diff --git "a/wiki/proofwiki/shard_25.txt" "b/wiki/proofwiki/shard_25.txt" new file mode 100644--- /dev/null +++ "b/wiki/proofwiki/shard_25.txt" @@ -0,0 +1,17779 @@ +\section{Range of Modulo Operation for Positive Modulus} +Tags: Modulo Arithmetic + +\begin{theorem} +Let $x, y \in \R$ be [[Definition:Real Number|real numbers]]. +Let $x \bmod y$ denote the [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := \begin{cases} +x - y \floor {\dfrac x y} & : y \ne 0 \\ +x & : y = 0 +\end{cases}$ +where $\floor {\dfrac x y}$ denotes the [[Definition:Floor Function|floor]] of $\dfrac x y$. +Let $y > 0$. +Then: +:$0 \le x \bmod y < y$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = 0 + | o = \le + | m = \frac {x \bmod y} y + | mo= < + | r = 1 + | c = [[Quotient of Modulo Operation with Modulus]] +}} +{{eqn | ll= \leadsto + | l = 0 + | o = \le + | m = \frac {x \bmod y} y \times y + | mo= < + | r = 1 \times y + | c = [[Real Number Ordering is Compatible with Multiplication]] +}} +{{eqn | ll= \leadsto + | l = 0 + | o = \le + | m = x \bmod y + | mo= < + | r = y + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Range of Modulo Operation for Negative Modulus} +Tags: Modulo Arithmetic + +\begin{theorem} +Let $x, y \in \R$ be [[Definition:Real Number|real numbers]]. +Let $x \bmod y$ denote the [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := \begin{cases} +x - y \left \lfloor {\dfrac x y}\right \rfloor & : y \ne 0 \\ +x & : y = 0 +\end{cases}$ +where $\left \lfloor {\dfrac x y}\right \rfloor$ denotes the [[Definition:Floor Function|floor]] of $\dfrac x y$. +Let $y < 0$. +Then: +:$0 \ge x \bmod y > y$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = 0 + | o = \le + | m = \frac {x \bmod y} y + | mo= < + | r = 1 + | c = [[Quotient of Modulo Operation with Modulus]] +}} +{{eqn | ll= \leadsto + | l = 0 + | o = \ge + | m = \frac {x \bmod y} y \times y + | mo= > + | r = 1 \times y + | c = [[Real Number Ordering is Compatible with Multiplication]] +}} +{{eqn | ll= \leadsto + | l = 0 + | o = \ge + | m = x \bmod y + | mo= > + | r = y + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Zero is Integer Multiple of Zero} +Tags: Number Theory + +\begin{theorem} +[[Definition:Zero (Number)|Zero]] is an [[Definition:Integer Multiple|integer multiple]] of [[Definition:Zero (Number)|zero]]. +\end{theorem} + +\begin{proof} +We have that: +:$0 \times 0 = 0$ +The result follows by definition of [[Definition:Integer Multiple|integer multiple]]. +{{qed}} +[[Category:Number Theory]] +cr4qeo16keg2mqnhx82y0t2xypme5gz +\end{proof}<|endoftext|> +\section{Number minus Modulo is Integer Multiple} +Tags: Modulo Arithmetic + +\begin{theorem} +Let $x, y \in \R$ be [[Definition:Real Number|real numbers]]. +Let $x \bmod y$ denote the [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := \begin{cases} +x - y \left \lfloor {\dfrac x y}\right \rfloor & : y \ne 0 \\ +x & : y = 0 +\end{cases}$ +where $\left \lfloor {\dfrac x y}\right \rfloor$ denotes the [[Definition:Floor Function|floor]] of $\dfrac x y$. +Let $y < 0$. +Then: +:$x - \left({x \bmod y}\right)$ +is an [[Definition:Integer Multiple|integer multiple]] of $y$. +\end{theorem} + +\begin{proof} +When $y = 0$ we have: +:$x \bmod y := x$ +Thus: +:$x - \left({x \bmod y}\right) = 0$ +From [[Zero is Integer Multiple of Zero]] it follows that: +:$x - \left({x \bmod y}\right)$ +is an [[Definition:Integer Multiple|integer multiple]] of $y$. +Let $y \ne 0$. +Then: +{{begin-eqn}} +{{eqn | l = x \bmod y + | r = x - y \left \lfloor {\dfrac x y}\right \rfloor + | c = Definition of [[Definition:Modulo Operation|Modulo Operation]] +}} +{{eqn | ll= \leadsto + | l = x - \left({x \bmod y}\right) + | r = y \left \lfloor {\dfrac x y}\right \rfloor + | c = Definition of [[Definition:Modulo Operation|Modulo Operation]] +}} +{{end-eqn}} +From [[Floor Function is Integer]], $\left \lfloor {\dfrac x y}\right \rfloor$ is an [[Definition:Integer|integer]]. +Thus: +:$\exists n \in \Z: x - \left({x \bmod y}\right) = n y$ +where in the case $n = \left \lfloor {\dfrac x y}\right \rfloor$ +Hence the result by definition of [[Definition:Integer Multiple|integer multiple]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Operation/Examples/5 mod 3} +Tags: Examples of Modulo Operation + +\begin{theorem} +:$5 \bmod 3 = 2$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := x - y \left \lfloor {\dfrac x y}\right \rfloor$ +for $y \ne 0$. +We have: +:$\dfrac 5 3 = 1 + \dfrac 2 3$ +and so: +:$\left\lfloor{\dfrac 5 3}\right\rfloor = 1$ +Thus: +:$5 \bmod 3 = 5 - 3 \times \left\lfloor{\dfrac 5 3}\right\rfloor = 5 - 3 \times 1 = 2$ +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Operation/Examples/18 mod 3} +Tags: Examples of Modulo Operation + +\begin{theorem} +:$18 \bmod 3 = 0$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := x - y \left \lfloor {\dfrac x y}\right \rfloor$ +for $y \ne 0$. +We have: +:$\dfrac {18} 3 = 6 + \dfrac 0 3$ +and so: +:$\left\lfloor{\dfrac {18} 3}\right\rfloor = 6$ +Thus: +:$18 \bmod 3 = 18 - 3 \times \left\lfloor{\dfrac {18} 3}\right\rfloor = 18 - 3 \times 6 = 0$ +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Operation/Examples/-2 mod 3} +Tags: Examples of Modulo Operation + +\begin{theorem} +:$-2 \bmod 3 = 1$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := x - y \left \lfloor {\dfrac x y}\right \rfloor$ +for $y \ne 0$. +We have: +:$\dfrac {-2} 3 = -1 + \dfrac 1 3$ +and so: +:$\left\lfloor{\dfrac {-2} 3}\right\rfloor = -1$ +Thus: +:$-2 \bmod 3 = -2 - 3 \times \left\lfloor{\dfrac {-2} 3}\right\rfloor = -2 - 3 \times \left({-1}\right) = 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Number is Divisor iff Modulo is Zero} +Tags: Modulo Arithmetic + +\begin{theorem} +Let $x, y \in \R$ be [[Definition:Real Number|real numbers]]. +Let $x \bmod y$ denote the [[Definition:Modulo Operation|modulo operation]]: +:$x \bmod y := \begin {cases} +x - y \floor {\dfrac x y} & : y \ne 0 \\ +x & : y = 0 +\end {cases}$ +where $\floor {\dfrac x y}$ denotes the [[Definition:Floor Function|floor]] of $\dfrac x y$. +Then $x \bmod y = 0$ {{iff}} $x$ is an [[Definition:Integer Multiple|integer multiple]] of $y$. +\end{theorem}<|endoftext|> +\section{Correctness of Definition of Increasing Mappings Satisfying Inclusion in Lower Closure} +Tags: Order Theory + +\begin{theorem} +Let $R = \left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let ${\it Ids}\left({R}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $R$. +Let $L = \left({ {\it Ids}\left({R}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] +where $\precsim \mathop = \subseteq\restriction_{ {\it Ids}\left({R}\right) \times {\it Ids}\left({R}\right)}$ +Let +:$M = \left({F, \preccurlyeq}\right)$ +where +:$F = \left\{ {f: S \to {\it Ids}\left({R}\right): f}\right.$ is [[Definition:Increasing Mapping|increasing mapping]] $\left.{\land \forall x \in S: f\left({x}\right) \subseteq x^\preceq}\right\}$ +and +:$\preccurlyeq$ is [[Definition:Ordering on Mappings|ordering on mappings]] generated by $\precsim$ +where $x^\preceq$ denotes the [[Definition:Lower Closure/Element|lower closure]] of $x$. +Then +:$M$ is an [[Definition:Ordered Set|ordered set]]. +\end{theorem} + +\begin{proof} +=== Reflexivity === +Let $f \in F$. +By definition of [[Definition:Reflexivity|reflexivity]]: +:$\forall x \in S: f\left({x}\right) \precsim f\left({x}\right)$ +Thus by definition of [[Definition:Ordering on Mappings|ordering on mappings]]: +:$f \preccurlyeq f$ +{{qed|lemma}} +=== Transitivity === +Let $f, g, h \in F$ such that +:$f \preccurlyeq g \preccurlyeq h$ +By definition of [[Definition:Ordering on Mappings|ordering on mappings]]: +:$\forall x \in S: f\left({x}\right) \precsim g\left({x}\right) \precsim h\left({x}\right)$ +By definition of [[Definition:Transitivity|transitivity]]: +:$\forall x \in S: f\left({x}\right) \precsim h\left({x}\right)$ +Thus by definition of [[Definition:Ordering on Mappings|ordering on mappings]]: +:$f \preccurlyeq h$ +{{qed|lemma}} +=== Antisymmetry === +Let $f, g \in F$ such that +:$f \preccurlyeq g$ and $g \preccurlyeq f$ +By definition of [[Definition:Ordering on Mappings|ordering on mappings]]: +:$\forall x \in S: f\left({x}\right) \precsim g\left({x}\right) \land g\left({x}\right) \precsim f\left({x}\right)$ +By definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$\forall x \in S: f\left({x}\right) = g\left({x}\right)$ +Thus by [[Equality of Mappings|equality of mappings]]: +:$f = g$ +{{qed|lemma}} +Thus by definition: +:$M$ is an [[Definition:Ordered Set|ordered set]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Number less than Integer iff Floor less than Integer} +Tags: Floor Function + +\begin{theorem} +:$\left \lfloor{x}\right \rfloor < n \iff x < n$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $x < n$. +By definition of the [[Definition:Floor Function|floor]] of $x$: +:$\left \lfloor {x} \right \rfloor \le x$ +Hence: +:$\left \lfloor {x} \right \rfloor < n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $\left \lfloor{x}\right \rfloor < n$. +We have that: +:$\forall m, n \in \Z: m < n \iff m + 1 \le n$ +and so: +:$(1): \quad \left \lfloor{x}\right \rfloor + 1 \le n$ +Then: +{{begin-eqn}} +{{eqn | l = x + | o = < + | r = \left \lfloor{x}\right \rfloor + 1 + | c = Definition of [[Definition:Floor Function|Floor Function]] +}} +{{eqn | o = \le + | r = n + | c = from $(1)$ +}} +{{end-eqn}} +{{qed|lemma}} +Hence the result: +:$\left \lfloor{x}\right \rfloor < n \iff x < n$ +{{qed}} +\end{proof}<|endoftext|> +\section{Number not less than Integer iff Floor not less than Integer} +Tags: Floor Function + +\begin{theorem} +:$x \ge n \iff \left \lfloor{x}\right \rfloor \ge n$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $\left \lfloor{x}\right \rfloor \ge n$. +By definition of the [[Definition:Floor Function|floor]] of $x$: +:$x \ge \left \lfloor{x}\right \rfloor$ +Hence: +:$x \ge n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $x \ge n$. +{{AimForCont}} $\left \lfloor{x}\right \rfloor < n$. +We have that: +:$\forall m, n \in \Z: m < n \iff m + 1 \le n$ +Hence: +:$\left \lfloor{x}\right \rfloor + 1 \le n$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$\left \lfloor{x}\right \rfloor + 1 \le x$ +This [[Definition:Contradiction|contradicts]] the definition of the [[Definition:Floor Function|floor]] of $x$: +:$\left \lfloor{x}\right \rfloor + 1 > x$ +Thus by [[Proof by Contradiction]]: +:$\left \lfloor{x}\right \rfloor \ge n$ +{{qed|lemma}} +Hence the result: +:$\left \lfloor{x}\right \rfloor \ge n \iff x \ge n$ +{{qed}} +\end{proof}<|endoftext|> +\section{Number not greater than Integer iff Ceiling not greater than Integer} +Tags: Ceiling Function + +\begin{theorem} +:$\left \lceil{x}\right \rceil \le n \iff x \le n$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $\left \lceil{x}\right \rceil \le n$. +By [[Number is between Ceiling and One Less]]: +:$x \le \left \lceil{x}\right \rceil$ +Hence: +:$x \le n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $x \le n$. +{{AimForCont}} $\left \lceil{x}\right \rceil > n$. +We have that: +:$\forall m, n \in \Z: m < n \iff m \le n - 1$ +Hence: +:$\left \lceil{x}\right \rceil - 1 \ge n$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$\left \lceil{x}\right \rceil - 1 \ge x$ +This [[Definition:Contradiction|contradicts]] the result [[Number is between Ceiling and One Less]]: +:$\left \lceil{x}\right \rceil - 1 < x$ +Thus by [[Proof by Contradiction]]: +:$\left \lceil{x}\right \rceil \le n$ +{{qed|lemma}} +Hence the result: +:$\left \lceil{x}\right \rceil \le n \iff x \le n$ +{{qed}} +\end{proof}<|endoftext|> +\section{Number greater than Integer iff Ceiling greater than Integer} +Tags: Ceiling Function + +\begin{theorem} +:$\left \lceil{x}\right \rceil > n \iff x > n$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $x > n$. +By [[Number is between Ceiling and One Less]]: +:$\left \lceil{x}\right \rceil \ge x$ +Hence: +:$\left \lceil{x}\right \rceil > n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $\left \lceil{x}\right \rceil > n$. +We have that: +:$\forall m, n \in \Z: m < n \iff m \le n - 1$ +and so: +:$(1): \quad \left \lceil{x}\right \rceil - 1 \ge n$ +Then: +{{begin-eqn}} +{{eqn | l = x + | o = > + | r = \left \lceil{x}\right \rceil - 1 + | c = [[Number is between Ceiling and One Less]] +}} +{{eqn | o = \ge + | r = n + | c = from $(1)$ +}} +{{end-eqn}} +{{qed|lemma}} +Hence the result: +:$\left \lceil{x}\right \rceil > n \iff x > n$ +{{qed}} +\end{proof}<|endoftext|> +\section{Integer equals Floor iff between Number and One Less} +Tags: Floor Function + +\begin{theorem} +:$\floor x = n \iff x - 1 < n \le x$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $x - 1 < n \le x$. +From $n \le x$, we have by [[Number not less than Integer iff Floor not less than Integer]]: +:$n \le \floor x$ +From $x - 1 < n$: +:$x < n + 1$ +Hence by [[Number less than Integer iff Floor less than Integer]]: +:$\floor x < n + 1$ +We have that: +:$\forall m, n \in \Z: m \le n \iff m < n + 1$ +and so: +:$\floor x \le n$ +Thus as: +:$n \le \floor x$ +and: +:$\floor x \le n$ +it follows that: +:$\floor x = n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $\floor x = n$. +Then: +:$\floor x \ge n$ +By [[Number not less than Integer iff Floor not less than Integer]]: +:$n \le x$ +By definition of the [[Definition:Floor Function|floor]] of $x$: +:$x < \floor x + 1$ +and so subtracting $1$ from both sides: +:$x - 1 < \floor x$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$x - 1 < n$ +So: +:$\floor x = n \implies x - 1 < n \le x$ +{{qed|lemma}} +Hence the result: +:$\floor x = n \iff x - 1 < n \le x$ +{{qed}} +\end{proof}<|endoftext|> +\section{Integer equals Floor iff Number between Integer and One More} +Tags: Floor Function + +\begin{theorem} +:$\floor x = n \iff n \le x < n + 1$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $n \le x < n + 1$. +From [[Number not less than Integer iff Floor not less than Integer]]: +:$n \le x \implies n \le \floor x$ +By definition of the [[Definition:Floor Function|floor]] of $x$: +:$\floor x \le x$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$\floor x < n + 1$ +We have that: +:$\forall m, n \in \Z: m \le n \iff m < n + 1$ +and so: +:$\floor x \le n$ +So we have: +:$n \le \floor x$ +and: +:$\floor x \le n$ +Thus: +:$n \le x < n + 1 \implies \floor x = n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $\floor x = n$. +By definition of the [[Definition:Floor Function|floor]] of $x$: +:$\floor x \le x$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$n \le x$ +Also by definition of the [[Definition:Floor Function|floor]] of $x$: +:$x < \floor x + 1$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$x < n + 1$ +Thus: +:$\floor x = n \implies n \le x < n + 1$. +{{qed|lemma}} +Hence the result: +:$\floor x = n \iff n \le x < n + 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Integer equals Ceiling iff between Number and One More} +Tags: Ceiling Function + +\begin{theorem} +:$\left \lceil{x}\right \rceil = n \iff x \le n < x + 1$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $x \le n < x + 1$. +From $x \le n$, we have by [[Number not greater than Integer iff Ceiling not greater than Integer]]: +:$\left \lceil{x}\right \rceil \le n$ +From $n < x + 1$: +:$n - 1 < x$ +Hence by [[Number greater than Integer iff Ceiling greater than Integer]]: +:$n - 1 < \left \lceil{x}\right \rceil$ +We have that: +:$\forall m, n \in \Z: m < n \iff m \le n - 1$ +and so: +:$n \le \left \lceil{x}\right \rceil$ +Thus as: +:$\left \lceil{x}\right \rceil \le n$ +and: +:$\left \lceil{x}\right \rceil \ge n$ +it follows that: +:$\left \lceil{x}\right \rceil = n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $\left \lceil{x}\right \rceil = n$. +Then: +:$\left \lceil{x}\right \rceil \le n$ +By [[Number not greater than Integer iff Ceiling not greater than Integer]]: +:$x \le n$ +From [[Number is between Ceiling and One Less]]: +:$\left \lceil{x}\right \rceil - 1 < x$ +and so adding $1$ to both sides: +:$\left \lceil{x}\right \rceil < x + 1$ +and so [[Definition:By Hypothesis|by hypothesis]]: +:$n < x + 1$ +So: +:$\left \lceil{x}\right \rceil = n \implies x \le n < x + 1$ +{{qed|lemma}} +Hence the result: +:$\left \lceil{x}\right \rceil = n \iff x \le n < x + 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Integer equals Ceiling iff Number between Integer and One Less} +Tags: Ceiling Function + +\begin{theorem} +:$\ceiling x = n \iff n - 1 < x \le n$ +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $n - 1 < x \le n$. +From [[Number not greater than Integer iff Ceiling not greater than Integer]]: +:$x \le n \implies \ceiling x \le n$ +From [[Number is between Ceiling and One Less]]: +:$x \le \ceiling x$ +and so: +:$n - 1 < \ceiling x$ +We have that: +:$\forall m, n \in \Z: m - 1 < n \iff m \le n$ +and so: +:$n \le \ceiling x$ +So we have: +:$\ceiling x \le n$ +and: +:$n \le \ceiling x$ +Thus: +:$n - 1 < x \le n \implies \ceiling x = n$ +{{qed|lemma}} +=== Sufficient Condition === +Let $\ceiling x = n$. +From [[Number is between Ceiling and One Less]]: +:$x \le \ceiling x$ +and so: +:$x \le n$ +Also from [[Number is between Ceiling and One Less]]: +:$\ceiling x - 1 < x$ +and so: +:$n - 1 < x$ +Thus: +:$\ceiling x = n \implies n - 1 < x \le n$. +{{qed|lemma}} +Hence the result: +:$\ceiling x = n \iff n - 1 < x \le n$ +{{qed}} +\end{proof}<|endoftext|> +\section{Floor of Root of Floor equals Floor of Root} +Tags: Floor Function + +\begin{theorem} +:$\displaystyle \floor {\sqrt {\floor x} } = \floor {\sqrt x}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = n + | m = \floor {\sqrt x} + | c = +}} +{{eqn | ll= \leadstoandfrom + | l = n + | o = \le + | m = \sqrt x + | mo= < + | r = n + 1 + | c = [[Integer equals Floor iff Number between Integer and One More]] +}} +{{eqn | ll= \leadstoandfrom + | l = n^2 + | o = \le + | m = x + | mo= < + | r = \paren {n + 1}^2 + | c = [[Order is Preserved on Positive Reals by Squaring]] +}} +{{eqn | ll= \leadstoandfrom + | l = n^2 + | o = \le + | m = \floor x + | mo= < + | r = \paren {n + 1}^2 + | c = [[Number not less than Integer iff Floor not less than Integer]] +}} +{{eqn | ll= \leadstoandfrom + | l = n + | o = \le + | m = \sqrt {\floor x} + | mo= < + | r = n + 1 + | c = [[Order is Preserved on Positive Reals by Squaring]] +}} +{{eqn | ll= \leadstoandfrom + | l = n + | m = \floor {\sqrt {\floor x} } + | c = [[Integer equals Floor iff Number between Integer and One More]] +}} +{{end-eqn}} +{{qed}} +{{expand|Add a proof based on [[McEliece's Theorem (Integer Functions)]]}} +\end{proof}<|endoftext|> +\section{Ceiling of Root of Ceiling equals Ceiling of Root} +Tags: Ceiling Function + +\begin{theorem} +:$\displaystyle \ceiling {\sqrt {\ceiling x} } = \ceiling {\sqrt x}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = n + | m = \ceiling {\sqrt x} + | c = +}} +{{eqn | ll= \leadstoandfrom + | l = n - 1 + | o = < + | m = \sqrt x + | mo= \le + | r = n + | c = [[Integer equals Ceiling iff Number between Integer and One Less]] +}} +{{eqn | ll= \leadstoandfrom + | l = \paren {n - 1}^2 + | o = < + | m = x + | mo= \le + | r = n^2 + | c = [[Order is Preserved on Positive Reals by Squaring]] +}} +{{eqn | ll= \leadstoandfrom + | l = \paren {n - 1}^2 + | o = < + | m = \ceiling x + | mo= \le + | r = n^2 + | c = [[Number not greater than Integer iff Ceiling not greater than Integer]] +}} +{{eqn | ll= \leadstoandfrom + | l = n - 1 + | o = < + | m = \sqrt {\ceiling x} + | mo= \le + | r = n + | c = [[Order is Preserved on Positive Reals by Squaring]] +}} +{{eqn | ll= \leadstoandfrom + | l = n + | m = \ceiling {\sqrt {\ceiling x} } + | c = [[Integer equals Ceiling iff Number between Integer and One Less]] +}} +{{end-eqn}} +{{qed}} +{{expand|Add a proof based on [[McEliece's Theorem (Integer Functions)]]}} +\end{proof}<|endoftext|> +\section{Congruence by Divisor of Modulus/Integer Modulus} +Tags: Modulo Arithmetic + +\begin{theorem} +Let $r, s \in \Z$ be [[Definition:Integer|integers]]. +Let $a, b \in \Z$ such that $a$ is [[Definition:Congruence Modulo Integer|congruent modulo $r s$]] to $b$, that is: +:$a \equiv b \pmod {r s}$ +Then: +:$a \equiv b \pmod r$ +and: +:$a \equiv b \pmod s$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = a + | o = \equiv + | r = b + | rr= \pmod {r s} + | c = +}} +{{eqn | ll= \implies + | l = a - b + | r = q r s + | c = {{Defof|Congruence Modulo Integer}} +}} +{{eqn | ll= \implies + | l = a - b + | r = \paren {q r} s + | c = +}} +{{eqn | lo= \land + | l = a - b + | r = \paren {q s} r + | c = +}} +{{eqn | l = a + | o = \equiv + | r = b + | rr= \pmod r + | c = {{Defof|Congruence Modulo Integer}}: $q s$ is an [[Definition:Integer|integer]] +}} +{{eqn | lo= \land + | l = a + | o = \equiv + | r = b + | rr= \pmod s + | c = {{Defof|Congruence Modulo Integer}}: $q r$ is an [[Definition:Integer|integer]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Addition is Well-Defined/Real Modulus} +Tags: Modulo Addition, Modulo Addition is Well-Defined + +\begin{theorem} +Let $z \in \R$ be a [[Definition:Real Number|real number]]. +Let: +:$a \equiv b \pmod z$ +and: +:$x \equiv y \pmod z$ +where $a, b, x, y \in \R$. +Then: +: $a + x \equiv b + y \pmod z$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = a + | o = \equiv + | r = b + | rr= \pmod z + | c = +}} +{{eqn | l = c + | o = \equiv + | r = d + | rr= \pmod z + | c = +}} +{{eqn | ll= \leadsto + | l = a \bmod z + | r = b \bmod z + | c = {{Defof|Congruence (Number Theory)|Congruence}} +}} +{{eqn | l = x \bmod z + | r = y \bmod z + | c = +}} +{{eqn | ll= \leadsto + | lo= \exists k_1 \in \Z: + | l = a - b + | r = k_1 z + | c = +}} +{{eqn | lo= \exists k_2 \in \Z: + | l = x - y + | r = k_2 z + | c = +}} +{{eqn | ll= \leadsto + | l = \paren {a + x} - \paren {b + y} + | r = \paren {k_1 + k_2} z + | c = {{Defof|Integer Addition}} +}} +{{eqn | ll= \leadsto + | l = a + x + | o = \equiv + | r = b + y + | rr= \pmod z + | c = {{Defof|Congruence (Number Theory)|Congruence}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Multiplication is Well-Defined/Warning} +Tags: Modulo Multiplication + +\begin{theorem} +Let $z \in \R$ be a [[Definition:Real Number|real number]]. +Let: +:$a \equiv b \pmod z$ +and: +:$x \equiv y \pmod z$ +where $a, b, x, y \in \R$. +Then it does '''not''' necessarily hold that: +: $a x \equiv b y \pmod z$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = a + | o = \equiv + | r = b + | rr= \pmod m + | c = +}} +{{eqn | l = x + | o = \equiv + | r = y + | rr= \pmod m + | c = +}} +{{eqn | ll= \leadsto + | l = a \bmod m + | r = b \bmod m + | c = Definition of [[Definition:Congruence (Number Theory)|Congruence]] +}} +{{eqn | l = x \bmod m + | r = y \bmod m + | c = +}} +{{eqn | ll= \leadsto + | lo= \exists k_1 \in \Z: + | l = a + | r = b + k_1 z + | c = +}} +{{eqn | lo= \exists k_2 \in \Z: + | l = x + | r = y + k_2 z + | c = +}} +{{eqn | ll= \leadsto + | l = a x + | r = \left({b + k_1 z}\right) \left({y + k_2 z}\right) + | c = Definition of [[Definition:Multiplication|Multiplication]] +}} +{{eqn | r = b y + b k_2 z + y k_1 z + k_1 k_2 z^2 + | c = [[Integer Multiplication Distributes over Addition]] +}} +{{eqn | r = b y + \left({b k_2 + y k_1 + k_1 k_2 z}\right) z + | c = +}} +{{end-eqn}} +But it is not necessarily the case that: +:$b k_2 + y k_1 + k_1 k_2 z$ +is an [[Definition:Integer|integer]]. +In fact, $b k_2 + y k_1 + k_1 k_2 z$ can only be ''guaranteed'' to be an [[Definition:Integer|integer]] if each of $b, y, z \in \Z$. +Hence $a b$ is not necessarily congruent to $x y$. +{{qed}} +\end{proof}<|endoftext|> +\section{Congruence by Product of Moduli/Real Modulus} +Tags: Modulo Arithmetic + +\begin{theorem} +Let $a, b, z \in \R$. +Let $a \equiv b \pmod z$ denote that [[Definition:Congruence (Number Theory)|$a$ is congruent to $b$ modulo $z$]]. +Then $\forall y \in \R, y \ne 0$: +:$a \equiv b \pmod z \iff y a \equiv y b \pmod {y z}$ +\end{theorem} + +\begin{proof} +Let $y \in \R: y \ne 0$. +Then: +{{begin-eqn}} +{{eqn | l = a + | o = \equiv + | r = b + | rr= \pmod z + | c = +}} +{{eqn | ll= \iff + | l = a \bmod z + | r = b \bmod z + | c = {{Defof|Congruence (Number Theory)|Congruence}} +}} +{{eqn | ll= \iff + | l = y \left({a \bmod z}\right) + | r = y \left({b \bmod z}\right) + | c = Left hand implication valid only when $y \ne 0$ +}} +{{eqn | ll= \iff + | l = \left({y a}\right) \bmod \left({y z}\right) + | r = \left({y b}\right) \bmod \left({y z}\right) + | c = [[Product Distributes over Modulo Operation]] +}} +{{eqn | l = y a + | o = \equiv + | r = y b + | rr= \pmod {y z} + | c = {{Defof|Congruence (Number Theory)|Congruence}} +}} +{{end-eqn}} +Hence the result. +Note the invalidity of the third step when $y = 0$. +{{qed}} +\end{proof}<|endoftext|> +\section{Segment of Auxiliary Relation is Subset of Lower Closure} +Tags: Auxiliary Relations, Lower Closures + +\begin{theorem} +Let $\left({S, \vee, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Join Semilattice|join semilattice]]. +Let $R$ be [[Definition:Auxiliary Relation|auxiliary relation]] on $S$. +Let $x \in S$. +Then +:$x^R \subseteq x^\preceq$ +where +:$x^R$ denotes the [[Definition:Relation Segment|$R$-segment]] of $x$, +:$x^\preceq$ denotes the [[Definition:Lower Closure/Element|lower closure]] of $x$. +\end{theorem} + +\begin{proof} +Let $a \in x^R$. +By definition of [[Definition:Relation Segment|$R$-segment]] of $x$: +:$\left({a, x}\right) \in R$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$a \preceq x$ +Thus by definition of [[Definition:Lower Closure/Element|lower closure of element]]: +:$a \in x^\preceq$ +{{qed}} +\end{proof}<|endoftext|> +\section{Power Function is Completely Multiplicative/Integers} +Tags: Completely Multiplicative Functions, Number Theory + +\begin{theorem} +Let $c \in \Z$ be an [[Definition:Integer|integer]]. +Let $f_c: \Z \to \Z$ be the [[Definition:Mapping|mapping]] defined as: +:$\forall n \in \Z: \map {f_c} n = n^c$ +Then $f_c$ is [[Definition:Completely Multiplicative Function|completely multiplicative]]. +\end{theorem} + +\begin{proof} +Let $r, s \in \Z$. +Then: +{{begin-eqn}} +{{eqn | l = \map {f_c} {r s} + | r = \paren {r s}^c + | c = +}} +{{eqn | r = r^c s^c + | c = [[Exponent Combination Laws/Product of Powers|Exponent Combination Laws: Product of Powers]] +}} +{{eqn | r = \map {f_c} r \map {f_c} s + | c = +}} +{{end-eqn}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Preceding implies Inclusion of Segments of Auxiliary Relation} +Tags: Auxiliary Relations + +\begin{theorem} +Let $\left({S, \vee, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Join Semilattice|join semilattice]]. +Let $R$ be an [[Definition:Auxiliary Relation|auxiliary relation]] on $S$. +Let $x, y \in S$ such that +:$x \preceq y$ +Then +:$x^R \subseteq y^R$ +where $x^R$ denotes the [[Definition:Relation Segment|$R$-segment]] of $x$. +\end{theorem} + +\begin{proof} +Let $a \in x^R$. +By definition of [[Definition:Relation Segment|$R$-segment]] of $x$: +:$\left({a, x}\right) \in R$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$a \preceq a$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\left({a, y}\right) \in R$ +Thus by definition of [[Definition:Relation Segment|$R$-segment]] of $y$: +:$a \in y^R$ +{{qed}} +\end{proof}<|endoftext|> +\section{Characteristic Function of Square-Free Integers is Multiplicative} +Tags: Multiplicative Functions, Number Theory, Square-Free Integers + +\begin{theorem} +Let $S \subseteq \Z$ be the [[Definition:Set|set]] of [[Definition:Positive Integer|positive integers]] defined as: +:$S := \set {n \in \Z: \forall k \in \Z_{>1}: k^2 \nmid n}$ +That is, let $S$ be the [[Definition:Set|set]] of all [[Definition:Square-Free Integer|square-free]] [[Definition:Positive Integer|positive integers]]. +Let $\chi_S: \N \to \Z$ denote the [[Definition:Characteristic Function of Set|characteristic function]] of $S$: +:$\forall n \in \Z: \map {\chi_S} n = \sqbrk {n \in S}$ +where $\sqbrk {n \in S}$ is [[Definition:Iverson's Convention|Iverson's convention]]. +Then $\chi_S$ is [[Definition:Multiplicative Arithmetic Function|multiplicative]]. +\end{theorem} + +\begin{proof} +Let $r, s \in \Z$ such that $r \perp s$. +=== Case 1: Either factor is not [[Definition:Square-Free Integer|square-free]] === +Let either $r \notin S$ or $s \notin S$ or both. +Then either: +:$\exists k \in \Z_{>1}: k^2 \divides r$ +or: +:$\exists k \in \Z_{>1}: k^2 \divides s$ +Thus either: +:$\map {\chi_S} r = 0$ +or: +:$\map {\chi_S} s = 0$ +and so: +:$\map {\chi_S} r \, \map {\chi_S} s = 0$ +But then: +:$\exists k \in \Z_{>1}: k^2 \divides r s$ +and so: +:$\map {\chi_S} {r s} = 0$ +demonstrating that: +:$\map {\chi_S} r \, \map {\chi_S} s = \map {\chi_S} {r s}$ +{{qed|lemma}} +=== Case 1: Both factors are [[Definition:Square-Free Integer|square-free]] === +Let $r \in S$ and $s \in S$. +Thus: +:$\nexists k \in \Z_{>1}: k^2 \divides r$ +and: +:$\nexists k \in \Z_{>1}: k^2 \divides s$ +Hence: +:$\map {\chi_S} r = 1$ +and: +:$\map {\chi_S} s = 1$ +and so: +:$\map {\chi_S} r \, \map {\chi_S} s = 1$ +Because $r \perp s$: +:$\nexists k \in \Z_{>1}: k \divides r, k \divides s$ +Hence there can be no $k \in \Z_{>1}$ whose multiplicity in $r s$ is greater than $1$. +Thus: +:$\nexists k \in \Z_{>1}: k^2 \divides {r s}$ +and so: +:$\map {\chi_S} {r s} = 1$ +once more demonstrating that: +:$\map {\chi_S} r \, \map {\chi_S} s = \map {\chi_S} {r s}$ +{{qed|lemma}} +In both cases: +:$\map {\chi_S} r \, \map {\chi_S} s = \map {\chi_S} {r s}$ +Hence the result, by definition of [[Definition:Multiplicative Arithmetic Function|multiplicative function]]. +{{Qed}} +\end{proof}<|endoftext|> +\section{Segment of Auxiliary Relation Mapping is Increasing} +Tags: Auxiliary Relations + +\begin{theorem} +Let $R = \left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let ${\it Ids}\left({R}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $R$. +Let $L = \left({ {\it Ids}\left({R}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] +where $\precsim \mathop = \subseteq\restriction_{ {\it Ids}\left({R}\right) \times {\it Ids}\left({R}\right)}$ +Let $r$ be an [[Definition:Auxiliary Relation|auxiliary relation]] on $S$. +Let $f: S \to {\it Ids}\left({R}\right)$ be a [[Definition:Mapping|mapping]] such that +:$\forall x \in S: f\left({x}\right) = x^r$ +where $x^r$ denotes the [[Definition:Relation Segment|$r$-segment]] of $x$. +Then +:$f$ is [[Definition:Increasing Mapping|increasing mapping]]. +\end{theorem} + +\begin{proof} +$f$ is well-defined because by [[Relation Segment of Auxiliary Relation is Ideal]]: +:$\forall x \in S: x^r$ is [[Definition:Ideal in Ordered Set|ideal]] in $L$ +Let $x, y \in S$ such that +:$x \preceq y$ +By [[Preceding implies Inclusion of Segments of Auxiliary Relation]]: +:$x^r \subseteq y^r$ +Thus by definitions of $\precsim$ and $f$: +:$f\left({x}\right) \precsim f\left({y}\right)$ +Thus by definition: +:$f$ is [[Definition:Increasing Mapping|increasing mapping]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Constant to Power of Number of Distinct Prime Divisors is Multiplicative Function} +Tags: Multiplicative Functions, Number Theory + +\begin{theorem} +Let $c \in \R$ be a [[Definition:Constant|constant]]. +Let $f: \N \to \R$ denotes the [[Definition:Mapping|mapping]] defined as: +:$\forall n \in \N: f \left({n}\right) = c^k$ +where $k$ is [[Definition:Number|number]] of [[Definition:Distinct|distinct]] [[Definition:Prime Number|primes]] that [[Definition:Divisor of Integer|divide]] $n$. +Then $f$ is [[Definition:Multiplicative Arithmetic Function|multiplicative]]. +\end{theorem} + +\begin{proof} +Let $r, s \in \Z$ such that $r \perp s$. +Let $r$ be composed of $p$ [[Definition:Distinct|distinct]] [[Definition:Prime Number|primes]]: +:$r_1, r_2, \ldots r_p$ +Thus: +:$f \left({r}\right) = c^p$ +Let $s$ be composed of $q$ [[Definition:Distinct|distinct]] [[Definition:Prime Number|primes]]: +:$s_1, s_2, \ldots s_q$ +Thus: +:$f \left({s}\right) = c^q$ +As $r \perp s$, all the $r_k$ and $s_k$ are [[Definition:Distinct|distinct]]. +Thus $r s$ is composed of: +:the $p$ [[Definition:Distinct|distinct]] [[Definition:Prime Number|primes]] $r_1, r_2, \ldots r_p$ +and: +:the $q$ [[Definition:Distinct|distinct]] [[Definition:Prime Number|primes]] $s_1, s_2, \ldots s_q$ +which is a total of $p + q$ [[Definition:Distinct|distinct]] [[Definition:Prime Number|primes]]. +Thus: +{{begin-eqn}} +{{eqn | l = f \left({r s}\right) + | r = c^{p + q} + | c = Definition of $f$ +}} +{{eqn | r = c^p c^q + | c = [[Exponent Combination Laws/Product of Powers|Exponent Combination Laws: Product of Powers]] +}} +{{eqn | r = f \left({r}\right) f \left({s}\right) + | c = from above +}} +{{end-eqn}} +Hence the result. +{{Qed}} +\end{proof}<|endoftext|> +\section{Product of Multiplicative Functions is Multiplicative} +Tags: Multiplicative Functions + +\begin{theorem} +Let $f: \N \to \C$ and $g: \N \to \C$ be [[Definition:Multiplicative Arithmetic Function|multiplicative functions]]. +Then their [[Definition:Pointwise Multiplication of Integer-Valued Functions|pointwise product]]: +:$f \times g: \Z \to \Z: \forall s \in S: \map {\paren {f \times g} } s := \map f s \times \map g s$ +is also [[Definition:Multiplicative Arithmetic Function|multiplicative]]. +\end{theorem} + +\begin{proof} +Let $f$ and $g$ be [[Definition:Multiplicative Arithmetic Function|multiplicative]]. +Let $m \perp n$. +Then: +{{begin-eqn}} +{{eqn | l = \map {f \times g} {m \times n} + | r = \map f {m \times n} \times \map g {m \times n} + | c = {{Defof|Pointwise Multiplication of Integer-Valued Functions}} +}} +{{eqn | r = \map f m \times \map f n \times \map g m \times \map g n + | c = {{Defof|Multiplicative Arithmetic Function}} +}} +{{eqn | r = \map f m \times \map g m \times \map f n \times \map g n + | c = [[Integer Multiplication is Commutative]] +}} +{{eqn | r = \paren {\map {f \times g} n} \times \paren {\map {f \times g} n} + | c = {{Defof|Pointwise Multiplication of Integer-Valued Functions}} +}} +{{end-eqn}} +Hence the result by definition of [[Definition:Multiplicative Arithmetic Function|multiplicative function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Segment of Auxiliary Relation Mapping is Element of Increasing Mappings Satisfying Inclusion in Lower Closure} +Tags: Auxiliary Relations + +\begin{theorem} +Let $R = \left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $\mathit{Ids}\left({R}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $R$. +Let $L = \left({ \mathit{Ids}\left({R}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\precsim \mathop = \subseteq\restriction_{\mathit{Ids}\left({R}\right) \times \mathit{Ids}\left({R}\right)}$. +Let $r$ be an [[Definition:Auxiliary Relation|auxiliary relation]] on $S$. +Let $M = \left({F, \preccurlyeq}\right)$ be the [[Definition:Increasing Mappings Satisfying Inclusion in Lower Closure|ordered set of increasing mappings $g$ satisfying $\forall x \in S: g\left({x}\right) \subseteq x^\preceq$]]. +Let $f: S \to \mathit{Ids}\left({R}\right)$ be a [[Definition:Mapping|mapping]] such that: +:$\forall x \in S: f\left({x}\right) = x^r$ +where $x^r$ denotes the [[Definition:Relation Segment|$r$-segment]] of $x$. +Then: +:$(1): \quad f \in F$ +Let $h: S \to \mathit{Ids}\left({R}\right): x \mapsto x^\preceq$ +Then: +:$(2): \quad h \in F \land f \preccurlyeq h$ +Let $k: S \to \mathit{Ids}\left({R}\right): x \mapsto \left\{ {\bot}\right\}$ +where $\bot$ denotes the [[Definition:Smallest Element|smallest element]] in $L$. +Then: +:$(3): \quad k \in F$ and $k \preccurlyeq f$ +\end{theorem} + +\begin{proof} +=== Condition $(1)$ === +By [[Segment of Auxiliary Relation Mapping is Increasing]]: +:$f$ is an [[Definition:Increasing Mapping|increasing mapping]]. +By [[Segment of Auxiliary Relation is Subset of Lower Closure]]: +:$\forall x \in S: x^r \subseteq x^\preceq$ +By definition of $f$: +:$\forall x \in S: f\left({x}\right) \subseteq x^\preceq$ +Thus +:$f \in F$ +{{qed|lemma}} +=== Condition $(2)$ === +By [[Lower Closure is Increasing]]: +:$\forall x, y \in S: x \preceq y \implies x^\preceq \subseteq y^\preceq$ +By definitions of $h$ and $\precsim$: +:$\forall x, y \in S: x \preceq y \implies h\left({x}\right) \precsim h\left({y}\right)$ +By definition: +:$h$ is an [[Definition:Increasing Mapping|increasing mapping]]. +By definition of $h$: +:$\forall x \in S: h\left({x}\right) \subseteq x^\preceq$ +Thus +:$h \in F$ +By [[Segment of Auxiliary Relation is Subset of Lower Closure]]: +:$\forall x \in S: x^r \subseteq x^\preceq$ +By definitions of $f$ and $h$: +:$\forall x \in S: f\left({x}\right) \subseteq h\left({x}\right)$ +By definition of $\precsim$: +:$\forall x \in S: f\left({x}\right) \precsim h\left({x}\right)$ +Thus by definition of [[Definition:Increasing Mappings Satisfying Inclusion in Lower Closure|ordering of $M$]]: +:$f \preccurlyeq h$ +{{qed|lemma}} +=== Condition $(3)$ === +$k$ is well-defined because by [[Singleton of Bottom is Ideal]]: +:$\left\{ {\bot}\right\}$ is an [[Definition:Ideal in Ordered Set|ideal]] in $R$. +By [[Mapping is Constant iff Increasing and Decreasing]]: +:$k$ is an [[Definition:Increasing Mapping|increasing mapping]]. +By definition of [[Definition:Smallest Element|smallest element]]: +:$\forall x \in S: \bot \preceq x$ +By definition of [[Definition:Lower Closure/Element|lower closure of element]]: +:$\forall x \in S: \bot \in x^\preceq$ +By definition of [[Definition:Subset|subset]]: +:$\forall x \in S: \left\{ {\bot}\right\} \subseteq x^\preceq$ +By definition of $k$: +:$\forall x \in S: k\left({x}\right) \subseteq x^\preceq$ +Thus +:$k \in F$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\forall x \in S: \left({\bot, x}\right) \in r$ +By definition of [[Definition:Relation Segment|$r$-segment]]: +:$\forall x \in S: \bot \in x^r$ +By definition of [[Definition:Subset|subset]]: +:$\forall x \in S: \left\{ {\bot}\right\} \subseteq x^r$ +By definitions of $k$ and $f$: +:$\forall x \in S: k\left({x}\right) \subseteq f\left({x}\right)$ +By definition of $\precsim$: +:$\forall x \in S: k\left({x}\right) \precsim f\left({x}\right)$ +Thus by definition of [[Definition:Increasing Mappings Satisfying Inclusion in Lower Closure|ordering of $M$]]: +:$k \preccurlyeq f$ +{{qed}} +\end{proof}<|endoftext|> +\section{Singleton of Bottom is Ideal} +Tags: Order Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Ordered Set|ordered set]]. +Then +:$\set \bot$ is an [[Definition:Ideal in Ordered Set|ideal]] in $\struct {S, \preceq}$ +where $\bot$ denotes the [[Definition:Smallest Element|smallest element]] in $S$. +\end{theorem} + +\begin{proof} +=== Non-empty === +By definition of [[Definition:Singleton|singleton]]: +:$\bot \in \set \bot$ +By definition: +:$\set \bot$ is a [[Definition:Non-Empty Set|non-empty set]]. +{{qed|lemma}} +=== Directed === +Thus by [[Singleton is Directed and Filtered Subset]]: +:$\set \bot$ is [[Definition:Directed Subset|directed]]. +{{qed|lemma}} +=== Lower === +Let $x \in \set \bot, y \in S$ such that +:$y \preceq x$ +By definition of [[Definition:Singleton|singleton]]: +:$x = \bot$ +By definition of [[Definition:Smallest Element|smallest element]]: +:$\bot \preceq y$ +By definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$y = \bot$ +Thus by definition of [[Definition:Singleton|singleton]]: +:$y \in \set \bot$ +Thus by definition: +:$\set \bot$ is a [[Definition:Lower Set|lower set]]. +{{qed|lemma}} +Thus by definition: +:$\set \bot$ is an [[Definition:Ideal in Ordered Set|ideal]] in $\struct {S, \preceq}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Number of Digits in Factorial} +Tags: Factorials + +\begin{theorem} +Let $n!$ denote the [[Definition:Factorial|factorial]] of $n$. +The number of [[Definition:Digit|digits]] in $n!$ is approximately: +:$1 + \left\lfloor{\dfrac 1 2 \left({\log_{10} 2 + \log_{10} \pi}\right) + \dfrac 1 2 \log_{10} n + n \left({\log_{10} n - \log_{10} e}\right)}\right\rfloor$ +when $n!$ is shown in [[Definition:Decimal Notation|decimal notation]]. +This evaluates to: +:$1 + \left\lfloor{\left({n + \dfrac 1 2}\right) \log_{10} n - 0.43429 \ 4481 \, n + 0.39908 \ 9934}\right\rfloor$ +\end{theorem} + +\begin{proof} +From [[Stirling's Formula]]: +:$n! \sim \sqrt {2 \pi n} \left({\dfrac n e}\right)^n$ +from which the result can be calculated. +To count the number of [[Definition:Digit|digits]]: +{{begin-eqn}} +{{eqn | l = \log_{10} n! + | o = \sim + | r = \log_{10} \left({\sqrt {2 \pi n} \left({\dfrac n e}\right)^n}\right) + | c = [[Stirling's Formula]] +}} +{{eqn | r = \log_{10} \left({\sqrt {2 \pi n} }\right) + \log_{10} \left({\left({\dfrac n e}\right)^n}\right) + | c = [[Sum of Logarithms]] +}} +{{eqn | r = \frac 1 2 \log_{10} 2 \pi n + n \log_{10} \left({\dfrac n e}\right) + | c = [[Logarithm of Power]] +}} +{{eqn | r = \frac 1 2 \left({\log_{10} 2 + \log_{10} \pi}\right) + \frac 1 2 \log_{10} n + n \left({\log_{10} n - \log_{10} e}\right) + | c = [[Sum of Logarithms]], [[Difference of Logarithms]] +}} +{{end-eqn}} +We have: +: [[Common Logarithm of 2|Common Logarithm of $2$]]: $\ln 2 \approx 0.30102 \ 9996$ +: [[Common Logarithm of Pi|Common Logarithm of $\pi$]]: $\ln \pi \approx 0.49714 \ 9873$ +: [[Common Logarithm of e|Common Logarithm of $e$]]: $\ln e \approx 0.43429 \ 4481$ +Hence: +{{begin-eqn}} +{{eqn | l = \log_{10} n! + | o = \sim + | r = \frac 1 2 \left({0.30102 \ 9996 + 0.49714 \ 9873}\right) + \frac 1 2 \log_{10} n + n \left({\log_{10} n - 0.43429 \ 4481}\right) + | c = +}} +{{eqn | r = \left({n + \frac 1 2}\right) \log_{10} n - 0.43429 \ 4481 \, n + 0.39908 \ 9934 + | c = +}} +{{end-eqn}} +Hence the result from [[Number of Digits in Number]]. +{{qed}} +[[Category:Factorials]] +boax76h7gvqf13y3w9tvz95nqxlydm3 +\end{proof}<|endoftext|> +\section{Rising Factorial in terms of Falling Factorial} +Tags: Falling Factorials, Rising Factorials + +\begin{theorem} +:$x^{\overline n} = \left({x + n - 1}\right)^{\underline n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x^{\overline n} + | r = \prod_{j \mathop = 0}^{n - 1} \left({x + j}\right) + | c = Definition of [[Definition:Rising Factorial|Rising Factorial]] +}} +{{eqn | r = x \left({x + 1}\right) \cdots \left({x + n - 1}\right) + | c = Definition of [[Definition:Product Notation (Algebra)|Product Notation]] +}} +{{eqn | r = \left({x + n - 1}\right) \left({x + n - 2}\right) \cdots \left({x + 1}\right) x + | c = reversing the order +}} +{{eqn | r = \prod_{j \mathop = 0}^{n - 1} \left({\left({x + n - 1}\right) - j}\right) + | c = Definition of [[Definition:Falling Factorial|Falling Factorial]] +}} +{{eqn | r = \left({x + n - 1}\right)^{\underline n} + | c = Definition of [[Definition:Product Notation (Algebra)|Product Notation]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Rising Factorial in terms of Falling Factorial of Negative} +Tags: Falling Factorials, Rising Factorials + +\begin{theorem} +:$x^{\overline k} = \paren {-1}^k \paren {-x}^{\underline k}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \paren {-x}^{\underline k} + | r = \prod_{j \mathop = 0}^{k - 1} \paren {-x - j} + | c = {{Defof|Falling Factorial}} +}} +{{eqn | r = \prod_{j \mathop = 0}^{k - 1} \paren {-1} \paren {x + j} + | c = +}} +{{eqn | r = \prod_{j \mathop = 0}^{k - 1} \paren {-1} \prod_{j \mathop = 0}^{k - 1} \paren {x + j} + | c = [[Product of Products]] +}} +{{eqn | r = \paren {-1}^k \prod_{j \mathop = 0}^{k - 1} \paren {x + j} + | c = +}} +{{eqn | r = \paren {-1}^k x^{\overline k} + | c = {{Defof|Rising Factorial}} +}} +{{eqn | ll= \leadsto + | l = \paren {-1}^k \paren {-x}^{\underline k} + | r = \paren {-1}^{2 k} x^{\overline k} + | c = multiplying both sides by $\paren {-1}^k$ +}} +{{eqn | r = x^{\overline k} + | c = $-1$ to an even power is $1$ +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Falling Factorial as Quotient of Factorials} +Tags: Falling Factorials, Factorials + +\begin{theorem} +:$x^{\underline n} = \dfrac {x!} {\paren {x - n}!} = \dfrac {\map \Gamma {x + 1} } {\map \Gamma {x - n + 1} }$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x^{\underline n} + | r = \prod_{j \mathop = 0}^{n - 1} \paren {x - j} + | c = {{Defof|Falling Factorial}} +}} +{{eqn | r = x \paren {x - 1} \paren {x - 2} \dotsm \paren {x - n + 1} + | c = +}} +{{eqn | r = \dfrac {x!} {\paren {x - n}!} + | c = {{Defof|Factorial}} +}} +{{eqn | r = \dfrac {\map \Gamma {x + 1} } {\map \Gamma {x - n + 1} } + | c = {{Defof|Gamma Function}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{One to Integer Rising is Integer Factorial} +Tags: Rising Factorials, Factorials + +\begin{theorem} +:$1^{\overline n} = n!$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = 1^{\overline n} + | r = \dfrac {\paren {1 + n - 1}!} {\paren {1 - 1}!} + | c = [[Rising Factorial as Quotient of Factorials]] +}} +{{eqn | r = \dfrac {n!} {0!} + | c = +}} +{{eqn | r = n! + | c = [[Factorial of Zero]] +}} +{{end-eqn}} +{{qed}} +[[Category:Rising Factorials]] +[[Category:Factorials]] +4dcqx0irfqi9tnnvf7ysu9tdczqi1vu +\end{proof}<|endoftext|> +\section{Number to Power of One Rising is Itself} +Tags: Rising Factorials + +\begin{theorem} +:$x^{\overline 1} = x$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x^{\overline 1} + | r = \dfrac {\Gamma \left({x + 1}\right)}{\Gamma \left({x}\right)} + | c = [[Rising Factorial as Quotient of Factorials]] +}} +{{eqn | r = x + | c = [[Gamma Difference Equation]] +}} +{{end-eqn}} +{{qed}} +[[Category:Rising Factorials]] +aeu50xkg5nt93tq2vghn7q97cbnuqvj +\end{proof}<|endoftext|> +\section{Integer to Power of Itself Falling is Factorial} +Tags: Falling Factorials + +\begin{theorem} +:$n^{\underline n} = n!$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = n^{\underline n} + | r = \dfrac {n!} {\paren {n - n}!} + | c = [[Falling Factorial as Quotient of Factorials]] +}} +{{eqn | r = \dfrac {n!} {0!} + | c = +}} +{{eqn | r = n! + | c = [[Factorial of Zero]] +}} +{{end-eqn}} +{{qed}} +[[Category:Falling Factorials]] +opk3w0uaoprxmpgvd9rzvqako48cfx9 +\end{proof}<|endoftext|> +\section{Number to Power of One Falling is Itself} +Tags: Falling Factorials + +\begin{theorem} +:$x^{\underline 1} = x$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x^{\underline 1} + | r = \dfrac {\Gamma \left({x + 1}\right)} {\Gamma \left({x - 1 + 1}\right)} + | c = [[Falling Factorial as Quotient of Factorials]] +}} +{{eqn | r = \dfrac {\Gamma \left({x + 1}\right)} {\Gamma \left({x}\right)} + | c = +}} +{{eqn | r = x + | c = [[Gamma Difference Equation]] +}} +{{end-eqn}} +{{qed}} +[[Category:Falling Factorials]] +jjmyfhhwutxv5dyo2xhk3s6plb6w4nx +\end{proof}<|endoftext|> +\section{Number of Permutations of One Less} +Tags: Permutation Theory, Number of Permutations of One Less + +\begin{theorem} +:${}^{n - 1} P_n = {}^n P_n$ +where ${}^k P_n$ denotes the number of [[Definition:Permutation (Ordered Selection)|ordered selections of $k$ objects from $n$]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = {}^{n - 1} P_n + | r = \dfrac {n!} {\paren {n - \paren {n - 1} }!} + | c = [[Number of Permutations]] +}} +{{eqn | r = \dfrac {n!} {1!} + | c = +}} +{{eqn | r = n! + | c = +}} +{{eqn | r = {}^n P_n + | c = [[Number of Permutations]] +}} +{{end-eqn}} +{{qed}} +\end{proof} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = {}^{n - 1} P_n + | r = n^{\underline {n - 1} } + | c = [[Number of Permutations]]: $n^{\underline {n - 1} }$ denotes [[Definition:Falling Factorial|Falling Factorial]] +}} +{{eqn | r = n! + | c = [[Integer to Power of Itself Less One Falling is Factorial]] +}} +{{eqn | r = {}^n P_n + | c = [[Number of Permutations]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Element of Increasing Mappings Satisfying Inclusion in Lower Closure is Generated by Auxiliary Relation} +Tags: Auxiliary Relations + +\begin{theorem} +Let $R = \left({S, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Join Semilattice|join semilattice]]. +Let $\mathit{Ids}\left({R}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $R$. +Let $L = \left({ \mathit{Ids}\left({R}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\precsim \mathop = \subseteq\restriction_{\mathit{Ids}\left({R}\right) \times \mathit{Ids}\left({R}\right)}$. +Let $M = \left({F, \preccurlyeq}\right)$ be the [[Definition:Increasing Mappings Satisfying Inclusion in Lower Closure|ordered set of increasing mappings $g:S \to \mathit{Ids}\left({R}\right)$ satisfying $\forall x \in S: g\left({x}\right) \subseteq x^\preceq$]]. +Let $f \in F$. +Then +:there exists an [[Definition:Auxiliary Relation|auxiliary relation]] $\mathcal R$ on $S$ such that +::$\forall x \in S:f\left({x}\right) = x^{\mathcal R}$ +where $x^{\mathcal R}$ denotes the [[Definition:Relation Segment|$\mathcal R$-segment]] of $x$. +\end{theorem} + +\begin{proof} +Define [[Definition:Relation|relation]] $\mathcal R$ on $S$: +:$\forall x, y \in S: \left({x, y}\right) \in \mathcal R \iff x \in f\left({y}\right)$ +We will prove that +:$(i): \quad \forall x, y \in S: \left({x, y}\right) \in \mathcal R \implies x \preceq y$ +Let $x, y \in S$ such that +: $\left({x, y}\right) \in \mathcal R$ +By definitions of $\mathcal R$ and $F$: +:$x \in f\left({y}\right) \subseteq y^\preceq$ +By definition of [[Definition:Subset|subset]]; +:$x \in y^\preceq$ +Thus be definition of [[Definition:Lower Closure/Element|lower closure of element]]: +:$x \preceq y$ +{{qed|lemma}} +We will prove that +:$(ii): \quad \forall x, y, z, u \in S: x \preceq y \land \left({y, z}\right) \in \mathcal R \land z \preceq u \implies \left({x, u}\right) \in \mathcal R$ +Let $x, y, z, u \in S$ such that +: $x \preceq y \land \left({y, z}\right) \in \mathcal R \land z \preceq u$ +By definition of $\mathcal R$: +:$y \in f\left({z}\right)$ +By definition of [[Definition:Increasing Mapping|increasing mapping]]: +:$f\left({z}\right) \precsim f\left({u}\right)$ +By definition of $\precsim$: +:$f\left({z}\right) \subseteq f\left({u}\right)$ +By definition of [[Definition:Subset|subset]]: +:$y \in f\left({u}\right)$ +By definition of $F$: +:$f\left({u}\right)$ is an [[Definition:Ideal in Ordered Set|ideal]] in $R$. +By definition of [[Definition:Ideal in Ordered Set|ideal]]: +:$f\left({u}\right)$ is a [[Definition:Lower Set|lower set]]. +By definition of [[Definition:Lower Set|lower set]]: +:$x \in f\left({u}\right)$ +Thus by definition of $\mathcal R$: +:$\left({x, u}\right) \in \mathcal R$ +{{qed|lemma}} +We will prove that +:$(iii): \quad \forall x, y, z \in S: \left({x, z}\right) \in \mathcal R \land \left({y, z}\right) \in \mathcal R \implies \left({x \vee y, z}\right) \in \mathcal R$ +Let $x, y, z \in S$ such that +: $\left({x, z}\right) \in \mathcal R \land \left({y, z}\right) \in \mathcal R$ +By definition of $\mathcal R$: +:$x \in f\left({z}\right)$ and $y \in f\left({z}\right)$ +By definition of $F$: +:$f\left({z}\right)$ is an [[Definition:Ideal in Ordered Set|ideal]] in $R$. +By definition of [[Definition:Ideal in Ordered Set|ideal]]: +:$f\left({z}\right)$ is a [[Definition:Directed Subset|directed]] [[Definition:Lower Set|lower set]]. +By definition of [[Definition:Directed Subset|directed subset]]: +:$\exists d \in f\left({z}\right): x \preceq d \land y \preceq d$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$x \vee y \preceq d$ +By definition of [[Definition:Lower Set|lower set]]: +:$x \vee y \in f\left({z}\right)$ +Thus by definition of $\mathcal R$: +:$\left({x \vee y, z}\right) \in \mathcal R$ +{{qed|lemma}} +We will prove that +:$(iv): \quad \forall x \in S: \left({\bot, x}\right) \in \mathcal R$ +where $\bot$ denotes the [[Definition:Smallest Element|smallest element]] in $R$. +Let $x \in S$. +By definition of $F$: +:$f\left({x}\right)$ is an [[Definition:Ideal in Ordered Set|ideal]] in $R$. +By definition of [[Definition:Ideal in Ordered Set|ideal]]: +:$f\left({z}\right)$ is a [[Definition:Non-Empty Set|non-empty]] [[Definition:Lower Set|lower set]]. +By definition of [[Definition:Non-Empty Set|non-empty set]]: +:$\exists z: z \in f\left({x}\right)$ +By definition of [[Definition:Smallest Element|smallest element]]: +:$\bot \preceq z$ +By definition of [[Definition:Lower Set|lower set]]: +:$\bot \in f\left({x}\right)$ +Thus by definition of $\mathcal R$: +:$\left({\bot, x}\right) \in \mathcal R$ +{{qed|lemma}} +By definition: +:$\mathcal R$ is an [[Definition:Auxiliary Relation|auxiliary relation]] on $S$. +Thus by definitions of $\mathcal R$ and [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$\forall x \in S: f\left({x}\right) = x^{\mathcal R}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Binomial Coefficient with Two/Corollary} +Tags: Examples of Binomial Coefficients, Triangular Numbers + +\begin{theorem} +:$\forall n \in \N: \dbinom n 2 = T_{n - 1} = \dfrac {n \paren {n - 1} } 2$ +where $T_n$ is the [[Definition:Triangular Number|$n$th triangular number]]. +\end{theorem} + +\begin{proof} +From the definition of [[Definition:Binomial Coefficient|binomial coefficient]]: +:$\dbinom n 2 = \dfrac {n!} {2! \paren {n - 2}!}$ +The result follows directly from the definition of the [[Definition:Factorial|factorial]]: +:$2! = 1 \times 2$ +{{qed}} +\end{proof}<|endoftext|> +\section{Increasing Mappings Satisfying Inclusion in Lower Closure is Isomorphic to Auxiliary Relations} +Tags: Auxiliary Relations + +\begin{theorem} +Let $R = \left({S, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Join Semilattice|join semilattice]]. +Let $\mathit{Ids}\left({R}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $R$. +Let $L = \left({ \mathit{Ids}\left({R}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\precsim \mathop = \subseteq\restriction_{\mathit{Ids}\left({R}\right) \times \mathit{Ids}\left({R}\right)}$. +Let $M = \left({F, \preccurlyeq}\right)$ be the [[Definition:Increasing Mappings Satisfying Inclusion in Lower Closure|ordered set of increasing mappings $g:S \to \mathit{Ids}\left({R}\right)$ satisfying $\forall x \in S: g\left({x}\right) \subseteq x^\preceq$]]. +Let $\mathit{Aux}\left({R}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Auxiliary Relation|auxiliary relations]] on $S$. +Let $P = \left({ \mathit{Aux}\left({R}\right), \precsim'}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\precsim' \mathop = \subseteq\restriction_{\mathit{Aux}\left({R}\right) \times \mathit{Aux}\left({R}\right)}$. +Then +:there exists an [[Definition:Order Isomorphism|order isomorphism]] between $P$ and $M$ +\end{theorem} + +\begin{proof} +By [[Segment of Auxiliary Relation Mapping is Element of Increasing Mappings Satisfying Inclusion in Lower Closure]] define $G:\mathit{Aux}\left({R}\right) \to F$ +:$\forall \mathcal R \in \mathit{Aux}\left({R}\right): G\left({\mathcal R}\right) = \left({S \ni x \mapsto x^{\mathcal R} }\right)$ +We will prove by [[Order Isomorphism is Surjective Order Embedding]] that +:$G$ is an [[Definition:Order Isomorphism|order isomorphism]]. +=== Surjection === +By [[Element of Increasing Mappings Satisfying Inclusion in Lower Closure is Generated by Auxiliary Relation]]: +:$\forall f \in F: \exists \mathcal R \in \mathit{Aux}\left({R}\right): f = \left({S \ni x \mapsto x^{\mathcal R} }\right)$ +By definition of [[Definition:Image of Mapping|image of mapping]]: +:$\forall f \in F: f \in \operatorname{Im}\left({G}\right)$ +Thus by definition: +:$G$ is a [[Definition:Surjection|surjection]]. +{{qed|lemma}} +=== Order Embedding === +Let $\mathcal R, \mathcal Q \in \mathit{Aux}\left({R}\right)$ +We will prove that +:$\mathcal R \precsim' \mathcal Q \implies G\left({\mathcal R}\right) \preccurlyeq G\left({\mathcal Q}\right)$ +Let +:$\mathcal R \precsim' \mathcal Q$ +By definition of $\precsim'$: +:$\mathcal R \subseteq \mathcal Q$ +Let $x \in S$. +By [[Relation Segment is Increasing]] +:$x^{\mathcal R} \subseteq x^{\mathcal Q}$ +By [[Relation Segment of Auxiliary Relation is Ideal]]: +:$x^{\mathcal R} \in \mathit{Ids}\left({R}\right)$ and $x^{\mathcal Q} \in \mathit{Ids}\left({R}\right)$ +By definition of $\precsim$: +:$x^{\mathcal R} \precsim x^{\mathcal Q}$ +By definition of [[Definition:Ordering on Mappings|ordering on mappings]]: +:$\left({S \ni x \mapsto x^{\mathcal R} }\right) \precsim \left({S \ni x \mapsto x^{\mathcal Q} }\right)$ +Thus by definitions of $G$ and $\preccurlyeq$: +:$G\left({\mathcal R}\right) \preccurlyeq G\left({\mathcal Q}\right)$ +{{qed|lemma}} +We will prove that +:$G\left({\mathcal R}\right) \preccurlyeq G\left({\mathcal Q}\right) \implies \mathcal R \precsim' \mathcal Q$ +Let +:$G\left({\mathcal R}\right) \preccurlyeq G\left({\mathcal Q}\right)$ +By definition of $G$ and $\preccurlyeq$: +:$\left({S \ni x \mapsto x^{\mathcal R} }\right) \precsim \left({S \ni x \mapsto x^{\mathcal Q} }\right)$ +Let $x, y \in S$ such that +:$\left({x, y}\right) \in \mathcal R$ +By definition of [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$x \in y^{\mathcal R}$ +By definition of [[Definition:Ordering on Mappings|ordering on mappings]]: +:$y^{\mathcal R} \precsim y^{\mathcal Q}$ +By definition of $\precsim$: +:$y^{\mathcal R} \subseteq y^{\mathcal Q}$ +By definition of [[Definition:Subset|subset]]: +:$x \in y^{\mathcal Q}$ +Thus by definition of [[Definition:Relation Segment|$\mathcal Q$-segment]]: +:$\left({x, y}\right) \in \mathcal Q$ +By definition of [[Definition:Subset|subset]]: +:$\mathcal R \subseteq \mathcal Q$ +Thus by definition of $\precsim'$: +:$\mathcal R \precsim' \mathcal Q$ +{{qed}} +\end{proof}<|endoftext|> +\section{Binomial Theorem/Abel's Generalisation} +Tags: Binomial Coefficients, Binomial Theorem + +\begin{theorem} +:$\displaystyle \left({x + y}\right)^n = \sum_k \binom n k x \left({x - k z}\right)^{k - 1} \left({y + k z}\right)^{n - k}$ +\end{theorem}<|endoftext|> +\section{Sum over k of r Choose m+k by s Choose n+k} +Tags: Binomial Coefficients + +\begin{theorem} +Let $s \in \R, r \in \Z_{\ge 0}, m, n \in \Z$. +Then: +:$\displaystyle \sum_k \binom r {m + k} \binom s {n + k} = \binom {r + s} {r - m + n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_k \binom r {m + k} \binom s {n + k} + | r = \sum_k \binom r {r - m - k} \binom s {s - n - k} + | c = [[Symmetry Rule for Binomial Coefficients]] +}} +{{eqn | r = \sum_k \binom r k \binom s {s - n - \left({r - m - k}\right)} + | c = [[Change of Index Variable of Summation]] +}} +{{eqn | r = \sum_k \binom r k \binom s {r - m - k + n} + | c = [[Symmetry Rule for Binomial Coefficients]] +}} +{{eqn | r = \sum_k \binom r k \binom s {\left({r - m + n}\right) - k} + | c = +}} +{{eqn | r = \binom {r + s} {r - m + n} + | c = [[Chu-Vandermonde Identity]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r Choose k by s+k Choose n by -1^r-k} +Tags: Binomial Coefficients, Sum over k of r Choose k by s+k Choose n by -1^r-k + +\begin{theorem} +Let $s \in \R, r \in \Z_{\ge 0}, n \in \Z$. +Then: +:$\displaystyle \sum_k \binom r k \binom {s + k} n \left({-1}\right)^{r - k} = \binom s {n - r}$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $r$. +For all $r \in \Z_{>0}$, let $P \left({r}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \sum_k \binom r k \binom {s + k} n \left({-1}\right)^{r - k} = \binom s {n - r}$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \binom 0 k \binom {s + k} n \left({-1}\right)^{0 - k} + | r = \delta_{0 k} \binom {s + k} n \left({-1}\right)^{0 - k} + | c = [[Zero Choose n]] +}} +{{eqn | r = \binom s n + | c = All terms vanish but for $k = 0$ +}} +{{eqn | r = \binom s {n - 0} + | c = +}} +{{end-eqn}} +Thus $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({m}\right)$ is true, where $m \ge 0$, then it logically follows that $P \left({m + 1}\right)$ is true. +This is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \binom m k \binom {s + k} n \left({-1}\right)^{m - k} = \binom s {n - m}$ +from which it is to be shown that: +:$\displaystyle \sum_k \binom {m + 1} k \binom {s + k} n \left({-1}\right)^{m + 1 - k} = \binom s {n - \left({m + 1}\right)}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \binom {m + 1} k \binom {s + k} n \left({-1}\right)^{m + 1 - k} + | c = +}} +{{eqn | r = \sum_k \left({\binom m k + \binom m {k - 1} }\right) \binom {s + k} n \left({-1}\right)^{m + 1 - k} + | c = [[Pascal's Rule]] +}} +{{eqn | r = \sum_k \binom m k \binom {s + k} n \left({-1}\right)^{m + 1 - k} + \sum_k \binom m {k - 1} \binom {s + k} n \left({-1}\right)^{m + 1 - k} + | c = +}} +{{eqn | r = -\sum_k \binom m k \binom {s + k} n \left({-1}\right)^{m - k} + \sum_k \binom m {k - 1} \binom {s + k} n \left({-1}\right)^{m + 1 - k} + | c = +}} +{{eqn | r = -\binom s {n - m} + \sum_k \binom m {k - 1} \binom {s + k} n \left({-1}\right)^{m + 1 - k} + | c = [[Sum over k of r Choose k by s+k Choose n by -1^r-k/Proof 1#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = -\binom s {n - m} + \sum_k \binom m {k - 1} \left({\binom {s + k - 1} n + \binom {s + k - 1} {n - 1} }\right) \left({-1}\right)^{m + 1 - k} + | c = [[Pascal's Rule]] +}} +{{eqn | r = -\binom s {n - m} + \sum_k \binom m {k - 1} \binom {s + k - 1} n \left({-1}\right)^{m - \left({k - 1}\right)} + | c = +}} +{{eqn | o = + | r = + \sum_k \binom m {k - 1} \binom {s + k - 1} {n - 1} \left({-1}\right)^{m - \left({k - 1}\right)} + | c = +}} +{{eqn | r = -\binom s {n - m} + \sum_k \binom m k \binom {s + k} n \left({-1}\right)^{m - k} + \sum_k \binom m k \binom {s + k} {n - 1} \left({-1}\right)^{m - k} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = -\binom s {n - m} + \binom s {n - m} + \binom s {n - 1 - m} + | c = [[Sum over k of r Choose k by s+k Choose n by -1^r-k/Proof 1#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \binom s {n - \left({m + 1}\right)} + | c = simplifying +}} +{{end-eqn}} +So $P \left({m}\right) \implies P \left({m + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \sum_k \binom r k \binom {s + k} n \left({-1}\right)^{r - k} = \binom s {n - r}$ +for all $s \in \R, r \in \Z_{\ge 0}, n \in \Z$. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r-k Choose m by s Choose k-t by -1^k-t} +Tags: Binomial Coefficients + +\begin{theorem} +Let $s \in \R, r, t, m \in \Z_{\ge 0}$. +Then: +:$\displaystyle \sum_{k \mathop = 0}^r \binom {r - k} m \binom s {k - t} \paren {-1}^{k - t} = \binom {r - t - s} {r - t - m}$ +\end{theorem}<|endoftext|> +\section{Sum over k of r-k Choose m by s+k Choose n} +Tags: Binomial Coefficients + +\begin{theorem} +Let $m, n, r, s \in \Z_{\ge 0}$ such that $n \ge s$. +Then: +:$\displaystyle \sum_{k \mathop = 0}^r \binom {r - k} m \binom {s + k} n = \binom {r + s + 1} {m + n + 1}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | o = + | r = \sum_{k \mathop = 0}^r \binom {r - k} m \binom {s + k} n + | c = +}} +{{eqn | r = \sum_{k \mathop = 0}^r \binom {-\left({m + 1}\right)} {r - k - m} \binom {-\left({n + 1}\right)} {s + k - m} \left({-1}\right)^{r - m + s - m} + | c = [[Moving Top Index to Bottom in Binomial Coefficient]] +}} +{{eqn | r = \binom {-\left({m + 1}\right) - \left({n + 1}\right)} {r - m + s - m} \left({-1}\right)^{r - m + s - m} + | c = [[Chu-Vandermonde Identity]] +}} +{{eqn | r = \binom {r + s + 1} {m + n + 1} + | c = [[Moving Top Index to Bottom in Binomial Coefficient]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk} +Tags: Binomial Coefficients, Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk + +\begin{theorem} +Let $r, s, t \in \R, n \in \Z$. +Then: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \left({n - k}\right)} {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +\end{theorem} + +\begin{proof} +For all $n \in \Z$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +Let the {{LHS}} of this equation be denoted $\tuple {r, s, t, n}$. +Let $n = 0$. +Then: +{{begin-eqn}} +{{eqn | o = + | r = \tuple {r, s, t, 0} +}} +{{eqn | r = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s + t k} {- k} \frac r {r - t k} + | c = +}} +{{eqn | r = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s + t k} {- k} \frac r {r - t k} \delta_{k 0} + | c = [[N Choose Negative Number is Zero]]: $\dbinom {s + t k} {- k} = 0$ for all $k > 0$ +}} +{{eqn | r = \binom r 0 \binom s 0 + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = 1 + | c = [[Binomial Coefficient with Zero]] +}} +{{eqn | r = \binom {r + s} 0 + | c = [[Binomial Coefficient with Zero]] +}} +{{eqn | r = \binom {r + s - t n} n + | c = putting $n = 0$ +}} +{{end-eqn}} +Thus $\map P 0$ holds. +Let $n < 0$. +Let $n = -m$ where $m > 0$. +Then: +{{begin-eqn}} +{{eqn | o = + | r = \tuple {r, s, t, n} +}} +{{eqn | r = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {-m - k} } {-m - k} \frac r {r - t k} + | c = +}} +{{eqn | r = 0 + | c = [[N Choose Negative Number is Zero]]: $\dbinom {s - t \paren {-m - k} } {-m - k} = 0$ +}} +{{eqn | r = \binom {r + s + t m} {-m} + | c = [[N Choose Negative Number is Zero]]: $\dbinom {r + s + t m} {-m} = 0$ for all $m$ +}} +{{end-eqn}} +Thus $\map P n$ holds for all $n < 0$. +It remains to demonstrate that $\map P n$ holds for all $n > 0$. +The proof continues by [[Second Principle of Mathematical Induction|strong induction]] on $n$. +The procedure is to substitute $n - r + n t + m$ for the variable $s$ and establish that the identity holds for all $m \ge 0$. +For all $m \in \Z_{\ge 0}$, let $\map P m$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {\paren {n - r + n t + m} - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + \paren {n - r + n t + m} - t n} n$ +That is: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - r + m + t k} {n - k} \frac r {r - t k} = \binom {n + m} n$ +=== [[Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Basis for the Induction|Basis for the Induction]] === +Consider the special case where $s = n - 1 - r + n t$. +{{:Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Basis for the Induction}}{{qed|lemma}} +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P j$ is true, for all $j$ such that $0 \le j \le m$, then it logically follows that $\map P {m + 1}$ is true. +This is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - r + m + t k} {n - k} \frac r {r - t k} = \binom {n + m} n$ +from which it is to be shown that: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - r + m + 1 + t k} {n - k} \frac r {r - t k} = \binom {n + m + 1} n$ +=== [[Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Lemma|Lemma]] === +First a [[Definition:Lemma|lemma]]: +{{:Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Lemma}} +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +We have that $\tuple {r, n - 1 - r + n t, t, n}$ holds. +We have also determined that if: +:$\tuple {r, s, t, n}$ holds +and: +:$\tuple {r, s - t, t, n - 1}$ holds +then: +:$\tuple {r, s + 1, t, n}$ holds. +So $\map P m \implies \map P {m + 1}$. +Thus $\tuple {r, s, t, n}$ is shown to hold for [[Definition:Infinite Set|infinitely many]] $s$. +As both the {{LHS}} and {{RHS}} are [[Definition:Polynomial over Real Numbers|polynomials]] in $s$ it follows that $\tuple {r, s, t, n}$ holds for all $s$. +Therefore: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \left({n - k}\right)} {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +for all $r, s, t \in \R, n \in \Z$. +{{qed}} +\end{proof} + +\begin{proof} +From [[Sum over k of r-kt choose k by r over r-kt by z^k|Sum over $k$ of $\dbinom {r - k t} k$ by $\dfrac r {r - k t}$ by $z^k$]]: +:$\displaystyle \sum_k A_k \left({r, t}\right) z^k = x^r$ +where: +: $A_n \left({x, t}\right)$ is the [[Definition:Polynomial over Real Numbers|polynomial]] of [[Definition:Degree of Polynomial|degree $n$]] defined as: +::$A_n \left({x, t}\right) := \dbinom {x - n t} n \dfrac x {x - n t}$ +:for $x \ne n t$ +:$z = x^{t + 1} - x^t$. +From [[Sum over k of r-kt choose k by z^k|Sum over $k$ of $\dbinom {r - k t} k$ by $z^k$]]: +:$\displaystyle \sum_k \dbinom {r - t k} k z^k = \frac {x^{r + 1} } {\left({t + 1}\right)x - t}$ +Thus: +{{begin-eqn}} +{{eqn | l = \sum_k A_k \left({r, t}\right) z^k \sum_k \dbinom {s - t k} k z^k + | r = \frac {x^r x^{s + 1} } {\left({t + 1}\right)x - t} + | c = +}} +{{eqn | r = \frac {x^{\left({r + s}\right) + 1} } {\left({t + 1}\right)x - t} + | c = +}} +{{eqn | r = \sum_k \dbinom {r + s - t k} k z^k + | c = +}} +{{end-eqn}} +Equating coefficients of $z$: +{{begin-eqn}} +{{eqn | l = \sum_k A_k \left({r, t}\right) z^k \sum_k \dbinom {s - \left({n - k}\right) t} k z^{n - k} + | r = \binom {r + s - n t} n z^n + | c = +}} +{{eqn | l = \sum_k \dbinom {r - k t} k \dfrac r {r - k t} z^k \dbinom {s - \left({n - k}\right) t} k z^{n - k} + | r = \binom {r + s - n t} n z^n + | c = +}} +{{eqn | l = \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} k \dfrac r {r - k t} + | r = \binom {r + s - t n} n + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r Choose k by s Choose k by k} +Tags: Binomial Coefficients + +\begin{theorem} +:$\displaystyle \sum_k \binom r k \binom s k k = \binom {r + s - 1} {r - 1} s$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_k \binom r k \binom s k k + | r = \sum_k \binom r k \binom {s - 1} {k - 1} s + | c = [[Factors of Binomial Coefficient]] +}} +{{eqn | r = s \sum_k \binom r k \binom {s - 1} {k - 1} + | c = as $s$ is [[Definition:Constant|constant]] +}} +{{eqn | r = s \binom {r + s - 1} {r - 1} + | c = [[Sum over k of r Choose m+k by s Choose n+k|Sum over $k$ of $\dbinom r {m + k} \dbinom s {n + k}$]]: $s \gets s - 1$, $m \gets 0$, $n \gets -1$ +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Relation Segment is Increasing} +Tags: Relation Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\RR, \QQ$ be [[Definition:Relation|relations]] on $S$ such that +:$\RR \subseteq \QQ$ +Let $x \in S$. +Then +:$x^\RR \subseteq x^\QQ$ +where $x^\RR$ denotes the [[Definition:Relation Segment|$\RR$-segment]] of $x$. +\end{theorem} + +\begin{proof} +Let $y \in x^\RR$. +By definition of [[Definition:Relation Segment|$\RR$-segment]]: +:$\tuple {y, x} \in \RR$ +By definition of [[Definition:Subset|subset]]: +:$\tuple {y, x} \in \QQ$ +Thus by definition of [[Definition:Relation Segment|$\QQ$-segment]]: +:$y \in x^\QQ$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of n+k Choose 2 k by 2 k Choose k by -1^k over k+1} +Tags: Binomial Coefficients, Sum over k of n+k Choose 2 k by 2 k Choose k by -1^k over k+1 + +\begin{theorem} +:$\displaystyle \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\paren {-1}^k} {k + 1} = \sqbrk {n = 0}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | r = \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\left({-1}\right)^k} {k + 1} + | o = + | c = +}} +{{eqn | r = \sum_k \binom {n + k} k \binom n k \frac {\left({-1}\right)} {k + 1} + | c = [[Product of r Choose m with m Choose k|Product of $\dbinom r m$ with $\dbinom m k$]] +}} +{{eqn | r = \sum_k \binom {n + k} k \binom {n + 1} {k + 1} \frac {\left({-1}\right)^k} {n + 1} + | c = [[Factors of Binomial Coefficient]] +}} +{{eqn | r = \frac 1 {n + 1} \sum_{k \mathop \ge 0} \binom {n + k} n \binom {n + 1} {k + 1} \left({-1}\right)^k + | c = [[Symmetry Rule for Binomial Coefficients]] and rearranging +}} +{{eqn | r = -\frac 1 {n + 1} \sum_{k \mathop \ge 1} \binom {n - 1 + k} n \binom {n + 1} k \left({-1}\right)^k + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = -\frac 1 {n + 1} \sum_{k \mathop \ge 0} \binom {n - 1 + k} n \binom {n + 1} k \left({-1}\right)^k + \frac 1 {n + 1} \binom {n - 1} n + | c = separating out the case where $k = 0$ +}} +{{eqn | r = -\frac 1 {n + 1} \left({-1}\right)^{n + 1} \binom {n - 1} {-1} + \frac 1 {n + 1} \binom {n - 1} n + | c = [[Sum over k of r Choose k by s+k Choose n by -1^r-k|Sum over $k$ of $\dbinom r k \dbinom {s + k} n (-1)^{r - k}$]] +}} +{{eqn | r = \frac 1 {n + 1} \binom {n - 1} n + | c = as $\dbinom {n - 1} {-1} = 0$ +}} +{{eqn | r = \left[{n = 0}\right] + | c = as $\dbinom {n - 1} n = 1 \iff n = 0$ +}} +{{end-eqn}} +{{qed}} +\end{proof} + +\begin{proof} +{{begin-eqn}} +{{eqn | r = \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\left({-1}\right)^k} {k + 1} + | o = + | c = +}} +{{eqn | r = \sum_k \binom {n + k} k \binom n k \frac {\left({-1}\right)} {k + 1} + | c = [[Product of r Choose m with m Choose k|Product of $\dbinom r m$ with $\dbinom m k$]] +}} +{{eqn | r = \sum_k \binom {n + k} k \binom {n + 1} {k + 1} \frac {\left({-1}\right)^k} {n + 1} + | c = [[Factors of Binomial Coefficient]] +}} +{{eqn | r = \frac 1 {n + 1} \sum_k \binom {- \left({n + 1}\right)} k \binom {n + 1} {k + 1} + | c = [[Negated Upper Index of Binomial Coefficient]] +}} +{{eqn | r = \frac 1 {n + 1} \binom {n + 1 - \left({n + 1}\right)} {n + 1 - 1 + 0} + | c = [[Sum over k of r Choose m+k by s Choose n+k|Sum over $k$ of $\dbinom r {m + k} \dbinom s {n + k}$]] +}} +{{eqn | r = \frac 1 {n + 1} \binom 0 n + | c = +}} +{{eqn | r = \left[{n = 0}\right] + | c = {{Defof|Binomial Coefficient}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Ideals with Suprema Succeed Element equals Way Below Closure of Element} +Tags: Way Below Relation + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $x \in S$. +Then +:$\displaystyle \bigcap \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\} = x^\ll$ +where $\mathit{Ids}$ denotes the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +\end{theorem} + +\begin{proof} +By [[Supremum of Lower Closure of Element]]: +:$\sup \left({x^\preceq}\right) = x$ +By [[Lower Closure of Element is Ideal]]: +:$x^\preceq \in \mathit{Ids}$ +Then by definition of [[Definition:Reflexivity|reflexivity]]: +:$x^\preceq \in \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}$ +We will prove that +:$\displaystyle \bigcap \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\} \subseteq x^\ll$ +Let $z \in \displaystyle \bigcap \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}$ +By definition of [[Definition:Intersection of Set of Sets|intersection]]: +:$\forall I \in \mathit{Ids}: x \preceq \sup I \implies z \in I$ +By [[Way Below iff Second Operand Preceding Supremum of Ideal implies First Operand is Element of Ideal]]: +:$z \ll x$ +Thus by definition of [[Definition:Way Below Closure|way below closure]]: +:$z \in x^\ll$ +{{qed|lemma}} +It by definition of [[Definition:Set Equality|set equality]] remains to prove opposite inclusion. +Let $z \in x^\ll$ +By definition of [[Definition:Way Below Closure|way below closure]]: +:$z \ll x$ +We will prove that +:$\forall Y \in \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}: z \in Y$ +Let $Y \in \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}$ +Then +:$Y \in \mathit{Ids}$ and $x \preceq \sup Y$ +Thus [[Way Below iff Second Operand Preceding Supremum of Ideal implies First Operand is Element of Ideal]]: +:$z \in Y$ +{{qed|lemma}} +Thus by definition of [[Definition:Intersection of Set of Sets|intersection]]: +:$z \in \displaystyle \bigcap \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Way Below Closure is Ideal in Bounded Below Join Semilattice} +Tags: Join and Meet Semilattices, Way Below Relation + +\begin{theorem} +Let $L = \struct {S, \vee, \preceq}$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Join Semilattice|join semilattice]]. +Let $x \in S$. +Then +:$x^\ll$ is [[Definition:Ideal in Ordered Set|ideal]] in $L$. +\end{theorem} + +\begin{proof} +By [[Way Below Closure is Directed in Bounded Below Join Semilattice]]: +:$x^\ll$ is a [[Definition:Non-Empty Set|non-empty]] [[Definition:Directed Subset|directed set]]. +Let $y \in x^\ll, z \in S$ such that +:$z \preceq y$ +By definition of [[Definition:Way Below Closure|way below closure]]: +:$y \ll x$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$x \preceq x$ +By [[Preceding and Way Below implies Way Below]]: +:$z \ll x$ +Thus by definition of [[Definition:Way Below Closure|way below closure]]: +:$z \in x^\ll$ +Thus by definition +:$x^\ll$ is a [[Definition:Lower Set|lower set]]. +Thus by definition +:$x^\ll$ is an [[Definition:Ideal in Ordered Set|ideal]] in $L$. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r-kt Choose k by r over r-kt by s-(n-k)t Choose n-k by s over s-(n-k)t} +Tags: Binomial Coefficients, Sum over k of r-kt Choose k by r over r-kt by s-(n-k)t Choose n-k by s over s-(n-k)t + +\begin{theorem} +For $n \in \Z_{\ge 0}$: +:$\displaystyle \sum_k A_k \left({r, t}\right) A_{n - k} \left({s, t}\right) = A_n \left({r + s, t}\right)$ +where $A_n \left({x, t}\right)$ is the [[Definition:Polynomial over Real Numbers|polynomial]] of [[Definition:Degree of Polynomial|degree]] $n$ defined as: +:$A_n \left({x, t}\right) = \dbinom {x - n t} n \dfrac x {x - n t}$ +where $x \ne n t$. +\end{theorem} + +\begin{proof} +Let: +:$\displaystyle S = \sum_k A_k \left({r, t}\right) A_{n - k} \left({s, t}\right)$ +Both sides of the statement of the theorem are [[Definition:Polynomial over Real Numbers|polynomials]] in $r$, $s$ and $t$. +Therefore it can be assumed that $r \ne k t \ne s$ for $0 \le k \le n$ or something will become undefined. +By replacing the [[Definition:Polynomial over Real Numbers|polynomials]] $A_n$ with their [[Definition:Binomial Coefficient|binomial coefficient]] definitions, the theorem can be expressed as: +:$\displaystyle S = \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} {n - k} \dfrac r {r - k t} \dfrac s {s - \left({n - k}\right) t}$ +Using the technique of [[Definition:Partial Fractions|partial fractions]]: +:$\dfrac 1 {r - k t} \dfrac 1 {s - \left({n - k}\right) t} = \dfrac 1 {r + s - n t} \left({\dfrac 1 {r - k t} + \dfrac 1 {s - \left({n - k}\right) t} }\right)$ +Thus: +:$\displaystyle S = \frac s {r + s - n t} \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} {n - k} \dfrac r {r - k t} + \frac r {r + s - n t} \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} {n - k} \dfrac s {s - \left({n - k}\right) t}$ +From [[Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk|Sum over $k$ of $\dbinom {r - t k} k \dbinom {s - t \left({n - k}\right)} {n - k} \dfrac r {r - t k}$]]: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \left({n - k}\right)} {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +for $r, s, t \in \R, n \in \Z$. +Thus we have: +:$S = \dfrac s {r + s - n t} \dbinom {r + s - t n} n + \dfrac r {r + s - n t} \dbinom {s + r - t n} n$ +after changing $k$ to $n - k$ in the second term. +That is: +:$S = \dbinom {r + s - n t} n \dfrac {r + s} {r + s - n t}$ +which is $A_n \left({r + s, t}\right)$. +{{qed}} +\end{proof} + +\begin{proof} +From [[Sum over k of r-kt choose k by r over r-kt by z^k|Sum over $k$ of $\dbinom {r - k t} k$ by $\dfrac r {r - k t}$ by $z^k$]]: +:$\displaystyle \sum_k A_k \left({r, t}\right) z^k = x^r$ +and: +:$\displaystyle \sum_k A_k \left({s, t}\right) z^k = x^s$ +Hence: +{{begin-eqn}} +{{eqn | l = x^{r + s} + | r = \sum_k A_k \left({r, t}\right) z^k \sum_k A_k \left({s, t}\right) z^k + | c = +}} +{{eqn | r = \sum_k A_k \left({r + s, t}\right) z^k + | c = +}} +{{end-eqn}} +Taking the $z^n$ coefficient: +{{begin-eqn}} +{{eqn | l = \sum_k A_k \left({r, t}\right) z^k \sum_k A_{n - k} \left({s, t}\right) z^{n - k} + | r = A_n \left({r + s, t}\right) z^n + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_k A_k \left({r, t}\right) \sum_k A_{n - k} \left({s, t}\right) + | r = A_n \left({r + s, t}\right) +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r Choose k by -1^r-k by Polynomial} +Tags: Binomial Coefficients, Sum over k of r Choose k by -1^r-k by Polynomial + +\begin{theorem} +Let $r \in \Z_{\ge 0}$. +Then: +:$\displaystyle \sum_k \binom r k \paren {-1}^{r - k} \map {P_r} k = r! \, b_r$ +where: +:$\map {P_r} k = b_0 + b_1 k + \cdots + b_r k^r$ is a [[Definition:Polynomial over Real Numbers|polynomial]] in $k$ of [[Definition:Degree of Polynomial|degree]] $r$. +\end{theorem} + +\begin{proof} +From the [[Sum over k of r Choose k by s+k Choose n by -1^r-k/Corollary|corollary to Sum over $k$ of $\dbinom r k \dbinom {s + k} n \paren {-1}^{r - k}$]]: +:$\displaystyle \sum_k \binom r k \binom k n \paren {-1}^{r - k} = \delta_{n r}$ +where $\delta_{n r}$ denotes the [[Definition:Kronecker Delta|Kronecker delta]]. +Thus when $n \ne r$: +:$\displaystyle \sum_k \binom r k \binom k n \paren {-1}^{r - k} = 0$ +and so: +:$\displaystyle \sum_k \binom r k \paren {-1}^{r - k} \paren {c_0 \binom k 0 + c_1 \binom k 1 + \cdots + c_m \binom k m} = c_r$ +as the only term left standing is the $r$th one. +Choosing the [[Definition:Polynomial Coefficient|coefficients]] $c_i$ as appropriate, a [[Definition:Polynomial over Real Numbers|polynomial]] in $k$ can be expressed as a [[Definition:Summation|summation]] of [[Definition:Binomial Coefficient|binomial coefficients]] in the form: +:$c_0 \dbinom k 0 + c_1 \dbinom k 1 + \cdots + c_m \dbinom k m$ +Thus we can rewrite such a [[Definition:Polynomial over Real Numbers|polynomial]] in $k$ as: +:$b_0 + b_1 k + \cdots + b_r k^r$ +Since each $c_m \dbinom k m$ is a [[Definition:Polynomial over Real Numbers|polynomial]] of [[Definition:Degree of Polynomial|degree]] $m$, it follows that the only one with a non-zero [[Definition:Degree of Polynomial|degree]] $r$ term is $c_r \dbinom k r$. +The coefficient of $k^r$ in $c_r \dbinom k r$ must be equal to $b_r$, that is: +:$b_r = \dfrac {c_r}{r!}$ +Hence the result. +{{qed}} +\end{proof} + +\begin{proof} +From [[Summation of Powers over Product of Differences]]: +:$\displaystyle \sum_{j \mathop = 1}^n \begin{pmatrix} {\dfrac { {x_j}^r} {\displaystyle \prod_{\substack {1 \mathop \le k \mathop \le n \\ k \mathop \ne j} } \left({x_j - x_k}\right)} } \end{pmatrix} = \begin{cases} 0 & : 0 \le r < n - 1 \\ 1 & : r = n - 1 \\ \displaystyle \sum_{j \mathop = 1}^n x_j & : r = n \end{cases}$ +Now we have: +{{begin-eqn}} +{{eqn | l = \frac {\left({-1}\right)^k \dbinom n k} {n!} + | r = \frac {\left({-1}\right)^k } {k! \left({n - k}\right)!} + | c = +}} +{{eqn | r = \frac {\left({-1}\right)^k } {\displaystyle \prod_{\substack {1 \mathop \le k \mathop \le n \\ k \mathop \ne j} } \left({k - j}\right)} + | c = +}} +{{end-eqn}} +{{proof wanted|in progress}} +\end{proof}<|endoftext|> +\section{Sum over k of r Choose k by s-kt Choose r by -1^k} +Tags: Binomial Coefficients + +\begin{theorem} +Let $r \in \Z_{\ge 0}$. +Then: +:$\displaystyle \sum_k \binom r k \binom {s - k t} r \left({-1}\right)^k = t^r$ +where $\dbinom r k$ etc. are [[Definition:Binomial Coefficient|binomial coefficients]]. +\end{theorem} + +\begin{proof} +From [[Sum over k of r Choose k by -1^r-k by Polynomial|Sum over $k$ of $\dbinom r k \left({-1}\right)^k$ by Polynomial]]: +:$\displaystyle \sum_k \binom r k \left({-1}\right)^{r - k} P_r \left({k}\right) = r! \, b_r$ +where: +:$P_r \left({k}\right) = b_0 + b_1 k + \cdots + b_r k^r$ is a [[Definition:Polynomial over Real Numbers|polynomial]] in $k$ of [[Definition:Degree of Polynomial|degree]] $r$. +{{proof wanted}} +\end{proof}<|endoftext|> +\section{Sum over k of -2 Choose k} +Tags: Binomial Coefficients + +\begin{theorem} +:$\displaystyle \sum_{k \mathop = 0}^n \binom {-2} k = \left({-1}\right)^n \left\lceil {\dfrac {n + 1} 2}\right\rceil$ +where: +:$\dbinom {-2} k$ is a [[Definition:Binomial Coefficient|binomial coefficient]] +:$\left\lceil {x}\right\rceil$ denotes the [[Definition:Ceiling Function|ceiling]] of $x$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^n \binom {-2} k + | r = \sum_{k \mathop = 0}^n \left({-1}\right) \binom {k - \left({-2}\right) - 1} k + | c = [[Negated Upper Index of Binomial Coefficient]] +}} +{{eqn | r = \sum_{k \mathop = 0}^n \left({-1}\right) \binom {k + 1} k + | c = +}} +{{eqn | r = \sum_{k \mathop = 0}^n \left({-1}\right) \left({k + 1}\right) + | c = [[Binomial Coefficient with Self minus One]] +}} +{{eqn | r = 1 - 2 + 3 - 4 + \cdots \pm \left({n + 1}\right) + | c = +}} +{{eqn | r = \left({1 + 2 + 3 + 4 + \cdots + \left({n + 1}\right)}\right) - 2 \times \left({2 + 4 + 6 + 8 + \cdots + m}\right) + | c = where $m = n$ or $m = n + 1$ according to whether $n$ is [[Definition:Odd Integer|odd]] or [[Definition:Even Integer|even]] +}} +{{end-eqn}} +When $n$ is [[Definition:Even Integer|even]], we have: +{{begin-eqn}} +{{eqn | r = \left({1 + 2 + 3 + 4 + \cdots + \left({n + 1}\right)}\right) - 2 \times \left({2 + 4 + 6 + 8 + \cdots + n}\right) + | o = + | c = +}} +{{eqn | r = \left({1 + 2 + 3 + 4 + \cdots + \left({n + 1}\right)}\right) - 4 \left({1 + 2 + 3 + 4 + \cdots + \frac n 2}\right) + | c = +}} +{{eqn | r = \sum_{k \mathop = 2}^{n + 1} k - 4 \sum_{k \mathop = 1}^{\frac n 2} k + | c = +}} +{{eqn | r = \frac {\left({n + 1}\right) \left({n + 2}\right)} 2 - 4 \frac {\frac n 2 \left({\frac n 2 + 1}\right)} 2 + | c = [[Closed Form for Triangular Numbers]] +}} +{{eqn | r = \frac {\left({n + 1}\right) \left({n + 2}\right)} 2 - \frac {n \left({n + 2}\right)} 2 + | c = simplifying +}} +{{eqn | r = \frac {\left({n + 2}\right) \left({n + 1 - n}\right)} 2 + | c = simplifying +}} +{{eqn | r = \frac {n + 2} 2 + | c = simplifying +}} +{{end-eqn}} +As $n$ is [[Definition:Even Integer|even]], $n + 1$ is [[Definition:Odd Integer|odd]], and so: +:$\dfrac {n + 2} 2 = \left({-1}\right)^n \left\lceil {\dfrac {n + 1} 2}\right\rceil$ +{{qed|lemma}} +When $n$ is [[Definition:Odd Integer|odd]], we have: +{{begin-eqn}} +{{eqn | r = \left({1 + 2 + 3 + 4 + \cdots + \left({n + 1}\right)}\right) - 2 \times \left({2 + 4 + 6 + 8 + \cdots + n + 1}\right) + | o = + | c = +}} +{{eqn | r = \left({1 + 2 + 3 + 4 + \cdots + \left({n + 1}\right)}\right) - 4 \left({1 + 2 + 3 + 4 + \cdots + \frac {n + 1} 2}\right) + | c = +}} +{{eqn | r = \sum_{k \mathop = 2}^{n + 1} k - 4 \sum_{k \mathop = 1}^{\frac {n + 1} 2} k + | c = +}} +{{eqn | r = \frac {\left({n + 1}\right) \left({n + 2}\right)} 2 - 4 \frac {\frac {n + 1} 2 \left({\frac {n + 1} 2 + 1}\right)} 2 + | c = [[Closed Form for Triangular Numbers]] +}} +{{eqn | r = \frac {\left({n + 1}\right) \left({n + 2}\right)} 2 - \frac {\left({n + 1}\right) \left({n + 3}\right)} 2 + | c = simplifying +}} +{{eqn | r = \frac {\left({n + 1}\right) \left({\left({n + 2}\right) - \left({n + 3}\right)}\right)} 2 + | c = simplifying +}} +{{eqn | r = \left({-1}\right) \frac {n + 1} 2 + | c = simplifying +}} +{{end-eqn}} +As $n$ is [[Definition:Odd Integer|odd]], $n + 1$ is [[Definition:Even Integer|even]], and so $\dfrac {n + 1} 2$ is an [[Definition:Integer|integer]]. +Thus from [[Real Number is Integer iff equals Ceiling]]: +:$\left({-1}\right) \dfrac {n + 1} 2 = \left({-1}\right)^n \left\lceil {\dfrac {n + 1} 2}\right\rceil$ +{{qed|lemma}} +Thus: +:$\displaystyle \sum_{k \mathop = 0}^n \binom {-2} k = \left({-1}\right)^n \left\lceil {\dfrac {n + 1} 2}\right\rceil$ +whether $n$ is [[Definition:Odd Integer|odd]] or [[Definition:Even Integer|even]]. +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of m Choose k by k minus m over 2} +Tags: Binomial Coefficients + +\begin{theorem} +:$\displaystyle \sum_{k \mathop = 0}^n \binom m k \left({k - \dfrac m 2}\right) = -\dfrac m 2 \binom {m - 1} n$ +where $\dbinom m k$ etc. are [[Definition:Binomial Coefficient|binomial coefficients]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^n \binom m k \left({k - \dfrac m 2}\right) + | r = \sum_{k \mathop = 0}^n k \binom m k - \dfrac m 2 \sum_{k \mathop = 0}^n \binom m k + | c = +}} +{{eqn | r = \sum_{k \mathop = 0}^n m \binom {m - 1} {k - 1} - \dfrac m 2 \sum_{k \mathop = 0}^n \binom m k + | c = [[Factors of Binomial Coefficient]] +}} +{{eqn | r = \dfrac m 2 \sum_{k \mathop = 0}^n \left({2 \binom {m - 1} {k - 1} - \binom m k}\right) + | c = +}} +{{eqn | r = \dfrac m 2 \sum_{k \mathop = 0}^n \left({2 \binom {m - 1} {k - 1} - \left({\binom {m - 1} {k - 1} + \binom {m - 1} k}\right)}\right) + | c = [[Pascal's Rule]] +}} +{{eqn | r = \dfrac m 2 \sum_{k \mathop = 0}^n \left({\binom {m - 1} {k - 1} - \binom {m - 1} k}\right) + | c = simplifying +}} +{{eqn | r = \dfrac m 2 \left({\binom {m - 1} {-1} - \binom {m - 1} n}\right) + | c = as the series [[Definition:Telescoping Series|telescopes]] +}} +{{eqn | r = -\dfrac m 2 \binom {m - 1} n + | c = {{Defof|Binomial Coefficient}} for negative lower index +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Binomial Coefficient is instance of Gaussian Binomial Coefficient} +Tags: Binomial Coefficients + +\begin{theorem} +Let $\dbinom r m_q$ denote the [[Definition:Gaussian Binomial Coefficient|Gaussian binomial coefficient]]: +Then: +:$\displaystyle \lim_{q \mathop \to 1^-} \dbinom r m_q = \dbinom r m$ +where $\dbinom r m$ denotes the conventional [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +We have by definition of [[Definition:Gaussian Binomial Coefficient|Gaussian binomial coefficient]]: +:$\displaystyle \dbinom r m_q = \prod_{k \mathop = 0}^{m - 1} \dfrac {1 - q^{r - k} } {1 - q^{k + 1} }$ +Consider a typical [[Definition:Factor (Algebra)|factor]] of this [[Definition:Product Notation (Algebra)|product]]: +{{begin-eqn}} +{{eqn | l = \dfrac {1 - q^{r - k} } {1 - q^{k + 1} } + | r = \dfrac {\paren {1 - q^{r - k} } / \paren {1 - q} } {\paren {1 - q^{k + 1} } / \paren {1 - q} } + | c = multiplying [[Definition:Numerator|top]] and [[Definition:Denominator|bottom]] by $1 - q$ +}} +{{eqn | r = \dfrac {\sum_{j \mathop = 0}^{r - k - 1} q^j} {\sum_{j \mathop = 0}^k q^j} + | c = [[Sum of Geometric Sequence]] +}} +{{eqn | ll= \leadsto + | l = \lim_{q \mathop \to 1^-} \dfrac {1 - q^{r - k} } {1 - q^{k + 1} } + | r = \lim_{q \mathop \to 1^-} \dfrac {\sum_{j \mathop = 0}^{r - k - 1} q^j} {\sum_{j \mathop = 0}^k q^j} + | c = +}} +{{eqn | r = \dfrac {\sum_{j \mathop = 0}^{r - k - 1} 1} {\sum_{j \mathop = 0}^k 1} + | c = +}} +{{eqn | r = \dfrac {r - k} {k + 1} + | c = +}} +{{end-eqn}} +Thus: +{{begin-eqn}} +{{eqn | l = \lim_{q \mathop \to 1^-} \dbinom r k_q + | r = \prod_{k \mathop = 0}^{m - 1} \dfrac {r - k} {k + 1} + | c = +}} +{{eqn | r = \prod_{k \mathop = 1}^m \dfrac {r - k - 1} k + | c = [[Translation of Index Variable of Product]] +}} +{{eqn | r = \dbinom r m + | c = {{Defof|Binomial Coefficient}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Multinomial Coefficient expressed as Product of Binomial Coefficients} +Tags: Binomial Coefficients, Multinomial Coefficients + +\begin{theorem} +:$\dbinom {k_1 + k_2 + \cdots + k_m} {k_1, k_2, \ldots, k_m} = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_m} {k_1 + k_2 + \cdots + k_{m - 1} }$ +where: +:$\dbinom {k_1 + k_2 + \cdots + k_m} {k_1, k_2, \ldots, k_m}$ denotes a [[Definition:Multinomial Coefficient|multinomial coefficient]] +:$\dbinom {k_1 + k_2} {k_1}$ etc. denotes [[Definition:Binomial Coefficient|binomial coefficients]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $m \in \Z_{> 1}$, let $P \left({m}\right)$ be the [[Definition:Proposition|proposition]]: +:$\dbinom {k_1 + k_2 + \cdots + k_m} {k_1, k_2, \ldots, k_m} = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_m} {k_1 + k_2 + \cdots + k_{m - 1} }$ +=== Basis for the Induction === +$P \left({2}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \dbinom {k_1 + k_2} {k_1, k_2} + | r = \frac {\left({k_1 + k_2}\right)!