section "Vertex Cover" theory Approx_VC_Hoare imports "HOL-Hoare.Hoare_Logic" begin text \The algorithm is classical, the proof is based on and augments the one by Berghammer and M\"uller-Olm \cite{BerghammerM03}.\ subsection "Graph" text \A graph is simply a set of edges, where an edge is a 2-element set.\ definition vertex_cover :: "'a set set \ 'a set \ bool" where "vertex_cover E C = (\e \ E. e \ C \ {})" abbreviation matching :: "'a set set \ bool" where "matching M \ pairwise disjnt M" lemma card_matching_vertex_cover: "\ finite C; matching M; M \ E; vertex_cover E C \ \ card M \ card C" apply(erule card_le_if_inj_on_rel[where r = "\e v. v \ e"]) apply (meson disjnt_def disjnt_iff vertex_cover_def subsetCE) by (meson disjnt_iff pairwise_def) subsection "The Approximation Algorithm" text \Formulated using a simple(!) predefined Hoare-logic. This leads to a streamlined proof based on standard invariant reasoning. The nondeterministic selection of an element from a set \F\ is simulated by @{term "SOME x. x \ F"}. The \SOME\ operator is built into HOL: @{term "SOME x. P x"} denotes some \x\ that satisfies \P\ if such an \x\ exists; otherwise it denotes an arbitrary element. Note that there is no actual nondeterminism involved: @{term "SOME x. P x"} is some fixed element but in general we don't know which one. Proofs about \SOME\ are notoriously tedious. Typically it involves showing first that @{prop "\x. P x"}. Then @{thm someI_ex} implies @{prop"P (SOME x. P x)"}. There are a number of (more) useful related theorems: just click on @{thm someI_ex} to be taken there.\ text \Convenient notation for choosing an arbitrary element from a set:\ abbreviation "some A \ SOME x. x \ A" locale Edges = fixes E :: "'a set set" assumes finE: "finite E" assumes edges2: "e \ E \ card e = 2" begin text \The invariant:\ definition "inv_matching C F M = (matching M \ M \ E \ card C \ 2 * card M \ (\e \ M. \f \ F. e \ f = {}))" definition invar :: "'a set \ 'a set set \ bool" where "invar C F = (F \ E \ vertex_cover (E-F) C \ finite C \ (\M. inv_matching C F M))" text \Preservation of the invariant by the loop body:\ lemma invar_step: assumes "F \ {}" "invar C F" shows "invar (C \ some F) (F - {e' \ F. some F \ e' \ {}})" proof - from assms(2) obtain M where "F \ E" and vc: "vertex_cover (E-F) C" and fC: "finite C" and m: "matching M" "M \ E" and card: "card C \ 2 * card M" and disj: "\e \ M. \f \ F. e \ f = {}" by (auto simp: invar_def inv_matching_def) let ?e = "SOME e. e \ F" have "?e \ F" using \F \ {}\ by (simp add: some_in_eq) hence fe': "finite ?e" using \F \ E\ edges2 by(intro card_ge_0_finite) auto have "?e \ M" using edges2 \?e \ F\ disj \F \ E\ by fastforce have card': "card (C \ ?e) \ 2 * card (insert ?e M)" using \?e \ F\ \?e \ M\ card_Un_le[of C ?e] \F \ E\ edges2 card finite_subset[OF m(2) finE] by fastforce let ?M = "M \ {?e}" have vc': "vertex_cover (E - (F - {e' \ F. ?e \ e' \ {}})) (C \ ?e)" using vc by(auto simp: vertex_cover_def) have m': "inv_matching (C \ ?e) (F - {e' \ F. ?e \ e' \ {}}) ?M" using m card' \F \ E\ \?e \ F\ disj by(auto simp: inv_matching_def Int_commute disjnt_def pairwise_insert) show ?thesis using \F \ E\ vc' fC fe' m' by(auto simp add: invar_def Let_def) qed lemma approx_vertex_cover: "VARS C F {True} C := {}; F := E; WHILE F \ {} INV {invar C F} DO C := C \ some F; F := F - {e' \ F. some F \ e' \ {}} OD {vertex_cover E C \ (\C'. finite C' \ vertex_cover E C' \ card C \ 2 * card C')}" proof (vcg, goal_cases) case (1 C F) have "inv_matching {} E {}" by (auto simp add: inv_matching_def) with 1 show ?case by (auto simp add: invar_def vertex_cover_def) next case (2 C F) thus ?case using invar_step[of F C] by(auto simp: Let_def) next case (3 C F) then obtain M :: "'a set set" where post: "vertex_cover E C" "matching M" "M \ E" "card C \ 2 * card M" by(auto simp: invar_def inv_matching_def) have opt: "card C \ 2 * card C'" if C': "finite C'" "vertex_cover E C'" for C' proof - note post(4) also have "2 * card M \ 2 * card C'" using card_matching_vertex_cover[OF C'(1) post(2,3) C'(2)] by simp finally show "card C \ 2 * card C'" . qed show ?case using post(1) opt by auto qed end (* locale Graph *) subsection "Version for Hypergraphs" text \Almost the same. We assume that the degree of every edge is bounded.\ locale Bounded_Hypergraph = fixes E :: "'a set set" fixes k :: nat assumes finE: "finite E" assumes edge_bnd: "e \ E \ finite e \ card e \ k" assumes E1: "{} \ E" begin definition "inv_matching C F M = (matching M \ M \ E \ card C \ k * card M \ (\e \ M. \f \ F. e \ f = {}))" definition invar :: "'a set \ 'a set set \ bool" where "invar C F = (F \ E \ vertex_cover (E-F) C \ finite C \ (\M. inv_matching C F M))" lemma invar_step: assumes "F \ {}" "invar C F" shows "invar (C \ some F) (F - {e' \ F. some F \ e' \ {}})" proof - from assms(2) obtain M where "F \ E" and vc: "vertex_cover (E-F) C" and fC: "finite C" and m: "matching M" "M \ E" and card: "card C \ k * card M" and disj: "\e \ M. \f \ F. e \ f = {}" by (auto simp: invar_def inv_matching_def) let ?e = "SOME e. e \ F" have "?e \ F" using \F \ {}\ by (simp add: some_in_eq) hence fe': "finite ?e" using \F \ E\ assms(2) edge_bnd by blast have "?e \ M" using E1 \?e \ F\ disj \F \ E\ by fastforce have card': "card (C \ ?e) \ k * card (insert ?e M)" using \?e \ F\ \?e \ M\ card_Un_le[of C ?e] \F \ E\ edge_bnd card finite_subset[OF m(2) finE] by fastforce let ?M = "M \ {?e}" have vc': "vertex_cover (E - (F - {e' \ F. ?e \ e' \ {}})) (C \ ?e)" using vc by(auto simp: vertex_cover_def) have m': "inv_matching (C \ ?e) (F - {e' \ F. ?e \ e' \ {}}) ?M" using m card' \F \ E\ \?e \ F\ disj by(auto simp: inv_matching_def Int_commute disjnt_def pairwise_insert) show ?thesis using \F \ E\ vc' fC fe' m' by(auto simp add: invar_def Let_def) qed lemma approx_vertex_cover_bnd: "VARS C F {True} C := {}; F := E; WHILE F \ {} INV {invar C F} DO C := C \ some F; F := F - {e' \ F. some F \ e' \ {}} OD {vertex_cover E C \ (\C'. finite C' \ vertex_cover E C' \ card C \ k * card C')}" proof (vcg, goal_cases) case (1 C F) have "inv_matching {} E {}" by (auto simp add: inv_matching_def) with 1 show ?case by (auto simp add: invar_def vertex_cover_def) next case (2 C F) thus ?case using invar_step[of F C] by(auto simp: Let_def) next case (3 C F) then obtain M :: "'a set set" where post: "vertex_cover E C" "matching M" "M \ E" "card C \ k * card M" by(auto simp: invar_def inv_matching_def) have opt: "card C \ k * card C'" if C': "finite C'" "vertex_cover E C'" for C' proof - note post(4) also have "k * card M \ k * card C'" using card_matching_vertex_cover[OF C'(1) post(2,3) C'(2)] by simp finally show "card C \ k * card C'" . qed show ?case using post(1) opt by auto qed end (* locale Bounded_Hypergraph *) end