ]") : form_scope. Notation "[ 'emptyType' 'of' T ]" := (@clone T _ _ id) (at level 0, format "[ 'emptyType' 'of' T ]") : form_scope. Coercion eqMixin : mixin_of >-> Equality.mixin_of. Coercion choiceMixin : mixin_of >-> Choice.mixin_of. Coercion countMixin : mixin_of >-> Countable.mixin_of. End Exports. End Empty. Export Empty.Exports. Definition False_emptyMixin : Empty.mixin_of False := id. Canonical False_eqType := EqType False False_emptyMixin. Canonical False_choiceType := ChoiceType False False_emptyMixin. Canonical False_countType := CountType False False_emptyMixin. Canonical False_finType := FinType False (Empty.finMixin False_emptyMixin). Canonical False_emptyType := EmptyType False False_emptyMixin. Definition void_emptyMixin : Empty.mixin_of void := @of_void _. Canonical void_emptyType := EmptyType void void_emptyMixin. Definition no {T : emptyType} : T -> False := let: Empty.Pack _ (Empty.Class _ f) := T in f. Definition any {T : emptyType} {U} : T -> U := @False_rect _ \o no. Lemma empty_eq0 {T : emptyType} : all_equal_to (set0 : set T). Proof. by move=> X; apply/setF_eq0/no. Qed. Definition quasi_canonical_of T C (sort : C -> T) (alt : emptyType -> T):= forall (G : T -> Type), (forall s : emptyType, G (alt s)) -> (forall x, G (sort x)) -> forall x, G x. Notation quasi_canonical_ sort alt := (@quasi_canonical_of _ _ sort alt). Notation quasi_canonical T C := (@quasi_canonical_of T C id id). Lemma qcanon T C (sort : C -> T) (alt : emptyType -> T) : (forall x, (exists y : emptyType, alt y = x) + (exists y, sort y = x)) -> quasi_canonical_ sort alt. Proof. by move=> + G Cx Gs x => /(_ x)[/cid[y <-]|/cid[y <-]]. Qed. Arguments qcanon {T C sort alt} x. Lemma choicePpointed : quasi_canonical choiceType pointedType. Proof. apply: qcanon => T; have [/unsquash x|/(_ (squash _)) TF] := pselect $|T|. by right; exists (PointedType T x); case: T x. left. pose cT := CountType _ (TF : Empty.mixin_of T). pose fM := Empty.finMixin (TF : Empty.mixin_of cT). exists (EmptyType (FinType _ fM) TF) => //=. by case: T TF @cT @fM. Qed. Lemma eqPpointed : quasi_canonical eqType pointedType. Proof. by apply: qcanon; elim/eqPchoice; elim/choicePpointed => [[T F]|T]; [left; exists (Empty.Pack F) | right; exists T]. Qed. Lemma Ppointed : quasi_canonical Type pointedType. Proof. by apply: qcanon; elim/Peq; elim/eqPpointed => [[T F]|T]; [left; exists (Empty.Pack F) | right; exists T]. Qed. Section partitions. Definition trivIset T I (D : set I) (F : I -> set T) := forall i j : I, D i -> D j -> F i `&` F j !=set0 -> i = j. Lemma trivIset_set0 {I T} (D : set I) : trivIset D (fun=> set0 : set T). Proof. by move=> i j Di Dj; rewrite setI0 => /set0P; rewrite eqxx. Qed. Lemma trivIsetP {T} {I : eqType} {D : set I} {F : I -> set T} : trivIset D F <-> forall i j : I, D i -> D j -> i != j -> F i `&` F j = set0. Proof. split=> tDF i j Di Dj; first by apply: contraNeq => /set0P/tDF->. by move=> /set0P; apply: contraNeq => /tDF->. Qed. Lemma trivIset_bigsetUI T (D : {pred nat}) (F : nat -> set T) : trivIset D F -> forall n m, D m -> n <= m -> \big[setU/set0]_(i < n | D i) F i `&` F m = set0. Proof. move=> /trivIsetP tA; elim => [|n IHn] m Dm. by move=> _; rewrite big_ord0 set0I. move=> lt_nm; rewrite big_mkcond/= big_ord_recr -big_mkcond/=. rewrite setIUl IHn 1?ltnW// set0U. by case: ifPn => [Dn|NDn]; rewrite ?set0I// tA// ltn_eqF. Qed. Lemma trivIset_setIl (T I : Type) (D : set I) (F : I -> set T) (G : I -> set T) : trivIset D F -> trivIset D (fun i => G i `&` F i). Proof. by move=> tF i j Di Dj [x [[Gix Fix] [Gjx Fjx]]]; apply tF => //; exists x. Qed. Lemma trivIset_setIr (T I : Type) (D : set I) (F : I -> set T) (G : I -> set T) : trivIset D F -> trivIset D (fun i => F i `&` G i). Proof. by move=> tF i j Di Dj [x [[Fix Gix] [Fjx Gjx]]]; apply tF => //; exists x. Qed. #[deprecated(note="Use trivIset_setIl instead")] Lemma trivIset_setI T I D (F : I -> set T) X : trivIset D F -> trivIset D (fun i => X `&` F i). Proof. exact: trivIset_setIl. Qed. Lemma sub_trivIset I T (D D' : set I) (F : I -> set T) : D `<=` D' -> trivIset D' F -> trivIset D F. Proof. by move=> DD' Ftriv i j /DD' + /DD' + /Ftriv->//. Qed. Lemma trivIset_bigcup2 T (A B : set T) : (A `&` B = set0) = trivIset setT (bigcup2 A B). Proof. apply/propext; split=> [AB0|/trivIsetP/(_ 0%N 1%N Logic.I Logic.I erefl)//]. apply/trivIsetP => -[/=|]; rewrite /bigcup2 /=. - by move=> [//|[_ _ _ //|j _ _ _]]; rewrite setI0. - move=> [[j _ _|]|i j _ _ _]; [by rewrite setIC| |by rewrite set0I]. by move=> [//|j _ _ _]; rewrite setI0. Qed. Lemma trivIset_image (T I I' : Type) (D : set I) (f : I -> I') (F : I' -> set T) : trivIset D (F \o f) -> trivIset (f @` D) F. Proof. by move=> trivF i j [{}i Di <-] [{}j Dj <-] Ffij; congr (f _); apply: trivF. Qed. Arguments trivIset_image {T I I'} D f F. Lemma trivIset_comp (T I I' : Type) (D : set I) (f : I -> I') (F : I' -> set T) : {in D &, injective f} -> trivIset D (F \o f) = trivIset (f @` D) F. Proof. move=> finj; apply/propext; split; first exact: trivIset_image. move=> trivF i j Di Dj Ffij; apply: finj; rewrite ?in_setE//. by apply: trivF => //=; [exists i| exists j]. Qed. Definition cover T I D (F : I -> set T) := \bigcup_(i in D) F i. Lemma cover_restr T I D' D (F : I -> set T) : D `<=` D' -> (forall i, D' i -> ~ D i -> F i = set0) -> cover D F = cover D' F. Proof. move=> DD' D'DF; rewrite /cover eqEsubset; split=> [r [i Di Fit]|r [i D'i Fit]]. - by have [D'i|] := pselect (D' i); [exists i | have := DD' _ Di]. - by have [Di|Di] := pselect (D i); [exists i | move: Fit; rewrite (D'DF i)]. Qed. Lemma eqcover_r T I D (F G : I -> set T) : [set F i | i in D] = [set G i | i in D] -> cover D F = cover D G. Proof. move=> FG. rewrite eqEsubset; split => [t [i Di Fit]|t [i Di Git]]. have [j Dj GF] : [set G i | i in D] (F i) by rewrite -FG /mkset; exists i. by exists j => //; rewrite GF. have [j Dj GF] : [set F i | i in D] (G i) by rewrite FG /mkset; exists i. by exists j => //; rewrite GF. Qed. Definition partition T I D (F : I -> set T) (A : set T) := [/\ cover D F = A, trivIset D F & forall i, D i -> F i !=set0]. Definition pblock_index T (I : pointedType) D (F : I -> set T) (x : T) := [get i | D i /\ F i x]. Definition pblock T (I : pointedType) D (F : I -> set T) (x : T) := F (pblock_index D F x). (* TODO: theory of trivIset, cover, partition, pblock_index and pblock *) Notation trivIsets X := (trivIset X id). Lemma trivIset_sets T I D (F : I -> set T) : trivIset D F -> trivIsets [set F i | i in D]. Proof. exact: trivIset_image. Qed. Lemma trivIset_widen T I D' D (F : I -> set T) : (* D `<=` D' -> (forall i, D i -> ~ D' i -> F i !