} {k_1! \, k_2!} + | c = Definition of [[Definition:Multinomial Coefficient|Multinomial Coefficient]] +}} +{{eqn | r = \frac {\left({k_1 + k_2}\right)!} {k_1! \, \left({\left({k_1 + k_2}\right) - k_1}\right)!} + | c = +}} +{{eqn | r = \dbinom {k_1 + k_2} {k_1} + | c = Definition of [[Definition:Binomial Coefficient|Binomial Coefficient]] +}} +{{end-eqn}} +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 2$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\dbinom {k_1 + k_2 + \cdots + k_r} {k_1, k_2, \ldots, k_r} = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_r} {k_1 + k_2 + \cdots + k_{r - 1} }$ +from which it is to be shown that: +:$\dbinom {k_1 + k_2 + \cdots + k_r + k_{r + 1} } {k_1, k_2, \ldots, k_r, k_{r + 1} } = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_r + k_{r + 1} } {k_1 + k_2 + \cdots + k_r}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | r = \dbinom {k_1 + k_2 + \cdots + k_r + k_{r + 1} } {k_1, k_2, \ldots, k_r, k_{r + 1} } + | o = +}} +{{eqn | r = \frac {\left({k_1 + k_2 + \cdots + k_r + k_{r + 1} }\right)!} {k_1! \, k_2! \, \cdots k_r! \, k_{r + 1}!} + | c =Definition of [[Definition:Multinomial Coefficient|Multinomial Coefficient]] +}} +{{eqn | r = \frac {\left({k_1 + k_2 + \cdots + k_r}\right)!} {k_1! \, k_2! \, \cdots k_r!} \frac {\left({k_1 + k_2 + \cdots + k_r + k_{r + 1} }\right)!} {\left({k_1 + k_2 + \cdots + k_r}\right)! k_{r + 1} } + | c = multiplying [[Definition:Numerator|top]] and [[Definition:Denominator|bottom]] by $\left({k_1 + k_2 + \cdots + k_r + k_{r + 1} }\right)!$ +}} +{{eqn | r = \dbinom {k_1 + k_2 + \cdots + k_r} {k_1, k_2, \ldots, k_r} \frac {\left({k_1 + k_2 + \cdots + k_r + k_{r + 1} }\right)!} {\left({k_1 + k_2 + \cdots + k_r}\right)! k_{r + 1} } + | c = Definition of [[Definition:Multinomial Coefficient|Multinomial Coefficient]] +}} +{{eqn | r = \dbinom {k_1 + k_2 + \cdots + k_r} {k_1, k_2, \ldots, k_r} \dbinom {k_1 + k_2 + \cdots + k_r + k_{r + 1} } {k_1 + k_2 + \cdots + k_r} + | c = Definition of [[Definition:Binomial Coefficient|Binomial Coefficient]] +}} +{{eqn | r = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_r} {k_1 + k_2 + \cdots + k_{r - 1} } \dbinom {k_1 + k_2 + \cdots + k_r + k_{r + 1} } {k_1 + k_2 + \cdots + k_r} + | c = [[Multinomial Coefficient expressed as Product of Binomial Coefficients#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_r + k_{r + 1} } {k_1 + k_2 + \cdots + k_r} +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\forall m \in \Z_{>1}: \dbinom {k_1 + k_2 + \cdots + k_m} {k_1, k_2, \ldots, k_m} = \dbinom {k_1 + k_2} {k_1} \dbinom {k_1 + k_2 + k_3} {k_1 + k_2} \cdots \dbinom {k_1 + k_2 + \cdots + k_m} {k_1 + k_2 + \cdots + k_{m - 1} }$ +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Semantic Equivalence for Predicate Logic} +Tags: Predicate Logic + +\begin{theorem} +Let $\mathbf A, \mathbf B$ be [[Definition:WFF of Predicate Logic|WFFs of predicate logic]]. +{{TFAE|def = Semantic Equivalence (Predicate Logic)|semantic equivalence}} +\end{theorem} + +\begin{proof} +Let $\mathcal A$ be a [[Definition:Structure for Predicate Logic|structure for predicate logic]]. +Let $\sigma$ be an [[Definition:Assignment for Formula|assignment]] for $\mathbf A \iff \mathbf B$ in $\mathcal A$. +Then the [[Definition:Value of Formula under Assignment|value of $\mathbf A \iff \mathbf B$ under $\sigma$]] is given by: +:$f^\leftrightarrow \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right], \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right] }\right)$ +and from the [[Definition:Biconditional/Truth Function|definition of $f^\leftrightarrow$]] we see that $\mathcal A, \sigma \models_{\mathrm{PL_A}} \mathbf A \iff \mathbf B$ [[Definition:Iff|iff]]: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right]$ +Because the possible values are just $T$ and $F$, this is equivalent to: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] = T$ [[Definition:Iff|iff]] $\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right] = T$ +which by definition of $\mathrm{PL_A}$-[[Definition:Model of Formula (Predicate Logic)|model]] amounts to: +:$\mathcal A, \sigma \models_{\mathrm{PL_A}} \mathbf A$ [[Definition:Iff|iff]] $\mathcal A, \sigma \models_{\mathrm{PL_A}} \mathbf B$ +Because $\mathcal A$ and $\sigma$ were arbitrary, the above equivalence holds for all such $\mathcal A$ and $\sigma$. +The result follows by definition of [[Definition:Tautology (Predicate Logic)|tautology]]. +{{qed}} +[[Category:Predicate Logic]] +c1t9ipnxtcw46n3dqnc3gnf56vucb8l +\end{proof}<|endoftext|> +\section{Universal Closures are Semantically Equivalent} +Tags: Predicate Logic + +\begin{theorem} +Let $\mathbf A$ be a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +Let $\mathbf B, \mathbf B'$ be [[Definition:Universal Closure of Well-Formed Formula|universal closures]] of $\mathbf A$. +Then $\mathbf B$ and $\mathbf B'$ are [[Definition:Semantic Equivalence (Predicate Logic)|semantically equivalent]]. +\end{theorem} + +\begin{proof} +Let $\mathcal A$ be a [[Definition:Structure for Predicate Logic|structure for predicate logic]]. +Let $\mathbf B$ be any [[Definition:Universal Closure of Well-Formed Formula|universal closure]] of $\mathbf A$. +Then $\mathbf B$ is a [[Definition:Sentence|sentence]] of the form: +:$\forall x_1: \cdots \forall x_n: \mathbf A$ +By definition of the [[Definition:Model of Sentence (Predicate Logic)|models relation]]: +:$\mathcal A \models_{\mathrm{PL}} \mathbf B$ [[Definition:Iff|iff]] $\operatorname{val}_{\mathcal A} \left({\mathbf B}\right) = T$ +Hence, recursively applying the [[Definition:Value of Formula under Assignment|definition of $\mathop{ \operatorname{val}_{\mathcal A} \left({\cdot}\right) } \left[{\sigma}\right]$]], we see: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\varnothing}\right] = T$ [[Definition:Iff|iff]] $\forall a_1, \ldots, a_n \in A: \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\frac{x_1} {a_1} + \ldots + \frac{x_n} {a_n} }\right] = T$ +where $\frac{x_1} {a_1} + \ldots + \frac{x_n} {a_n}$ denotes the iterated [[Definition:Extension of Assignment|extension of an assignment]]. +By [[Value of Formula under Assignment Determined by Free Variables]] $\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\frac{x_1} {a_1} + \ldots + \frac{x_n} {a_n} }\right]$ only depends on the $a_i$ for the [[Definition:Free Variable|free variables]] $x_i$ in $\mathbf A$. +Because we check all possible $a_i \in A$ and all [[Definition:Free Variable|free variables]] $x_i$ in $\mathbf A$ are quantified over in $\mathbf B$, it follows that: +:$\forall a_1, \ldots, a_n \in A: \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\frac{x_1} {a_1} + \ldots + \frac{x_n} {a_n} }\right] = T$ +[[Definition:Iff|iff]]: +:$\forall a_1, \ldots, a_k \in A: \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\frac{x_1} {a_1} + \ldots + \frac{x_k} {a_k} }\right] = T$ +where $x_1, \ldots, x_k$ are the [[Definition:Free Variable|free variables]] of $\mathbf A$. +But this last condition does not depend on $\mathbf B$ beyond that it be a [[Definition:Universal Closure of Well-Formed Formula|universal closure]]. +Hence, for any two [[Definition:Universal Closure of Well-Formed Formula|universal closures]] $\mathbf B, \mathbf B'$ of $\mathbf A$: +:$\mathcal A \models_{\mathrm{PL}} \mathbf B$ [[Definition:Iff|iff]] $\mathcal A \models_{\mathrm{PL}} \mathbf B$ +The result follows by definition of [[Definition:Semantic Equivalence (Predicate Logic)|semantic equivalence]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Meet-Continuous iff if Element Precedes Supremum of Directed Subset then Element equals Supremum of Meet of Element by Directed Subset} +Tags: Meet-Continuous Lattices + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be an [[Definition:Up-Complete|up-complete]] [[Definition:Lattice|lattice]]. +Then +:$L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]] +{{iff}} +:$\forall x \in S$, [[Definition:Directed Subset|directed subset]] $D$ of $S: x \preceq \sup D \implies x = \sup \set {x \wedge d: d \in D}$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $L$ be [[Definition:Meet-Continuous Lattice|meet-continuous]]. +Let $x$ be an [[Definition:Element|element]] of $S$, $D$ be a [[Definition:Directed Subset|directed subset]] of $S$ such that +:$x \preceq \sup D$ +Thus +{{begin-eqn}} +{{eqn | l = x + | r = x \wedge \sup D + | c = [[Preceding iff Meet equals Less Operand]] +}} +{{eqn | r = \sup \set {x \wedge d: d \in D} + | c = {{Defof|Meet-Continuous Lattice}} +}} +{{end-eqn}} +{{qed|lemma}} +=== Necessary Condition === +Let: +:$\forall x \in S$, [[Definition:Directed Subset|directed subset]] $D$ of $S: x \preceq \sup D \implies x = \sup \set {x \wedge d: d \in D}$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$\forall x \in S$, [[Definition:Directed Subset|directed subset]] $D$ of $S: x \preceq \sup D \implies x \preceq \sup \set {x \wedge d: d \in D}$ +By [[Meet is Directed Suprema Preserving]]: +:$\wedge$ [[Definition:Mapping Preserves Supremum/Directed|preserves directed suprema]] as a [[Definition:Mapping|mapping]] from [[Definition:Cartesian Product of Ordered Sets|Cartesian product]] $\struct {S \times S, \precsim}$ of $L$ and $L$ into $L$. +Thus by [[Meet-Continuous iff Meet Preserves Directed Suprema]] +:$L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Continuous Lattice is Meet-Continuous} +Tags: Meet-Continuous Lattices, Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Then $L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]]. +\end{theorem} + +\begin{proof} +Let $x \in S$, $D$ be a [[Definition:Directed Subset|directed subset]] of $S$ such that +:$x \preceq \sup D$ +By [[Way Below Closure is Directed in Bounded Below Join Semilattice]]: +:$x^\ll$ is [[Definition:Directed Subset|directed]]. +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$L$ is [[Definition:Up-Complete|up-complete]] and satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +By definition of [[Definition:Up-Complete|up-complete]]: +:$x^\ll$ admits a [[Definition:Supremum of Set|supremum]]. +By [[Lower Closure of Element is Ideal]] and definition of [[Definition:Ideal in Ordered Set|ideal]]: +:$\left({\sup \left\{ {x \wedge d: d \in D}\right\} }\right)^\preceq$ is [[Definition:Directed Subset|directed]]. +By definition of [[Definition:Up-Complete|up-complete]]: +:$\left({\sup \left\{ {x \wedge d: d \in D}\right\} }\right)^\preceq$ admits a [[Definition:Supremum of Set|supremum]]. +We will prove that +:$x^\ll \subseteq \left({\sup \left\{ {x \wedge d: d \in D}\right\} }\right)^\preceq$ +Let $a \in x^\ll$ +By definition of [[Definition:Way Below Closure|way below closure]]: +:$a \ll x$ +By [[Way Below implies Preceding]]: +:$a \preceq x$ +By definition of [[Definition:Element is Way Below|way below relation]]: +:$\exists d \in D: a \preceq d$ +By [[Meet is Idempotent]] and [[Meet Semilattice is Ordered Structure]]: +:$a = a \wedge a \preceq x \wedge d \in \left\{ {x \wedge y: y \in D}\right\}$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$\sup \left\{ {x \wedge y: y \in D}\right\}$ is [[Definition:Upper Bound of Set|upper bound]] for $\left\{ {x \wedge y: y \in D}\right\}$ +By definition of [[Definition:Upper Bound of Set|upper bound]]: +:$x \wedge d \preceq \sup \left\{ {x \wedge y: y \in D}\right\}$ +By definition of [[Definition:Transitivity|transitivity]] +:$a \preceq \sup \left\{ {x \wedge y: y \in D}\right\}$ +Thus by definition of [[Definition:Lower Closure/Element|lower closure of element]]: +:$a \in \left({\sup \left\{ {x \wedge d: d \in D}\right\} }\right)^\preceq$ +{{qed|lemma}} +By [[Supremum of Subset]]: +:$\sup \left({x^\ll}\right) \preceq \sup \left({\left({\sup \left\{ {x \wedge d: d \in D}\right\} }\right)^\preceq}\right)$ +By [[Definition:Axiom of Approximation|axiom of approximation]] and [[Supremum of Lower Closure of Element]]: +:$x \preceq \sup \left\{ {x \wedge d: d \in D}\right\}$ +By definition: +:$x$ is [[Definition:Upper Bound of Set|upper bound]] for $\left\{ {x \wedge d: d \in D}\right\}$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$\sup \left\{ {x \wedge d: d \in D}\right\} \preceq x$ +Thus by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$x = \sup \left\{ {x \wedge d: d \in D}\right\}$ +Thus by [[Meet-Continuous iff if Element Precedes Supremum of Directed Subset then Element equals Supremum of Meet of Element by Directed Subset]]: +:$L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Number to Power of Zero Rising is One} +Tags: Rising Factorials + +\begin{theorem} +:$x^{\overline 0} = 1$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x^{\overline 0} + | r = \prod_{j \mathop = 0}^{-1} \paren {x + j} + | c = {{Defof|Rising Factorial}} +}} +{{eqn | r = 1 + | c = Product is [[Definition:Vacuous Product|Vacuous]] +}} +{{end-eqn}} +{{qed}} +[[Category:Rising Factorials]] +1tfwsij49sdapn8zmyovlleahasydr4 +\end{proof}<|endoftext|> +\section{Number to Power of Zero Falling is One} +Tags: Falling Factorials + +\begin{theorem} +:$x^{\underline 0} = 1$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x^{\underline 0} + | r = \prod_{j \mathop = 0}^{-1} \paren {x - j} + | c = {{Defof|Falling Factorial}} +}} +{{eqn | r = 1 + | c = Product is [[Definition:Vacuous Product|Vacuous]] +}} +{{end-eqn}} +{{qed}} +[[Category:Falling Factorials]] +0thb0bl3pugwn0hxx3fa89xkjtu0dbp +\end{proof}<|endoftext|> +\section{Product of Number by its Falling Factorial} +Tags: Falling Factorials + +\begin{theorem} +Let $x^{\underline n}$ denote the [[Definition:Falling Factorial|$n$th falling factorial power]] of $x$. +Then: +:$x x^{\underline n} = x^{\underline {n + 1} } + n x^{\underline n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x x^{\underline n} + | r = \left({x - n + n}\right) x^{\underline n} + | c = +}} +{{eqn | r = \left({x - n}\right) x^{\underline n} + n x^{\underline n} + | c = +}} +{{eqn | r = \left({x - n}\right) \prod_{j \mathop = 0}^{n - 1} \left({x - j}\right) + n x^{\underline n} + | c = Definition of [[Definition:Falling Factorial|Falling Factorial]] +}} +{{eqn | r = \prod_{j \mathop = 0}^n \left({x - j}\right) + n x^{\underline n} + | c = Definition of [[Definition:Product Notation (Algebra)|Product]] +}} +{{eqn | r = x^{\underline {n + 1} } + n x^{\underline n} + | c = Definition of [[Definition:Falling Factorial|Falling Factorial]] +}} +{{end-eqn}} +{{qed}} +[[Category:Falling Factorials]] +9vaivzg0rwkuq3jc54wr842zac0fg21 +\end{proof}<|endoftext|> +\section{Product of Number by its Rising Factorial} +Tags: Rising Factorials + +\begin{theorem} +Let $x^{\overline n}$ denote the [[Definition:Rising Factorial|$n$th rising factorial power]] of $x$. +Then: +:$x x^{\overline n} = x^{\overline {n + 1} } - n x^{\overline n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x x^{\overline n} + | r = \paren {x + n - n} x^{\overline n} + | c = +}} +{{eqn | r = \paren {x + n} x^{\overline n} - n x^{\overline n} + | c = +}} +{{eqn | r = \paren {x + n} \prod_{j \mathop = 0}^{n - 1} \paren {x + j} - n x^{\overline n} + | c = {{Defof|Rising Factorial}} +}} +{{eqn | r = \prod_{j \mathop = 0}^n \paren {x + j} - n x^{\overline n} + | c = {{Defof|Product Notation (Algebra)|Product}} +}} +{{eqn | r = x^{\overline {n + 1} } - n x^{\overline n} + | c = {{Defof|Rising Factorial}} +}} +{{end-eqn}} +{{qed}} +[[Category:Rising Factorials]] +hstzvqnlhk5v5epvgxwerkmj8pk0fv8 +\end{proof}<|endoftext|> +\section{Value of Formula under Assignment Determined by Free Variables} +Tags: Predicate Logic + +\begin{theorem} +Let $\mathbf A$ be a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +Let $\mathcal A$ be a [[Definition:Structure for Predicate Logic|structure for predicate logic]]. +Let $\sigma, \sigma'$ be [[Definition:Assignment for Formula|assignments for $\mathbf A$ in $\mathcal A$]] such that: +:For each [[Definition:Free Variable|free variable]] $x$ of $\mathbf A$, $\sigma \left({x}\right) = \sigma' \left({x}\right)$ +Then: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma'}\right]$ +where $\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right]$ is the [[Definition:Value of Formula under Assignment|value of $\mathbf A$ under $\sigma$]]. +\end{theorem} + +\begin{proof} +Proceed by the [[Principle of Structural Induction]] applied to the [[Definition:Bottom-Up Specification of Predicate Logic|bottom-up specification of predicate logic]]. +If $\mathbf A = p \left({\tau_1, \ldots, \tau_n}\right)$, then: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] = p_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1}\right) } \left[{\sigma}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n}\right) } \left[{\sigma}\right] }\right)$ +Because $\mathbf A$ contains no [[Definition:Quantifier|quantifiers]], all its variables are [[Definition:Free Variable|free]], and hence are in the [[Definition:Domain of Mapping|domain]] of $\sigma, \sigma'$ as [[Definition:Assignment for Formula|assignments]]. +Thus $\sigma, \sigma'$ are [[Definition:Assignment for Term|assignments]] for each $\tau_i$, and by [[Value of Term under Assignment Determined by Variables]]: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\tau_i}\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_i}\right) } \left[{\sigma'}\right]$ +for each $\tau_i$. +It is immediate that: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma'}\right]$ +If $\mathbf A = \neg \mathbf B$ and the induction hypothesis applies to $\mathbf B$, then: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] + |r = f^\neg \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]] +}} +{{eqn|r = f^\neg \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma'}\right] }\right) + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma'}\right] + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma'$]] +}} +{{end-eqn}} +If $\mathbf A = \mathbf B \circ \mathbf B'$ for $\circ$ one of $\land, \lor, \implies, \iff$ and the induction hypothesis applies to $\mathbf B, \mathbf B'$: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] + |r = f^\circ \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right], \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B'}\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]] +}} +{{eqn|r = f^\circ \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma'}\right], \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B'}\right) } \left[{\sigma'}\right] }\right) + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma'}\right] + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma'$]] +}} +{{end-eqn}} +If $\mathbf A = \exists x: \mathbf B$ or $\mathbf A = \forall x : \mathbf B$, and the induction hypothesis applies to $\mathbf B$, then from the definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]]: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right]$ +is determined by the [[Definition:Value of Formula under Assignment|values]]: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({x / a}\right)}\right]$ +where $a$ ranges over $\mathcal A$, and $\sigma + \left({x / a}\right)$ is the [[Definition:Extension of Assignment|extension]] of $\sigma$ mapping $x$ to $a$. +Now, for a [[Definition:Free Variable|free variable]] $y$ of $\mathbf B$: +{{begin-eqn}} +{{eqn|l = \left({\sigma + \left({x / a}\right)}\right) \left({y}\right) + |r = \begin{cases} a &: \text{if $y = x$} \\ \sigma \left({y}\right) &: \text{otherwise} \end{cases} + |c = Definition of [[Definition:Extension of Assignment|Extension]] +}} +{{eqn|r = \begin{cases} a &: \text{if $y = x$} \\ \sigma' \left({y}\right) &: \text{otherwise} \end{cases} + |c = Assumption on $\sigma, \sigma'$ +}} +{{eqn|r = \left({\sigma' + \left({x / a}\right)}\right) \left({y}\right) + |c = Definition of [[Definition:Extension of Assignment|Extension]] +}} +{{end-eqn}} +Hence, by the induction hypothesis: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({x / a}\right)}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma' + \left({x / a}\right)}\right]$ +It follows that: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma'}\right]$ +The result follows from the [[Principle of Structural Induction]]. +{{qed}} +[[Category:Predicate Logic]] +72pyybgluhk8a7ghrccyz86nqc2qh1q +\end{proof}<|endoftext|> +\section{First Inversion Formula for Stirling Numbers} +Tags: Stirling Numbers + +\begin{theorem} +For all $m, n \in \Z_{\ge 0}$: +:$\displaystyle \sum_k \left[{n \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{n - k} = \delta_{m n}$ +where: +:$\displaystyle \left[{n \atop k}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\displaystyle \left\{ {k \atop m}\right\}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]] +:$\delta_{m n}$ denotes the [[Definition:Kronecker Delta|Kronecker delta]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Second Principle of Mathematical Induction|strong induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left[{n \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{n - k} = \delta_{m n}$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left[{0 \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{0 - k} + | r = \sum_k \delta_{k 0} \left\{ {k \atop m}\right\} \left({-1}\right)^{-k} + | c = Definition of [[Definition:Unsigned Stirling Numbers of the First Kind|Unsigned Stirling Numbers of the First Kind]] +}} +{{eqn | r = \left\{ {0 \atop m}\right\} + | c = as all other terms vanish by $\delta_{k 0}$ +}} +{{eqn | r = \delta_{m 0} + | c = Definition of [[Definition:Stirling Numbers of the Second Kind|Stirling Numbers of the Second Kind]] +}} +{{end-eqn}} +Thus $P \left({0}\right)$ has been shown to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({j}\right)$ is true for all $j$ such $0 \le j \le r$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \forall j: 0 \le j \le r: \forall m \in \Z_{\ge 0}: \sum_k \left[{j \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{j - k} = \delta_{m j}$ +from which it is to be shown that: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left[{ {r + 1} \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{r + 1 - k} = \delta_{m \left({r + 1}\right)}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | r = \sum_k \left[{ {r + 1} \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{r + 1 - k} + | o = + | c = +}} +{{eqn | r = \sum_k \left({\left[{r \atop k - 1}\right] + r \left[{r \atop k}\right]}\right) \left\{ {k \atop m}\right\} \left({-1}\right)^{r + 1 - k} + | c = Definition of [[Definition:Unsigned Stirling Numbers of the First Kind|Unsigned Stirling Numbers of the First Kind]] +}} +{{eqn | r = \sum_k \left[{r \atop k - 1}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{r + 1 - k} - r \sum_k \left[{r \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{r - k} + | c = +}} +{{eqn | r = \sum_k \left[{r \atop k - 1}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{r + 1 - k} - r \delta_{m r} + | c = [[First Inversion Formula for Stirling Numbers#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \sum_k \left[{r \atop k - 1}\right] \left({\left\{ {k - 1 \atop m - 1}\right\} + m \left\{ {k - 1 \atop m}\right\} }\right) \left({-1}\right)^{r + 1 - k} - r \delta_{r m} + | c = Definition of [[Definition:Stirling Numbers of the Second Kind|Stirling Numbers of the Second Kind]] +}} +{{eqn | r = \sum_k \left[{r \atop k - 1}\right] \left\{ {k - 1 \atop m - 1}\right\} \left({-1}\right)^{r - \left({k - 1}\right)} + m \sum_k \left[{r \atop k - 1}\right] \left\{ {k - 1 \atop m}\right\} \left({-1}\right)^{r - \left({k - 1}\right)} - r \delta_{r m} + | c = +}} +{{eqn | r = \delta_{r \left({m - 1}\right)} + m \delta_{r m} - r \delta_{r m} + | c = [[First Inversion Formula for Stirling Numbers#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \delta_{m \left({r + 1}\right)} + \left({m - r}\right) \delta_{r m} + | c = +}} +{{eqn | r = \delta_{m \left({r + 1}\right)} + | c = as $\left({m - r}\right) \delta_{r m}$ vanishes for all $r$ and $m$ +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left[{n \atop k}\right] \left\{ {k \atop m}\right\} \left({-1}\right)^{n - k} = \delta_{m n}$ +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of 1} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\displaystyle {1 \brack n} = \delta_{1 n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = {1 \brack n} + | r = 0 \times {0 \brack n} + {0 \brack n - 1} + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = {0 \brack n - 1} + | c = +}} +{{eqn | r = \delta_{0 \paren {n - 1} } + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = \delta_{1 n} + | c = $0 = n - 1 \iff 1 = n$ +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Signed Stirling Number of the First Kind of 1} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$s \left({1, n}\right) = \delta_{1 n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = s \left({1, n}\right) + | r = s \left({0, {n - 1} }\right) - 0 \times s \left({0, n}\right) + | c = Definition of [[Definition:Signed Stirling Numbers of the First Kind|Signed Stirling Number of the First Kind]] +}} +{{eqn | r = s \left({0, {n - 1} }\right) + | c = +}} +{{eqn | r = \delta_{0 \left({n - 1}\right)} + | c = Definition of [[Definition:Signed Stirling Numbers of the First Kind|Signed Stirling Number of the First Kind]] +}} +{{eqn | r = \delta_{1 n} + | c = $0 = n - 1 \iff 1 = n$ +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of 1} +Tags: Stirling Numbers + +\begin{theorem} +:$\displaystyle {1 \brace n} = \delta_{1 n}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = {1 \brace n} + | r = n \times {0 \brace n} + {0 \brace n - 1} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = n \times \delta_{0 n} + \delta_{0 \paren {n - 1} } + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = \delta_{0 \paren {n - 1} } + | c = as $n \times \delta_{0 n}$ is either $n \times 0$ or $0 \times 1$ and so always $0$ +}} +{{eqn | r = \delta_{1 n} + | c = $0 = n - 1 \iff 1 = n$ +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Second Inversion Formula for Stirling Numbers} +Tags: Stirling Numbers + +\begin{theorem} +For all $m, n \in \Z_{\ge 0}$: +:$\displaystyle \sum_k \left\{ {n \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{n - k} = \delta_{m n}$ +where: +:$\displaystyle \left\{ {n \atop k}\right\}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]] +:$\displaystyle \left[{k \atop m}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\delta_{m n}$ denotes the [[Definition:Kronecker Delta|Kronecker delta]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Second Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left\{ {n \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{n - k} = \delta_{m n}$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left\{ {0 \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{0 - k} + | r = \sum_k \delta_{k 0} \left[{k \atop m}\right] \left({-1}\right)^{-k} + | c = Definition of [[Definition:Stirling Numbers of the Second Kind|Stirling Numbers of the Second Kind]] +}} +{{eqn | r = \left[{0 \atop m}\right] + | c = as all other terms vanish by $\delta_{k 0}$ +}} +{{eqn | r = \delta_{m 0} + | c = Definition of [[Definition:Unsigned Stirling Numbers of the First Kind|Unsigned Stirling Numbers of the First Kind]] +}} +{{end-eqn}} +Thus $P \left({0}\right)$ has been shown to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true for all $r \ge 0$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left\{ {r \atop k}\right\}\left[{k \atop m}\right] \left({-1}\right)^{r - k} = \delta_{m r}$ +from which it is to be shown that: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left\{ { {r + 1} \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} = \delta_{m \left({r + 1}\right)}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | r = \sum_k \left\{ { {r + 1} \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + | o = + | c = +}} +{{eqn | r = \sum_k \left({k \left\{ {r \atop k}\right\} + \left\{ {r \atop k - 1}\right\} }\right) \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + | c = Definition of [[Definition:Stirling Numbers of the Second Kind|Stirling Numbers of the Second Kind]] +}} +{{eqn | r = \sum_k k \left\{ {r \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + \sum_k \left\{ {r \atop k - 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | r = \sum_k k \left\{ {r \atop k}\right\} \frac 1 k \left({\left[{k + 1 \atop m}\right] - \left[{k \atop m - 1}\right]}\right) \left({-1}\right)^{r + 1 - k} + | c = Definition of [[Definition:Unsigned Stirling Numbers of the First Kind|Unsigned Stirling Numbers of the First Kind]] +}} +{{eqn | o = + | r = + \sum_k \left\{ {r \atop k - 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | r = \sum_k \left\{ {r \atop k}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{r + 1 - k} - \sum_k \left\{ {r \atop k}\right\} \left[{k \atop m - 1}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | o = + | r = + \sum_k \left\{ {r \atop k - 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | r = \sum_k \left\{ {r \atop k}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{r + 1 - k} - \sum_k \left\{ {r \atop k}\right\} \left[{k \atop m - 1}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | o = + | r = + \sum_k \left\{ {r \atop k}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{r + 1 - k + 1} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = \sum_k \left\{ {r \atop k}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{r + 1 - k} - \sum_k \left\{ {r \atop k}\right\} \left[{k \atop m - 1}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | o = + | r = - \sum_k \left\{ {r \atop k}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | r = \sum_k \left\{ {r \atop k}\right\} \left[{k \atop m - 1}\right] \left({-1}\right)^{r - k} + | c = Simplification +}} +{{eqn | r = \delta_{\left({m - 1}\right) r} + | c = [[Second Inversion Formula for Stirling Numbers#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \delta_{m \left({r + 1}\right)} + | c = Definition of [[Definition:Kronecker Delta|Kronecker Delta]] +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left\{ {n \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{n - k} = \delta_{m n}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Zero Choose n} +Tags: Examples of Binomial Coefficients + +\begin{theorem} +:$\dbinom 0 n = \delta_{0 n}$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Binomial Coefficient|binomial coefficient]]: +:$\dbinom m n = \begin{cases} +\dfrac {m!