(* Title: Inductive definition of Hoare logic Author: Tobias Nipkow, 2001/2006 Maintainer: Tobias Nipkow *) theory PsHoare imports PsLang begin subsection\Hoare logic for partial correctness\ type_synonym 'a assn = "'a \ state \ bool" type_synonym 'a cntxt = "('a assn \ com \ 'a assn)set" definition valid :: "'a assn \ com \ 'a assn \ bool" ("\ {(1_)}/ (_)/ {(1_)}" 50) where "\ {P}c{Q} \ (\s t z. s -c\ t \ P z s \ Q z t)" definition valids :: "'a cntxt \ bool" ("|\ _" 50) where "|\ D \ (\(P,c,Q) \ D. \ {P}c{Q})" definition nvalid :: "nat \ 'a assn \ com \ 'a assn \ bool" ("\_ {(1_)}/ (_)/ {(1_)}" 50) where "\n {P}c{Q} \ (\s t z. s -c-n\ t \ P z s \ Q z t)" definition nvalids :: "nat \ 'a cntxt \ bool" ("|\'__/ _" 50) where "|\_n C \ (\(P,c,Q) \ C. \n {P}c{Q})" text\We now need an additional notion of validity \mbox{\C |\ D\} where @{term D} is a set as well. The reason is that we can now have mutually recursive procedures whose correctness needs to be established by simultaneous induction. Instead of sets of Hoare triples we may think of conjunctions. We define both \C |\ D\ and its relativized version:\ definition cvalids :: "'a cntxt \ 'a cntxt \ bool" ("_ |\/ _" 50) where "C |\ D \ |\ C \ |\ D" definition cnvalids :: "'a cntxt \ nat \ 'a cntxt \ bool" ("_ |\'__/ _" 50) where "C |\_n D \ |\_n C \ |\_n D" text\Our Hoare logic now defines judgements of the form \C \ D\ where both @{term C} and @{term D} are (potentially infinite) sets of Hoare triples; \C \ {P}c{Q}\ is simply an abbreviation for \C \ {(P,c,Q)}\.\ inductive hoare :: "'a cntxt \ 'a cntxt \ bool" ("_ \/ _" 50) and hoare3 :: "'a cntxt \ 'a assn \ com \ 'a assn \ bool" ("_ \/ ({(1_)}/ (_)/ {(1_)})" 50) where "C \ {P}c{Q} \ C \ {(P,c,Q)}" | Do: "C \ {\z s. \t \ f s . P z t} Do f {P}" | Semi: "\ C \ {P}c{Q}; C \ {Q}d{R} \ \ C \ {P} c;d {R}" | If: "\ C \ {\z s. P z s \ b s}c{Q}; C \ {\z s. P z s \ \b s}d{Q} \ \ C \ {P} IF b THEN c ELSE d {Q}" | While: "C \ {\z s. P z s \ b s} c {P} \ C \ {P} WHILE b DO c {\z s. P z s \ \b s}" | Conseq: "\ C \ {P'}c{Q'}; \s t. (\z. P' z s \ Q' z t) \ (\z. P z s \ Q z t) \ \ C \ {P}c{Q}" | Call: "\ \(P,c,Q) \ C. \p. c = CALL p; C \ {(P,b,Q). \p. (P,CALL p,Q) \ C \ b = body p} \ \ {} \ C" | Asm: "(P,CALL p,Q) \ C \ C \ {P} CALL p {Q}" | ConjI: "\(P,c,Q) \ D. C \ {P}c{Q} \ C \ D" | ConjE: "\ C \ D; (P,c,Q) \ D \ \ C \ {P}c{Q}" | Local: "\ \s'. C \ {\z s. P z s' \ s = f s'} c {\z t. Q z (g s' t)} \ \ C \ {P} LOCAL f;c;g {Q}" monos split_beta lemmas valid_defs = valid_def valids_def cvalids_def nvalid_def nvalids_def cnvalids_def theorem "C \ D \ C |\ D" txt\\noindent As before, we prove a generalization of @{prop"C |\ D"}, namely @{prop"\n. C |\_n D"}, by induction on @{prop"C \ D"}, with an induction on @{term n} in the @{term CALL} case.\ apply(subgoal_tac "\n. C |\_n D") apply(unfold valid_defs exec_iff_execn[THEN eq_reflection]) apply fast apply(erule hoare.induct) apply simp apply simp apply fast apply simp apply clarify apply(drule while_rule) prefer 3 apply (assumption, assumption) apply simp apply simp apply fast apply(rule allI, rule impI) apply(induct_tac n) apply force apply clarify apply(frule bspec, assumption) apply (simp(no_asm_use)) apply fast apply simp apply fast apply simp apply fast apply fast apply fastforce done definition MGT :: "com \ state assn \ com \ state assn" where [simp]: "MGT c = (\z s. z = s, c, \z t. z -c\ t)" lemma strengthen_pre: "\ \z s. P' z s \ P z s; C\ {P}c{Q} \ \ C\ {P'}c{Q}" by(rule hoare.Conseq, assumption, blast) lemma MGT_implies_complete: "{} \ {MGT c} \ \ {P}c{Q} \ {} \ {P}c{Q::state assn}" apply(unfold MGT_def) apply (erule hoare.Conseq) apply(simp add: valid_defs) done lemma MGT_lemma: "\p. C \ {MGT(CALL p)} \ C \ {MGT c}" apply (simp) apply(induct_tac c) apply (rule strengthen_pre[OF _ hoare.Do]) apply blast apply simp apply (rule hoare.Semi) apply blast apply (rule hoare.Conseq) apply blast apply blast apply clarsimp apply(rule hoare.If) apply(rule hoare.Conseq) apply blast apply simp apply(rule hoare.Conseq) apply blast apply simp prefer 2 apply simp apply(rename_tac b c) apply(rule hoare.Conseq) apply(rule_tac P = "\z s. (z,s) \ ({(s,t). b s \ s -c\ t})^*" in hoare.While) apply(erule hoare.Conseq) apply(blast intro:rtrancl_into_rtrancl) apply clarsimp apply(rename_tac s t) apply(erule_tac x = s in allE) apply clarsimp apply(erule converse_rtrancl_induct) apply(blast intro:exec.intros) apply(fast elim:exec.WhileTrue) apply(fastforce intro: hoare.Local elim!: hoare.Conseq) done lemma MGT_body: "(P, CALL p, Q) = MGT (CALL pa) \ C \ {MGT (body p)} \ C \ {P} body p {Q}" apply clarsimp done declare MGT_def[simp del] lemma MGT_CALL: "{} \ {mgt. \p. mgt = MGT(CALL p)}" apply (rule hoare.Call) apply(fastforce simp add:MGT_def) apply(rule hoare.ConjI) apply clarsimp apply (erule MGT_body) apply(rule MGT_lemma) apply(unfold MGT_def) apply(fast intro: hoare.Asm) done theorem Complete: "\ {P}c{Q} \ {} \ {P}c{Q::state assn}" apply(rule MGT_implies_complete) prefer 2 apply assumption apply (rule MGT_lemma) apply(rule allI) apply(unfold MGT_def) apply(rule hoare.ConjE[OF MGT_CALL]) apply(simp add:MGT_def fun_eq_iff) done end