=set0) ->*) D `<=` D' -> (forall i, D' i -> ~ D i -> F i = set0) -> trivIset D F = trivIset D' F. Proof. move=> DD' DD'F. rewrite propeqE; split=> [DF i j D'i D'j FiFj0|D'F i j Di Dj FiFj0]. have [Di|Di] := pselect (D i); last first. by move: FiFj0; rewrite (DD'F i) // set0I => /set0P; rewrite eqxx. have [Dj|Dj] := pselect (D j). - exact: DF. - by move: FiFj0; rewrite (DD'F j) // setI0 => /set0P; rewrite eqxx. by apply D'F => //; apply DD'. Qed. Lemma perm_eq_trivIset {T : eqType} (s1 s2 : seq (set T)) (D : set nat) : [set k | (k < size s1)%N] `<=` D -> perm_eq s1 s2 -> trivIset D (fun i => nth set0 s1 i) -> trivIset D (fun i => nth set0 s2 i). Proof. move=> s1D; rewrite perm_sym => /(perm_iotaP set0)[s ss1 s12] /trivIsetP ts1. apply/trivIsetP => i j Di Dj ij. rewrite {}s12 {s2}; have [si|si] := ltnP i (size s); last first. by rewrite (nth_default set0) ?size_map// set0I. rewrite (nth_map O) //; have [sj|sj] := ltnP j (size s); last first. by rewrite (nth_default set0) ?size_map// setI0. have nth_mem k : k < size s -> nth O s k \in iota 0 (size s1). by move=> ?; rewrite -(perm_mem ss1) mem_nth. rewrite (nth_map O)// ts1 ?(nth_uniq,(perm_uniq ss1),iota_uniq)//; apply/s1D. - by have := nth_mem _ si; rewrite mem_iota leq0n add0n. - by have := nth_mem _ sj; rewrite mem_iota leq0n add0n. Qed. End partitions. Definition total_on T (A : set T) (R : T -> T -> Prop) := forall s t, A s -> A t -> R s t \/ R t s. Section ZL. Variable (T : Type) (t0 : T) (R : T -> T -> Prop). Hypothesis (Rrefl : forall t, R t t). Hypothesis (Rtrans : forall r s t, R r s -> R s t -> R r t). Hypothesis (Rantisym : forall s t, R s t -> R t s -> s = t). Hypothesis (tot_lub : forall A : set T, total_on A R -> exists t, (forall s, A s -> R s t) /\ forall r, (forall s, A s -> R s r) -> R t r). Hypothesis (Rsucc : forall s, exists t, R s t /\ s <> t /\ forall r, R s r -> R r t -> r = s \/ r = t). Let Teq := @gen_eqMixin T. Let Tch := @gen_choiceMixin T. Let Tp := Pointed.Pack (Pointed.Class (Choice.Class Teq Tch) t0). Let lub := fun A : {A : set T | total_on A R} => [get t : Tp | (forall s, sval A s -> R s t) /\ forall r, (forall s, sval A s -> R s r) -> R t r]. Let succ := fun s => [get t : Tp | R s t /\ s <> t /\ forall r, R s r -> R r t -> r = s \/ r = t]. Inductive tower : set T := | Lub : forall A, sval A `<=` tower -> tower (lub A) | Succ : forall t, tower t -> tower (succ t). Lemma ZL' : False. Proof. have lub_ub (A : {A : set T | total_on A R}) : forall s, sval A s -> R s (lub A). suff /getPex [] : exists t : Tp, (forall s, sval A s -> R s t) /\ forall r, (forall s, sval A s -> R s r) -> R t r by []. by apply: tot_lub; apply: (svalP A). have lub_lub (A : {A : set T | total_on A R}) : forall t, (forall s, sval A s -> R s t) -> R (lub A) t. suff /getPex [] : exists t : Tp, (forall s, sval A s -> R s t) /\ forall r, (forall s, sval A s -> R s r) -> R t r by []. by apply: tot_lub; apply: (svalP A). have RS s : R s (succ s) /\ s <> succ s. by have /getPex [? []] : exists t : Tp, R s t /\ s <> t /\ forall r, R s r -> R r t -> r = s \/ r = t by apply: Rsucc. have succS s : forall t, R s t -> R t (succ s) -> t = s \/ t = succ s. by have /getPex [? []] : exists t : Tp, R s t /\ s <> t /\ forall r, R s r -> R r t -> r = s \/ r = t by apply: Rsucc. suff Twtot : total_on tower R. have [R_S] := RS (lub (exist _ tower Twtot)); apply. by apply/Rantisym => //; apply/lub_ub/Succ/Lub. move=> s t Tws; elim: Tws t => {s} [A sATw ihA|s Tws ihs] t Twt. have [?|/asboolP] := pselect (forall s, sval A s -> R s t). by left; apply: lub_lub. rewrite asbool_neg => /existsp_asboolPn [s /asboolP]. rewrite asbool_neg => /imply_asboolPn [As nRst]; right. by have /lub_ub := As; apply: Rtrans; have [] := ihA _ As _ Twt. suff /(_ _ Twt) [Rts|RSst] : forall r, tower r -> R r s \/ R (succ s) r. by right; apply: Rtrans Rts _; have [] := RS s. by left. move=> r; elim=> {r} [A sATw ihA|r Twr ihr]. have [?