} {n! \paren {m - n}!} & : 0 \le n \le m \\ +& \\ +0 & : \text { otherwise } \end{cases}$ +Thus when $n > 0$: +:$\dbinom 0 n = 0$ +and when $n = 0$: +:$\dbinom 0 0 = \dfrac {0!} {0! \paren {0 - 0}!} = 1$ +by definition of [[Definition:Factorial|factorial]]. +Hence the result by definition of the [[Definition:Kronecker Delta|Kronecker delta]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of 0} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\displaystyle \left[{0 \atop n}\right] = \delta_{0 n}$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]: +$\displaystyle x^{\underline 0} = \sum_k \left({-1}\right)^{0 - k} \left[{0 \atop k}\right] x^k$ +Thus we have: +{{begin-eqn}} +{{eqn | l = x^{\underline 0} + | r = 1 + | c = [[Number to Power of Zero Falling is One]] +}} +{{eqn | r = x^0 + | c = Definition of [[Definition:Integer Power|Integer Power]] +}} +{{end-eqn}} +Thus, in the expression: +:$\displaystyle x^{\underline 0} = \sum_k \left({-1}\right)^{-k} \left[{0 \atop k}\right] x^k$ +we have: +:$\displaystyle \left[{0 \atop 0}\right] = 1$ +and for all $k \in \Z_{>0}$: +:$\displaystyle \left[{0 \atop k}\right] = 0$ +That is: +:$\displaystyle \left[{0 \atop k}\right] = \delta_{0 k}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Particular Values of Signed Stirling Numbers of the First Kind} +Tags: Stirling Numbers, Examples of Stirling Numbers of the First Kind + +\begin{theorem} +This page gathers together some particular values of [[Definition:Signed Stirling Numbers of the First Kind|signed Stirling numbers of the first kind]]. +\end{theorem}<|endoftext|> +\section{Particular Values of Unsigned Stirling Numbers of the First Kind} +Tags: Stirling Numbers, Examples of Stirling Numbers of the First Kind + +\begin{theorem} +This page gathers together some particular values of [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling numbers of the first kind]]. +\end{theorem}<|endoftext|> +\section{Signed Stirling Number of the First Kind of 0} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$s \left({0, n}\right) = \delta_{0 n}$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Signed Stirling Numbers of the First Kind|signed Stirling number of the first kind]]: +$\displaystyle x^{\underline 0} = \sum_k s \left({0, k}\right) x^k$ +Thus we have: +{{begin-eqn}} +{{eqn | l = x^{\underline 0} + | r = 1 + | c = [[Number to Power of Zero Falling is One]] +}} +{{eqn | r = x^0 + | c = Definition of [[Definition:Integer Power|Integer Power]] +}} +{{end-eqn}} +Thus, in the expression: +:$\displaystyle x^{\underline 0} = \sum_k s \left({0, k}\right) x^k$ +we have: +:$s \left({0, 0}\right) = 1$ +and for all $k \in \Z_{>0}$: +:$s \left({0, k}\right) = 0$ +That is: +:$s \left({0, k}\right) = \delta_{0 k}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Particular Values of Stirling Numbers of the Second Kind} +Tags: Stirling Numbers, Examples of Stirling Numbers of the Second Kind + +\begin{theorem} +This page gathers together some particular values of [[Definition:Stirling Numbers of the Second Kind|Stirling numbers of the second kind]]. +\end{theorem}<|endoftext|> +\section{Stirling Number of the Second Kind of 0} +Tags: Examples of Stirling Numbers of the Second Kind + +\begin{theorem} +:$\displaystyle {0 \brace n} = \delta_{0 n}$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Stirling Numbers of the Second Kind|Stirling numbers of the second kind]]: +$\displaystyle x^{\underline 0} = \sum_k {0 \brace k} x^k$ +Thus we have: +{{begin-eqn}} +{{eqn | l = x^0 + | r = 1 + | c = {{Defof|Integer Power}} +}} +{{eqn | r = x^{\underline 0} + | c = [[Number to Power of Zero Falling is One]] +}} +{{end-eqn}} +Thus, in the expression: +:$\displaystyle x^0 = \sum_k {0 \brace k} x^{\underline k}$ +we have: +:$\displaystyle {0 \brace 0} = 1$ +and for all $k \in \Z_{>0}$: +:$\displaystyle {0 \brace k} = 0$ +That is: +:$\displaystyle {0 \brace k} = \delta_{0 k}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of Number with Self} +Tags: Stirling Numbers + +\begin{theorem} +:$\displaystyle \left[{n \atop n}\right] = 1$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \N_{> 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \left[{n \atop n}\right] = 1$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \left[{0 \atop 0}\right] + | r = \delta_{0 0} + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{eqn | r = 1 + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 2$, then it logically follows that $P \left({k + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \left[{k \atop k}\right] = 1$ +from which it is to be shown that: +:$\displaystyle \left[{ {k + 1} \atop {k + 1} }\right] = 1$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \left[{ {k + 1} \atop {k + 1} }\right] + | r = k \left[{k \atop {k + 1} }\right] + \left[{k \atop k}\right] + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = k \times 0 + \left[{k \atop k}\right] + | c = [[Stirling Number of Number with Greater]] +}} +{{eqn | r = \left[{k \atop k}\right] + | c = +}} +{{eqn | r = 1 + | c = [[Unsigned Stirling Number of the First Kind of Number with Self#Induction Hypothesis|Induction Hypothesis]] +}} +{{end-eqn}} +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: \left[{n \atop n}\right] = 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of Number with Greater} +Tags: Stirling Numbers, Unsigned Stirling Number of the First Kind of Number with Greater + +\begin{theorem} +Let $\displaystyle {n \brack k}$ denote an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]. +Then: +:$\displaystyle {n \brack k} = 0$ +\end{theorem} + +\begin{proof} +By definition, [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] are defined as the [[Definition:Polynomial Coefficient|polynomial coefficients]] $\displaystyle \left[{n \atop k}\right]$ which satisfy the equation: +:$\displaystyle x^{\underline n} = \sum_k \left({-1}\right)^{n - k} \left[{n \atop k}\right] x^k$ +where $x^{\underline n}$ denotes the [[Definition:Falling Factorial|$n$th falling factorial of $x$]]. +Both of the [[Definition:Expression|expressions]] on the {{LHS}} and {{RHS}} are [[Definition:Polynomial over Real Numbers|polynomials]] in $x$ of [[Definition:Degree of Polynomial|degree $n$]]. +Hence the [[Definition:Polynomial Coefficient|coefficient]] $\displaystyle \left[{n \atop k}\right]$ of $x^k$ where $k > n$ is $0$. +{{qed}} +\end{proof} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \N_{> 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle k > n \implies \left[{n \atop k}\right] = 0$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +:$\displaystyle \left[{0 \atop k}\right] = \delta_{0 k}$ +from [[Unsigned Stirling Number of the First Kind of 0]]. +So by definition of [[Definition:Kronecker Delta|Kronecker delta]]: +:$\forall k \in \Z_{\ge 0}: k > 0 \implies \displaystyle \left[{0 \atop k}\right] = 0$ +and so $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $0 \le r$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle k > r \implies \left[{r \atop k}\right] = 0$ +from which it is to be shown that: +:$\displaystyle k > r + 1 \implies \left[{r + 1 \atop k}\right] = 0$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \left[{r + 1 \atop k}\right] + | r = r \left[{r \atop k}\right] + \left[{r \atop k - 1}\right] + | c = +}} +{{eqn | r = r \times 0 + \left[{r \atop k - 1}\right] + | c = [[Unsigned Stirling Number of the First Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = r \times 0 + 0 + | c = [[Unsigned Stirling Number of the First Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]]: $k > r + 1 \implies k - 1 > r$ +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: k > n \implies \left[{n \atop k}\right] = 0$ +{{qed}} +\end{proof}<|endoftext|> +\section{Signed Stirling Number of the First Kind of Number with Greater} +Tags: Stirling Numbers + +\begin{theorem} +Let $\map s {n, k}$ denote a [[Definition:Signed Stirling Numbers of the First Kind|signed Stirling number of the first kind]]. +Then: +:$\map s {n, k} = 0$ +\end{theorem} + +\begin{proof} +By definition, the [[Definition:Signed Stirling Numbers of the First Kind|signed Stirling numbers of the first kind]] are defined as the [[Definition:Polynomial Coefficient|polynomial coefficients]] $\map s {n, k}$ which satisfy the equation: +:$\displaystyle x^{\underline n} = \sum_k \map s {n, k} x^k$ +where $x^{\underline n}$ denotes the [[Definition:Falling Factorial|$n$th falling factorial of $x$]]. +Both of the [[Definition:Expression|expressions]] on the {{LHS}} and {{RHS}} are [[Definition:Polynomial over Real Numbers|polynomials]] in $x$ of [[Definition:Degree of Polynomial|degree $n$]]. +Hence the [[Definition:Polynomial Coefficient|coefficient]] $s \left({n, k}\right)$ of $x^k$ where $k > n$ is $0$. +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of Number with Greater} +Tags: Stirling Numbers, Stirling Number of the Second Kind of Number with Greater + +\begin{theorem} +Let $\displaystyle {n \brace k}$ denote a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]]. +Then: +:$\displaystyle {n \brace k} = 0$ +\end{theorem} + +\begin{proof} +By definition, the [[Definition:Stirling Numbers of the Second Kind|Stirling numbers of the second kind]] are defined as the [[Definition:Coefficient|coefficients]] $\displaystyle {n \brace k}$ which satisfy the equation: +:$\displaystyle x^n = \sum_k {n \brace k} x^{\underline k}$ +where $x^{\underline k}$ denotes the [[Definition:Falling Factorial|$k$th falling factorial of $x$]]. +Both of the [[Definition:Expression|expressions]] on the {{LHS}} and {{RHS}} are [[Definition:Polynomial over Real Numbers|polynomials]] in $x$ of [[Definition:Degree of Polynomial|degree $n$]]. +Hence the [[Definition:Polynomial Coefficient|coefficient]] $\displaystyle {n \brace k}$ of $x^{\underline k}$ where $k > n$ is $0$. +{{qed}} +\end{proof} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \N_{> 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle k > n \implies {n \brace k} = 0$ +=== Basis for the Induction === +$\map P 0$ is the case: +:$\displaystyle {0 \brace k} = \delta_{0 k}$ +from [[Stirling Number of the Second Kind of 0]]. +So by definition of [[Definition:Kronecker Delta|Kronecker delta]]: +:$\forall k \in \Z_{\ge 0}: k > 0 \implies \displaystyle {0 \brace k} = 0$ +and so $\map P 0$ is seen to hold. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $0 \le r$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle k > r \implies {r \brace k} = 0$ +from which it is to be shown that: +:$\displaystyle k > r + 1 \implies {r + 1 \brace k} = 0$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = {r + 1 \brace k} + | r = k {r \brace k} + {r \brace k - 1} + | c = +}} +{{eqn | r = r \times 0 + {r \brace k - 1} + | c = [[Stirling Number of the Second Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = r \times 0 + 0 + | c = [[Stirling Number of the Second Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]]: $k > r + 1 \implies k - 1 > r$ +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: k > n \implies {n \brace k} = 0$ +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of Number with Greater} +Tags: Stirling Numbers + +\begin{theorem} +Let $n, k \in \Z_{\ge 0}$. +Let $k > n$. +\end{theorem}<|endoftext|> +\section{Stirling Number of the Second Kind of Number with Self} +Tags: Stirling Numbers + +\begin{theorem} +:$\displaystyle {n \brace n} = 1$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \N_{> 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle {n \brace n} = 1$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | l = {0 \brace 0} + | r = \delta_{0 0} + | c = [[Stirling Number of the Second Kind of 0]] +}} +{{eqn | r = 1 + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P k$ is true, where $k \ge 0$, then it logically follows that $\map P {k + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle {k \brace k} = 1$ +from which it is to be shown that: +:$\displaystyle {k + 1 \brace k + 1} = 1$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = {k + 1 \brace k + 1} + | r = \paren {k + 1} {k \brace k + 1} + {k \brace k} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = \paren {k + 1} \times 0 + {k \brace k} + | c = [[Stirling Number of Number with Greater]] +}} +{{eqn | r = {k \brace k} + | c = +}} +{{eqn | r = 1 + | c = [[Stirling Number of the Second Kind of Number with Self#Induction Hypothesis|Induction Hypothesis]] +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: {n \brace n} = 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Value of Term under Assignment Determined by Variables} +Tags: Predicate Logic + +\begin{theorem} +Let $\tau$ be a [[Definition:Term (Predicate Logic)|term of predicate logic]]. +Let $\mathcal A$ be a [[Definition:Structure for Predicate Logic|structure for predicate logic]]. +Let $\sigma, \sigma'$ be [[Definition:Assignment for Formula|assignments for $\tau$ in $\mathcal A$]] such that: +:For each [[Definition:Variable (Logic)|variable]] $x$ [[Definition:Occurrence (Predicate Logic)|occurring]] in $\tau$, $\sigma \left({x}\right) = \sigma' \left({x}\right)$ +Then: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma'}\right]$ +where $\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right]$ is the [[Definition:Value of Term under Assignment|value of $\tau$ under $\sigma$]]. +\end{theorem} + +\begin{proof} +Proceed by the [[Principle of Structural Induction]] applied to the [[Definition:Term (Predicate Logic)|definition of a term]]. +If $\tau = x$, then: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right] + |r = \sigma \left({x}\right) + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma$]] +}} +{{eqn|r = \sigma' \left({x}\right) + |c = Assumption on $\sigma, \sigma'$ +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma'}\right] + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma$]] +}} +{{end-eqn}} +as desired. +If $\tau = f \left({\tau_1, \ldots, \tau_n}\right)$ and the induction hypothesis applies to each $\tau_i$, then: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right] + |r = f_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1}\right) } \left[{\sigma}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n}\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma$]] +}} +{{eqn|r = f_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1}\right) } \left[{\sigma'}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n}\right) } \left[{\sigma'}\right] }\right) + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma'}\right] + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma'$]] +}} +{{end-eqn}} +The result follows from the [[Principle of Structural Induction]]. +{{qed}} +[[Category:Predicate Logic]] +10ma1jy4vmkw964isbnsakdzd6mfpgc +\end{proof}<|endoftext|> +\section{Relation between Signed and Unsigned Stirling Numbers of the First Kind} +Tags: Stirling Numbers + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$ be [[Definition:Positive Integer|positive integers]]. +Then: +:$\displaystyle {n \brack m} = \paren {-1}^{n + m} \map s {n, m}$ +where: +:$\displaystyle {n \brack m}$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\map s {n, m}$ denotes a [[Definition:Signed Stirling Numbers of the First Kind|signed Stirling number of the first kind]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_k \map s {n, k} x^k + | r = x^{\underline n} + | c = {{Defof|Signed Stirling Numbers of the First Kind}} +}} +{{eqn | r = \sum_k \paren {-1}^{n - k} {n \brack k} x^k + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | ll = \leadsto + | l = \map s {n, m} + | r = \paren {-1}^{n - m} {n \brack m} + | c = Comparing coefficients of $x^m$ +}} +{{eqn | ll = \leadsto + | l = {n \brack m} + | r = \paren {-1}^{m - n} \map s {n, m} +}} +{{eqn | r = \paren {-1}^{n + m} \map s {n, m} + | c = as $\paren {-1}^{2 n} = 1$ +}} +{{end-eqn}} +{{qed}} +[[Category:Stirling Numbers]] +hnondew9tstatc6ggzwls4frlmt9tv5 +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of Number with Greater/Proof 1} +Tags: Unsigned Stirling Number of the First Kind of Number with Greater + +\begin{theorem} +Let $n, k \in \Z_{\ge 0}$ such that $k > n$. +{{:Unsigned Stirling Number of the First Kind of Number with Greater}} +\end{theorem} + +\begin{proof} +By definition, [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] are defined as the [[Definition:Polynomial Coefficient|polynomial coefficients]] $\displaystyle \left[{n \atop k}\right]$ which satisfy the equation: +:$\displaystyle x^{\underline n} = \sum_k \left({-1}\right)^{n - k} \left[{n \atop k}\right] x^k$ +where $x^{\underline n}$ denotes the [[Definition:Falling Factorial|$n$th falling factorial of $x$]]. +Both of the [[Definition:Expression|expressions]] on the {{LHS}} and {{RHS}} are [[Definition:Polynomial over Real Numbers|polynomials]] in $x$ of [[Definition:Degree of Polynomial|degree $n$]]. +Hence the [[Definition:Polynomial Coefficient|coefficient]] $\displaystyle \left[{n \atop k}\right]$ of $x^k$ where $k > n$ is $0$. +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of Number with Greater/Proof 2} +Tags: Unsigned Stirling Number of the First Kind of Number with Greater + +\begin{theorem} +Let $n, k \in \Z_{\ge 0}$ such that $k > n$. +{{:Unsigned Stirling Number of the First Kind of Number with Greater}} +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \N_{> 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle k > n \implies \left[{n \atop k}\right] = 0$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +:$\displaystyle \left[{0 \atop k}\right] = \delta_{0 k}$ +from [[Unsigned Stirling Number of the First Kind of 0]]. +So by definition of [[Definition:Kronecker Delta|Kronecker delta]]: +:$\forall k \in \Z_{\ge 0}: k > 0 \implies \displaystyle \left[{0 \atop k}\right] = 0$ +and so $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $0 \le r$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle k > r \implies \left[{r \atop k}\right] = 0$ +from which it is to be shown that: +:$\displaystyle k > r + 1 \implies \left[{r + 1 \atop k}\right] = 0$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \left[{r + 1 \atop k}\right] + | r = r \left[{r \atop k}\right] + \left[{r \atop k - 1}\right] + | c = +}} +{{eqn | r = r \times 0 + \left[{r \atop k - 1}\right] + | c = [[Unsigned Stirling Number of the First Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = r \times 0 + 0 + | c = [[Unsigned Stirling Number of the First Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]]: $k > r + 1 \implies k - 1 > r$ +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: k > n \implies \left[{n \atop k}\right] = 0$ +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of Number with Greater/Proof 1} +Tags: Stirling Number of the Second Kind of Number with Greater + +\begin{theorem} +Let $n, k \in \Z_{\ge 0}$ such that $k > n$. +{{:Stirling Number of the Second Kind of Number with Greater}} +\end{theorem} + +\begin{proof} +By definition, the [[Definition:Stirling Numbers of the Second Kind|Stirling numbers of the second kind]] are defined as the [[Definition:Coefficient|coefficients]] $\displaystyle {n \brace k}$ which satisfy the equation: +:$\displaystyle x^n = \sum_k {n \brace k} x^{\underline k}$ +where $x^{\underline k}$ denotes the [[Definition:Falling Factorial|$k$th falling factorial of $x$]]. +Both of the [[Definition:Expression|expressions]] on the {{LHS}} and {{RHS}} are [[Definition:Polynomial over Real Numbers|polynomials]] in $x$ of [[Definition:Degree of Polynomial|degree $n$]]. +Hence the [[Definition:Polynomial Coefficient|coefficient]] $\displaystyle {n \brace k}$ of $x^{\underline k}$ where $k > n$ is $0$. +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of Number with Greater/Proof 2} +Tags: Stirling Number of the Second Kind of Number with Greater + +\begin{theorem} +Let $n, k \in \Z_{\ge 0}$ such that $k > n$. +{{:Stirling Number of the Second Kind of Number with Greater}} +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \N_{> 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle k > n \implies {n \brace k} = 0$ +=== Basis for the Induction === +$\map P 0$ is the case: +:$\displaystyle {0 \brace k} = \delta_{0 k}$ +from [[Stirling Number of the Second Kind of 0]]. +So by definition of [[Definition:Kronecker Delta|Kronecker delta]]: +:$\forall k \in \Z_{\ge 0}: k > 0 \implies \displaystyle {0 \brace k} = 0$ +and so $\map P 0$ is seen to hold. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $0 \le r$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle k > r \implies {r \brace k} = 0$ +from which it is to be shown that: +:$\displaystyle k > r + 1 \implies {r + 1 \brace k} = 0$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = {r + 1 \brace k} + | r = k {r \brace k} + {r \brace k - 1} + | c = +}} +{{eqn | r = r \times 0 + {r \brace k - 1} + | c = [[Stirling Number of the Second Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = r \times 0 + 0 + | c = [[Stirling Number of the Second Kind of Number with Greater/Proof 2#Induction Hypothesis|Induction Hypothesis]]: $k > r + 1 \implies k - 1 > r$ +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: k > n \implies {n \brace k} = 0$ +{{qed}} +\end{proof}<|endoftext|> +\section{Signed Stirling Number of the First Kind of Number with Self} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$s \left({n, n}\right) = 1$ +\end{theorem} + +\begin{proof} +From [[Relation between Signed and Unsigned Stirling Numbers of the First Kind]]: +:$\displaystyle \left[{n \atop n}\right] = \left({-1}\right)^{n + n} s \left({n, n}\right)$ +We have that: +:$\left({-1}\right)^{n + n} = \left({-1}\right)^{2 n} = 1$ +and so: +:$\displaystyle \left[{n \atop n}\right] = s \left({n, n}\right)$ +The result follows from [[Unsigned Stirling Number of the First Kind of Number with Self]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of n with n-1} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\displaystyle \left[{n \atop n - 1}\right] = \binom n 2$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +=== Basis for the Induction === +For all $n \in \Z_{> 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \left[{n \atop n - 1}\right] = \binom n 2$ +$P \left({1}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \left[{1 \atop 0}\right] + | r = \delta_{1 0} + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{eqn | r = 0 + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \binom 1 2 + | c = {{Defof|Binomial Coefficient}} +}} +{{end-eqn}} +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 2$, then it logically follows that $P \left({k + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \left[{k \atop k - 1}\right] = \binom k 2$ +from which it is to be shown that: +:$\displaystyle \left[{ {k + 1} \atop k}\right] = \binom {k + 1} 2$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \left[{ {k + 1} \atop k}\right] + | r = k \left[{k \atop k}\right] + \left[{k \atop k - 1}\right] + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = k \times 1 + \left[{k \atop k - 1}\right] + | c = [[Unsigned Stirling Number of the First Kind of Number with Self]] +}} +{{eqn | r = k + \binom k 2 + | c = [[Unsigned Stirling Number of the First Kind of n with n-1#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = k + \frac {k \left({k - 1}\right)} 2 + | c = [[Binomial Coefficient with Two]] +}} +{{eqn | r = \frac {k \left({k - 1}\right) + 2 k} 2 + | c = +}} +{{eqn | r = \frac {k^2 - k + 2 k} 2 + | c = +}} +{{eqn | r = \frac {\left({k + 1}\right) k} 2 + | c = +}} +{{eqn | r = \binom {k + 1} 2 + | c = [[Binomial Coefficient with Two]] +}} +{{end-eqn}} +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 1}: \left[{n \atop n - 1}\right] = \binom n 2$ +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of n with n-1} +Tags: Examples of Stirling Numbers of the Second Kind + +\begin{theorem} +:$\displaystyle {n \brace n - 1} = \binom n 2$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{>0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle {n \brace n - 1} = \binom n 2$ +=== Basis for the Induction === +$\map P 1$ is the case: +{{begin-eqn}} +{{eqn | l = {1 \brace 0} + | r = \delta_{1 0} + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{eqn | r = 0 + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \binom 1 2 + | c = {{Defof|Binomial Coefficient}} +}} +{{end-eqn}} +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle {k \brace k - 1} = \binom k 2$ +from which it is to be shown that: +:$\displaystyle {k + 1 \brace k} = \binom {k + 1} 2$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = {k + 1 \brace k} + | r = k {k \brace k} + {k \brace k - 1} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = k \times 1 + {k \brace k - 1} + | c = [[Stirling Number of the Second Kind of Number with Self]] +}} +{{eqn | r = k + \binom k 2 + | c = [[Stirling Number of the Second Kind of n with n-1#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = k + \frac {k \paren {k - 1} } 2 + | c = [[Binomial Coefficient with Two]] +}} +{{eqn | r = \frac {k \paren {k - 1} + 2 k} 2 + | c = +}} +{{eqn | r = \frac {k^2 - k + 2 k} 2 + | c = +}} +{{eqn | r = \frac {\paren {k + 1} k} 2 + | c = +}} +{{eqn | r = \binom {k + 1} 2 + | c = [[Binomial Coefficient with Two]] +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 1}: {n \brace n - 1} = \binom n 2$ +{{qed}} +\end{proof}<|endoftext|> +\section{Signed Stirling Number of the First Kind of n with n-1} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\map s {n, n - 1} = -\dbinom n 2$ +\end{theorem} + +\begin{proof} +From [[Relation between Signed and Unsigned Stirling Numbers of the First Kind]]: +:$\displaystyle {n \brack n - 1} = \paren {-1}^{n + n - 1} \map s {n, n - 1}$ +where $\displaystyle {n \brack n - 1}$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]. +We have that: +:$\paren {-1}^{n + n - 1} = \paren {-1}^{2 n - 1} = -1$ +and so: +:$\displaystyle {n \brack n} = -\map s {n, n}$ +The result follows from [[Unsigned Stirling Number of the First Kind of Number with Self]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of n+1 with 0} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\displaystyle {n + 1 \brack 0} = 0$ +\end{theorem} + +\begin{proof} +We are given that $k = 0$. +So by definition of [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]: +:$\displaystyle {n \brack k} = \delta_{n k}$ +where $\delta_{n k}$ is the [[Definition:Kronecker Delta|Kronecker delta]]. +Thus: +{{begin-eqn}} +{{eqn | l = n + | o = \ge + | r = 0 + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{eqn | ll= \leadsto + | l = n + 1 + | o = > + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = n + 1 + | o = \ne + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = \delta_{\paren {n + 1} 0} + | r = 0 + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of n+1 with 0} +Tags: Examples of Stirling Numbers of the Second Kind + +\begin{theorem} +:$\displaystyle {n + 1 \brace 0} = 0$ +\end{theorem} + +\begin{proof} +We are given that $k = 0$. +So by definition of [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]: +:$\displaystyle {n \brace k} = \delta_{n k}$ +where $\delta_{n k}$ is the [[Definition:Kronecker Delta|Kronecker delta]]. +Thus +{{begin-eqn}} +{{eqn | l = n + | o = \ge + | r = 0 + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{eqn | ll= \leadsto + | l = n + 1 + | o = > + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = n + 1 + | o = \ne + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = \delta_{\paren {n + 1} 0} + | r = 0 + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Signed Stirling Number of the First Kind of n+1 with 0} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\map s {n + 1, 0} = 0$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Signed Stirling Numbers of the First Kind|signed Stirling number of the first kind]]: +:$\map s {n, k} = \delta_{n k}$ +where $\delta_{n k}$ is the [[Definition:Kronecker Delta|Kronecker delta]]. +Thus +{{begin-eqn}} +{{eqn | l = n + | o = \ge + | r = 0 + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{eqn | ll= \leadsto + | l = n + 1 + | o = > + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = n + 1 + | o = \ne + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = \delta_{\paren {n + 1} 0} + | r = 0 + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Unsigned Stirling Number of the First Kind of n+1 with 1} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$\displaystyle \left[{n + 1 \atop 1}\right] = n!