section \CCW for Nonaligned Points in the Plane\ theory Counterclockwise_2D_Strict imports Counterclockwise_Vector Affine_Arithmetic_Auxiliarities begin text \\label{sec:counterclockwise2d}\ subsection \Determinant\ type_synonym point = "real*real" fun det3::"point \ point \ point \ real" where "det3 (xp, yp) (xq, yq) (xr, yr) = xp * yq + yp * xr + xq * yr - yq * xr - yp * xq - xp * yr" lemma det3_def': "det3 p q r = fst p * snd q + snd p * fst r + fst q * snd r - snd q * fst r - snd p * fst q - fst p * snd r" by (cases p q r rule: prod.exhaust[case_product prod.exhaust[case_product prod.exhaust]]) auto lemma det3_eq_det: "det3 (xa, ya) (xb, yb) (xc, yc) = det (vector [vector [xa, ya, 1], vector [xb, yb, 1], vector [xc, yc, 1]]::real^3^3)" unfolding Determinants.det_def UNIV_3 by (auto simp: sum_over_permutations_insert vector_3 sign_swap_id permutation_swap_id sign_compose) declare det3.simps[simp del] lemma det3_self23[simp]: "det3 a b b = 0" and det3_self12[simp]: "det3 b b a = 0" by (auto simp: det3_def') lemma coll_ex_scaling: assumes "b \ c" assumes d: "det3 a b c = 0" shows "\r. a = b + r *\<^sub>R (c - b)" proof - from assms have "fst b \ fst c \ snd b \ snd c" by (auto simp: prod_eq_iff) thus ?thesis proof assume neq: "fst b \ fst c" with d have "snd a = ((fst a - fst b) * snd c + (fst c - fst a) * snd b) / (fst c - fst b)" by (auto simp: det3_def' field_simps) hence "snd a = ((fst a - fst b)/ (fst c - fst b)) * snd c + ((fst c - fst a)/ (fst c - fst b)) * snd b" by (simp add: add_divide_distrib) hence "snd a = snd b + (fst a - fst b) * snd c / (fst c - fst b) + ((fst c - fst a) - (fst c - fst b)) * snd b / (fst c - fst b)" using neq by (simp add: field_simps) hence "snd a = snd b + ((fst a - fst b) * snd c + (- fst a + fst b) * snd b) / (fst c - fst b)" unfolding add_divide_distrib by (simp add: algebra_simps) also have "(fst a - fst b) * snd c + (- fst a + fst b) * snd b = (fst a - fst b) * (snd c - snd b)" by (simp add: algebra_simps) finally have "snd a = snd b + (fst a - fst b) / (fst c - fst b) * (snd c - snd b)" by simp moreover hence "fst a = fst b + (fst a - fst b) / (fst c - fst b) * (fst c - fst b)" using neq by simp ultimately have "a = b + ((fst a - fst b) / (fst c - fst b)) *\<^sub>R (c - b)" by (auto simp: prod_eq_iff) thus ?thesis by blast next assume neq: "snd b \ snd c" with d have "fst a = ((snd a - snd b) * fst c + (snd c - snd a) * fst b) / (snd c - snd b)" by (auto simp: det3_def' field_simps) hence "fst a = ((snd a - snd b)/ (snd c - snd b)) * fst c + ((snd c - snd a)/ (snd c - snd b)) * fst b" by (simp add: add_divide_distrib) hence "fst a = fst b + (snd a - snd b) * fst c / (snd c - snd b) + ((snd c - snd a) - (snd c - snd b)) * fst b / (snd c - snd b)" using neq by (simp add: field_simps) hence "fst a = fst b + ((snd a - snd b) * fst c + (- snd a + snd b) * fst b) / (snd c - snd b)" unfolding add_divide_distrib by (simp add: algebra_simps) also have "(snd a - snd b) * fst c + (- snd a + snd