|/asboolP] := pselect (forall r, sval A r -> R r s). by left; apply: lub_lub. rewrite asbool_neg => /existsp_asboolPn [r /asboolP]. rewrite asbool_neg => /imply_asboolPn [Ar nRrs]; right. by have /lub_ub := Ar; apply: Rtrans; have /ihA [] := Ar. have [Rrs|RSsr] := ihr; last by right; apply: Rtrans RSsr _; have [] := RS r. have : tower (succ r) by apply: Succ. move=> /ihs [RsSr|]; last by left. by have [->|->] := succS _ _ Rrs RsSr; [right|left]; apply: Rrefl. Qed. End ZL. Lemma Zorn T (R : T -> T -> Prop) : (forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) -> (forall s t, R s t -> R t s -> s = t) -> (forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) -> exists t, forall s, R t s -> s = t. Proof. move=> Rrefl Rtrans Rantisym Rtot_max. set totR := ({A : set T | total_on A R}). set R' := fun A B : totR => sval A `<=` sval B. have R'refl A : R' A A by []. have R'trans A B C : R' A B -> R' B C -> R' A C by apply: subset_trans. have R'antisym A B : R' A B -> R' B A -> A = B. rewrite /R'; case: A; case: B => /= B totB A totA sAB sBA. by apply: eq_exist; rewrite predeqE=> ?; split=> [/sAB|/sBA]. have R'tot_lub A : total_on A R' -> exists t, (forall s, A s -> R' s t) /\ forall r, (forall s, A s -> R' s r) -> R' t r. move=> Atot. have AUtot : total_on (\bigcup_(B in A) (sval B)) R. move=> s t [B AB Bs] [C AC Ct]. have [/(_ _ Bs) Cs|/(_ _ Ct) Bt] := Atot _ _ AB AC. by have /(_ _ _ Cs Ct) := svalP C. by have /(_ _ _ Bs Bt) := svalP B. exists (exist _ (\bigcup_(B in A) sval B) AUtot); split. by move=> B ???; exists B. by move=> B Bub ? /= [? /Bub]; apply. apply: contrapT => nomax. have {}nomax t : exists s, R t s /\ s <> t. have /asboolP := nomax; rewrite asbool_neg => /forallp_asboolPn /(_ t). move=> /asboolP; rewrite asbool_neg => /existsp_asboolPn [s]. by move=> /asboolP; rewrite asbool_neg => /imply_asboolPn []; exists s. have tot0 : total_on set0 R by []. apply: (ZL' (exist _ set0 tot0)) R'tot_lub _ => // A. have /Rtot_max [t tub] := svalP A; have [s [Rts snet]] := nomax t. have Astot : total_on (sval A `|` [set s]) R. move=> u v [Au|->]; last first. by move=> [/tub Rvt|->]; right=> //; apply: Rtrans Rts. move=> [Av|->]; [apply: (svalP A)|left] => //. by apply: Rtrans Rts; apply: tub. exists (exist _ (sval A `|` [set s]) Astot); split; first by move=> ??; left. split=> [AeAs|[B Btot] sAB sBAs]. have [/tub Rst|] := (pselect (sval A s)); first exact/snet/Rantisym. by rewrite AeAs /=; apply; right. have [Bs|nBs] := pselect (B s). by right; apply: eq_exist; rewrite predeqE => r; split=> [/sBAs|[/sAB|->]]. left; case: A tub Astot sBAs sAB => A Atot /= tub Astot sBAs sAB. apply: eq_exist; rewrite predeqE => r; split=> [Br|/sAB] //. by have /sBAs [|ser] // := Br; rewrite ser in Br. Qed. Definition premaximal T (R : T -> T -> Prop) (t : T) := forall s, R t s -> R s t. Lemma ZL_preorder T (t0 : T) (R : T -> T -> Prop) : (forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) -> (forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) -> exists t, premaximal R t. Proof. set Teq := @gen_eqMixin T; set Tch := @gen_choiceMixin T. set Tp := Pointed.Pack (Pointed.Class (Choice.Class Teq Tch) t0). move=> Rrefl Rtrans tot_max. set eqR := fun s t => R s t /\ R t s; set ceqR := fun s => [set t | eqR s t]. have eqR_trans r s t : eqR r s -> eqR s t -> eqR r t. by move=> [Rrs Rsr] [Rst Rts]; split; [apply: Rtrans Rst|apply: Rtrans Rsr]. have ceqR_uniq s t : eqR s t -> ceqR s = ceqR t. by rewrite