section \Implementation\ theory Affine_Code imports Affine_Approximation Intersection begin text \Implementing partial deviations as sorted lists of coefficients.\ subsection \Reverse Sorted, Distinct Association Lists\ typedef (overloaded) ('a, 'b) slist = "{xs::('a::linorder \ 'b) list. distinct (map fst xs) \ sorted (rev (map fst xs))}" by (auto intro!: exI[where x="[]"]) setup_lifting type_definition_slist lift_definition map_of_slist::"(nat, 'a::zero) slist \ nat \ 'a option" is map_of . lemma finite_dom_map_of_slist[intro, simp]: "finite (dom (map_of_slist xs))" by transfer (auto simp: finite_dom_map_of) abbreviation "the_default a x \ (case x of None \ a | Some b \ b)" definition "Pdevs_raw xs i = the_default 0 (map_of xs i)" lemma nonzeros_Pdevs_raw_subset: "{i. Pdevs_raw xs i \ 0} \ dom (map_of xs)" unfolding Pdevs_raw_def[abs_def] by transfer (auto simp: Pdevs_raw_def split: option.split_asm) lift_definition Pdevs::"(nat, 'a::zero) slist \ 'a pdevs" is Pdevs_raw by (rule finite_subset[OF nonzeros_Pdevs_raw_subset]) (simp add: finite_dom_map_of) code_datatype Pdevs subsection \Degree\ primrec degree_list::"(nat \ 'a::zero) list \ nat" where "degree_list [] = 0" | "degree_list (x#xs) = (if snd x = 0 then degree_list xs else Suc (fst x))" lift_definition degree_slist::"(nat, 'a::zero) slist \ nat" is degree_list . lemma degree_list_eq_zeroD: assumes "degree_list xs = 0" shows "the_default 0 (map_of xs i) = 0" using assms by (induct xs) (auto simp: Pdevs_raw_def sorted_append split: if_split_asm) lemma degree_slist_eq_zeroD: "degree_slist xs = 0 \ degree (Pdevs xs) = 0" unfolding degree_eq_Suc_max by transfer (auto dest: degree_list_eq_zeroD simp: Pdevs_raw_def) lemma degree_slist_eq_SucD: "degree_slist xs = Suc n \ pdevs_apply (Pdevs xs) n \ 0" proof (transfer, goal_cases) case (1 xs n) thus ?case by (induct xs) (auto simp: Pdevs_raw_def sorted_append map_of_eq_None_iff[symmetric] split: if_split_asm option.split_asm) qed lemma degree_slist_zero: "degree_slist xs = n \ n \ j \ pdevs_apply (Pdevs xs) j = 0" proof (transfer, goal_cases) case (1 xs n j) thus ?case by (induct xs) (auto simp: Pdevs_raw_def sorted_append split: if_split_asm option.split) qed lemma compute_degree[code]: "degree (Pdevs xs) = degree_slist xs" by (cases "degree_slist xs") (auto dest: degree_slist_eq_zeroD degree_slist_eq_SucD intro!: degree_eqI degree_slist_zero) subsection \Auxiliary Definitions\ fun binop where "binop f z1 z2 [] [] = []" | "binop f z1 z2 ((i, x)#xs) [] = (i, f x z2) # binop f z1 z2 xs []" | "binop f z1 z2 [] ((i, y)#ys) = (i, f z1 y) # binop f z1 z2 [] ys" | "binop f z1 z2 ((i, x)#xs) ((j, y)#ys) = (if (i = j) then (i, f x y) # binop f z1 z2 xs ys else if (i > j) then (i, f x z2) # binop f z1 z2 xs ((j, y)#ys) else (j, f z1 y) # binop f z1 z2 ((i, x)#xs) ys)" lemma set_binop_elemD1: "(a, b) \ set (binop f z1 z2 xs ys) \ (a \ set (map fst xs) \ a \ set (map fst ys))" by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm) lemma set_binop_elemD2: "(a, b) \ set (binop f z1 z2 xs ys) \ (\x\set (map snd xs). b = f x z2) \ (\y\set (map snd ys). b = f z1 y) \ (\x\set (map snd xs). \y\set (map snd ys). b = f x