$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \left[{n + 1 \atop 1}\right] = n!$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \left[{1 \atop 1}\right] + | r = \delta_{1 1} + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{eqn | r = 1 + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = 0! + | c = {{Defof|Factorial}} +}} +{{end-eqn}} +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 2$, then it logically follows that $P \left({k + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \left[{k + 1 \atop 1}\right] = k!$ +from which it is to be shown that: +:$\displaystyle \left[{k + 2 \atop 1}\right] = \left({k + 1}\right)!$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \left[{k + 2 \atop 1}\right] + | r = \left({k + 1}\right) \left[{k + 1 \atop 1}\right] + \left[{k + 1 \atop 0}\right] + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = \left({k + 1}\right) \left[{k + 1 \atop 1}\right] + 0 + | c = [[Unsigned Stirling Number of the First Kind of n+1 with 0]] +}} +{{eqn | r = \left({k + 1}\right) \times k! + | c = [[Unsigned Stirling Number of the First Kind of n+1 with 1#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left({k + 1}\right)! + | c = {{Defof|Factorial}} +}} +{{end-eqn}} +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: \left[{n + 1 \atop 1}\right] = n!$ +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of n+1 with 1} +Tags: Examples of Stirling Numbers of the Second Kind + +\begin{theorem} +:$\displaystyle {n + 1 \brace 1} = 1$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle {n + 1 \brace 1} = 1$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | l = {1 \brace 1} + | r = \delta_{1 1} + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{eqn | r = 1 + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P k$ is true, where $k \ge 0$, then it logically follows that $\map P {k + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle {k + 1 \brace 1} = 1$ +from which it is to be shown that: +:$\displaystyle {k + 2 \brace 1} = 1$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = {k + 2 \brace 1} + | r = 1 \times {k + 1 \brace 1} + {k + 2 \brace 0} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = {k + 1 \brace 1} + 0 + | c = [[Stirling Number of the Second Kind of n+1 with 0]] +}} +{{eqn | r = 1 + | c = [[Stirling Number of the Second Kind of n+1 with 1#Induction Hypothesis|Induction Hypothesis]] +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: {n + 1 \brace 1} = 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Signed Stirling Number of the First Kind of n+1 with 1} +Tags: Examples of Stirling Numbers of the First Kind + +\begin{theorem} +:$s \left({n + 1, 1}\right) = \left({-1}\right)^n n!$ +\end{theorem} + +\begin{proof} +By [[Relation between Signed and Unsigned Stirling Numbers of the First Kind]]: +:$\displaystyle \left[{n + 1 \atop 1}\right] = \left({-1}\right)^{n + 1 + 1} s \left({n + 1, 1}\right)$ +where $\displaystyle \left[{n + 1 \atop 1}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]. +We have that: +:$\left({-1}\right)^{n + 1 + 1} = \left({-1}\right)^n$ +and so: +:$\displaystyle \left[{n + 1 \atop 1}\right] = \left({-1}\right)^n s \left({n + 1, 1}\right)$ +The result follows from [[Unsigned Stirling Number of the First Kind of Number with Self]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Stirling Number of the Second Kind of n+1 with 2} +Tags: Examples of Stirling Numbers of the Second Kind + +\begin{theorem} +:$\displaystyle {n + 1 \brace 2} = 2^n - 1$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle {n + 1 \brace 2} = 2^n - 1$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | l = {1 \brace 2} + | r = \delta_{1 2} + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{eqn | r = 0 + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = 2^0 - 1 + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +So the result holds for $\map P 0$. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle {k + 1 \brace 2} = 2^k - 1$ +from which it is to be shown that: +:$\displaystyle {k + 2 \brace 2} = 2^{k + 1} - 1$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = {k + 2 \brace 2} + | r = 2 \times {k + 1 \brace 2} + {k + 1 \brace 1} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = 2 \times {k + 1 \brace 2} + 1 + | c = [[Stirling Number of the Second Kind of n+1 with 1]] +}} +{{eqn | r = 2 \times {2^k - 1} + 1 + | c = [[Stirling Number of the Second Kind of n+1 with 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = 2^{k + 1} - 2 + 1 + | c = +}} +{{eqn | r = 2^{k + 1} - 1 + | c = +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: {n + 1 \brace 2} = 2^n - 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Unsigned Stirling Numbers of the First Kind of n with k by k choose m} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \left[{n \atop k}\right] \binom k m = \left[{n + 1 \atop m + 1}\right]$ +where: +:$\displaystyle \left[{n \atop k}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\dbinom k m$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left[{n \atop k}\right] \binom k m = \left[{n + 1 \atop m + 1}\right]$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left[{0 \atop k}\right] \binom k m + | r = \sum_k \delta_{0 k} \binom k m + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{eqn | r = \binom 0 m + | c = all terms vanish except for $k = 0$ +}} +{{eqn | r = \delta_{0 m} + | c = [[Zero Choose n]] +}} +{{eqn | r = \delta_{1 \left({m + 1}\right)} + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \left[{1 \atop m + 1}\right] + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{eqn | r = \left[{0 + 1 \atop m + 1}\right] + | c = +}} +{{end-eqn}} +So $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 1$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left[{r \atop k}\right] \binom k m = \left[{r + 1 \atop m + 1}\right]$ +from which it is to be shown that: +:$\displaystyle \sum_k \left[{r + 1 \atop k}\right] \binom k m = \left[{r + 2 \atop m + 1}\right]$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left[{r + 1 \atop k}\right] \binom k m + | c = +}} +{{eqn | r = \sum_k \left({r \left[{r \atop k}\right] + \left[{r \atop k - 1}\right]}\right) \binom k m + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = r \sum_k \left[{r \atop k}\right] \binom k m + \sum_k \left[{r \atop k - 1}\right] \binom k m + | c = +}} +{{eqn | r = r \left[{r + 1 \atop m + 1}\right] + \sum_k \left[{r \atop k - 1}\right] \binom k m + | c = [[Sum over k of Unsigned Stirling Numbers of the First Kind of n with k by k choose m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = r \left[{r + 1 \atop m + 1}\right] + \sum_k \left[{r \atop k - 1}\right] \left({\binom {k - 1} m + \binom {k - 1} {m - 1} }\right) + | c = [[Pascal's Rule]] +}} +{{eqn | r = r \left[{r + 1 \atop m + 1}\right] + \sum_k \left[{r \atop k - 1}\right] \binom {k - 1} m + \sum_k \left[{r \atop k - 1}\right] \binom {k - 1} {m - 1} + | c = +}} +{{eqn | r = r \left[{r + 1 \atop m + 1}\right] + \sum_k \left[{r \atop k}\right] \binom k m + \sum_k \left[{r \atop k}\right] \binom k {m - 1} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = r \left[{r + 1 \atop m + 1}\right] + \left[{r + 1 \atop m + 1}\right] + \left[{r + 1 \atop m}\right] + | c = [[Sum over k of Unsigned Stirling Numbers of the First Kind of n with k by k choose m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left({r + 1}\right) \left[{r + 1 \atop m + 1}\right] + \left[{r + 1 \atop m}\right] + | c = +}} +{{eqn | r = \left[{r + 2 \atop m + 1}\right] + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left[{n \atop k}\right] \binom k m = \left[{n + 1 \atop m + 1}\right]$ +{{qed}} +\end{proof}<|endoftext|> +\section{Semantically Equivalent Terms are Equal} +Tags: Predicate Logic + +\begin{theorem} +Let $\tau_1, \tau_2$ be [[Definition:Term (Predicate Logic)|terms]]. +Suppose that they are [[Definition:Relative Semantic Equivalence of Terms|semantically equivalent]] with respect to the [[Definition:Empty Set|empty set]]. +Then $\tau_1 = \tau_2$. +\end{theorem} + +\begin{proof} +{{proof wanted|While an exercise, this basically requires construction of the syntactic model in order to achieve full rigour}} +\end{proof}<|endoftext|> +\section{Down Mapping is Generated by Approximating Relation} +Tags: Meet-Continuous Lattices, Approximating Relations + +\begin{theorem} +Let $L = \left({S, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Meet-Continuous Lattice|meet-continuous]] [[Definition:Meet Semilattice|meet semilattice]]. +Let $\mathit{Ids}\left({L}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +Let $I$ be an [[Definition:Ideal in Ordered Set|ideal]] in $L$. +Let $f: S \to \mathit{Ids}\left({L}\right)$ be a [[Definition:Mapping|mapping]] such that +:$\forall x \in S: x \preceq \sup I \implies f\left({x}\right) = \left\{ {x \wedge i: i \in I}\right\}$ +and +:$\forall x \in S: x \npreceq \sup I \implies f\left({x}\right) = x^\preceq$ +where $x^\preceq$ denotes the [[Definition:Lower Closure/Element|lower closure]] of $x$. +Then +:there exists an [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] $\mathcal R$ on $S$ such that +::$\forall s \in S: f\left({s}\right) = s^{\mathcal R}$ +where $s^{\mathcal R}$ denotes the [[Definition:Relation Segment|$\mathcal R$-segment]] of $s$. +\end{theorem} + +\begin{proof} +Define [[Definition:Relation|relation]] $\mathcal R$ on $S$: +:$\forall x, y \in S: \left({x, y}\right) \in \mathcal R \iff x \in f\left({y}\right)$ +By definition of [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$\forall x \in S: f\left({x}\right) = x^{\mathcal R}$ +We will prove that +:$\mathcal R$ is an [[Definition:Approximating Relation|approximating relation]]. +Let $x \in S$. +Suppose the case holds that: +:$x \preceq \sup I$ +Thus: +{{begin-eqn}} +{{eqn | l = \sup \left({x^{\mathcal R} }\right) + | r = \sup f \left({x}\right) +}} +{{eqn | r = \sup \left\{ {x \wedge d: d \in I}\right\} + | c = definition of $f$ +}} +{{eqn | r = x \wedge \sup I + | c = {{Defof|Meet-Continuous Lattice}} +}} +{{eqn | r = x + | c = [[Preceding iff Meet equals Less Operand]] +}} +{{end-eqn}} +Suppose the case holds that +:$x \npreceq \sup I$ +Thus +{{begin-eqn}} +{{eqn | l = \sup \left({x^{\mathcal R} }\right) + | r = \sup f \left({x}\right) +}} +{{eqn | r = \sup \left({x^\preceq}\right) + | c = definition of $f$ +}} +{{eqn | r = x + | c = [[Supremum of Lower Closure of Element]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Preceding is Approximating Relation} +Tags: Approximating Relations + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Then $\preceq$ is an [[Definition:Approximating Relation|approximating relation]] on $S$. +\end{theorem} + +\begin{proof} +Let $x \in S$. +Define $\mathcal R := \mathord\preceq$. +By definitions of [[Definition:Lower Closure of Element|lower closure of element]] and [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$x^\preceq = x^{\mathcal R}$ +where: +:$x^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $x$ +:$x^{\mathcal R}$ denotes the [[Definition:Relation Segment|$\mathcal R$-segment]] of $x$ +Thus by [[Supremum of Lower Closure of Element]]: +:$x = \sup \left({x^\preceq}\right) = \sup \left({ x^{\mathcal R} }\right)$ +Hence $\preceq$ is an [[Definition:Approximating Relation|approximating relation]] on $S$. +{{qed}} +\end{proof}<|endoftext|> +\section{Substitution Instance of Term is Term} +Tags: Predicate Logic + +\begin{theorem} +Let $\beta, \tau$ be [[Definition:Term (Predicate Logic)|terms of predicate logic]]. +Let $x \in \operatorname {VAR}$ be a [[Definition:Variable (Logic)|variable]]. +Let $\map \beta {x \gets \tau}$ be the [[Definition:Substitution Instance of Term|substitution instance of $\beta$ substituting $\tau$ for $x$]]. +Then $\map \beta {x \gets \tau}$ is a [[Definition:Term (Predicate Logic)|term]]. +\end{theorem} + +\begin{proof} +Proceed by the [[Principle of Structural Induction]] on the [[Definition:Term (Predicate Logic)|definition of term]], applied to $\beta$. +If $\beta = y$ for some [[Definition:Variable (Logic)|variable]] $y$, then: +:$\map \beta {x \gets \tau} = \begin{cases} \tau & : \text {if $y = x$} \\ y &: \text {otherwise} \end{cases}$ +In either case, $\map \beta {x \gets \tau}$ is a [[Definition:Term (Predicate Logic)|term]]. +If $\beta = \map f {\tau_1, \ldots, \tau_n}$ and the induction hypothesis holds for $\tau_1, \ldots, \tau_n$, then: +:$\map \beta {x \gets \tau} = \map f {\map {\tau_1} {x \gets \tau}, \ldots, \map {\tau_n} {x \gets \tau} }$ +By the induction hypothesis, each $\map {\tau_i} {x \gets \tau}$ is a [[Definition:Term (Predicate Logic)|term]]. +Hence so is $\map \beta {x \gets \tau}$. +The result follows by the [[Principle of Structural Induction]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Substitution Theorem for Terms} +Tags: Named Theorems, Predicate Logic + +\begin{theorem} +Let $\beta, \tau$ be [[Definition:Term (Predicate Logic)|terms]]. +Let $x \in \mathrm{VAR}$ be a [[Definition:Variable (Logic)|variable]]. +Let $\beta \left({x \gets \tau}\right)$ be the [[Definition:Substitution Instance of Term|substitution instance of $\beta$ substituting $\tau$ for $x$]]. +Let $\mathcal A$ be a [[Definition:Structure for Predicate Logic|structure for predicate logic]]. +Let $\sigma$ be an [[Definition:Assignment for Term|assignment]] for $\beta$ and $\tau$. +Suppose that: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right] = a$ +where $\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right]$ is the [[Definition:Value of Term under Assignment|value of $\tau$ under $\sigma$]]. +Then: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\beta \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta}\right) } \left[{\sigma + \left({x / a}\right)}\right]$ +where $\sigma + \left({x / a}\right)$ is the [[Definition:Extension of Assignment|extension of $\sigma$ by mapping $x$ to $a$]]. +\end{theorem} + +\begin{proof} +Proceed by the [[Principle of Structural Induction]] on the [[Definition:Term (Predicate Logic)|definition of term]], applied to $\beta$. +If $\beta = y$ for some [[Definition:Variable (Logic)|variable]] $y$, then: +:$\beta \left({x \gets \tau}\right) = \begin{cases} \tau &: \text{if $y = x$} \\ y &: \text{otherwise} \end{cases}$ +In the first case: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] + |r = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau }\right) } \left[{\sigma}\right] +}} +{{eqn|r = a + |c = Definition of $a$ +}} +{{eqn|r = \left({\sigma + \left({x / a}\right)}\right) \left({x}\right) + |c = Definition of [[Definition:Extension of Assignment|Extension of Assignment]] +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta }\right) } \left[{\sigma + \left({x / a}\right)}\right] + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma + \left({x / a}\right)$]] +}} +{{end-eqn}} +In the second case: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] + |r = \mathop{ \operatorname{val}_{\mathcal A} \left({y}\right) } \left[{\sigma}\right] +}} +{{eqn|r = \sigma \left({y}\right) + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma$]] +}} +{{eqn|r = \left({\sigma + \left({x / a}\right)}\right) \left({y}\right) + |c = Definition of [[Definition:Extension of Assignment|Extension of Assignment]] +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta }\right) } \left[{\sigma + \left({x / a}\right)}\right] + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma + \left({x / a}\right)$]] +}} +{{end-eqn}} +as desired. +If $\beta = f \left({\tau_1, \ldots, \tau_n}\right)$ and the induction hypothesis holds for $\tau_1, \ldots, \tau_n$, then: +:$\beta \left({x \gets \tau}\right) = f \left({ \tau_1 \left({x \gets \tau}\right), \ldots, \tau_n \left({x \gets \tau}\right) }\right)$ +Now: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] + |r = \mathop{ \operatorname{val}_{\mathcal A} \left({f \left({ \tau_1 \left({x \gets \tau}\right), \ldots, \tau_n \left({x \gets \tau}\right) }\right) }\right) } \left[{\sigma}\right] +}} +{{eqn|r = f_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1 \left({x \gets \tau}\right)}\right) } \left[{\sigma}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n \left({x \gets \tau}\right)}\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma$]] +}} +{{eqn|r = f_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1}\right) } \left[{\sigma + \left({x / a}\right)}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n}\right) } \left[{\sigma + \left({x / a}\right)}\right] }\right) + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\beta}\right) } \left[{\sigma + \left({x / a}\right)}\right] + |c = Definition of [[Definition:Value of Term under Assignment|value under $\sigma + \left({x / a}\right)$]] +}} +{{end-eqn}} +as desired. +The result follows by the [[Principle of Structural Induction]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Substitution Instance of WFF is WFF} +Tags: Predicate Logic + +\begin{theorem} +Let $\mathbf A$ be a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +Let $\tau$ be a [[Definition:Term (Predicate Logic)|term of predicate logic]]. +Let $x \in \mathrm{VAR}$ be a [[Definition:Variable (Logic)|variable]]. +Let $\mathbf A \left({x \gets \tau}\right)$ be the [[Definition:Substitution Instance of Well-Formed Formula|substitution instance of $\mathbf A$ substituting $\tau$ for $x$]]. +Then $\mathbf A \left({x \gets \tau}\right)$ is a [[Definition:WFF of Predicate Logic|WFF]]. +\end{theorem} + +\begin{proof} +Proceed by the [[Principle of Structural Induction]] on the [[Definition:Bottom-Up Specification of Predicate Logic|bottom-up specification of predicate logic]], applied to $\mathbf A$. +If $\mathbf A = p \left({\tau_1, \ldots, \tau_n}\right)$, then: +:$\mathbf A \left({x \gets \tau}\right) = p \left({\tau_1 \left({x \gets \tau}\right), \ldots, \tau_n \left({x \gets \tau}\right)}\right)$ +where $\tau_i \left({x \gets \tau}\right)$ is the [[Definition:Substitution Instance of Term|substitution instance]] of $\tau_i$. +By [[Substitution Instance of Term is Term]], each such $\tau_i \left({x \gets \tau}\right)$ is again a [[Definition:Term (Predicate Logic)|term]]. +It follows that $\mathbf A \left({x \gets \tau}\right)$ is again a [[Definition:WFF of Predicate Logic|WFF]]. +If $\mathbf A = \neg \mathbf B$ and the induction hypothesis applies to $\mathbf B$, then: +:$\mathbf A \left({x \gets \tau}\right) = \neg \mathbf B \left({x \gets \tau}\right)$ +and it follows from the induction hypothesis that $\mathbf A \left({x \gets \tau}\right)$ is a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +If $\mathbf A = \mathbf B \circ \mathbf B'$ for $\circ$ one of $\land, \lor, \implies, \iff$ and the induction hypothesis applies to $\mathbf B, \mathbf B'$: +:$\mathbf A \left({x \gets \tau}\right) = \mathbf B \left({x \gets \tau}\right) \circ \mathbf B' \left({x \gets \tau}\right)$ +and it follows from the induction hypothesis that $\mathbf A \left({x \gets \tau}\right)$ is a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +If $\mathbf A = \exists x: \mathbf B$, and the induction hypothesis applies to $\mathbf B$: +:$\mathbf A \left({x \gets \tau}\right) = \exists x: \mathbf B \left({x \gets \tau}\right)$ +and it follows from the induction hypothesis that $\mathbf A \left({x \gets \tau}\right)$ is a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +If $\mathbf A = \forall x : \mathbf B$, and the induction hypothesis applies to $\mathbf B$: +:$\mathbf A \left({x \gets \tau}\right) = \forall x: \mathbf B \left({x \gets \tau}\right)$ +and it follows from the induction hypothesis that $\mathbf A \left({x \gets \tau}\right)$ is a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +The result follows by the [[Principle of Structural Induction]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Unsigned Stirling Numbers of the First Kind of n+1 with k+1 by k choose m by -1^k-m} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \left[{n + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} = \left[{n \atop m}\right]$ +where: +:$\displaystyle \left[{n + 1 \atop k + 1}\right]$ etc. denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\dbinom k m$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left[{n + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} = \left[{n \atop m}\right]$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left[{1 \atop k + 1}\right] \binom k m \left({-1}\right)^{- m} + | r = \sum_k \delta_{1 \left({k + 1}\right)} \binom k m \left({-1}\right)^{- m} + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{eqn | r = \sum_k \delta_{0 k} \binom k m \left({-1}\right)^{- m} + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \binom 0 m \left({-1}\right)^{- m} + | c = all terms vanish except for $k = 0$ +}} +{{eqn | r = \delta_{0 m} \left({-1}\right)^{- m} + | c = [[Zero Choose n]] +}} +{{eqn | r = \left[{0 \atop m}\right] \left({-1}\right)^{- m} + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{end-eqn}} +But when $m \ne 0$ we have that: +:$\displaystyle \left[{0 \atop m}\right] \left({-1}\right)^{- m} = 0 = \left[{0 \atop m}\right]$ +and when $m = 0$ we have that: +:$\displaystyle \left[{0 \atop m}\right] \left({-1}\right)^{- 0} = 1 = \left[{0 \atop m}\right]$ +So $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 1$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left[{r + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} = \left[{r \atop m}\right]$ +from which it is to be shown that: +:$\displaystyle \sum_k \left[{r + 2 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} = \left[{r + 1 \atop m}\right]$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left[{r + 2 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} + | c = +}} +{{eqn | r = \sum_k \left({\left({r + 1}\right) \left[{r + 1 \atop k + 1}\right] + \left[{r + 1 \atop k}\right]}\right) \binom k m \left({-1}\right)^{k - m} + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = \left({r + 1}\right) \sum_k \left[{r + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} + \sum_k \left[{r + 1 \atop k}\right] \binom k m \left({-1}\right)^{k - m} + | c = +}} +{{eqn | r = \left({r + 1}\right) \left[{r \atop m}\right] + \sum_k \left[{r + 1 \atop k}\right] \binom k m \left({-1}\right)^{k - m} + | c = [[Sum over k of Unsigned Stirling Numbers of the First Kind of n+1 with k+1 by k choose m by -1^k-m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left({r + 1}\right) \left[{r \atop m}\right] + \sum_k \left[{r + 1 \atop k}\right] \left({\binom {k - 1} m + \binom {k - 1} {m - 1} }\right) \left({-1}\right)^{k - m} + | c = [[Pascal's Rule]] +}} +{{eqn | r = \left({r + 1}\right) \left[{r \atop m}\right] + \sum_k \left[{r + 1 \atop k}\right] \binom {k - 1} m \left({-1}\right)^{k - m} + \sum_k \left[{r + 1 \atop k}\right] \binom {k - 1} {m - 1} \left({-1}\right)^{k - m} + | c = +}} +{{eqn | r = \left({r + 1}\right) \left[{r \atop m}\right] + \sum_k \left[{r + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k + 1 - m} + \sum_k \left[{r + 1 \atop k + 1}\right] \binom k {m - 1} \left({-1}\right)^{k + 1 - m} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = \left({r + 1}\right) \left[{r \atop m}\right] - \sum_k \left[{r + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} + \sum_k \left[{r + 1 \atop k + 1}\right] \binom k {m - 1} \left({-1}\right)^{k - \left({m - 1}\right)} + | c = +}} +{{eqn | r = \left({r + 1}\right) \left[{r \atop m}\right] - \left[{r \atop m}\right] + \left[{r \atop m - 1}\right] + | c = [[Sum over k of Unsigned Stirling Numbers of the First Kind of n+1 with k+1 by k choose m by -1^k-m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = r \left[{r \atop m}\right] + \left[{r \atop m - 1}\right] + | c = +}} +{{eqn | r = \left[{r + 1 \atop m}\right] + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left[{n + 1 \atop k + 1}\right] \binom k m \left({-1}\right)^{k - m} = \left[{n \atop m}\right]$ +{{qed}} +\end{proof}<|endoftext|> +\section{Substitution Theorem for Well-Formed Formulas} +Tags: Named Theorems, Predicate Logic + +\begin{theorem} +Let $\mathbf A$ be a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +Let $x \in \mathrm{VAR}$ be a [[Definition:Variable (Logic)|variable]]. +Let $\tau$ be a [[Definition:Term (Predicate Logic)|term of predicate logic]] which is [[Definition:Freely Substitutable|freely substitutable]] for $x$ in $\mathbf A$. +Let $\mathbf A \left({x \gets \tau}\right)$ be the [[Definition:Substitution Instance of Well-Formed Formula|substitution instance of $\mathbf A$ substituting $\tau$ for $x$]]. +Let $\mathcal A$ be a [[Definition:Structure for Predicate Logic|structure for predicate logic]]. +Let $\sigma$ be an [[Definition:Assignment for Structure|assignment]] for $\mathbf A$ and $\tau$. +Suppose that: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right] = a$ +where $\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right]$ is the [[Definition:Value of Term under Assignment|value of $\tau$ under $\sigma$]]. +Then: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma + \left({x / a}\right)}\right]$ +where $\sigma + \left({x / a}\right)$ is the [[Definition:Extension of Assignment|extension of $\sigma$ by mapping $x$ to $a$]]. +\end{theorem} + +\begin{proof} +Proceed by the [[Principle of Structural Induction]] on the [[Definition:Bottom-Up Specification of Predicate Logic|bottom-up specification of predicate logic]], applied to $\mathbf A$. +If $\mathbf A = p \left({\tau_1, \ldots, \tau_n}\right)$, then: +:$\mathbf A \left({x \gets \tau}\right) = p \left({\tau_1 \left({x \gets \tau}\right), \ldots, \tau_n \left({x \gets \tau}\right)}\right)$ +where $\tau_i \left({x \gets \tau}\right)$ is the [[Definition:Substitution Instance of Term|substitution instance]] of $\tau_i$. +Now: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] + |r = \mathop{ \operatorname{val}_{\mathcal A} \left({p \left({\tau_1 \left({x \gets \tau}\right), \ldots, \tau_n \left({x \gets \tau}\right)}\right) }\right) } \left[{\sigma}\right] +}} +{{eqn|r = p_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1 \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]] +}} +{{eqn|r = p_{\mathcal A} \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_1}\right) } \left[{\sigma + \left({x / a}\right)}\right], \ldots, \mathop{ \operatorname{val}_{\mathcal A} \left({\tau_n}\right) } \left[{\sigma + \left({x / a}\right)}\right] }\right) + |c = [[Substitution Theorem for Terms]] +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma + \left({x / a}\right)}\right] + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma + \left({x / a}\right)$]] +}} +{{end-eqn}} +Suppose $\mathbf A = \neg \mathbf B$ and the induction hypothesis applies to $\mathbf B$. +Then since $\tau$ is also [[Definition:Freely Substitutable|free]] for $x$ in $\mathbf B$: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] + |r = f^\neg \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]] +}} +{{eqn|r = f^\neg \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({x / a}\right)}\right] }\right) + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma + \left({x / a}\right)}\right] + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma + \left({x / a}\right)$]] +}} +{{end-eqn}} +Suppose $\mathbf A = \mathbf B \circ \mathbf B'$ for $\circ$ one of $\land, \lor, \implies, \iff$ and the induction hypothesis applies to $\mathbf B, \mathbf B'$. +Then since $\tau$ is also [[Definition:Freely Substitutable|free]] for $x$ in $\mathbf B$ and $\mathbf B'$: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] + |r = f^\circ \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right], \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma}\right] }\right) + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]] +}} +{{eqn|r = f^\circ \left({ \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({x / a}\right)}\right], \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({x / a}\right)}\right] }\right) + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma + \left({x / a}\right)}\right] + |c = Definition of [[Definition:Value of Formula under Assignment|value under $\sigma + \left({x / a}\right)$]] +}} +{{end-eqn}} +Suppose $\mathbf A = \exists y: \mathbf B$ or $\mathbf A = \forall y: \mathbf B$, and the induction hypothesis applies to $\mathbf B$. +Because $\tau$ is [[Definition:Freely Substitutable|free]] for $x$ in $\mathbf A$, it must be that either $x$ does not [[Definition:Free Occurrence|occur freely]] in $\mathbf A$, or $y$ does not occur in $\tau$. +In the first case: +:$\mathbf A \left({x \gets \tau}\right) = \mathbf A$ +and by [[Value of Formula under Assignment Determined by Free Variables]]: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A }\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A }\right) } \left[{\sigma + \left({x / a}\right)}\right]$ +Now consider the case where $y$ does not occur in $\tau$. +From the definition of [[Definition:Value of Formula under Assignment|value under $\sigma$]], $\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right]$ is determined by: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B \left({x \gets \tau}\right) }\right) } \left[{\sigma + \left({y / a'}\right) }\right]$ +where $a'$ ranges over $\mathcal A$. +Now from [[Value of Term under Assignment Determined by Variables]], since $y$ does not occur in $\tau$: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma + \left({y / a'}\right)}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\tau}\right) } \left[{\sigma}\right] = a$ +for all $a'$. +Hence the induction hypothesis also applies to the [[Definition:Assignment for Structure|assignment]] $\sigma + \left({y / a'}\right)$. +Thus, for all $a'$: +{{begin-eqn}} +{{eqn|l = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B \left({x \gets \tau}\right) }\right) } \left[{\sigma + \left({y / a'}\right) }\right] + |r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({y / a'}\right) + \left({x / a}\right) }\right] + |c = Induction Hypothesis +}} +{{eqn|r = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf B}\right) } \left[{\sigma + \left({x / a}\right) + \left({y / a'}\right) }\right] + |c = Definition of [[Definition:Extension of Assignment|Extension of Assignment]] +}} +{{end-eqn}} +from which we infer: +:$\mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A \left({x \gets \tau}\right) }\right) } \left[{\sigma}\right] = \mathop{ \operatorname{val}_{\mathcal A} \left({\mathbf A}\right) } \left[{\sigma + \left({x / a}\right)}\right]$ +as desired. +The result follows by the [[Principle of Structural Induction]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Stirling Numbers of the Second Kind of k with m by n choose k} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \left\{ {k \atop m}\right\} \binom n k = \left\{ {n + 1 \atop m + 1}\right\}$ +where: +:$\displaystyle \left\{ {k \atop m}\right\}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]] +:$\dbinom n k$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left\{ {k \atop m}\right\} \binom n k = \left\{ {n + 1 \atop m + 1}\right\}$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left\{ {k \atop m}\right\} \binom 0 k + | r = \sum_k \left\{ {k \atop m}\right\} \delta_{0 k} + | c = [[Zero Choose n]] +}} +{{eqn | r = \left\{ {0 \atop m}\right\} + | c = all terms vanish except for $k = 0$ +}} +{{eqn | r = \delta_{0 m} + | c = [[Stirling Number of the Second Kind of 0]] +}} +{{eqn | r = \delta_{1 \left({m + 1}\right)} + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \left\{ {1 \atop m + 1}\right\} + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{eqn | r = \left\{ {0 + 1 \atop m + 1}\right\} + | c = +}} +{{end-eqn}} +So $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 1$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left\{ {k \atop m}\right\} \binom r k = \left\{ {r + 1 \atop m + 1}\right\}$ +from which it is to be shown that: +:$\displaystyle \sum_k \left\{ {k \atop m}\right\} \binom {r + 1} k = \left\{ {r + 2 \atop m + 1}\right\}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left\{ {k \atop m}\right\} \binom {r + 1} k + | c = +}} +{{eqn | r = \sum_k \left\{ {k \atop m}\right\} \left({\binom r k + \binom r {k - 1} }\right) + | c = [[Pascal's Rule]] +}} +{{eqn | r = \sum_k \left\{ {k \atop m}\right\} \binom r k + \sum_k \left\{ {k \atop m}\right\} \binom r {k - 1} + | c = +}} +{{eqn | r = \left\{ {r + 1 \atop m + 1}\right\} + \sum_k \left\{ {k \atop m}\right\} \binom r {k - 1} + | c = [[Sum over k of Stirling Numbers of the Second Kind of k with m by n choose k#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left\{ {r + 1 \atop m + 1}\right\} + \sum_k \left({m \left\{ {k - 1 \atop m}\right\} + \left\{ {k - 1 \atop m - 1}\right\} }\right) \binom r {k - 1} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = \left\{ {r + 1 \atop m + 1}\right\} + m \sum_k \left\{ {k - 1 \atop m}\right\} \binom r {k - 1} + \sum_k \left\{ {k - 1 \atop m - 1}\right\} \binom r {k - 1} + | c = +}} +{{eqn | r = \left\{ {r + 1 \atop m + 1}\right\} + m \sum_k \left\{ {k \atop m}\right\} \binom r k + \sum_k \left\{ {k \atop m - 1}\right\} \binom r k + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = \left\{ {r + 1 \atop m + 1}\right\} + m \left\{ {r + 1 \atop m + 1}\right\} + \left\{ {r + 1 \atop m}\right\} + | c = [[Sum over k of Stirling Numbers of the Second Kind of k with m by n choose k#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left({m + 1}\right) \left\{ {r + 1 \atop m + 1}\right\} + \left\{ {r + 1 \atop m}\right\} + | c = +}} +{{eqn | r = \left\{ {r + 2 \atop m + 1}\right\} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left\{ {k \atop m}\right\} \binom n k = \left\{ {n + 1 \atop m + 1}\right\}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Stirling Numbers of the Second Kind of k+1 with m+1 by n choose k by -1^k-m} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom n k \left({-1}\right)^{n - k} = \left\{ {n \atop m}\right\}$ +where: +:$\displaystyle \left\{ {k + 1 \atop m + 1}\right\}$ etc. denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]] +:$\dbinom n k$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom n k \left({-1}\right)^{n - k} = \left\{ {n \atop m}\right\}$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom 0 k \left({-1}\right)^{- k} +}} +{{eqn | r = \sum_k \left\{ {k + 1 \atop m + 1}\right\} \delta_{0 k} \left({-1}\right)^{- k} + | c = [[Zero Choose n]] +}} +{{eqn | r = \left\{ {1 \atop m + 1}\right\} + | c = all terms vanish except for $k = 0$ +}} +{{eqn | r = \delta_{1 \left({m + 1}\right)} + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{eqn | r = \delta_{0 m} + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \left\{ {0 \atop m}\right\} + | c = [[Stirling Number of the Second Kind of 0]] +}} +{{end-eqn}} +So $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 1$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom r k \left({-1}\right)^{r - k} = \left\{ {r \atop m}\right\}$ +from which it is to be shown that: +:$\displaystyle \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom {r + 1} k \left({-1}\right)^{r + 1 - k} = \left\{ {r + 1 \atop m}\right\}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom {r + 1} k \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | r = \sum_k \left\{ {k + 1 \atop m + 1}\right\} \left({\binom r k + \binom r {k - 1} }\right) \left({-1}\right)^{r + 1 - k} + | c = [[Pascal's Rule]] +}} +{{eqn | r = -\sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom r k \left({-1}\right)^{r - k} + \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom r {k - 1} \left({-1}\right)^{r - \left({k - 1}\right)} + | c = +}} +{{eqn | r = -\left\{ {r \atop m}\right\} + \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom r {k - 1} \left({-1}\right)^{r - \left({k - 1}\right)} + | c = [[Sum over k of Stirling Numbers of the Second Kind of k+1 with m+1 by n choose k by -1^k-m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = -\left\{ {r \atop m}\right\} + \sum_k \left({\left({m + 1}\right) \left\{ {k \atop m + 1}\right\} + \left\{ {k \atop m }\right\} }\right) \binom r {k - 1} \left({-1}\right)^{r - \left({k - 1}\right)} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = -\left\{ {r \atop m}\right\} + \left({m + 1}\right) \sum_k \left\{ {k \atop m + 1}\right\} \binom r {k - 1} \left({-1}\right)^{r - \left({k - 1}\right)} + | c = +}} +{{eqn | o = + | r = + \sum_k \left\{ {k \atop m }\right\} \binom r {k - 1} \left({-1}\right)^{r - \left({k - 1}\right)} + | c = +}} +{{eqn | r = -\left\{ {r \atop m}\right\} + \left({m + 1}\right) \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom r k \left({-1}\right)^{r - k} + \sum_k \left\{ {k + 1 \atop m }\right\} \binom r k \left({-1}\right)^{r - k} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = -\left\{ {r \atop m}\right\} + \left({m + 1}\right) \left\{ {r \atop m}\right\} + \left\{ {r \atop m - 1}\right\} + | c = [[Sum over k of Stirling Numbers of the Second Kind of k+1 with m+1 by n choose k by -1^k-m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = m \left\{ {r \atop m}\right\} + \left\{ {r \atop m - 1}\right\} + | c = +}} +{{eqn | r = \left\{ {r + 1 \atop m}\right\} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left\{ {k + 1 \atop m + 1}\right\} \binom n k \left({-1}\right)^{n - k} = \left\{ {n \atop m}\right\}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Universal Instantiation/Informal Statement} +Tags: Predicate Logic + +\begin{theorem} +Suppose we have a [[Definition:Universal Statement|universal statement]]: +:$\forall x: \map P x$ +where $\forall$ is the [[Definition:Universal Quantifier|universal quantifier]] and $\map P x$ is a [[Definition:Propositional Function|propositional function]]. +Then we can deduce: +:$\map P {\mathbf a}$ +where $\mathbf a$ is any arbitrary [[Definition:Object|object]] we care to choose in the [[Definition:Universe of Discourse|universe of discourse]]. +In [[Definition:Natural Language|natural language]]: +:''Suppose $P$ is true of everything in the [[Definition:Universe of Discourse|universe of discourse]].'' +:''Let $\mathbf a$ be an element of the [[Definition:Universe of Discourse|universe of discourse]]." +:''Then $P$ is true of $\mathbf a$.'' +\end{theorem} + +\begin{proof} +In the language of [[Definition:Symbolic Logic|symbolic logic]]: +{{begin-eqn}} +{{eqn | lo= \forall x: + | l = \map P x + | o = + | c = +}} +{{eqn | ll= \therefore + | l = \map P {\mathbf a} + | o = + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Universal Instantiation/Model} +Tags: Predicate Logic + +\begin{theorem} +Let $\map {\mathbf A} x$ be a [[Definition:WFF of Predicate Logic|WFF of predicate logic]]. +Let $\tau$ be a [[Definition:Term (Predicate Logic)|term]] which is [[Definition:Freely Substitutable|freely substitutable]] for $x$ in $\mathbf A$. +Then $\forall x: \map {\mathbf A} x \implies \map {\mathbf A} \tau$ is a [[Definition:Tautology (Predicate Logic)|tautology]]. +\end{theorem} + +\begin{proof} +Let $\AA$ be a [[Definition:Structure for Predicate Logic|structure]] on a [[Definition:Set|set]] $A$, and let $\sigma$ be an [[Definition:Assignment for Formula|assignment]] for $\forall x: \map {\mathbf A} x \implies \map {\mathbf A} \tau$. +Define: +:$a_\tau := \mathop{ \operatorname{val}_\AA \left({\tau}\right) } \sqbrk \sigma$ +the [[Definition:Value of Term under Assignment|value]] of $\tau$ under $\sigma$. +From the definition of [[Definition:Value of Formula under Assignment|value]] under $\sigma$: +:$\map {\mathrm {val}_\AA} {\forall x: \map {\mathbf A} x \implies \map {\mathbf A} \tau} \sqbrk \sigma = \map {f^\to} {\map {\mathrm {val}_\AA} {\forall x: \map {\mathbf A} x} \sqbrk \sigma, \map {\mathrm {val}_\AA} {\map {\mathbf A} \tau} \sqbrk \sigma}$ +where $f^\to$ is the [[Definition:Conditional/Truth Function|truth function]] of $\implies$. +We thus need to ascertain that if: +:$\map {\mathrm {val}_\AA} {\forall x: \map {\mathbf A} x} \sqbrk \sigma = T$ +then also: +:$\map {\mathrm {val}_\AA} {\map {\mathbf A} \tau} \sqbrk \sigma = T$ +By definition of [[Definition:Value of Formula under Assignment|value]] under $\sigma$, the former amounts to: +:$\map {\mathrm {val}_\AA} {\map {\mathbf A} x} \sqbrk {\sigma + \paren {x / a} } = T$ +for all $a \in A$. +By the [[Substitution Theorem for Well-Formed Formulas]]: +:$\map {\mathrm {val}_\AA} {\map {\mathbf A} \tau} \sqbrk \sigma = \map {\mathrm {val}_\AA} {\mathbf A} \sqbrk {\sigma + \paren {x / a_\tau} }$ +Since $a_\tau \in A$, the conclusion follows, and $\forall x: \map {\mathbf A} x \implies \map {\mathbf A} \tau$ is a [[Definition:Tautology (Predicate Logic)|tautology]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Existential Generalisation/Informal Statement} +Tags: Predicate Logic + +\begin{theorem} +:$P \left({\mathbf a}\right) \vdash \exists x: P \left({x}\right)$ +Suppose we have the following: +: We can find an arbitrary [[Definition:Object|object]] $\mathbf a$ in our [[Definition:Universe of Discourse|universe of discourse]] which has the [[Definition:Property|property]] $P$. +Then we may infer that: +: there exists in that universe ''at least one'' object $x$ which has that property $P$. +This is called the '''Rule of Existential Generalisation''' and often appears in a proof with its abbreviation '''EG'''. +\end{theorem}<|endoftext|> +\section{Way Below is Approximating Relation} +Tags: Approximating Relations, Continuous Lattices, Way Below Relation + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Then $\ll$ is an [[Definition:Approximating Relation|approximating relation]] on $S$. +\end{theorem} + +\begin{proof} +Let $x \in S$. +Define $\mathcal R := \mathord\ll$. +By definitions of [[Definition:Way Below Closure|way below closure]] and [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$x^\ll = x^{\mathcal R}$ +where: +:$x^\ll$ denotes the [[Definition:Way Below Closure|way below closure]] of $x$ +:$x^{\mathcal R}$ denotes the [[Definition:Relation Segment|$\mathcal R$-segment]] of $x$ +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +Thus by [[Definition:Axiom of Approximation|axiom of approximation]]: +:$x = \sup \left({x^\ll}\right) = \sup \left({ x^{\mathcal R} }\right)$ +Hence $\ll$ is an [[Definition:Approximating Relation|approximating relation]] on $S$. +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Relation Segments of Approximating Relations equals Way Below Closure} +Tags: Approximating Relations, Meet-Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Meet-Continuous Lattice|meet-continuous lattice]]. +Let $\mathit{App}\left({L}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relations]] on $S$. +Let $x \in S$. +Then +: $\displaystyle \bigcap \left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\} = x^\ll$ +\end{theorem} + +\begin{proof} +By [[Intersection of Ideals with Suprema Succeed Element equals Way Below Closure of Element]]: +:$\displaystyle \bigcap \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\} = x^\ll$ +where $\mathit{Ids}$ denotes the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +For all $I \in \mathit{Ids}$ define a [[Definition:Mapping|mapping]] $m_I: S \to \mathit{Ids}$: +:$\forall x \in S: x \preceq \sup I \implies m_I\left({x}\right) = \left\{ {x \wedge i: i \in I}\right\}$ +and +:$\forall x \in S: x \npreceq \sup I \implies m_I\left({x}\right) = x^\preceq$ +By [[Intersection of Applications of Down Mappings at Element equals Way Below Closure of Element]]: +:$\forall x \in S: \displaystyle \bigcap \left\{ {m_I\left({x}\right): I \in \mathit{Ids} }\right\} = x^\ll$ +We will prove that +:$\left\{ {m_I\left({x}\right): I \in \mathit{Ids} }\right\} \subseteq \left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\}$ +Let $a \in \left\{ {m_I\left({x}\right): I \in \mathit{Ids} }\right\}$ +Then +:$\exists I \in \mathit{Ids}: a = m_I\left({x}\right)$ +By [[Down Mapping is Generated by Approximating Relation]]: +:$\exists \mathcal R \in \mathit{App}\left({L}\right): \forall s \in S: m_I(s) = s^{\mathcal R}$ +Then +:$a = x^{\mathcal R}$ +Thus +:$a \in \left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\}$ +{{qed|lemma}} +By [[Intersection of Family is Subset of Intersection of Subset of Family]]: +:$\displaystyle \bigcap \left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\} \subseteq x^\ll$ +We will prove that +:$\left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\} \subseteq \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}$ +Let $a \in \left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\}$ +Then +:$\exists \mathcal R \in \mathit{App}\left({L}\right): a = x^{\mathcal R}$ +By definition of [[Definition:Approximating Relation|approximating relation]]: +:$x = \sup a$ +By [[Relation Segment of Auxiliary Relation is Ideal]]: +:$a \in \mathit{Ids}$ +Thus by definition of [[Definition:Reflexivity|reflexivity]]: +:$a \in \left\{ {I \in \mathit{Ids}: x \preceq \sup I}\right\}$ +{{qed|lemma}} +By [[Intersection of Family is Subset of Intersection of Subset of Family]]: +:$x^\ll \subseteq \displaystyle \bigcap \left\{ {x^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\}$ +Hence the result by definition of [[Definition:Set Equality|set equality]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Limit of Monotone Real Function/Increasing} +Tags: Limits of Functions + +\begin{theorem} +Let $f$ be a [[Definition:Real Function|real function]] which is [[Definition:Increasing Real Function|increasing]] and [[Definition:Bounded Above Mapping|bounded above]] on the [[Definition:Open Real Interval|open interval]] $\openint a b$. +Let the [[Definition:Supremum of Real-Valued Function|supremum]] of $f$ on $\openint a b$ be $L$. +Then: +:$\displaystyle \lim_{x \mathop \to b^-} \map f x = L$ +where $\displaystyle \lim_{x \mathop \to b^-} \map f x$ is the [[Definition:Limit from Left|limit of $f$ from the left]] at $b$. +\end{theorem} + +\begin{proof} +Let $\epsilon > 0$. +We have to find a value of $\delta > 0$ such that $\forall x: b - \delta < x < b: \size {\map f x - L} < \epsilon$. +That is, that $L - \epsilon < \map f x < L + \epsilon$. +As $L$ is an [[Definition:Upper Bound of Set|upper bound]] for $f$ on $\openint a b$, $\map f x < L + \epsilon$ automatically happens. +Since $L - \epsilon$ is ''not'' an upper bound for $f$ on $\openint a b$, it follows that: +:$\exists y \in \openint a b: \map f y > L - \epsilon$ +But $f$ [[Definition:Increasing Real Function|increases]] on $\openint a b$. +So: +:$\forall x: y < x < b: L - \epsilon < \map f y \le \map f x$ +We choose $\delta = b - y$ and hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Limit of Monotone Real Function/Decreasing} +Tags: Limits of Functions + +\begin{theorem} +Let $f$ be a [[Definition:Real Function|real function]] which is [[Definition:Decreasing Real Function|decreasing]] and [[Definition:Bounded Below Mapping|bounded below]] on the [[Definition:Open Real Interval|open interval]] $\openint a b$. +Let the [[Definition:Infimum of Real-Valued Function|infimum]] of $f$ on $\openint a b$ be $l$. +Then: +:$\displaystyle \lim_{x \mathop \to b^-} \map f x = l$ +where $\displaystyle \lim_{x \mathop \to b^-} \map f x$ is the [[Definition:Limit from Left|limit of $f$ from the left]] at $b$. +\end{theorem} + +\begin{proof} +Let $\epsilon > 0$. +We have to find a value of $\delta > 0$ such that: +:$\forall x: b - \delta < x < b: \size {\map f x - l} < \epsilon$ +That is: +:$l - \epsilon < \map f x < l + \epsilon$ +As $l$ is a [[Definition:Lower Bound of Set|lower bound]] for $f$ on $\openint a b$: +:$l - \epsilon < \map f x$ +automatically happens +Because $l + \epsilon$ is ''not'' a [[Definition:Lower Bound of Set|lower bound]] for $f$ on $\openint a b$: +:$\exists y \in \openint a b: \map f y < l + \epsilon$ +But $f$ [[Definition:Decreasing Real Function|decreases]] on $\openint a b$. +So: +:$\forall x: y < x < b: \map f x \le \map f y < l + \epsilon$ +We choose $\delta = y - a$ and hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of m choose k by -1^m-k by k to the n} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$ +where: +:$\dbinom m k$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]] +:$\displaystyle {n \brace m}$ etc. denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]] +:$m!$ denotes a [[Definition:Factorial|factorial]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $m$. +For all $m \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall n \in \Z_{\ge 0}: \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | r = \sum_k \binom 0 k \paren {-1}^{0 - k} k^n + | o = + | c = +}} +{{eqn | r = \sum_k \delta_{0 k} \paren {-1}^{- k} k^n + | c = [[Zero Choose n]] +}} +{{eqn | r = \paren {-1}^{- 0} 0^n + | c = all terms vanish except for $k = 0$ +}} +{{eqn | r = \delta_{0 n} + | c = $0^n = 0$ except when $n = 0$, as $0^0 = 1$ +}} +{{eqn | r = 0! {n \brace 0} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{end-eqn}} +So $\map P 0$ is seen to hold. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \binom r k \paren {-1}^{r - k} k^n = r! {n \brace r}$ +from which it is to be shown that: +:$\displaystyle \sum_k \binom {r + 1} k \paren {-1}^{r + 1 - k} k^n = \paren {r + 1}! {n \brace r + 1}$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \binom {r + 1} k \paren {-1}^{r + 1 - k} k^n + | c = +}} +{{eqn | r = \sum_k \paren {\binom r k + \binom r {k - 1} } \paren {-1}^{r + 1 - k} k^n + | c = [[Pascal's Rule]] +}} +{{eqn | r = \sum_k \binom r k \paren {-1}^{r + 1 - k} k^n + \sum_k \binom r {k - 1} \paren {-1}^{r + 1 - k} k^n + | c = +}} +{{eqn | r = -\sum_k \binom r k \paren {-1}^{r - k} k^n + \sum_k \binom r {k - 1} \paren {-1}^{r - \paren {k - 1} } k^n + | c = +}} +{{eqn | r = -r! {n \brace r} + \sum_k \binom r {k - 1} \paren {-1}^{r - \paren {k - 1} } k^n + | c = [[Sum over k of m choose k by -1^m-k by k to the n#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = -r! {n \brace r} + \sum_k \binom r k \paren {-1}^{r - k} \paren {k + 1}^n + | c = [[Translation of Index Variable of Summation]] +}} +{{end-eqn}} +{{finish|The next step to take is not clear.}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of m-n choose m+k by m+n choose n+k by Stirling Number of the Second Kind of m+k with k} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brace k} = {n \brack n - m}$ +where: +:$\dbinom {m - n} {m + k}$ etc. denote [[Definition:Binomial Coefficient|binomial coefficients]] +:$\displaystyle {m + k \brace k}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]] +:$\displaystyle {n \brack n - m}$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $m$. +For all $m \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall n \in \Z_{\ge 0}: \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brace k} = {n \brack n - m}$ +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | r = \sum_k \binom {0 - n} {0 + k} \binom {0 + n} {n + k} {0 + k \brace k} + | o = + | c = +}} +{{eqn | r = \sum_k \binom {- n} k \binom n {n + k} + | c = [[Stirling Number of the Second Kind of Number with Self]] +}} +{{eqn | r = \sum_k \binom {- n} k \delta_{0 k} + | c = as $\dbinom n {n + k} = 0$ for $k = 0$, and [[Binomial Coefficient with Self]] +}} +{{eqn | r = \binom {- n} 0 + | c = All terms but where $k = 0$ vanish +}} +{{eqn | r = 1 + | c = [[Binomial Coefficient with Zero]] +}} +{{eqn | r = {n \brack n - 0} + | c = [[Unsigned Stirling Number of the First Kind of Number with Self]] +}} +{{end-eqn}} +So $\map P 0$ is seen to hold. +=== Basis for the Induction === +$\map P 1$ is the case: +{{finish|Needs to be established whether the case $\map P 1$ actually needs to be proved separately, or whether we can get away with using $\map P 0$ as our base case.}} +Thus $\map P 1$ is seen to hold for all $m$. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \binom {r - n} {r + k} \binom {r + n} {n + k} {r + k \brace k} = {n \brack n - r}$ +from which it is to be shown that: +:$\displaystyle \sum_k \binom {r + 1 - n} {r + 1 + k} \binom {r + 1 + n} {n + k} {r + 1 + k \brace k} = {n \brack n - r + 1}$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \binom {r + 1 - n} {r + 1 + k} \binom {r + 1 + n} {n + k} {r + 1 + k \brace k} = {n \brack n - r + 1} + | c = +}} +{{eqn | r = \sum_k \paren {\binom {r - n} {r + 1 + k} + \binom {r - n} {r + k} } \binom {r + 1 + n} {n + k} {r + 1 + k \brace k} = {n \brack n - r + 1} + | c = [[Pascal's Rule]] +}} +{{end-eqn}} +{{finish|Lots to do, not sure if this is a workable approach.}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brace k} = {n \brack n - m}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of m-n choose m+k by m+n choose n+k by Unsigned Stirling Number of the First Kind of m+k with k} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brack k} = {n \brace n - m}$ +where: +:$\dbinom {m - n} {m + k}$ etc. denote [[Definition:Binomial Coefficient|binomial coefficients]] +:$\displaystyle {m + k \brack k}$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\displaystyle {n \brace n - m}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $m$. +For all $m \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\forall n \in \Z_{\ge 0}: \displaystyle \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brack k} = {n \brace n - m}$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \binom {0 - n} {0 + k} \binom {0 + n} {n + k} {0 + k \brack k} + | c = +}} +{{eqn | r = \sum_k \binom {- n} k \binom n {n + k} + | c = [[Unsigned Stirling Number of the First Kind of Number with Self]] +}} +{{eqn | r = \sum_k \binom {- n} k \delta_{0 k} + | c = as $\dbinom n {n + k} = 0$ for $k = 0$, and [[Binomial Coefficient with Self]] +}} +{{eqn | r = \binom {- n} 0 + | c = All terms but where $k = 0$ vanish +}} +{{eqn | r = 1 + | c = [[Binomial Coefficient with Zero]] +}} +{{eqn | r = {n \brace n - 0} + | c = [[Stirling Number of the Second Kind of Number with Self]] +}} +{{end-eqn}} +So $\map P 0$ is seen to hold. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \binom {r - n} {r + k} \binom {r + n} {n + k} {r + k \brack k} = {n \brace n - r}$ +from which it is to be shown that: +:$\displaystyle \sum_k \binom {r + 1 - n} {r + 1 + k} \binom {r + 1 + n} {n + k} {r + 1 + k \brack k} = {n \brace n - r + 1}$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \binom {r + 1 - n} {r + 1 + k} \binom {r + 1 + n} {n + k} {r + 1 + k \brack k} = {n \brace n - r + 1} + | c = +}} +{{eqn | r = \sum_k \paren {\binom {r - n} {r + 1 + k} + \binom {r - n} {r + k} } \binom {r + 1 + n} {n + k} {r + 1 + k \brack k} = {n \brace n - r + 1} + | c = [[Pascal's Rule]] +}} +{{end-eqn}} +{{finish|Lots to do, not sure if this is a workable approach.}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\forall m, n \in \Z_{\ge 0}: \displaystyle \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brack k} = {n \brace n - m}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Stirling Number of the Second Kind of n+1 with k+1 by Unsigned Stirling Number of the First Kind of k with m by -1^k-m} +Tags: Stirling Numbers, Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_k \left\{ {n + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} = \binom n m$ +where: +:$\dbinom n m$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]] +:$\displaystyle \left[{k \atop m}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\displaystyle \left\{ {n + 1 \atop k + 1}\right\}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $P \left({m}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall m \in \Z_{\ge 0}: \sum_k \left\{ {n + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} = \binom n m$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | r = \sum_k \left\{ {0 + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | o = + | c = +}} +{{eqn | r = \sum_k \delta_{1 \left({k + 1}\right)} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{eqn | r = \sum_k \delta_{0 k} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = {{Defof|Kronecker Delta}} +}} +{{eqn | r = \left[{0 \atop m}\right] \left({-1}\right)^{- m} + | c = All terms but where $k = 0$ vanish +}} +{{eqn | r = \delta_{0 m} \left({-1}\right)^{- m} + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{eqn | r = \delta_{0 m} + | c = multiplier irrelevant when $m \ne 0$ +}} +{{eqn | r = \binom 0 m + | c = [[Zero Choose n]] +}} +{{end-eqn}} +So $P \left({0}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 1$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} = \binom r m$ +from which it is to be shown that: +:$\displaystyle \sum_k \left\{ {r + 2 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} = \binom {r + 1} m$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left\{ {r + 2 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = +}} +{{eqn | r = \sum_k \left({\left({k + 1}\right) \left\{ {r + 1 \atop k + 1}\right\} + \left\{ {r + 1 \atop k}\right\} }\right) \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = \sum_k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = +}} +{{eqn | o = + | ro= + + | r = \sum_k k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + \sum_k \left\{ {r + 1 \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = +}} +{{eqn | r = \binom r m + \sum_k k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + \sum_k \left\{ {r + 1 \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = [[Sum over k of Stirling Number of the Second Kind of n+1 with k+1 by Unsigned Stirling Number of the First Kind of k with m by -1^k-m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \binom r m + \sum_k k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + | c = +}} +{{eqn | o = + | ro= + + | r = \left({-1}\right)^{r + 1 - m} \sum_k \left\{ {r + 1 \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + | c = +}} +{{eqn | r = \binom r m + \sum_k k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} + \left({-1}\right)^{r + 1 - m} \delta_{m \left({r + 1}\right)} + | c = [[Second Inversion Formula for Stirling Numbers]] +}} +{{eqn | r = \sum_k k \left\{ {r + 1 \atop k + 1}\right\} \left({\frac 1 k \left[{k + 1 \atop m}\right] - \frac 1 k \left[{k \atop m - 1}\right]}\right) \left({-1}\right)^{k - m} + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | o = + | ro= + + | r = \binom r m - \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + | c = +}} +{{eqn | r = \sum_k \left\{ {r + 1 \atop k + 1}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{k - m} + \sum_k \left\{ {r + 1 \atop k + 1}\right\} \left[{k \atop m - 1}\right] \left({-1}\right)^{k - m} + | c = +}} +{{eqn | o = + | ro= + + | r = \binom r m - \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + | c = +}} +{{eqn | r = \sum_k \left\{ {r + 1 \atop k + 1}\right\} \left[{k + 1 \atop m}\right] \left({-1}\right)^{k - m} + \binom r {m - 1} + | c = [[Sum over k of Stirling Number of the Second Kind of n+1 with k+1 by Unsigned Stirling Number of the First Kind of k with m by -1^k-m#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | o = + | ro= + + | r = \binom r m - \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + | c = +}} +{{eqn | r = \sum_k \left\{ {r + 1 \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - 1 - m} + \binom r {m - 1} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | o = + | ro= + + | r = \binom r m - \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + | c = +}} +{{eqn | r = \left({-1}\right)^{r - m} \sum_k \left\{ {r + 1 \atop k}\right\} \left[{k \atop m}\right] \left({-1}\right)^{r + 1 - k} + \binom r {m - 1} + | c = +}} +{{eqn | o = + | ro= + + | r = \binom r m - \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + | c = +}} +{{eqn | r = \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + \binom r {m - 1} + \binom r m - \left({-1}\right)^{r - m} \delta_{m \left({r + 1}\right)} + | c = [[Second Inversion Formula for Stirling Numbers]] +}} +{{eqn | r = \binom r {m - 1} + \binom r m + | c = simplifying +}} +{{eqn | r = \binom {r + 1} m + | c = [[Pascal's Rule]] +}} +{{end-eqn}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_k \left\{ {n + 1 \atop k + 1}\right\} \left[{k \atop m}\right] \left({-1}\right)^{k - m} = \binom n m$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k to n of Unsigned Stirling Number of the First Kind of k with m by n factorial over k factorial} +Tags: Stirling Numbers, Factorials + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_{k \mathop \le n} {k \brack m} \frac {n!