predeqE => - [Rst Rts] r; split=> [[Rr rR] | [Rr rR]]; split; try exact: Rtrans Rr; exact: Rtrans rR _. set ceqRs := ceqR @` setT; set quotR := sig ceqRs. have ceqRP t : ceqRs (ceqR t) by exists t. set lift := fun t => exist _ (ceqR t) (ceqRP t). have lift_surj (A : quotR) : exists t : Tp, lift t = A. case: A => A [t Tt ctA]; exists t; rewrite /lift; case : _ / ctA. exact/congr1/Prop_irrelevance. have lift_inj s t : eqR s t -> lift s = lift t. by move=> eqRst; apply/eq_exist/ceqR_uniq. have lift_eqR s t : lift s = lift t -> eqR s t. move=> cst; have ceqst : ceqR s = ceqR t by have := congr1 sval cst. by rewrite [_ s]ceqst; split; apply: Rrefl. set repr := fun A : quotR => get [set t : Tp | lift t = A]. have repr_liftE t : eqR t (repr (lift t)) by apply: lift_eqR; have -> := getPex (lift_surj (lift t)). set R' := fun A B : quotR => R (repr A) (repr B). have R'refl A : R' A A by apply: Rrefl. have R'trans A B C : R' A B -> R' B C -> R' A C by apply: Rtrans. have R'antisym A B : R' A B -> R' B A -> A = B. move=> RAB RBA; have [t tA] := lift_surj A; have [s sB] := lift_surj B. rewrite -tA -sB; apply: lift_inj; apply (eqR_trans _ _ _ (repr_liftE t)). have eAB : eqR (repr A) (repr B) by []. rewrite tA; apply: eqR_trans eAB _; rewrite -sB. by have [] := repr_liftE s. have [A Atot|A Amax] := Zorn R'refl R'trans R'antisym. have /tot_max [t tmax] : total_on [set repr B | B in A] R. by move=> ?? [B AB <-] [C AC <-]; apply: Atot. exists (lift t) => B AB; have [Rt _] := repr_liftE t. by apply: Rtrans Rt; apply: tmax; exists B. exists (repr A) => t RAt. have /Amax <- : R' A (lift t). by have [Rt _] := repr_liftE t; apply: Rtrans Rt. by have [] := repr_liftE t. Qed. Section UpperLowerTheory. Import Order.TTheory. Variables (d : unit) (T : porderType d). Implicit Types (A : set T) (x y z : T). Definition ubound A : set T := [set y | forall x, A x -> (x <= y)%O]. Definition lbound A : set T := [set y | forall x, A x -> (y <= x)%O]. Lemma ubP A x : (forall y, A y -> (y <= x)%O) <-> ubound A x. Proof. by []. Qed. Lemma lbP A x : (forall y, A y -> (x <= y)%O) <-> lbound A x. Proof. by []. Qed. Lemma ub_set1 x y : ubound [set x] y = (x <= y)%O. Proof. by rewrite propeqE; split => [/(_ x erefl)//|xy z ->]. Qed. Lemma lb_set1 x y : lbound [set x] y = (x >= y)%O. Proof. by rewrite propeqE; split => [/(_ x erefl)//|xy z ->]. Qed. Lemma lb_ub_set1 x y : lbound (ubound [set x]) y -> (y <= x)%O. Proof. by move/(_ x); apply; rewrite ub_set1. Qed. Lemma ub_lb_set1 x y : ubound (lbound [set x]) y -> (x <= y)%O. Proof. by move/(_ x); apply; rewrite lb_set1. Qed. Lemma lb_ub_refl x : lbound (ubound [set x]) x. Proof. by move=> y; apply. Qed. Lemma ub_lb_refl x : ubound (lbound [set x]) x. Proof. by move=> y; apply. Qed. Lemma ub_lb_ub A x y : ubound A y -> lbound (ubound A) x -> (x <= y)%O. Proof. by move=> Ay; apply. Qed. Lemma lb_ub_lb A x y : lbound A y -> ubound (lbound A) x -> (y <= x)%O. Proof. by move=> Ey; apply. Qed. (* down set (i.e., generated order ideal) *) (* i.e. down A := { x | exists y, y \in A /\ x <= y} *) Definition down A : set T := [set x | exists y, A y /\ (x <= y)%O]. Definition has_ubound A := ubound A !=set0. Definition has_sup A := A !=set0 /\ has_ubound A. Definition has_lbound A := lbound A !=set0. Definition has_inf A := A !