y)" by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm) abbreviation "rsorted\\x. sorted (rev x)" lemma rsorted_binop: fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list" assumes "rsorted ((map fst xs))" assumes "rsorted ((map fst ys))" shows "rsorted ((map fst (binop f z1 z2 xs ys)))" using assms by (induct f z1 z2 xs ys rule: binop.induct) (force simp: sorted_append dest!: set_binop_elemD1)+ lemma distinct_binop: fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list" assumes "distinct (map fst xs)" assumes "distinct (map fst ys)" assumes "rsorted ((map fst xs))" assumes "rsorted ((map fst ys))" shows "distinct (map fst (binop f z1 z2 xs ys))" using assms by (induct f z1 z2 xs ys rule: binop.induct) (force dest!: set_binop_elemD1 simp: sorted_append)+ lemma binop_plus: fixes b::"(nat * 'a::euclidean_space) list" shows "(\(i, y)\binop (+) 0 0 b ba. e i *\<^sub>R y) = (\(i, y)\b. e i *\<^sub>R y) + (\(i, y)\ba. e i *\<^sub>R y)" by (induct "(+) ::'a\_" "0::'a" "0::'a" b ba rule: binop.induct) (auto simp: algebra_simps) lemma binop_compose: "binop (\x y. f (g x y)) z1 z2 xs ys = map (apsnd f) (binop g z1 z2 xs ys)" by (induct "\x y. f (g x y)" z1 z2 xs ys rule: binop.induct) auto lemma linear_cmul_left[intro, simp]: "linear ((*) x::real \ _)" by (auto intro!: linearI simp: algebra_simps) lemma length_merge_sorted_eq: "length (binop f z1 z2 xs ys) = length (binop g y1 y2 xs ys)" by (induction f z1 z2 xs ys rule: binop.induct) auto subsection \Pointswise Addition\ lift_definition add_slist::"(nat, 'a::{plus, zero}) slist \ (nat, 'a) slist \ (nat, 'a) slist" is "\xs ys. binop (+) 0 0 xs ys" by (auto simp: intro!: distinct_binop rsorted_binop) lemma map_of_binop[simp]: "rsorted (map fst xs) \ rsorted (map fst ys) \ distinct (map fst xs) \ distinct (map fst ys) \ map_of (binop f z1 z2 xs ys) i = (case map_of xs i of Some x \ Some (f x (case map_of ys i of Some x \ x | None \ z2)) | None \ (case map_of ys i of Some y \ Some (f z1 y) | None \ None))" by (induct f z1 z2 xs ys rule: binop.induct) (auto split: option.split option.split_asm simp: sorted_append) lemma pdevs_apply_Pdevs_add_slist[simp]: fixes xs ys::"(nat, 'a::monoid_add) slist" shows "pdevs_apply (Pdevs (add_slist xs ys)) i = pdevs_apply (Pdevs xs) i + pdevs_apply (Pdevs ys) i" by (transfer) (auto simp: Pdevs_raw_def split: option.split) lemma compute_add_pdevs[code]: "add_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (add_slist xs ys)" by (rule pdevs_eqI) simp subsection \prod of pdevs\ lift_definition prod_slist::"(nat, 'a::zero) slist \ (nat, 'b::zero) slist \ (nat, ('a \ 'b)) slist" is "\xs ys. binop Pair 0 0 xs ys" by (auto simp: intro!: distinct_binop rsorted_binop) lemma pdevs_apply_Pdevs_prod_slist[simp]: "pdevs_apply (Pdevs (prod_slist xs ys)) i = (pdevs_apply (Pdevs xs) i, pdevs_apply (Pdevs ys) i)" by transfer (auto simp: Pdevs_raw_def zero_prod_def split: option.splits) lemma compute_prod_of_pdevs[code]: "prod_of_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (prod_slist xs ys)" by (rule pdevs_eqI) simp subsection \Set of Coefficients\ lift_definition set_slist::"(nat, 'a::real_vector) slist \ (nat * 'a) set" is set . lemma