b) * fst b = (snd a - snd b) * (fst c - fst b)" by (simp add: algebra_simps) finally have "fst a = fst b + (snd a - snd b) / (snd c - snd b) * (fst c - fst b)" by simp moreover hence "snd a = snd b + (snd a - snd b) / (snd c - snd b) * (snd c - snd b)" using neq by simp ultimately have "a = b + ((snd a - snd b) / (snd c - snd b)) *\<^sub>R (c - b)" by (auto simp: prod_eq_iff) thus ?thesis by blast qed qed lemma cramer: "\det3 s t q = 0 \ (det3 t p r) = ((det3 t q r) * (det3 s t p) + (det3 t p q) * (det3 s t r))/(det3 s t q)" by (auto simp: det3_def' field_simps) lemma convex_comb_dets: assumes "det3 p q r > 0" shows "s = (det3 s q r / det3 p q r) *\<^sub>R p + (det3 p s r / det3 p q r) *\<^sub>R q + (det3 p q s / det3 p q r) *\<^sub>R r" (is "?lhs = ?rhs") proof - from assms have "det3 p q r *\<^sub>R ?lhs = det3 p q r *\<^sub>R ?rhs" by (simp add: field_simps prod_eq_iff scaleR_add_right) (simp add: algebra_simps det3_def') thus ?thesis using assms by simp qed lemma four_points_aligned: assumes c: "det3 t p q = 0" "det3 t q r = 0" assumes distinct: "distinct5 t s p q r" shows "det3 t r p = 0" "det3 p q r = 0" proof - from distinct have d: "p \ q" "q \ r" by (auto) from coll_ex_scaling[OF d(1) c(1)] obtain s1 where s1: "t = p + s1 *\<^sub>R (q - p)" by auto from coll_ex_scaling[OF d(2) c(2)] obtain s2 where s2: "t = q + s2 *\<^sub>R (r - q)" by auto from distinct s1 have ne: "1 - s1 \ 0" by auto from s1 s2 have "(1 - s1) *\<^sub>R p = (1 - s1 - s2) *\<^sub>R q + s2 *\<^sub>R r" by (simp add: algebra_simps) hence "(1 - s1) *\<^sub>R p /\<^sub>R (1 - s1)= ((1 - s1 - s2) *\<^sub>R q + s2 *\<^sub>R r) /\<^sub>R (1 - s1)" by simp with ne have p: "p = ((1 - s1 - s2) / (1 - s1)) *\<^sub>R q + (s2 / (1 - s1)) *\<^sub>R r" using ne by (simp add: prod_eq_iff inverse_eq_divide add_divide_distrib) define k1 where "k1 = (1 - s1 - s2) / (1 - s1)" define k2 where "k2 = s2 / (1 - s1)" have "det3 t r p = det3 0 (k1 *\<^sub>R q + (k2 - 1) *\<^sub>R r) (k1 *\<^sub>R q + (k2 - 1) *\<^sub>R r + (- s1 * (k1 - 1)) *\<^sub>R q - (s1 * k2) *\<^sub>R r)" unfolding s1 p k1_def[symmetric] k2_def[symmetric] by (simp add: algebra_simps det3_def') also have "- s1 * (k1 - 1) = s1 * k2" using ne by (auto simp: k1_def field_simps k2_def) also have "1 - k1 = k2" using ne by (auto simp: k2_def k1_def field_simps) have k21: "k2 - 1 = -k1" using ne by (auto simp: k2_def k1_def field_simps) finally have "det3 t r p = det3 0 (k1 *\<^sub>R (q - r)) ((k1 + (s1 * k2)) *\<^sub>R (q - r))" by (auto simp: algebra_simps) also have "\ = 0" by (simp add: algebra_simps det3_def') finally show "det3 t r p = 0" . have "det3 p q r = det3 (k1 *\<^sub>R q + k2 *\<^sub>R r) q r" unfolding p k1_def[symmetric] k2_def[symmetric] .. also have "\ = det3 0 (r - q) (k1 *\<^sub>R q + (-k1) *\<^sub>R r)" unfolding k21[symmetric] by (auto simp: algebra_simps det3_def') also have "\ = det3 0 (r - q) (-k1 *\<^sub>R (r - q))" by (auto simp: det3_def' algebra_simps) also have "\ = 0" by (auto simp: