(* Title: IsomorphismClass Author: Eugene W. Stark , 2019 Maintainer: Eugene W. Stark *) section "Isomorphism Classes" text \ The following is a small theory that facilitates working with isomorphism classes of objects in a category. \ theory IsomorphismClass imports Category3.EpiMonoIso Category3.NaturalTransformation begin context category begin notation isomorphic (infix "\" 50) definition iso_class ("\_\") where "iso_class f \ {f'. f \ f'}" definition is_iso_class where "is_iso_class F \ \f. f \ F \ F = iso_class f" definition iso_class_rep where "iso_class_rep F \ SOME f. f \ F" lemmas isomorphic_transitive [trans] lemmas naturally_isomorphic_transitive [trans] lemma inv_in_homI [intro]: assumes "iso f" and "\f : a \ b\" shows "\inv f : b \ a\" using assms inv_is_inverse seqE inverse_arrowsE by (metis ide_compE in_homE in_homI) lemma iso_class_is_nonempty: assumes "is_iso_class F" shows "F \ {}" using assms is_iso_class_def iso_class_def by auto lemma iso_class_memb_is_ide: assumes "is_iso_class F" and "f \ F" shows "ide f" using assms is_iso_class_def iso_class_def isomorphic_def by auto lemma ide_in_iso_class: assumes "ide f" shows "f \ \f\" using assms iso_class_def is_iso_class_def isomorphic_reflexive by simp lemma rep_in_iso_class: assumes "is_iso_class F" shows "iso_class_rep F \ F" using assms is_iso_class_def iso_class_rep_def someI_ex [of "\f. f \ F"] ide_in_iso_class by metis lemma is_iso_classI: assumes "ide f" shows "is_iso_class \f\" using assms iso_class_def is_iso_class_def isomorphic_reflexive by blast lemma rep_iso_class: assumes "ide f" shows "iso_class_rep \f\ \ f" using assms is_iso_classI rep_in_iso_class iso_class_def isomorphic_symmetric by blast lemma iso_class_elems_isomorphic: assumes "is_iso_class F" and "f \ F" and "f' \ F" shows "f \ f'" using assms iso_class_def by (metis is_iso_class_def isomorphic_symmetric isomorphic_transitive mem_Collect_eq) lemma iso_class_eqI [intro]: assumes "f \ g" shows "\f\ = \g\" proof - have f: "ide f" using assms isomorphic_def by auto have g: "ide g" using assms isomorphic_def by auto have "f \ \g\" using assms iso_class_def isomorphic_symmetric by simp moreover have "g \ \g\" using assms g iso_class_def isomorphic_reflexive isomorphic_def by simp ultimately have "\h. (h \ \f\) = (h \ \g\)" using assms g iso_class_def [of f] iso_class_def [of g] isomorphic_reflexive isomorphic_symmetric isomorphic_transitive by blast thus ?thesis by auto qed lemma iso_class_eq: assumes "is_iso_class F" and "is_iso_class G" and "F \ G \ {}" shows "F = G" proof - obtain h where h: "h \ F \ h \ G" using assms by auto show ?thesis using assms h by (metis is_iso_class_def iso_class_elems_isomorphic iso_class_eqI) qed lemma iso_class_rep [simp]: assumes "is_iso_class F" shows "\iso_class_rep F\ = F" proof (intro iso_class_eq) show "is_iso_class \iso_class_rep F\" using assms is_iso_classI iso_class_memb_is_ide rep_in_iso_class by blast show "is_iso_class F" using assms by simp show "\iso_class_rep F\ \ F \ {}" using assms rep_in_iso_class by (meson disjoint_iff_not_equal ide_in_iso_class iso_class_memb_is_ide) qed end end