(* Author: Andreas Lochbihler, ETH Zurich *) section \Distinct, non-empty list\ theory Applicative_DNEList imports Applicative_List "HOL-Library.Dlist" begin lemma bind_eq_Nil_iff [simp]: "List.bind xs f = [] \ (\x\set xs. f x = [])" by(simp add: List.bind_def) lemma zip_eq_Nil_iff [simp]: "zip xs ys = [] \ xs = [] \ ys = []" by(cases xs ys rule: list.exhaust[case_product list.exhaust]) simp_all lemma remdups_append1: "remdups (remdups xs @ ys) = remdups (xs @ ys)" by(induction xs) simp_all lemma remdups_append2: "remdups (xs @ remdups ys) = remdups (xs @ ys)" by(induction xs) simp_all lemma remdups_append1_drop: "set xs \ set ys \ remdups (xs @ ys) = remdups ys" by(induction xs) auto lemma remdups_concat_map: "remdups (concat (map remdups xss)) = remdups (concat xss)" by(induction xss)(simp_all add: remdups_append1, metis remdups_append2) lemma remdups_concat_remdups: "remdups (concat (remdups xss)) = remdups (concat xss)" apply(induction xss) apply(auto simp add: remdups_append1_drop) apply(subst remdups_append1_drop; auto) apply(metis remdups_append2) done lemma remdups_replicate: "remdups (replicate n x) = (if n = 0 then [] else [x])" by(induction n) simp_all typedef 'a dnelist = "{xs::'a list. distinct xs \ xs \ []}" morphisms list_of_dnelist Abs_dnelist proof show "[x] \ ?dnelist" for x by simp qed setup_lifting type_definition_dnelist lemma dnelist_subtype_dlist: "type_definition (\x. Dlist (list_of_dnelist x)) (\x. Abs_dnelist (list_of_dlist x)) {xs. xs \ Dlist.empty}" apply unfold_locales subgoal by(transfer; auto simp add: dlist_eq_iff) subgoal by(simp add: distinct_remdups_id dnelist.list_of_dnelist[simplified] list_of_dnelist_inverse) subgoal by(simp add: dlist_eq_iff Abs_dnelist_inverse) done lift_bnf (no_warn_transfer, no_warn_wits) 'a dnelist via dnelist_subtype_dlist for map: map by(auto simp: dlist_eq_iff) hide_const (open) map context begin qualified lemma map_def: "Applicative_DNEList.map = map_fun id (map_fun list_of_dnelist Abs_dnelist) (\f xs. remdups (list.map f xs))" unfolding map_def by(simp add: fun_eq_iff distinct_remdups_id list_of_dnelist[simplified]) qualified lemma map_transfer [transfer_rule]: "rel_fun (=) (rel_fun (pcr_dnelist (=)) (pcr_dnelist (=))) (\f xs. remdups (map f xs)) Applicative_DNEList.map" by(simp add: map_def rel_fun_def dnelist.pcr_cr_eq cr_dnelist_def list_of_dnelist[simplified] Abs_dnelist_inverse) qualified lift_definition single :: "'a \ 'a dnelist" is "\x. [x]" by simp qualified lift_definition insert :: "'a \ 'a dnelist \ 'a dnelist" is "\x xs. if x \ set xs then xs else x # xs" by auto qualified lift_definition append :: "'a dnelist \ 'a dnelist \ 'a dnelist" is "\xs ys. remdups (xs @ ys)" by auto qualified lift_definition bind :: "'a dnelist \ ('a \ 'b dnelist) \ 'b dnelist" is "\xs f. remdups (List.bind xs f)" by auto abbreviation (input) pure_dnelist :: "'a \ 'a dnelist" where "pure_dnelist \ single" end lift_definition ap_dnelist :: "('a \ 'b) dnelist \ 'a dnelist \ 'b dnelist" is "\f x. remdups (ap_list f x)" by(auto simp add: ap_list_def) adhoc_overloading Applicative.ap ap_dnelist lemma ap_pure_list [simp]: "ap_list [f] xs = map f xs" by(simp add: ap_list_def List.bind_def) context includes applicative_syntax begin lemma ap_pure_dlist: "pure_dnelist f \ x = Applicative_DNEList.map f x" by transfer simp applicative dnelist (K) for pure: pure_dnelist ap: ap_dnelist proof - show "pure_dnelist (\x. x) \ x = x" for x :: "'a dnelist" by transfer simp have *: "remdups (remdups (remdups ([\g f x. g (f x)] \ g) \ f) \ x) = remdups (g \ remdups (f \ x))" (is "?lhs = ?rhs") for g :: "('b \ 'c) list" and f :: "('a \ 'b) list" and x proof - have "?lhs = remdups (concat (map (\f. map f x) (remdups (concat (map (\x. map (\f y. x (f y)) f) g)))))" unfolding ap_list_def List.bind_def by(subst (2) remdups_concat_remdups[symmetric])(simp add: o_def remdups_map_remdups remdups_concat_remdups) also have "\ = remdups (concat (map (\f. map f x) (concat (map (\x. map (\f y. x (f y)) f) g))))" by(subst (1) remdups_concat_remdups[symmetric])(simp add: remdups_map_remdups remdups_concat_remdups) also have "\ = remdups (concat (map remdups (map (\g. map g (concat (map (\f. map f x) f))) g)))" using list.pure_B_conv[of g f x] unfolding remdups_concat_map by(simp add: ap_list_def List.bind_def o_def) also have "\ = ?rhs" unfolding ap_list_def List.bind_def by(subst (2) remdups_concat_map[symmetric])(simp add: o_def remdups_map_remdups) finally show ?thesis . qed show "pure_dnelist (\g f x. g (f x)) \ g \ f \ x = g \ (f \ x)" for g :: "('b \ 'c) dnelist" and f :: "('a \ 'b) dnelist" and x by transfer(rule *) show "pure_dnelist f \ pure_dnelist x = pure_dnelist (f x)" for f :: "'a \ 'b" and x by transfer simp show "f \ pure_dnelist x = pure_dnelist (\f. f x) \ f" for f :: "('a \ 'b) dnelist" and x by transfer(simp add: list.interchange) have *: "remdups (remdups ([\x y. x] \ x) \ y) = x" if x: "distinct x" and y: "distinct y" "y \ []" for x :: "'b list" and y :: "'a list" proof - have "remdups (map (\(x :: 'b) (y :: 'a). x) x) = map (\(x :: 'b) (y :: 'a). x) x" using that by(simp add: distinct_map inj_on_def fun_eq_iff) hence "remdups (remdups ([\x y. x] \ x) \ y) = remdups (concat (map (\f. map f y) (map (\x y. x) x)))" by(simp add: ap_list_def List.bind_def del: remdups_id_iff_distinct) also have "\ = x" using that by(simp add: o_def map_replicate_const)(subst remdups_concat_map[symmetric], simp add: o_def remdups_replicate) finally show ?thesis . qed show "pure_dnelist (\x y. x) \ x \ y = x" for x :: "'b dnelist" and y :: "'a dnelist" by transfer(rule *; simp) qed text \@{typ "_ dnelist"} does not have combinator C, so it cannot have W either.\ context begin private lift_definition x :: "int dnelist" is "[2,3]" by simp private lift_definition y :: "int dnelist" is "[5,7]" by simp private lemma "pure_dnelist (\f x y. f y x) \ pure_dnelist ((*)) \ x \ y \ pure_dnelist ((*)) \ y \ x" by transfer(simp add: ap_list_def fun_eq_iff) end end end