det3_def') finally show "det3 p q r = 0" . qed lemma det_identity: "det3 t p q * det3 t s r + det3 t q r * det3 t s p + det3 t r p * det3 t s q = 0" by (auto simp: det3_def' algebra_simps) lemma det3_eq_zeroI: assumes "p = q + x *\<^sub>R (t - q)" shows "det3 q t p = 0" unfolding assms by (auto simp: det3_def' algebra_simps) lemma det3_rotate: "det3 a b c = det3 c a b" by (auto simp: det3_def') lemma det3_switch: "det3 a b c = - det3 a c b" by (auto simp: det3_def') lemma det3_switch': "det3 a b c = - det3 b a c" by (auto simp: det3_def') lemma det3_pos_transitive_coll: "det3 t s p > 0 \ det3 t s r \ 0 \ det3 t p q \ 0 \ det3 t q r > 0 \ det3 t s q = 0 \ det3 t p r > 0" using det_identity[of t p q s r] by (metis add.commute add_less_same_cancel1 det3_switch det3_switch' less_eq_real_def less_not_sym monoid_add_class.add.left_neutral mult_pos_pos mult_zero_left mult_zero_right) lemma det3_pos_transitive: "det3 t s p > 0 \ det3 t s q \ 0 \ det3 t s r \ 0 \ det3 t p q \ 0 \ det3 t q r > 0 \ det3 t p r > 0" apply (cases "det3 t s q \ 0") using cramer[of q t s p r] apply (force simp: det3_rotate[of q t p] det3_rotate[of p q t] det3_switch[of t p s] det3_switch'[of q t r] det3_rotate[of q t s] det3_rotate[of s q t] intro!: divide_pos_pos add_nonneg_pos) apply (metis det3_pos_transitive_coll) done lemma det3_zero_translate_plus[simp]: "det3 (a + x) (b + x) (c + x) = 0 \ det3 a b c = 0" by (auto simp: algebra_simps det3_def') lemma det3_zero_translate_plus'[simp]: "det3 (a) (a + b) (a + c) = 0 \ det3 0 b c = 0" by (auto simp: algebra_simps det3_def') lemma det30_zero_scaleR1: "0 < e \ det3 0 xr P = 0 \ det3 0 (e *\<^sub>R xr) P = 0" by (auto simp: zero_prod_def algebra_simps det3_def') lemma det3_same[simp]: "det3 a x x = 0" by (auto simp: det3_def') lemma det30_zero_scaleR2: "0 < e \ det3 0 P xr = 0 \ det3 0 P (e *\<^sub>R xr) = 0" by (auto simp: zero_prod_def algebra_simps det3_def') lemma det3_eq_zero: "e \ 0 \ det3 0 xr (e *\<^sub>R Q) = 0 \ det3 0 xr Q = 0" by (auto simp: det3_def') lemma det30_plus_scaled3[simp]: "det3 0 a (b + x *\<^sub>R a) = 0 \ det3 0 a b = 0" by (auto simp: det3_def' algebra_simps) lemma det30_plus_scaled2[simp]: shows "det3 0 (a + x *\<^sub>R a) b = 0 \ (if x = -1 then True else det3 0 a b = 0)" (is "?lhs = ?rhs") proof assume "det3 0 (a + x *\<^sub>R a) b = 0" hence "fst a * snd b * (1 + x) = fst b * snd a * (1 + x)" by (simp add: algebra_simps det3_def') thus ?rhs by (auto simp add: det3_def') qed (auto simp: det3_def' algebra_simps split: if_split_asm) lemma det30_uminus2[simp]: "det3 0 (-a) (b) = 0 \ det3 0 a b = 0" and det30_uminus3[simp]: "det3 0 a (-b) = 0 \ det3 0 a b = 0" by (auto simp: det3_def' algebra_simps) lemma det30_minus_scaled3[simp]: "det3 0 a (b - x *\<^sub>R a) = 0 \ det3 0 a b = 0" using det30_plus_scaled3[of a b "-x"] by simp lemma det30_scaled_minus3[simp]: "det3 0 a (e *\<^sub>R a - b) = 0 \ det3 0 a b = 0" using det30_plus_scaled3[of a "-b" e] by (simp add: algebra_simps) lemma