(* Title: Allen's qualitative temporal calculus Author: Fadoua Ghourabi (fadouaghourabi@gmail.com) Affiliation: Ochanomizu University, Japan *) theory disjoint_relations imports allen begin section \PD property\ text \The 13 time interval relations (i.e. e, b, m, s, f, d, ov and their inverse relations) are pairwise disjoint.\ (**e**) lemma em (*[simp]*):"e \ m = {}" using e m meets_irrefl by (metis ComplI disjoint_eq_subset_Compl meets_wd subrelI) lemma eb (*[simp]*):"e \ b = {}" using b e meets_asym by (metis ComplI disjoint_eq_subset_Compl subrelI) lemma eov (*[simp]*):"e \ ov = {}" apply (auto simp: e ov) using elimmeets by blast lemma es (*[simp]*):"e \ s = {}" apply (auto simp:e s) using elimmeets by blast lemma ef (*[simp]*):"e \ f = {}" using e f by (metis (no_types, lifting) ComplI disjoint_eq_subset_Compl meets_atrans subrelI) lemma ed (*[simp]*):"e \ d = {}" using e d by (metis (no_types, lifting) ComplI disjoint_eq_subset_Compl meets_atrans subrelI) lemma emi (*[simp]*):"e \ m^-1 = {}" using converseE em e by (metis disjoint_iff_not_equal) lemma ebi (*[simp]*):"e \ b^-1 = {}" using converseE eb e by (metis disjoint_iff_not_equal) lemma eovi (*[simp]*):"e \ ov^-1 = {}" using converseE eov e by (metis disjoint_iff_not_equal) lemma esi (*[simp]*):"e \ s^-1 = {}" using converseE es e by (metis disjoint_iff_not_equal) lemma efi (*[simp]*):"e \ f^-1 = {}" using converseE ef e by (metis disjoint_iff_not_equal) lemma edi (*[simp]*):"e \ d^-1 = {}" using converseE ed e by (metis disjoint_iff_not_equal) (**m**) lemma mb (*[simp]*):"m \ b = {}" using m b apply auto using elimmeets by blast lemma mov (*[simp]*): "m \ ov = {}" apply (auto simp:m ov) by (meson M1 elimmeets) lemma ms (*[simp]*):"m \ s = {}" apply (auto simp:m s) by (meson M1 elimmeets) lemma mf (*[simp]*):"m \ f = {}" apply (auto simp:m f) using elimmeets by blast lemma md (*[simp]*):"m \ d = {}" apply (auto simp: m d) using trans2 by blast lemma mi (*[simp]*):"m \ m^-1 = {}" apply (auto simp:m) using converseE m meets_asym by blast lemma mbi (*[simp]*):"m \ b^-1 = {}" apply (auto simp:mb) apply (auto simp: m b) using nontrans2 by blast lemma movi (*[simp]*):"m \ ov^-1 = {}" using m ov apply auto using trans2 by blast lemma msi (*[simp]*):"m \ s^-1 = {}" apply (auto simp:m s) by (meson M1 elimmeets) lemma mfi (*[simp]*):"m \ f^-1 = {}" apply (auto simp:m f) by (meson M1 elimmeets) lemma mdi (*[simp]*):"m \ d^-1 = {}" apply (auto simp:m d) using trans2 by blast (**b**) lemma bov (*[simp]*):"b \ ov = {}" apply (auto simp:b ov) by (meson M1 trans2) lemma bs (*[simp]*):"b \ s = {}" apply (auto simp:b s) by (meson M1 trans2) lemma bf (*[simp]*):"b \ f = {}" apply (auto simp: b f) by (meson M1 trans2) lemma bd (*[simp]*):"b \ d = {}" apply (auto simp:b d) by (meson M1 nonmeets4) lemma bmi (*[simp]*):"b \ m^-1 = {}" using mbi by auto lemma bi (*[simp]*):"b \ b^-1 = {}" apply (auto