finite_set_slist[intro, simp]: "finite (set_slist xs)" by transfer simp subsection \Domain\ lift_definition list_of_slist::"('a::linorder, 'b::zero) slist \ ('a * 'b) list" is "\xs. filter (\x. snd x \ 0) xs" . lemma compute_pdevs_domain[code]: "pdevs_domain (Pdevs xs) = set (map fst (list_of_slist xs))" unfolding pdevs_domain_def by transfer (force simp: Pdevs_raw_def split: option.split_asm) lemma sort_rev_eq_sort: "distinct xs \ sort (rev xs) = sort xs" by (rule sorted_distinct_set_unique) auto lemma compute_list_of_pdevs[code]: "list_of_pdevs (Pdevs xs) = list_of_slist xs" proof - have "list_of_pdevs (Pdevs xs) = map (\i. (i, pdevs_apply (Pdevs xs) i)) (rev (sorted_list_of_set (pdevs_domain (Pdevs xs))))" by (simp add: list_of_pdevs_def) also have "(sorted_list_of_set (pdevs_domain (Pdevs xs))) = rev (map fst (list_of_slist xs))" unfolding compute_pdevs_domain sorted_list_of_set_sort_remdups proof (transfer, goal_cases) case prems: (1 xs) hence distinct: "distinct (map fst [x\xs . snd x \ 0])" by (auto simp: filter_map distinct_map intro: subset_inj_on) with prems show ?case using sort_rev_eq_sort[symmetric, OF distinct] by (auto simp: rev_map rev_filter distinct_map distinct_remdups_id intro!: sorted_sort_id sorted_filter) qed also have "map (\i. (i, pdevs_apply (Pdevs xs) i)) (rev \) = list_of_slist xs" proof (transfer, goal_cases) case (1 xs) thus ?case unfolding Pdevs_raw_def o_def rev_rev_ident map_map by (subst map_cong[where g="\x. x"]) (auto simp: map_filter_map_filter) qed finally show ?thesis . qed lift_definition slist_of_pdevs::"'a pdevs \ (nat, 'a::real_vector) slist" is list_of_pdevs by (auto simp: list_of_pdevs_def rev_map rev_filter filter_map o_def distinct_map image_def intro!: distinct_filter sorted_filter[of "\x. x", simplified]) subsection \Application\ lift_definition slist_apply::"('a::linorder, 'b::zero) slist \ 'a \ 'b" is "\xs i. the_default 0 (map_of xs i)" . lemma compute_pdevs_apply[code]: "pdevs_apply (Pdevs x) i = slist_apply x i" by transfer (auto simp: Pdevs_raw_def) subsection \Total Deviation\ lift_definition tdev_slist::"(nat, 'a::ordered_euclidean_space) slist \ 'a" is "sum_list o map (abs o snd)" . lemma tdev_slist_sum: "tdev_slist xs = sum (abs \ snd) (set_slist xs)" by transfer (auto simp: distinct_map sum_list_distinct_conv_sum_set[symmetric] o_def) lemma pdevs_apply_set_slist: "x \ set_slist xs \ snd x = pdevs_apply (Pdevs xs) (fst x)" by transfer (auto simp: Pdevs_raw_def) lemma tdev_list_eq_zeroI: shows "(\i. pdevs_apply (Pdevs xs) i = 0) \ tdev_slist xs = 0" unfolding tdev_slist_sum by (auto simp: pdevs_apply_set_slist) lemma inj_on_fst_set_slist: "inj_on fst (set_slist xs)" by transfer (simp add: distinct_map) lemma pdevs_apply_Pdevs_eq_0: "pdevs_apply (Pdevs xs) i = 0 \ ((\x. (i, x) \ set_slist xs \ x = 0))" by transfer (safe, auto simp: Pdevs_raw_def split: option.split) lemma compute_tdev[code]: "tdev (Pdevs xs) = tdev_slist xs" proof - have "tdev (Pdevs xs) = (\ipdevs_apply (Pdevs xs) i\)" by (simp add: tdev_def) also have "\ = (\i pdevs_apply (Pdevs xs) i\)" by (auto intro!: sum.cong) also have "\ = (\i\{0.. {x. pdevs_apply (Pdevs xs) x \ 0}. \pdevs_apply (Pdevs xs) i\)" by (auto simp: sum.If_cases Collect_neg_eq atLeast0LessThan) also have "\ = (\x\fst ` set_slist xs. \pdevs_apply (Pdevs xs) x\)" by (rule sum.mono_neutral_cong_left) (force simp: pdevs_apply_Pdevs_eq_0 intro!: imageI degree_gt)+ also have "\ = (\x\set_slist xs. \pdevs_apply (Pdevs xs) (fst x)\)" by (rule sum.reindex_cong[of fst]) (auto simp: inj_on_fst_set_slist) also have "\ = tdev_slist xs" by (simp add: tdev_slist_sum pdevs_apply_set_slist) finally show ?thesis . qed subsection \Minkowski Sum\ lemma dropWhile_rsorted_eq_filter: "rsorted (map fst xs) \ dropWhile (\(i, x). i \ (m::nat)) xs = filter (\(i, x). i < m) xs" (is "_ \ ?lhs xs = ?rhs xs") proof (induct xs) case (Cons x xs) hence "?rhs (x#xs) = ?lhs (x#xs)" by (auto simp: sorted_append filter_id_conv intro: sym) thus ?case .. qed simp lift_definition msum_slist::"nat \ (nat, 'a) slist \ (nat, 'a) slist \ (nat, 'a) slist" is "\m xs ys. map (apfst (\n. n + m)) ys @ dropWhile (\(i, x). i \ m) xs" proof (safe, goal_cases) case (1 n l1 l2) then have "set (dropWhile (\(i, x). n \ i) l1) \ set l1" by (simp add: set_dropWhileD subrelI) with 1 show ?case by (auto simp add: distinct_map add.commute [of _ n] intro!: comp_inj_on intro: subset_inj_on) (simp add: dropWhile_rsorted_eq_filter) next case prems: (2 n l1 l2) hence "sorted (map ((\na. na + n) \ fst) (rev l2))" by(simp add: sorted_iff_nth_mono rev_map) with prems show ?case by (auto simp: sorted_append dropWhile_rsorted_eq_filter rev_map rev_filter sorted_filter) qed lemma slist_apply_msum_slist: "slist_apply (msum_slist m xs ys) i = (if i < m then slist_apply xs i else slist_apply ys (i - m))" proof (transfer, goal_cases) case prems: (1 m xs ys i) thus ?case proof (cases "i \ dom (map_of (map (\(x, y). (x + m, y)) ys))") case False have "\a. i < m \ i \ fst ` {x \ set xs. case x of (i, x) \ i < m} \ (i, a) \ set xs" "\a. i \ fst ` set xs \ (i, a) \ set xs" "\a. m \ i \ i \ fst ` (\(x, y). (x + m, y)) ` set ys \ (i - m, a) \ set ys" by force+ thus ?thesis using prems False by (auto simp add: dropWhile_rsorted_eq_filter map_of_eq_None_iff distinct_map_fst_snd_eqD split: option.split dest!: map_of_SomeD) qed (force simp: map_of_eq_None_iff distinct_map_fst_snd_eqD split: option.split dest!: map_of_SomeD) qed lemma pdevs_apply_msum_slist: "pdevs_apply (Pdevs (msum_slist m xs ys)) i = (if i < m then pdevs_apply (Pdevs xs) i else pdevs_apply (Pdevs ys) (i - m))" by (auto simp: compute_pdevs_apply slist_apply_msum_slist) lemma compute_msum_pdevs[code]: "msum_pdevs m (Pdevs xs) (Pdevs ys) = Pdevs (msum_slist m xs ys)" by (rule pdevs_eqI) (auto simp: pdevs_apply_msum_slist pdevs_apply_msum_pdevs) subsection \Unary Operations\ lift_definition map_slist::"('a \ 'b) \ (nat, 'a) slist \ (nat, 'b) slist" is "\f. map (apsnd f)" by simp lemma pdevs_apply_map_slist: "f 0 = 0 \ pdevs_apply (Pdevs (map_slist f xs)) i = f (pdevs_apply (Pdevs xs) i)" by transfer (force simp: Pdevs_raw_def map_of_eq_None_iff distinct_map_fst_snd_eqD image_def split: option.split dest: distinct_map_fst_snd_eqD) lemma compute_scaleR_pdves[code]: "scaleR_pdevs r (Pdevs xs) = Pdevs (map_slist (\x. r *\<^sub>R x) xs)" and compute_pdevs_scaleR[code]: "pdevs_scaleR (Pdevs rs) x = Pdevs (map_slist (\r. r *\<^sub>R x) rs)" and compute_uminus_pdevs[code]: "uminus_pdevs (Pdevs xs) = Pdevs (map_slist (\x. - x) xs)" and compute_abs_pdevs[code]: "abs_pdevs (Pdevs xs) = Pdevs (map_slist abs xs)" and compute_pdevs_inner[code]: "pdevs_inner (Pdevs xs) b = Pdevs (map_slist (\x. x \ b) xs)" and compute_pdevs_inner2[code]: "pdevs_inner2 (Pdevs xs) b c = Pdevs (map_slist (\x. (x \ b, x \ c)) xs)" and compute_inner_scaleR_pdevs[code]: "inner_scaleR_pdevs x (Pdevs ys) = Pdevs (map_slist (\y. (x \ y) *\<^sub>R y) ys)" and compute_trunc_pdevs[code]: "trunc_pdevs p (Pdevs xs) = Pdevs (map_slist (\x. eucl_truncate_down p x) xs)" and compute_trunc_err_pdevs[code]: "trunc_err_pdevs p (Pdevs xs) = Pdevs (map_slist (\x. eucl_truncate_down p x - x) xs)" by (auto intro!: pdevs_eqI simp: pdevs_apply_map_slist zero_prod_def abs_pdevs_def) subsection \Filter\ lift_definition filter_slist::"(nat \ 'a \ bool) \ (nat, 'a) slist \ (nat, 'a) slist" is "\P xs. filter (\(i, x). (P i x)) xs" by (auto simp: o_def filter_map distinct_map rev_map rev_filter sorted_filter intro: subset_inj_on) lemma slist_apply_filter_slist: "slist_apply (filter_slist P xs) i = (if P i (slist_apply xs i) then slist_apply xs i else 0)" by transfer (force simp: Pdevs_raw_def o_def map_of_eq_None_iff distinct_map_fst_snd_eqD dest: map_of_SomeD distinct_map_fst_snd_eqD split: option.split) lemma pdevs_apply_filter_slist: "pdevs_apply (Pdevs (filter_slist P xs)) i = (if P i (pdevs_apply (Pdevs xs) i) then pdevs_apply (Pdevs xs) i else 0)" by (simp add: compute_pdevs_apply slist_apply_filter_slist) lemma compute_filter_pdevs[code]: "filter_pdevs P (Pdevs xs) = Pdevs (filter_slist P xs)" by (auto simp: pdevs_apply_filter_slist intro!: pdevs_eqI) subsection \Constant\ lift_definition zero_slist::"(nat, 'a) slist" is "[]" by simp lemma compute_zero_pdevs[code]: "zero_pdevs = Pdevs (zero_slist)" by transfer (auto simp: Pdevs_raw_def) lift_definition One_slist::"(nat, 'a::executable_euclidean_space) slist" is "rev (zip [0..i < length B" assumes "d = length B" shows "(map_of (rev (zip [0.. (nat, real) slist" is "\i. [(i, 1)]" by simp lemma compute_coord_pdevs[code]: "coord_pdevs i = Pdevs (coord_slist i)" by transfer (auto simp: Pdevs_raw_def) subsection \Update\ primrec update_list::"nat \ 'a \ (nat * 'a) list \ (nat * 'a) list" where "update_list n x [] = [(n, x)]" | "update_list n x (y#ys) = (if n > fst y then (n, x)#y#ys else if n = fst y then (n, x)#ys else y#(update_list n x ys))" lemma map_of_update_list[simp]: "map_of (update_list n x ys) = (map_of ys)(n:=Some x)" by (induct ys) auto lemma in_set_update_listD: assumes "y \ set (update_list n x ys)" shows "y = (n, x) \ (y \ set ys)" using assms by (induct ys) (auto split: if_split_asm) lemma in_set_update_listI: "y = (n, x) \ (fst y \ n \ y \ set ys) \ y \ set (update_list n x ys)" by (induct ys) (auto split: if_split_asm) lemma in_set_update_list: "(n, x) \ set (update_list n x xs)" by (induct xs) simp_all lemma overwrite_update_list: "(a, b) \ set xs \ (a, b) \ set (update_list n x xs) \ a = n" by (induct xs) (auto split: if_split_asm) lemma insert_update_list: "distinct (map fst xs) \ rsorted (map fst xs) \ (a, b) \ set (update_list a x xs) \ b = x" by (induct xs) (force split: if_split_asm simp: sorted_append)+ lemma set_update_list_eq: "distinct (map fst xs) \ rsorted (map fst xs) \ set (update_list n x xs) = insert (n, x) (set xs - {x. fst x = n})" by (auto intro!: in_set_update_listI dest: in_set_update_listD simp: insert_update_list) lift_definition update_slist::"nat \ 'a \ (nat, 'a) slist \ (nat, 'a) slist" is update_list proof goal_cases case (1 n a l) thus ?case by (induct l) (force simp: sorted_append distinct_map not_less dest!: in_set_update_listD)+ qed lemma pdevs_apply_update_slist: "pdevs_apply (Pdevs (update_slist n x xs)) i = (if i = n then x else pdevs_apply (Pdevs xs) i)" by transfer (auto simp: Pdevs_raw_def) lemma compute_pdev_upd[code]: "pdev_upd (Pdevs xs) n x = Pdevs (update_slist n x xs)" by (rule pdevs_eqI) (auto simp: pdevs_apply_update_slist) subsection \Approximate Total Deviation\ lift_definition fold_slist::"('a \ 'b \ 'b) \ (nat, 'a::zero) slist \ 'b \ 'b" is "\f xs z. fold (f o snd) (filter (\x. snd x \ 0) xs) z" . lemma Pdevs_raw_Cons: "Pdevs_raw ((a, b) # xs) = (\i. if i = a then b else Pdevs_raw xs i)" by (auto simp: Pdevs_raw_def map_of_eq_None_iff dest!: map_of_SomeD split: option.split) lemma zeros_aux: "- (\i. if i = a then b else Pdevs_raw xs i) -` {0} \ - Pdevs_raw xs -` {0} \ {a}" by auto lemma compute_tdev'[code]: "tdev' p (Pdevs xs) = fold_slist (\a b. eucl_truncate_up p (\a\ + b)) xs 0" unfolding tdev'_def sum_list'_def compute_list_of_pdevs by transfer (auto simp: o_def fold_map) subsection \Equality\ lemma slist_apply_list_of_slist_eq: "slist_apply a i = the_default 0 (map_of (list_of_slist a) i)" by (transfer) (force split: option.split simp: map_of_eq_None_iff distinct_map_fst_snd_eqD dest!: map_of_SomeD) lemma compute_equal_pdevs[code]: "equal_class.equal (Pdevs a) (Pdevs b) \ (list_of_slist a) = (list_of_slist b)" by (auto intro!: pdevs_eqI simp: equal_pdevs_def compute_pdevs_apply slist_apply_list_of_slist_eq compute_list_of_pdevs[symmetric]) subsection \From List of Generators\ lift_definition slist_of_list::"'a::zero list \ (nat, 'a) slist" is "\xs. rev (zip [0..abstraction function which can be used in code equations\ lift_definition abs_slist_if::"('a::linorder\'b) list \ ('a, 'b) slist" is "\list. if distinct (map fst list) \ rsorted (map fst list) then list else []" by auto definition "slist = Abs_slist" lemma [code_post]: "Abs_slist = slist" by (simp add: slist_def) lemma [code]: "slist = (\xs. (if distinct (map fst xs) \ rsorted (map fst xs) then abs_slist_if xs else Code.abort (STR '''') (\_. slist xs)))" by (auto simp add: slist_def abs_slist_if.abs_eq) abbreviation "pdevs \ (\x. Pdevs (slist x))" lift_definition nlex_slist::"(nat, point) slist \ (nat, point) slist" is "map (\(i, x). (i, if lex 0 x then - x else x))" by (auto simp: o_def split_beta') lemma Pdevs_raw_map: "f 0 = 0 \ Pdevs_raw (map (\(i, x). (i, f x)) xs) i = f (Pdevs_raw xs i)" by (auto simp: Pdevs_raw_def map_of_map split: option.split) lemma compute_nlex_pdevs[code]: "nlex_pdevs (Pdevs x) = Pdevs (nlex_slist x)" by transfer (auto simp: Pdevs_raw_map) end