=set0 /\ has_lbound A. Lemma has_ub_set1 x : has_ubound [set x]. Proof. by exists x; rewrite ub_set1. Qed. Lemma has_inf0 : ~ has_inf (@set0 T). Proof. by rewrite /has_inf not_andP; left; apply/set0P/negP/negPn. Qed. Lemma has_sup0 : ~ has_sup (@set0 T). Proof. by rewrite /has_sup not_andP; left; apply/set0P/negP/negPn. Qed. Lemma has_sup1 x : has_sup [set x]. Proof. by split; [exists x | exists x => y ->]. Qed. Lemma has_inf1 x : has_inf [set x]. Proof. by split; [exists x | exists x => y ->]. Qed. Lemma subset_has_lbound A B : A `<=` B -> has_lbound B -> has_lbound A. Proof. by move=> AB [l Bl]; exists l => a Aa; apply/Bl/AB. Qed. Lemma subset_has_ubound A B : A `<=` B -> has_ubound B -> has_ubound A. Proof. by move=> AB [l Bl]; exists l => a Aa; apply/Bl/AB. Qed. Lemma downP A x : (exists2 y, A y & (x <= y)%O) <-> down A x. Proof. by split => [[y Ay xy]|[y [Ay xy]]]; [exists y| exists y]. Qed. Definition isLub A m := ubound A m /\ forall b, ubound A b -> (m <= b)%O. Definition supremums A := ubound A `&` lbound (ubound A). Lemma supremums1 x : supremums [set x] = [set x]. Proof. rewrite /supremums predeqE => y; split => [[]|->{y}]; last first. by split; [rewrite ub_set1|exact: lb_ub_refl]. by rewrite ub_set1 => xy /lb_ub_set1 yx; apply/eqP; rewrite eq_le xy yx. Qed. Lemma is_subset1_supremums A : is_subset1 (supremums A). Proof. move=> x y [Ax xA] [Ay yA]; apply/eqP. by rewrite eq_le (ub_lb_ub Ax yA) (ub_lb_ub Ay xA). Qed. Definition supremum x0 A := if A == set0 then x0 else xget x0 (supremums A). Lemma supremum_out x0 A : ~ has_sup A -> supremum x0 A = x0. Proof. move=> hsA; rewrite /supremum; case: ifPn => // /set0P[/= x Ax]. case: xgetP => //= _ -> [uA _]; exfalso. by apply: hsA; split; [exists x|exists (xget x0 (supremums A))]. Qed. Lemma supremum0 x0 : supremum x0 set0 = x0. Proof. by rewrite /supremum eqxx. Qed. Lemma supremum1 x0 x : supremum x0 [set x] = x. Proof. rewrite /supremum ifF; last first. by apply/eqP; rewrite predeqE => /(_ x)[+ _]; apply. by rewrite supremums1; case: xgetP => // /(_ x) /(_ erefl). Qed. Definition infimums A := lbound A `&` ubound (lbound A). Lemma infimums1 x : infimums [set x] = [set x]. Proof. rewrite /infimums predeqE => y; split => [[]|->{y}]; last first. by split; [rewrite lb_set1|apply ub_lb_refl]. by rewrite lb_set1 => xy /ub_lb_set1 yx; apply/eqP; rewrite eq_le xy yx. Qed. Lemma is_subset1_infimums A : is_subset1 (infimums A). Proof. move=> x y [Ax xA] [Ay yA]; apply/eqP. by rewrite eq_le (lb_ub_lb Ax yA) (lb_ub_lb Ay xA). Qed. Definition infimum x0 A := if A == set0 then x0 else xget x0 (infimums A). End UpperLowerTheory. Section UpperLowerOrderTheory. Import Order.TTheory. Variables (d : unit) (T : orderType d). Implicit Types (A : set T) (x y z : T). Lemma ge_supremum_Nmem x0 A t : supremums A !=set0 -> A t -> (supremum x0 A >= t)%O. Proof. case=> x Ax; rewrite /supremum; case: ifPn => [/eqP -> //|_]. by case: xgetP => [y yA [uAy _]|/(_ x) //]; exact: uAy. Qed. Lemma le_infimum_Nmem x0 A t : infimums A !=set0 -> A t -> (infimum x0 A <= t)%O. Proof. case=> x Ex; rewrite /infimum; case: ifPn => [/eqP -> //|_]. by case: xgetP => [y yE [uEy _]|/(_ x) //]; exact: uEy. Qed. End UpperLowerOrderTheory. Lemma nat_supremums_neq0 (A : set nat) : ubound A !=set0 -> supremums A !=set0. Proof. case => /=; elim => [A0|n ih]; first by exists O. case: (pselect (ubound A n)) => [/ih //|An {ih}] An1. exists n.+1; split => // m Am; case/existsNP : An => k /not_implyP[Ak /negP]. rewrite -Order.TotalTheory.ltNge => kn. by rewrite (Order.POrderTheory.le_trans _ (Am _ Ak)). Qed. Definition meets T (F G : set (set T)) := forall A B, F A -> G B -> A `&` B !