det30_minus_scaled2[simp]: "det3 0 (a - x *\<^sub>R a) b = 0 \ (if x = 1 then True else det3 0 a b = 0)" using det30_plus_scaled2[of a "-x" b] by simp lemma det3_nonneg_scaleR1: "0 < e \ det3 0 xr P \ 0 \ det3 0 (e*\<^sub>Rxr) P \ 0" by (auto simp add: det3_def' algebra_simps) lemma det3_nonneg_scaleR1_eq: "0 < e \ det3 0 (e*\<^sub>Rxr) P \ 0 \ det3 0 xr P \ 0" by (auto simp add: det3_def' algebra_simps) lemma det3_translate_origin: "NO_MATCH 0 p \ det3 p q r = det3 0 (q - p) (r - p)" by (auto simp: det3_def' algebra_simps) lemma det3_nonneg_scaleR_segment2: assumes "det3 x y z \ 0" assumes "a > 0" shows "det3 x ((1 - a) *\<^sub>R x + a *\<^sub>R y) z \ 0" proof - from assms have "0 \ det3 0 (a *\<^sub>R (y - x)) (z - x)" by (intro det3_nonneg_scaleR1) (simp_all add: det3_translate_origin) thus ?thesis by (simp add: algebra_simps det3_translate_origin) qed lemma det3_nonneg_scaleR_segment1: assumes "det3 x y z \ 0" assumes "0 \ a" "a < 1" shows "det3 ((1 - a) *\<^sub>R x + a *\<^sub>R y) y z \ 0" proof - from assms have "det3 0 ((1 - a) *\<^sub>R (y - x)) (z - x + (- a) *\<^sub>R (y - x)) \ 0" by (subst det3_nonneg_scaleR1_eq) (auto simp add: det3_def' algebra_simps) thus ?thesis by (auto simp: algebra_simps det3_translate_origin) qed subsection \Strict CCW Predicate\ definition "ccw' p q r \ 0 < det3 p q r" interpretation ccw': ccw_vector_space ccw' by unfold_locales (auto simp: ccw'_def det3_def' algebra_simps) interpretation ccw': linorder_list0 "ccw' x" for x . lemma ccw'_contra: "ccw' t r q \ ccw' t q r = False" by (auto simp: ccw'_def det3_def' algebra_simps) lemma not_ccw'_eq: "\ ccw' t p s \ ccw' t s p \ det3 t s p = 0" by (auto simp: ccw'_def det3_def' algebra_simps) lemma neq_left_right_of: "ccw' a b c \ ccw' a c d \ b \ d" by (auto simp: ccw'_def det3_def' algebra_simps) lemma ccw'_subst_collinear: assumes "det3 t r s = 0" assumes "s \ t" assumes "ccw' t r p" shows "ccw' t s p \ ccw' t p s" proof cases assume "r \ s" from assms have "det3 r s t = 0" by (auto simp: algebra_simps det3_def') from coll_ex_scaling[OF assms(2) this] obtain x where s: "r = s + x *\<^sub>R (t - s)" by auto from assms(3)[simplified ccw'_def s] have "0 < det3 0 (s + x *\<^sub>R (t - s) - t) (p - t)" by (auto simp: algebra_simps det3_def') also have "s + x *\<^sub>R (t - s) - t = (1 - x) *\<^sub>R (s - t)" by (simp add: algebra_simps) finally have ccw': "ccw' 0 ((1 - x) *\<^sub>R (s - t)) (p - t)" by (simp add: ccw'_def) hence "x \ 1" by (auto simp add: det3_def' ccw'_def) { assume "x < 1" hence ?thesis using ccw' by (auto simp: not_ccw'_eq ccw'.translate_origin) } moreover { assume "x > 1" hence ?thesis using ccw' by (auto simp: not_ccw'_eq ccw'.translate_origin) } ultimately show ?thesis using \x \ 1\ by arith qed (insert assms, simp) lemma ccw'_sorted_scaleR: "ccw'.sortedP 0 xs \ r > 0 \ ccw'.sortedP 0 (map ((*\<^sub>R) r) xs)" by (induct xs) (auto intro!: ccw'.sortedP.Cons elim!: ccw'.sortedP_Cons simp del: scaleR_Pair) subsection \Collinearity\ abbreviation "coll a b c \ det3 a b c = 0" lemma coll_zero[intro, simp]: "coll 0 z 0" by (auto simp: det3_def') lemma coll_zero1[intro, simp]: "coll 0 0 z" by (auto simp: det3_def') lemma coll_self[intro, simp]: "coll 0 z z" by (auto simp: ) lemma ccw'_not_coll: "ccw' a b c \ \coll a b c" "ccw' a b c \ \coll a c b" "ccw' a b c \ \coll b a c" "ccw' a b c \ \coll b c a" "ccw' a b c \ \coll c a b" "ccw' a b c \ \coll c b a" by (auto simp: det3_def' ccw'_def algebra_simps) lemma coll_add: "coll 0 x y \ coll 0 x z \ coll 0 x (y + z)" by (auto simp: det3_def' algebra_simps) lemma coll_scaleR_left_eq[simp]: "coll 0 (r *\<^sub>R x) y \ r = 0 \ coll 0 x y" by (auto simp: det3_def' algebra_simps) lemma coll_scaleR_right_eq[simp]: "coll 0 y (r *\<^sub>R x) \ r = 0 \ coll 0 y x" by (auto simp: det3_def' algebra_simps) lemma coll_scaleR: "coll 0 x y \ coll 0 (r *\<^sub>R x) y" by (auto simp: det3_def' algebra_simps) lemma coll_sum_list: "(\y. y \ set ys \ coll 0 x y) \ coll 0 x (sum_list ys)" by (induct ys) (auto intro!: coll_add) lemma scaleR_left_normalize: fixes a ::real and b c::"'a::real_vector" shows "a *\<^sub>R b = c \ (if a = 0 then c = 0 else b = c /\<^sub>R a)" by (auto simp: field_simps) lemma coll_scale_pair: "coll 0 (a, b) (c, d) \ (a, b) \ 0 \ (\x. (c, d) = x *\<^sub>R (a, b))" by (auto intro: exI[where x="c/a"] exI[where x="d/b"] simp: det3_def' field_simps prod_eq_iff) lemma coll_scale: "coll 0 r q \ r \ 0 \ (\x. q = x *\<^sub>R r)" using coll_scale_pair[of "fst r" "snd r" "fst q" "snd q"] by simp lemma coll_add_trans: assumes "coll 0 x (y + z)" assumes "coll 0 y z" assumes "x \ 0" assumes "y \ 0" assumes "z \ 0" assumes "y + z \ 0" shows "coll 0 x z" proof (cases "snd z = 0") case True hence "snd y = 0" using assms by (cases z) (auto simp add: zero_prod_def det3_def') with True assms have "snd x = 0" by (cases y, cases z) (auto simp add: zero_prod_def det3_def') from \snd x = 0\ \snd y = 0\ \snd z = 0\ show ?thesis by (auto simp add: zero_prod_def det3_def') next case False note z = False hence "snd y \ 0" using assms by (cases y) (auto simp add: zero_prod_def det3_def') with False assms have "snd x \ 0" apply (cases x) apply (cases y) apply (cases z) apply (auto simp add: zero_prod_def det3_def') apply (metis mult.commute mult_eq_0_iff ring_class.ring_distribs(1)) done with False assms \snd y \ 0\ have yz: "snd (y + z) \ 0" by (cases x; cases y; cases z) (auto simp add: det3_def' zero_prod_def) from coll_scale[OF assms(1) assms(3)] coll_scale[OF assms(2) assms(4)] obtain r s where rs: "y + z = r *\<^sub>R x" "z = s *\<^sub>R y" by auto with z have "s \ 0" by (cases x; cases y; cases z) (auto simp: zero_prod_def) with rs z yz have "r \ 0" by (cases x; cases y; cases z) (auto simp: zero_prod_def) from \s \ 0\ rs have "y = r *\<^sub>R x - z" "y = z /\<^sub>R s" by (auto simp: inverse_eq_divide algebra_simps) hence "r *\<^sub>R x - z = z /\<^sub>R s" by simp hence "r *\<^sub>R x = (1 + inverse s) *\<^sub>R z" by (auto simp: inverse_eq_divide algebra_simps) hence "x = (inverse r * (1 + inverse s)) *\<^sub>R z" using \r \ 0\ \s \ 0\ by (auto simp: field_simps scaleR_left_normalize) from this show ?thesis by (auto intro: coll_scaleR) qed lemma coll_commute: "coll 0 a b \ coll 0 b a" by (metis det3_rotate det3_switch' diff_0 diff_self) lemma coll_add_cancel: "coll 0 a (a + b) \ coll 0 a b" by (cases a, cases b) (auto simp: det3_def' algebra_simps) lemma coll_trans: "coll 0 a b \ coll 0 a c \ a \ 0 \ coll 0 b c" by (metis coll_scale coll_scaleR) lemma sum_list_posI: fixes xs::"'a::ordered_comm_monoid_add list" shows "(\x. x \ set xs \ x > 0) \ xs \ [] \ sum_list xs > 0" proof (induct xs) case (Cons x xs) thus ?case by (cases "xs = []") (auto intro!: add_pos_pos) qed simp lemma nonzero_fstI[intro, simp]: "fst x \ 0 \ x \ 0" and nonzero_sndI[intro, simp]: "snd x \ 0 \ x \ 0" by auto lemma coll_sum_list_trans: "xs \ [] \ coll 0 a (sum_list xs) \ (\x. x \ set xs \ coll 0 x y) \ (\x. x \ set xs \ coll 0 x (sum_list xs)) \ (\x. x \ set xs \ snd x > 0) \ a \ 0 \ coll 0 a y" proof (induct xs rule: list_nonempty_induct) case (single x) from single(1) single(2)[of x] single(4)[of x] have "coll 0 x a" "coll 0 x y" "x \ 0" by (auto simp: coll_commute) thus ?case by (rule coll_trans) next case (cons x xs) from cons(5)[of x] \a \ 0\ cons(6)[of x] have *: "coll 0 x (sum_list xs)" "a \ 0" "x \ 0" by (force simp add: coll_add_cancel)+ have "0 < snd (sum_list (x#xs))" unfolding snd_sum_list by (rule sum_list_posI) (auto intro!: add_pos_pos cons simp: snd_sum_list) hence "x + sum_list xs \ 0" by simp from coll_add_trans[OF cons(3)[simplified] * _ this] have cH: "coll 0 a (sum_list xs)" by (cases "sum_list xs = 0") auto from cons(4) have cy: "(\x. x \ set xs \ coll 0 x y)" by simp { fix y assume "y \ set xs" hence "snd (sum_list xs) > 0" unfolding snd_sum_list by (intro sum_list_posI) (auto intro!: add_pos_pos cons simp: snd_sum_list) hence "sum_list xs \ 0" by simp from cons(5)[of x] have "coll 0 x (sum_list xs)" by (simp add: coll_add_cancel) from cons(5)[of y] have "coll 0 y (sum_list xs)" using \y \ set xs\ cons(6)[of y] \x + sum_list xs \ 0\ apply (cases "y = x") subgoal by (force simp add: coll_add_cancel) subgoal by (force simp: dest!: coll_add_trans[OF _ *(1) _ *(3)]) done } note cl = this show ?case by (rule cons(2)[OF cH cy cl cons(6) \a \ 0\]) auto qed lemma sum_list_coll_ex_scale: assumes coll: "\x. x \ set xs \ coll 0 z x" assumes nz: "z \ 0" shows "\r. sum_list xs = r *\<^sub>R z" proof - { fix i assume i: "i < length xs" hence nth: "xs ! i \ set xs" by simp note coll_scale[OF coll[OF nth] \z \ 0\] } then obtain r where r: "\i. i < length xs \ r i *\<^sub>R z = xs ! i" by metis have "xs = map ((!) xs) [0.. = map (\i. r i *\<^sub>R z) [0.. = (\i\[0..R z" by (simp add: sum_list_sum_nth scaleR_sum_left) finally show ?thesis .. qed lemma sum_list_filter_coll_ex_scale: "z \ 0 \ \r. sum_list (filter (coll 0 z) zs) = r *\<^sub>R z" by (rule sum_list_coll_ex_scale) simp end