simp:b) using M5exist_var3 trans2 by blast lemma bovi (*[simp]*):"b \ ov^-1 = {}" apply (auto simp:bov) apply (auto simp:b ov) by (meson M1 nontrans2) lemma bsi (*[simp]*):"b \ s^-1 = {}" using bs apply auto using b s apply auto using trans2 by blast lemma bfi (*[simp]*):"b \ f^-1 = {}" using bf apply auto using b f apply auto using trans2 by blast lemma bdi (*[simp]*):"b \ d^-1 = {}" apply (auto simp:bd) apply (auto simp:b d) using trans2 using M1 nonmeets4 by blast (**ov**) lemma ovs (*[simp]*):"ov \ s = {}" apply (auto simp:ov s) by (meson M1 meets_atrans) lemma ovf (*[simp]*):"ov \ f = {}" apply (auto simp:ov f) by (meson M1 meets_atrans) lemma ovd (*[simp]*):"ov\ d = {}" apply (auto simp:ov d) by (meson M1 trans2) lemma ovmi (*[simp]*):"ov \ m^-1 = {}" using movi by auto lemma ovbi (*[simp]*):"ov \ b^-1 = {}" using bovi by blast lemma ovi (*[simp]*):"ov \ ov^-1 = {}" apply (auto simp:ov) by (meson M1 trans2) lemma ovsi (*[simp]*):"ov \ s^-1 = {}" apply (auto simp:ov s) by (meson M1 elimmeets) lemma ovfi (*[simp]*):"ov \ f^-1 = {}" apply (auto simp:ov f) by (meson M1 elimmeets) lemma ovdi (*[simp]*):"ov \ d^-1 = {}" apply (auto simp:ov d) by (meson M1 trans2) (**s**) lemma sf (*[simp]*):"s \ f = {}" apply (auto simp:s f) by (metis M4 elimmeets) lemma sd (*[simp]*):"s \ d = {}" apply (auto simp:s d) by (metis M1 meets_atrans) lemma smi (*[simp]*):"s \ m^-1 = {}" using msi by auto lemma sbi (*[simp]*):"s \ b^-1 = {}" using bsi by blast lemma sovi (*[simp]*):"s \ ov^-1 = {}" using ovsi by auto lemma si (*[simp]*):"s \ s^-1 = {}" apply (auto simp:s) by (meson M1 trans2) lemma sfi (*[simp]*):"s \ f^-1 = {}" apply (auto simp:s f) by (metis M4 elimmeets) lemma sdi (*[simp]*):"s\ d^-1 = {}" apply (auto simp:s d) by (meson M1 meets_atrans) (**f**) lemma fd (*[simp]*):"f \ d = {}" apply (auto simp:f d) by (meson M1 meets_atrans) lemma fmi (*[simp]*):"f \ m^-1 = {}" using mfi by auto lemma fbi (*[simp]*):"f \ b^-1 = {}" using bfi converse_Int by auto lemma fovi (*[simp]*):"f \ ov^-1 = {}" using ovfi by auto lemma fsi (*[simp]*):"f \ s^-1 = {}" using sfi by auto lemma fi (*[simp]*):"f \ f^-1 = {}" apply (auto simp:f) by (meson M1 trans2) lemma fdi (*[simp]*):"f \ d^-1 = {}" apply (auto simp:f d) by (meson M1 trans2) (**d**) lemma dmi (*[simp]*):"d \ m^-1 = {}" using mdi by auto lemma dbi (*[simp]*):"d \ b^-1 = {}" using bdi by blast lemma dovi (*[simp]*):"d \ ov^-1 = {}" using ovdi by auto lemma dsi (*[simp]*):"d \ s^-1 = {}" using sdi by auto lemma dfi (*[simp]*):"d \ f^-1 = {}" apply (auto simp:d f) by (meson M1 trans2) lemma di (*[simp]*):"d \ d^-1 = {}" apply (auto simp:d) by (meson M1 trans2) (**m^-1**) lemma mibi (*[simp]*):"m^-1 \ b^-1 = {}" using mb by auto lemma miovi (*[simp]*):"m^-1 \ ov^-1 = {}" using mov by auto lemma misi (*[simp]*):"m^-1 \ s^-1 = {}" using ms by auto lemma mifi (*[simp]*):"m^-1 \ f^-1 = {}" using mf by auto lemma midi (*[simp]*):"m^-1 \ d^-1 = {}" using md by auto (**b^-1**) lemma bid (*[simp]*):"b^-1 \ d = {}" by (simp add: dbi inf_sup_aci(1)) lemma bimi (*[simp]*):"b^-1 \ m^-1 = {}" using mibi by auto lemma biovi (*[simp]*):"b^-1 \ ov^-1 = {}" using bov by blast lemma bisi (*[simp]*):"b^-1 \ s^-1 = {}" using bs by blast lemma bifi (*[simp]*):"b^-1 \ f^-1 = {}" using bf by blast lemma bidi (*[simp]*):"b^-1 \ d^-1 = {}" using bd by blast (** ov^-1**) lemma ovisi (*[simp]*):"ov^-1 \ s^-1 = {}" using ovs by blast lemma ovifi (*[simp]*):"ov^-1 \ f^-1 = {}" using ovf by blast lemma ovidi (*[simp]*):"ov^-1 \ d^-1 = {}" using ovd by blast (** s^-1 **) lemma sifi (*[simp]*):"s^-1 \ f^-1 = {}" using sf by blast lemma sidi (*[simp]*):"s^-1 \ d^-1 = {}" using sd by blast (** f^-1**) lemma fidi (*[simp]*):"f^-1 \ d^-1 = {}" using fd by blast lemma eei[simp]:"e^-1 = e" using e by (metis converse_iff subrelI subset_antisym) lemma rdisj_sym:"A \ B = {} \ B \ A = {}" by auto subsection \Intersection rules\ named_theorems e_rules declare em[e_rules] and eb[e_rules] and eov[e_rules] and es[e_rules] and ef[e_rules] and ed[e_rules] and emi[e_rules] and ebi[e_rules] and eovi[e_rules] and esi[e_rules] and efi[e_rules] and edi[e_rules] named_theorems m_rules declare em[THEN rdisj_sym, m_rules] and mb [m_rules] and ms [m_rules] and mov [m_rules] and mf[m_rules] and md[m_rules] and mi [m_rules] and mbi [m_rules] and movi [m_rules] and msi [m_rules] and mfi [m_rules] and mdi [m_rules] and emi[m_rules] named_theorems b_rules declare eb[THEN rdisj_sym, b_rules] and mb [THEN rdisj_sym, b_rules] and bs [b_rules] and bov [b_rules] and bf[b_rules] and bd[b_rules] and bmi [b_rules] and bi [b_rules] and bovi [b_rules] and bsi [b_rules] and bfi [b_rules] and bdi [b_rules] and ebi[b_rules] named_theorems ov_rules declare eov[THEN rdisj_sym, ov_rules] and mov [THEN rdisj_sym, ov_rules] and ovs [ov_rules] and bov [THEN rdisj_sym,ov_rules] and ovf[ov_rules] and ovd[ov_rules] and ovmi [ov_rules] and ovi [ov_rules] and ovsi [ov_rules] and ovfi [ov_rules] and ovdi [ov_rules] and eovi[ov_rules] named_theorems s_rules declare es[THEN rdisj_sym, s_rules] and ms [THEN rdisj_sym, s_rules] and ovs [THEN rdisj_sym, s_rules] and bs [THEN rdisj_sym,s_rules] and sf[s_rules] and sd[s_rules] and smi [s_rules] and sovi [s_rules] and si [s_rules] and sfi [s_rules] and sdi [s_rules] named_theorems d_rules declare ed[THEN rdisj_sym, d_rules] and md [THEN rdisj_sym, d_rules] and sd [THEN rdisj_sym, d_rules] and fd[THEN rdisj_sym, d_rules] and ovd[THEN rdisj_sym,d_rules] and dmi [d_rules] and dovi [d_rules] and dsi [d_rules] and dfi [d_rules] and di [d_rules] named_theorems f_rules declare ef[THEN rdisj_sym, f_rules] and mf [THEN rdisj_sym, f_rules] and sf [THEN rdisj_sym, f_rules] and ovf [THEN rdisj_sym,f_rules] and fd[f_rules] and fmi [f_rules] and fovi [f_rules] and fsi [f_rules] and fi [f_rules] and fdi [f_rules] end