=set0. Notation "F `#` G" := (meets F G) : classical_set_scope. Section meets. Lemma meetsC T (F G : set (set T)) : F `#` G = G `#` F. Proof. gen have sFG : F G / F `#` G -> G `#` F. by move=> FG B A => /FG; rewrite setIC; apply. by rewrite propeqE; split; apply: sFG. Qed. Lemma sub_meets T (F F' G G' : set (set T)) : F `<=` F' -> G `<=` G' -> F' `#` G' -> F `#` G. Proof. by move=> sF sG FG A B /sF FA /sG GB; apply: (FG A B). Qed. Lemma meetsSr T (F G G' : set (set T)) : G `<=` G' -> F `#` G' -> F `#` G. Proof. exact: sub_meets. Qed. Lemma meetsSl T (G F F' : set (set T)) : F `<=` F' -> F' `#` G -> F `#` G. Proof. by move=> /sub_meets; apply. Qed. End meets. Fact set_display : unit. Proof. by []. Qed. Module SetOrder. Module Internal. Section SetOrder. Context {T : Type}. Implicit Types A B : set T. Lemma le_def A B : `[< A `<=` B >] = (A `&` B == A). Proof. by apply/asboolP/eqP; rewrite setIidPl. Qed. Lemma lt_def A B : `[< A `<` B >] = (B != A) && `[< A `<=` B >]. Proof. apply/idP/idP => [/asboolP|/andP[BA /asboolP AB]]; rewrite properEneq eq_sym; by [move=> [] -> /asboolP|apply/asboolP]. Qed. Lemma joinKI B A : A `&` (A `|` B) = A. Proof. by rewrite setUC setKU. Qed. Lemma meetKU B A : A `|` (A `&` B) = A. Proof. by rewrite setIC setKI. Qed. Definition orderMixin := @MeetJoinMixin _ _ (fun A B => `[]) setI setU le_def lt_def (@setIC _) (@setUC _) (@setIA _) (@setUA _) joinKI meetKU (@setIUl _) setIid. Local Canonical porderType := POrderType set_display (set T) orderMixin. Local Canonical latticeType := LatticeType (set T) orderMixin. Local Canonical distrLatticeType := DistrLatticeType (set T) orderMixin. Lemma SetOrder_sub0set A : (set0 <= A)%O. Proof. by apply/asboolP; apply: sub0set. Qed. Lemma SetOrder_setTsub A : (A <= setT)%O. Proof. exact/asboolP. Qed. Local Canonical bLatticeType := BLatticeType (set T) (Order.BLattice.Mixin SetOrder_sub0set). Local Canonical tbLatticeType := TBLatticeType (set T) (Order.TBLattice.Mixin SetOrder_setTsub). Local Canonical bDistrLatticeType := [bDistrLatticeType of set T]. Local Canonical tbDistrLatticeType := [tbDistrLatticeType of set T]. Lemma subKI A B : B `&` (A `\` B) = set0. Proof. by rewrite setDE setICA setICr setI0. Qed. Lemma joinIB A B : (A `&` B) `|` A `\` B = A. Proof. by rewrite setUC -setDDr setDv setD0. Qed. Local Canonical cbDistrLatticeType := CBDistrLatticeType (set T) (@CBDistrLatticeMixin _ _ (fun A B => A `\` B) subKI joinIB). Local Canonical ctbDistrLatticeType := CTBDistrLatticeType (set T) (@CTBDistrLatticeMixin _ _ _ (fun A => ~` A) (fun x => esym (setTD x))). End SetOrder. End Internal. Module Exports. Canonical Internal.porderType. Canonical Internal.latticeType. Canonical Internal.distrLatticeType. Canonical Internal.bLatticeType. Canonical Internal.tbLatticeType. Canonical Internal.bDistrLatticeType. Canonical Internal.tbDistrLatticeType. Canonical Internal.cbDistrLatticeType. Canonical Internal.ctbDistrLatticeType. Section exports. Context {T : Type}. Implicit Types A B : set T. Lemma subsetEset A B : (A <= B)%O = (A `<=` B) :> Prop. Proof. by rewrite asboolE. Qed. Lemma properEset A B : (A < B)%O = (A `<` B) :> Prop. Proof. by rewrite asboolE. Qed. Lemma subEset A B : (A `\` B)%O = (A `\` B). Proof. by []. Qed. Lemma complEset A : (~` A)%O = ~` A. Proof. by []. Qed. Lemma botEset : 0%O = @set0 T. Proof. by []. Qed. Lemma topEset : 1%O = @setT T. Proof. by []. Qed. Lemma meetEset A B : (A `&` B)%O = (A `&` B). Proof. by []. Qed. Lemma joinEset A B : (A `|` B)%O = (A `|` B). Proof. by []. Qed. Lemma subsetPset A B : reflect (A `<=` B) (A <= B)%O. Proof. by apply: (iffP idP); rewrite subsetEset. Qed. Lemma properPset A B : reflect (A `<` B) (A < B)%O. Proof. by apply: (iffP idP); rewrite properEset. Qed. End exports. End Exports. End SetOrder. Export SetOrder.Exports. Section section. Variables (T1 T2 : Type). Implicit Types (A : set (T1 * T2)) (x : T1) (y : T2). Definition xsection A x := [set y | (x, y) \in A]. Definition ysection A y := [set x | (x, y) \in A]. Lemma xsection0 x : xsection set0 x = set0. Proof. by rewrite predeqE /xsection => y; split => //=; rewrite inE. Qed. Lemma ysection0 y : ysection set0 y = set0. Proof. by rewrite predeqE /ysection => x; split => //=; rewrite inE. Qed. Lemma in_xsectionM X1 X2 x : x \in X1 -> xsection (X1 `*` X2) x = X2. Proof. move=> xX1; rewrite /xsection predeqE => y /=; split; rewrite inE. by move=> []. by move=> X2y; split => //=; rewrite inE in xX1. Qed. Lemma in_ysectionM X1 X2 y : y \in X2 -> ysection (X1 `*` X2) y = X1. Proof. move=> yX2; rewrite /ysection predeqE => x /=; split; rewrite inE. by move=> []. by move=> X1x; split => //=; rewrite inE in yX2. Qed. Lemma notin_xsectionM X1 X2 x : x \notin X1 -> xsection (X1 `*` X2) x = set0. Proof. move=> xX1; rewrite /xsection /= predeqE => y; split => //. by rewrite /xsection/= inE => -[] /=; rewrite notin_set in xX1. Qed. Lemma notin_ysectionM X1 X2 y : y \notin X2 -> ysection (X1 `*` X2) y = set0. Proof. move=> yX2; rewrite /xsection /= predeqE => x; split => //. by rewrite /ysection/= inE => -[_]; rewrite notin_set in yX2. Qed. Lemma xsection_bigcup (F : nat -> set (T1 * T2)) x : xsection (\bigcup_n F n) x = \bigcup_n xsection (F n) x. Proof. rewrite predeqE /xsection => y; split => [|[n _]] /=; rewrite inE. by move=> -[n _ Fnxy]; exists n => //=; rewrite inE. by move=> Fnxy; rewrite inE; exists n. Qed. Lemma ysection_bigcup (F : nat -> set (T1 * T2)) y : ysection (\bigcup_n F n) y = \bigcup_n ysection (F n) y. Proof. rewrite predeqE /ysection => x; split => [|[n _]] /=; rewrite inE. by move=> -[n _ Fnxy]; exists n => //=; rewrite inE. by move=> Fnxy; rewrite inE; exists n. Qed. Lemma trivIset_xsection (F : nat -> set (T1 * T2)) x : trivIset setT F -> trivIset setT (fun n => xsection (F n) x). Proof. move=> /trivIsetP h; apply/trivIsetP => i j _ _ ij. rewrite /xsection /= predeqE => y; split => //= -[]; rewrite !inE => Fixy Fjxy. by have := h i j Logic.I Logic.I ij; rewrite predeqE => /(_ (x, y))[+ _]; apply. Qed. Lemma trivIset_ysection (F : nat -> set (T1 * T2)) y : trivIset setT F -> trivIset setT (fun n => ysection (F n) y). Proof. move=> /trivIsetP h; apply/trivIsetP => i j _ _ ij. rewrite /ysection /= predeqE => x; split => //= -[]; rewrite !inE => Fixy Fjxy. by have := h i j Logic.I Logic.I ij; rewrite predeqE => /(_ (x, y))[+ _]; apply. Qed. Lemma le_xsection x : {homo xsection ^~ x : X Y / X `<=` Y >-> X `<=` Y}. Proof. by move=> X Y XY y; rewrite /xsection /= 2!inE => /XY. Qed. Lemma le_ysection y : {homo ysection ^~ y : X Y / X `<=` Y >-> X `<=` Y}. Proof. by move=> X Y XY x; rewrite /ysection /= 2!inE => /XY. Qed. Lemma xsectionD X Y x : xsection (X `\` Y) x = xsection X x `\` xsection Y x. Proof. rewrite predeqE /xsection /= => y; split; last by rewrite 3!inE. by rewrite inE => -[Xxy Yxy]; rewrite 2!inE. Qed. Lemma ysectionD X Y y : ysection (X `\` Y) y = ysection X y `\` ysection Y y. Proof. rewrite predeqE /ysection /= => x; split; last by rewrite 3!inE. by rewrite inE => -[Xxy Yxy]; rewrite 2!inE. Qed. End section.