} {k!} = {n + 1 \brack m + 1}$ +where: +:$\displaystyle {k \brack m}$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$ n!$ denotes a [[Definition:Factorial|factorial]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall n \in \Z_{\ge 0}: \sum_{k \mathop \le n} {k \brack m} \frac {n!} {k!} = {n + 1 \brack m + 1}$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | r = \sum_{k \mathop \le 0} {k \brack m} \frac {0!} {k!} + | o = + | c = +}} +{{eqn | r = {0 \brack m} \frac 1 {0!} + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = \delta_{0 m} + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{eqn | r = \delta_{1 \paren {m + 1} } + | c = +}} +{{eqn | r = {1 \brack m + 1} + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{end-eqn}} +So $\map P 0$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_{k \mathop \le r} {k \brack m} \frac {r!} {k!} = {r + 1 \brack m + 1}$ +from which it is to be shown that: +:$\displaystyle \sum_{k \mathop \le r + 1} {k \brack m} \frac {\paren {r + 1}!} {k!} = {r + 2 \brack m + 1}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{k \mathop \le r + 1} {k \brack m} \frac {\paren {r + 1}!} {k!} + | c = +}} +{{eqn | r = {r + 1 \brack m} \frac {\paren {r + 1}!} {\paren {r + 1}!} + \paren {r + 1} \paren {\sum_{k \mathop \le r} {k \brack m} \frac {r!} {k!} } +}} +{{eqn | r = {r + 1 \brack m} + \paren {r + 1} {r + 1 \brack m + 1} +}} +{{eqn | r = {r + 2 \brack m + 1} + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{end-eqn}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m, n \in \Z_{\ge 0}: \sum_{k \mathop \le n} {k \brack m} \frac {n!} {k!} = {n + 1 \brack m + 1}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Applications of Down Mappings at Element equals Way Below Closure of Element} +Tags: Way Below Relation, Meet-Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below|bounded below]] [[Definition:Meet-Continuous Lattice|meet-continuous lattice]]. +Let $\mathit{Ids}$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +Let for all $I \in \mathit{Ids}$: $m_I: S \to \mathit{Ids}$ be a [[Definition:Mapping|mapping]]: +:$\forall x \in S: x \preceq \sup I \implies m_I\left({x}\right) = \left\{ {x \wedge i: i \in I}\right\}$ +and +:$\forall x \in S: x \npreceq \sup I \implies m_I\left({x}\right) = x^\preceq$ +where $x^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $x$. +Let $x \in S$. +Then +:$\displaystyle \bigcap \left\{ {m_I \left({x}\right): I \in \mathit{Ids} }\right\} = x^\ll$ +where $x^\ll$ denotes the [[Definition:Way Below Closure|way below closure]] of $x$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \left\{ {m_I\left({x}\right): I \in \mathit{Ids} }\right\} + | r = \left\{ {m_I\left({x}\right): I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cup \left\{ {m_I\left({x}\right): I \in \mathit{Ids} \land x \npreceq \sup I}\right\} +}} +{{eqn | r = \left\{ {\left\{ {x \wedge i: i \in I}\right\}: I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cup \left\{ {x^\preceq: I \in \mathit{Ids} \land x \npreceq \sup I}\right\} + | c = definition of $m_I$ +}} +{{eqn | r = \left\{ {\left({x^\preceq}\right) \cap I: I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cup \left\{ {x^\preceq: I \in \mathit{Ids} \land x \npreceq \sup I}\right\} + | c = [[Intersection of Lower Closure of Element with Ideal equals Meet of Element and Ideal]] +}} +{{end-eqn}} +Thus +{{begin-eqn}} +{{eqn | l = \bigcap \left\{ {m_I\left({x}\right): I \in \mathit{Ids} }\right\} + | r = \bigcap \left\{ {\left({x^\preceq}\right) \cap I: I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cap \bigcap \left\{ {x^\preceq: I \in \mathit{Ids} \land x \npreceq \sup I}\right\} + | c = +}} +{{eqn | r = \bigcap \left\{ {\left({x^\preceq}\right) \cap I: I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cap \bigcap \left\{ {x^\preceq}\right\} +}} +{{eqn | r = \bigcap \left\{ {\left({x^\preceq}\right) \cap I: I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cap x^\preceq + | c = [[Intersection of Singleton]] +}} +{{eqn | r = \left({x^\preceq}\right) \cap \bigcap \left\{ {I: I \in \mathit{Ids} \land x \preceq \sup I}\right\} \cap x^\preceq + | c = [[Intersection Distributes over Intersection]] +}} +{{eqn | r = \left({x^\preceq}\right) \cap \left({x^\ll}\right) \cap x^\preceq + | c = [[Intersection of Ideals with Suprema Succeed Element equals Way Below Closure of Element]] +}} +{{eqn | r = x^\ll + | c = [[Intersection with Subset is Subset]] as $x^\ll \subseteq x^\preceq$ by [[Way Below implies Preceding]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k to n of Stirling Number of the Second Kind of k with m by m+1^n-k} +Tags: Stirling Numbers + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +:$\displaystyle \sum_{k \mathop \le n} {k \brace m} \paren {m + 1}^{n - k} = {{n + 1} \brace {m + 1}}$ +where $\displaystyle {k \brace m}$ etc. denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \forall n \in \Z_{\ge 0}: \displaystyle \sum_{k \mathop \le n} {k \brace m} \paren {m + 1}^{n - k} = {{n + 1} \brace {m + 1}}$ +=== Basis for the Induction === +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | r = \sum_{k \mathop \le 0} {k \brace m} \paren {m + 1}^{0 - k} + | o = + | c = +}} +{{eqn | r = {0 \brace m} \paren {m + 1}^{0 - 0} +}} +{{eqn | r = \delta_{0 m} + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{eqn | r = \delta_{1 \paren {m + 1} } +}} +{{eqn | r = {1 \brace {m + 1} } + | c = [[Stirling Number of the Second Kind of 1]] +}} +{{end-eqn}} +So $\map P 0$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_{k \mathop \le r} {k \brace m} \paren {m + 1}^{r - k} = {{r + 1} \brace {m + 1}}$ +from which it is to be shown that: +:$\displaystyle \sum_{k \mathop \le {r + 1} } {k \brace m} \paren {m + 1}^{r + 1 - k} = { {r + 2} \brace {m + 1} }$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{k \mathop \le {r + 1} } {k \brace m} \paren {m + 1}^{r + 1 - k} +}} +{{eqn | r = { {r + 1} \brace m} \paren {m + 1}^{r + 1 - r - 1} + \paren {m + 1} \paren {\sum_{k \mathop \le r} {k \brace m} \paren {m + 1}^{r - k} } + | c = +}} +{{eqn | r = { {r + 1} \brace m} + \paren {m + 1} { {r + 1} \brace {m + 1} } +}} +{{eqn | r = { {r + 2} \brace {m + 1} } + | c = {{Defof|Stirling Numbers of the Second Kind}} +}} +{{end-eqn}} +So $\map P r \implies \map P {r + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \sum_{k \mathop \le n} {k \brace m} \paren {m + 1}^{n - k} = {{n + 1} \brace {m + 1}}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Zero Choose Zero} +Tags: Examples of Binomial Coefficients, Zero Choose Zero + +\begin{theorem} +:$\dbinom 0 0 = 1$ +\end{theorem} + +\begin{proof} +By [[Binomial Coefficient with Zero]]: +:$\forall r \in \R: \dbinom r 0 = 1$ +Hence directly: +:$\dbinom 0 0 = 1$ +\end{proof} + +\begin{proof} +By [[Zero Choose n]]: +:$\dbinom 0 n = \delta_{0 n}$ +where: +:$\dbinom 0 n$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]] +:$\delta_{0 n}$ denotes the [[Definition:Kronecker Delta|Kronecker delta]]. +Hence directly: +:$\dbinom 0 0 = 1$ +\end{proof}<|endoftext|> +\section{Binomial Coefficient/Examples/Number of Bridge Hands} +Tags: Examples of Binomial Coefficients + +\begin{theorem} +The total number $N$ of possible different hands for a game of [https://en.wikipedia.org/wiki/Contract_bridge bridge] is: +:$N = \dfrac {52!} {13! \, 39!} = 635 \ 013 \ 559 \ 600$ +\end{theorem} + +\begin{proof} +The total number of cards in a standard deck is $52$. +The number of cards in a single bridge hand is $13$. +Thus $N$ is equal to the number of ways $13$ things can be chosen from $52$. +Thus: +{{begin-eqn}} +{{eqn | l = N + | r = \dbinom {52} {23} + | c = [[Cardinality of Set of Subsets]] +}} +{{eqn | r = \frac {52!} {13! \left({52 - 13}\right)!} + | c = {{Defof|Binomial Coefficient}} +}} +{{eqn | r = \frac {52!} {13! \, 39!} + | c = +}} +{{eqn | r = 635 \ 013 \ 559 \ 600 + | c = after calculation +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Lower Closure of Element with Ideal equals Meet of Element and Ideal} +Tags: Lower Closures + +\begin{theorem} +Let $\struct {S, \preceq}$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $I$ be an [[Definition:Ideal in Ordered Set|ideal]] in $\struct {S, \preceq}$. +Let $x \in S$. +Then: +:$\paren {x^\preceq} \cap I = \set {x \wedge i: i \in I}$ +where $x^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $x$. +\end{theorem} + +\begin{proof} +=== First Inclusion === +Let $z \in \paren {x^\preceq} \cap I$ +By definition of [[Definition:Set Intersection|intersection]]: +:$z \in x^\preceq$ and $z \in I$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$z \preceq x$ +By [[Preceding iff Meet equals Less Operand]]: +:$x \wedge z = z$ +Thus: +:$z \in \set {x \wedge i: i \in I}$ +{{qed|lemma}} +=== Second Inclusion === +Let $z \in \set {x \wedge i: i \in I}$ +Then +:$\exists i \in I: z = x \wedge i$ +By [[Meet Precedes Operands]]: +:$z \preceq x$ and $z \preceq i$ +By definition of [[Definition:Ideal in Ordered Set|ideal in ordered set]]: +:$I$ is a [[Definition:Lower Set|lower set]]. +By definitions of [[Definition:Lower Set|lower set]] and [[Definition:Lower Closure of Element|lower closure of element]]: +:$z \in I$ and $z \in x^\preceq$ +Thus by definition of [[Definition:Set Intersection|intersection]]: +:$z \in \struct {x^\preceq} \cap I$ +{{qed|lemma}} +Thus the result by definition of [[Definition:Set Equality|set equality]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Definition:Extended Pascal's Triangle} +Tags: Definitions: Binomial Coefficients + +\begin{theorem} +$\begin{array}{r|rrrrrrrrrr} +n & \binom n 0 & \binom n 1 & \binom n 2 & \binom n 3 & \binom n 4 & \binom n 5 & \binom n 6 & \binom n 7 & \binom n 8 & \binom n 9 & \binom n {10} & \binom n {11} & \binom n {12} \\ +\hline +-3 & 1 & -3 & 6 & -10 & 15 & -21 & 28 & -36 & 45 & -55 & 66 & -78 & 91 \\ +-2 & 1 & -2 & 3 & -4 & 5 & -6 & 7 & -8 & 9 & -10 & 11 & -12 & 13 \\ +-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ + 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 2 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 3 & 1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 4 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 5 & 1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ +\end{array}$ +\end{theorem}<|endoftext|> +\section{Condition on Lower Coefficient for Binomial Coefficient to be Maximum} +Tags: Binomial Coefficients + +\begin{theorem} +Let $n, k \in \Z_{\ge 0}$ be [[Definition:Positive Integer|positive integers]]. +Let $\dbinom n k$ denote the [[Definition:Binomial Coefficient|binomial coefficient]] of $n$ choose $k$. +Then for a given value of $n$, the value of $k$ for which $\dbinom n k$ is a [[Definition:Maximum Element|maximum]] is: +:$k_\max = \floor {\dfrac n 2}$ +and also: +:$k_\max = \ceiling {\dfrac n 2}$ +\end{theorem} + +\begin{proof} +From [[Condition for Increasing Binomial Coefficients]]: +:$\forall k \in \Z_{> 0}: \dbinom n k > \dbinom n {k - 1} \iff k \le \dfrac n 2$ +Let $n$ be an [[Definition:Even Integer|even integer]], such that: +:$n = 2 r$ +Then: +:$r = \floor {\dfrac n 2} = \ceiling {\dfrac n 2}$ +and: +:$\forall k < r: \dbinom n r > \dbinom n k$ +From [[Symmetry Rule for Binomial Coefficients]]: +:$\forall k < r: \dbinom n r > \dbinom n {n - k}$ +and so: +:$\forall k > r: \dbinom n r > \dbinom n k$ +We also have: +:$\dbinom n r = \dbinom n {n - r} = \dbinom n {n / 2}$ +Thus for all $k \ne r$: +:$\dbinom n k < \dbinom n {n / 2}$ +and so: +:$k_\max = \floor {\dfrac n 2} = \ceiling {\dfrac n 2}$ +{{qed|lemma}} +Let $n$ be an [[Definition:Odd Integer|odd integer]], such that: +:$n = 2 r + 1$ +Then: +:$r = \floor {\dfrac n 2}$ +As $r < n$: +:$\forall k < r: \dbinom n r > \dbinom n k$ +When $k = r$ we also have: +:$\dbinom n r = \dbinom n {n - r} = \dbinom n {r + 1}$ +Then from [[Symmetry Rule for Binomial Coefficients]]: +:$\forall k < r: \dbinom n r > \dbinom n {n - k}$ +and so: +:$\forall k > r + 1: \dbinom n r > \dbinom n k$ +We have that: +:$r = \floor {\dfrac n 2}$ +and: +:$r + 1 = \ceiling {\dfrac n 2}$ +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Row in Pascal's Triangle forms Palindromic Sequence} +Tags: Pascal's Triangle + +\begin{theorem} +Each of the [[Definition:Row of Pascal's Triangle|rows]] of [[Definition:Pascal's Triangle|Pascal's triangle]] forms a [[Definition:Palindrome|palindromic]] [[Definition:Sequence|sequence]]. +\end{theorem} + +\begin{proof} +The $n$th [[Definition:Row of Pascal's Triangle|row]] of [[Definition:Pascal's Triangle|Pascal's triangle]] consists of the [[Definition:Finite Sequence|finite sequence]]: +:$\dbinom n 0, \dbinom n 1, \dbinom n 2, \ldots, \dbinom n {n - 2}, \dbinom n {n - 1}, \dbinom n n$ +By the [[Symmetry Rule for Binomial Coefficients]]: +:$\dbinom n m = \dbinom n {n - m}$ +Hence we can write the $n$th [[Definition:Row of Pascal's Triangle|row]] in reverse order: +{{begin-eqn}} +{{eqn | o = + | r = \dbinom n n, \dbinom n {n - 1}, \dbinom n {n - 2}, \ldots, \dbinom n 2, \dbinom n 1, \dbinom n 0 + | c = +}} +{{eqn | r = \dbinom n {n - n}, \dbinom n {n - \left({n - 1}\right)}, \dbinom n {n - \left({n - 2}\right)}, \ldots, \dbinom n {n - 2}, \dbinom n {n - 1}, \dbinom n {n - 0} + | c = +}} +{{eqn | r = \dbinom n 0, \dbinom n 1, \dbinom n 2, \ldots, \dbinom n {n - 2}, \dbinom n {n - 1}, \dbinom n n + | c = +}} +{{end-eqn}} +and the [[Definition:Finite Sequence|sequences]] are seen to be the same. +{{qed}} +\end{proof}<|endoftext|> +\section{N Choose Negative Number is Zero} +Tags: Binomial Coefficients + +\begin{theorem} +Let $n \in \Z$ be an [[Definition:Integer|integer]]. +Let $k \in \Z_{<0}$ be a [[Definition:Strictly Negative Integer|(strictly) negative integer]]. +Then: +:$\dbinom n k = 0$ +\end{theorem} + +\begin{proof} +From [[Pascal's Rule]] we have: +:$\forall n, k \in \Z: \dbinom n {k - 1} = \dbinom {n + 1} k - \dbinom n k$ +Thus it is sufficient to prove that: +:$\forall n \in \Z: \dbinom n {-1} = 0$ +So: +{{begin-eqn}} +{{eqn | l = \dbinom n {-1} + | r = \dbinom {n + 1} 0 - \dbinom n 0 + | c = [[Pascal's Rule]] +}} +{{eqn | r = 1 - 1 + | c = [[Binomial Coefficient with Zero]] +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +[[Category:Binomial Coefficients]] +jilju9t3idp64zejhlfrap6ma23dwna +\end{proof}<|endoftext|> +\section{Kummer's Theorem} +Tags: Binomial Coefficients, Number Bases, Prime Numbers + +\begin{theorem} +Let $p$ be a [[Definition:Prime Number|prime number]]. +Let $a, b \in \Z_{\ge 0}$. +Let: +:$p^n \divides \dbinom {a + b} b$ +but +:$p^{n + 1} \nmid \dbinom {a + b} b$ +where: +:$\divides$ denotes [[Definition:Divisor of Integer|divisibility]] +:$\nmid$ denotes non-[[Definition:Divisor of Integer|divisibility]] +:$\dbinom {a + b} b$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +Then $n$ equals the number of [[Definition:Carry Digit|carries]] that occur when $a$ is added to $b$ using the [[Definition:Classical Addition Algorithm|classical addition algorithm]] in [[Definition:Number Base|base $p$]]. +\end{theorem} + +\begin{proof} +{{ProofWanted|We need to establish the [[Definition:Classical Algorithm|classical algorithms]] and build up the knowledge of exactly what a [[Definition:Carry Digit|carry]] is before tackling this delightful little number.}} +{{Namedfor|Ernst Eduard Kummer|cat = Kummer}} +\end{proof}<|endoftext|> +\section{Numbers in Row of Pascal's Triangle all Odd iff Row number 2^n - 1} +Tags: Pascal's Triangle + +\begin{theorem} +Let $n \in \Z_{\ge 0}$ be a [[Definition:Positive Integer|positive integer]]. +Then the non-zero elements of the $n$th [[Definition:Row of Pascal's Triangle|row]] of [[Definition:Pascal's Triangle|Pascal's triangle]] are all [[Definition:Odd Integer|odd]] {{iff}}: +:$n = 2^m - 1$ +for some $m \in \Z_{\ge 0}$. +{{:Definition:Pascal's Triangle}} +As can be seen, the entries in rows $0, 1, 3, 7$ are all [[Definition:Odd Integer|odd]]. +\end{theorem} + +\begin{proof} +The statement: +:$\dbinom n k$ is [[Definition:Odd Integer|odd]] +is equivalent to: +:$\dbinom n k \equiv 1 \pmod p$ +The [[Lucas' Theorem/Corollary|corollary to Lucas' Theorem]] gives: +:$\displaystyle \dbinom n k \equiv \prod_{j \mathop = 0}^r \dbinom {a_j} {b_j} \pmod p$ +where: +: $n, k \in \Z_{\ge 0}$ and $p$ is [[Definition:Prime Number|prime]] +: the [[Definition:Number Base|representations of $n$ and $k$ to the base $p$]] are given by: +::$n = a_r p^r + \cdots + a_1 p + a_0$ +::$k = b_r p^r + \cdots + b_1 p + b_0$ +When $p = 2$, the [[Definition:Digit|digits]] $a_j, b_j$ are either $0$ or $1$. +In order for $\dbinom n k \equiv 1 \pmod p$, it is [[Definition:Necessary and Sufficient|necessary and sufficient]] that $\dbinom {a_j} {b_j} \equiv 1 \pmod p$ for all $j \in \left\{ {0, 1, 2, \ldots, r}\right\}$. +In order for this to happen, $\dbinom {a_j} {b_j} = \dbinom 0 0$ or $\dbinom {a_j} {b_j} = \dbinom 1 0$ or $\dbinom {a_j} {b_j} = \dbinom 1 1$. +Suppose $a_i = 0$ for some $i \in \left\{ {0, 1, 2, \ldots, r}\right\}$. +Then if $b_i = 1$: +:$\dbinom {a_j} {b_j} = \dbinom 0 1 = 0$ +and so: +: $\dbinom n k \equiv 0 \pmod p$ +for whichever $k$ (and there will be at least one) has [[Definition:Digit|digit]] $b_i = 1$. +So the only way it can be assured that all $\dbinom {a_j} {b_j} \equiv 1 \pmod p$ for all $k \in \left\{ {0, 1, 2, \ldots, n}\right\}$ is for $a_j = 0$ for all $j \in \left\{ {0, 1, 2, \ldots, r}\right\}$. +That is, for $n = 2^m - 1$ for some $m \in \Z_{\ge 0}$. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum of Sequence of Fourth Powers} +Tags: Sums of Sequences, Fourth Powers, Sum of Sequence of Fourth Powers + +\begin{theorem} +:$\displaystyle \sum_{k \mathop = 0}^n k^4 = \dfrac {\paren {n + 1} n \paren {n + \frac 1 2} \paren {3 n^2 + 3 n - 1} } {15}$ +\end{theorem} + +\begin{proof} +From [[Sum of Powers of Positive Integers]]: +{{begin-eqn}} +{{eqn | l = \sum_{i \mathop = 1}^n i^p + | r = 1^p + 2^p + \cdots + n^p + | c = +}} +{{eqn | r = \frac {n^{p + 1} } {p + 1} + \sum_{k \mathop = 1}^p \frac {B_k \, p^{\underline {k - 1} } \, n^{p - k + 1} } {k!} + | c = +}} +{{end-eqn}} +where $B_k$ are the [[Definition:Bernoulli Numbers|Bernoulli numbers]]. +Setting $p = 4$: +{{begin-eqn}} +{{eqn | l = \sum_{i \mathop = 1}^n i^4 + | r = \frac {n^{4 + 1} } {4 + 1} + \sum_{k \mathop = 1}^4 \frac {B_k \, 4^{\underline {k - 1} } \, n^{4 - k + 1} } {k!} + | c = +}} +{{eqn | r = \frac {n^5} 5 + \frac {B_1 \, 4^{\underline 0} \, n^4} {1!} + \frac {B_2 \, 4^{\underline 1} \, n^3} {2!} + \frac {B_3 \, 4^{\underline 2} \, n^2} {3!} + \frac {B_4 \, 4^{\underline 3} \, n} {4!} + | c = +}} +{{eqn | r = \frac {n^5} 5 + \frac 1 2 \frac {n^4} {1!} + \frac 1 6 \frac {4 n^3} {2!} + 0 \frac {4 \times 3 n^2} {3!} - \frac 1 {30} \frac {4 \times 3 \times 2 n} {4!} + | c = {{Defof|Bernoulli Numbers}} and {{Defof|Falling Factorial}} +}} +{{eqn | r = \frac {n^5} 5 + \frac {n^4} 2 + \frac {n^3} 3 - \frac n {30} + | c = simplifying +}} +{{eqn | r = \frac {6 n^5 + 15 n^4 + 10 n^3 - n} {30} + | c = +}} +{{eqn | r = \frac {n \paren {n + 1} \paren {2 n + 1} \paren {3 n^2 + 3 n - 1} } {30} + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof} + +\begin{proof} +By definition of [[Definition:Binomial Coefficient|binomial coefficient]]: +{{begin-eqn}} +{{eqn | l = \binom k 4 + | r = \frac {k \paren {k - 1} \paren {k - 2} \paren {k - 3} } {4 !} + | c = +}} +{{eqn | l = \binom k 3 + | r = \frac {k \paren {k - 1} \paren {k - 2} } {3 !} + | c = +}} +{{eqn | l = \binom k 2 + | r = \frac {k \paren {k - 1} } {2 !} + | c = +}} +{{eqn | l = \binom k 1 + | r = k + | c = +}} +{{eqn | ll= \leadsto + | l = 24 \binom k 4 + | r = k^4 - 6 k^3 + 11 k^2 - 6 k + | c = +}} +{{eqn | l = 36 \binom k 3 + | r = 6 k^3 - 18 k^2 + 12 k + | c = +}} +{{eqn | l = 14 \binom k 2 + | r = 7 k^2 - 7 k + | c = +}} +{{eqn | ll= \leadsto + | l = k^4 + | r = 24 \binom k 4 + 36 \binom k 3 + 14 \binom k 2 + \binom k 1 + | c = +}} +{{end-eqn}} +So: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^n k^4 + | r = \sum_{k \mathop = 0}^n \paren {24 \binom k 4 + 36 \binom k 3 + 14 \binom k 2 + \binom k 1} + | c = +}} +{{eqn | r = 24 \binom {n + 1} 5 + 36 \binom {n + 1} 4 + 14 \binom {n + 1} 3 + \binom {n + 1} 2 + | c = [[Sum of Binomial Coefficients over Upper Index]] +}} +{{eqn | r = 24 \frac {\paren {n + 1} n \paren {n - 1} \paren {n - 2} \paren {n - 3} } {5 !} + | c = Definition of [[Definition:Binomial Coefficient|Binomial Coefficient]] +}} +{{eqn | o = + | ro= + + | r = 36 \frac {\paren {n + 1} n \paren {n - 1} \paren {n - 2} } {4 !} + | c = +}} +{{eqn | o = + | ro= + + | r = 14 \frac {\paren {n + 1} n \paren {n - 1} } {3 !} + | c = +}} +{{eqn | o = + | ro= + + | r = \frac {\paren {n + 1} n } {2 !} + | c = +}} +{{eqn | r = \paren {n + 1} n \paren {\frac {\paren {n - 1} \paren {n - 2} \paren {n - 3} } 5 + \frac {3 \paren {n - 1} \paren {n - 2} } 2 + \frac {7 \paren {n - 1} } 3 + \frac 1 2} + | c = +}} +{{eqn | r = \frac {\paren {n + 1} n} {30} \paren {6 \paren {n^3 - 6 n^2 + 11 n - 6 } + 45 \paren {n^2 - 3 n + 2} + 70 \paren {n - 1} + 15} + | c = +}} +{{eqn | r = \frac {\paren {n + 1} n} {30} \paren {6 n^3 - 36 n^2 + 66 n - 36 + 45 n^2 - 135 n + 90 + 70 n - 70 + 15} + | c = +}} +{{eqn | r = \frac {\paren {n + 1} n} {30} \paren {6 n^3 + 9 n^2 + n - 1} + | c = +}} +{{eqn | r = \frac {\paren {n + 1} n} {30} \paren {2 n + 1} \paren {3 n^2 + 3 n - 1} + | c = +}} +{{eqn | r = \frac {\paren {n + 1} n \paren {n + \frac 1 2} \paren {3 n^2 + 3 n - 1} } {15} + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Complete Lattice is Bounded} +Tags: Bounded Lattices, Complete Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Then +:$L$ is [[Definition:Bounded Ordered Set|bounded]] +\end{theorem} + +\begin{proof} +By definition of [[Definition:Complete Lattice|complete lattice]]: +:$\varnothing$ admits a [[Definition:Supremum of Set|supremum]] and an [[Definition:Infimum of Set|infimum]]. +By [[Infimum of Empty Set is Greatest Element]]: +:$\forall x \in S: x \preceq \inf \varnothing$ +Thus by definition: +:$L$ is [[Definition:Bounded Above Set|bounded above]]. +By [[Supremum of Empty Set is Smallest Element]]: +:$\forall x \in S: \sup \varnothing \preceq x$ +Thus by definition: +:$L$ is [[Definition:Bounded Below Set|bounded below]]. +Hence $L$ is [[Definition:Bounded Ordered Set|bounded]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Constant Function is Primitive Recursive/General Case} +Tags: Primitive Recursive Functions, Constant Mappings + +\begin{theorem} +The [[Definition:Constant Mapping|constant function]] of $k$ variables: $f_c^k: \N^k \to \N$, defined as: +:$\map {f_c^k} {n_1, n_2, \ldots, n_k} = c$ where $c \in \N$ +is [[Definition:Primitive Recursive Function|primitive recursive]]. +\end{theorem} + +\begin{proof} +For $k \ge 1$, let $f_c^k$ be the [[Definition:Constant Mapping|constant function]] of $k$ variables with value $c$. +We know from [[Constant Function is Primitive Recursive]] that $f_c^1$ is [[Definition:Primitive Recursive Function|primitive recursive]]. +Now: +:$\map {f_c^k} {n_1, n_2, \ldots, n_k} = \map {f_c^1} {n_1} = \map {f_c^1} {\map {\pr_1^k} {n_1, n_2, \ldots, n_k} }$ +where $\pr_1^k$ is a [[Definition:Projection Function|projection function]] which is [[Definition:Basic Primitive Recursive Function|basic primitive recursive]]. +So $f_c^k$ is obtained from the [[Definition:Primitive Recursive Function|primitive recursive function]] $f_c^1$ and the [[Definition:Basic Primitive Recursive Function|basic primitive recursive function]] $\pr_1^k$ by [[Definition:Substitution (Mathematical Logic)|substitution]]. +Hence by definition, $f_c^k$ is [[Definition:Primitive Recursive Function|primitive recursive]]. +{{qed}} +[[Category:Primitive Recursive Functions]] +[[Category:Constant Mappings]] +p7103pmh89wjmd8e0mfrg551rg2r1jz +\end{proof}<|endoftext|> +\section{Value of Multiplicative Function at One} +Tags: Multiplicative Functions + +\begin{theorem} +Let $f: \N \to \C$ be a [[Definition:Multiplicative Arithmetic Function|multiplicative function]]. +If $f$ is not identically zero, then $\map f 1 = 1$. +\end{theorem} + +\begin{proof} +If $f$ is not identically zero, then: +:$\exists m \in \Z: \map f m \ne 0$ +Then: +:$\map f m = \map f {1 \times m} = \map f 1 \, \map f m$ +Hence $\map f 1 = 1$. +{{qed}} +[[Category:Multiplicative Functions]] +3yg93q06vyrng6lsj376wzn4zqpmn45 +\end{proof}<|endoftext|> +\section{Value of Multiplicative Function is Product of Values of Prime Power Factors} +Tags: Multiplicative Functions + +\begin{theorem} +Let $f: \N \to \C$ be a [[Definition:Multiplicative Arithmetic Function|multiplicative function]]. +Let $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ be the [[Definition:Prime Decomposition|prime decomposition]] of $n$. +Then: +:$\map f n = \map f {p_1^{k_1} } \, \map f {p_2^{k_2} } \dotsm \map f {p_r^{k_r} }$ +\end{theorem} + +\begin{proof} +We have: +:$n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}$ +We also have: +:$\forall i, j \in \closedint 1 n: i \ne j \implies p_i^{k_i} \perp p_j^{k_j}$ +So: +:$\map f {p_i^{k_i} p_j^{k_j} } = \map f {p_i^{k_i} } \, \map f {p_j^{k_j} }$ +It is a simple [[Principle of Mathematical Induction|inductive process]] to show that $\map f n = \map f {p_1^{k_1} } \, \map f {p_2^{k_2} } \dotsm \map f {p_r^{k_r} }$. +{{handwaving}} +{{qed}} +[[Category:Multiplicative Functions]] +2wrphk1b2zl7ohc8fzbupknu3hs00xb +\end{proof}<|endoftext|> +\section{-1^n by -n choose k-1 equals -1^k by -k choose n-1} +Tags: Binomial Coefficients + +\begin{theorem} +:$\paren {-1}^n \dbinom {-n} {k - 1} = \paren {-1}^k \dbinom {-k} {n - 1}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \paren {-1}^n \dbinom {-n} {k - 1} + | r = \paren {-1}^n \paren {\paren {-1}^{-n - \paren {k - 1} } \binom {- \paren {k - 1 + 1} } {- n - \paren {k - 1} } } + | c = [[Moving Top Index to Bottom in Binomial Coefficient]] +}} +{{eqn | r = \paren {-1}^{- \paren {k - 1} } \binom {- k} {- \paren {n - 1} - k} + | c = +}} +{{eqn | r = \paren {-1}^k \binom {- k} {- k - \paren {n - 1} } + | c = +}} +{{eqn | r = \paren {-1}^k \binom {- k} {n - 1} + | c = [[Symmetry Rule for Binomial Coefficients]] +}} +{{end-eqn}} +{{questionable|Can someone explain the disappearance of a factor of $-1$? Seems to have to do with a negative bottom index}} +\end{proof}<|endoftext|> +\section{One Choose n} +Tags: Examples of Binomial Coefficients + +\begin{theorem} +:$\dbinom 1 n = \begin{cases} 1 & : n \in \left\{ {0, 1}\right\} \\ 0 & : \text {otherwise} \end{cases}$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Binomial Coefficient|binomial coefficient]]: +:$\dbinom m n = \begin{cases} +\dfrac {m!} {n! \left({m - n}\right)!} & : 0 \le n \le m \\ +& \\ +0 & : \text { otherwise } \end{cases}$ +Thus when $n > 1$: +:$\dbinom 1 n = 0$ +and when $n < 0$: +:$\dbinom 1 n = 0$ +Then: +{{begin-eqn}} +{{eqn | l = \dbinom 1 0 + | r = \dfrac {1!} {0! \left({0 - 1}\right)!} + | c = {{Defof|Binomial Coefficient}} +}} +{{eqn | r = 1 + | c = {{Defof|Factorial}} +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = \dbinom 1 1 + | r = \dbinom 1 {1 - 1} + | c = [[Symmetry Rule for Binomial Coefficients]] +}} +{{eqn | r = \dbinom 1 0 + | c = +}} +{{eqn | r = 1 + | c = from above +}} +{{end-eqn}} +{{qed}} +[[Category:Examples of Binomial Coefficients]] +rq46fe27b1uakci157m84qzw75tysil +\end{proof}<|endoftext|> +\section{Summations of Products of Binomial Coefficients} +Tags: Binomial Coefficients + +\begin{theorem} +This page gathers together some identities concerning [[Definition:Summation|summations]] of products of [[Definition:Binomial Coefficient|binomial coefficients]]. +In the following, unless otherwise specified: +:$k, m, n \in \Z$ +:$r, s, t \in \R$. +\end{theorem}<|endoftext|> +\section{Separable Discrete Space is Countable} +Tags: Separable Spaces, Discrete Topology, Separable Discrete Space is Countable + +\begin{theorem} +Let $T = \struct {S, \tau}$ be a [[Definition:Discrete Space|discrete]] [[Definition:Topological Space|topological space]]. +Let $T$ be [[Definition:Separable Space|separable]]. +Then $S$ is [[Definition:Countable Set|countable]]. +\end{theorem} + +\begin{proof} +Let $T$ be [[Definition:Separable Space|separable]]. +By [[Space is Separable iff Density not greater than Aleph Zero]]: +:$\map d T \le \aleph_0$ +where: +:$\map d T$ denotes the [[Definition:Density of Topological Space|density]] of $T$ +:$\aleph$ denotes the [[Definition:Aleph Mapping|aleph mapping]]. +By definition of [[Definition:Density of Topological Space|density]]: +:$\exists A \subseteq S: A$ is [[Definition:Everywhere Dense|dense]] $\land \map d T = \card A$ +where $\card A$ denotes the [[Definition:Cardinality|cardinality]] of $A$. +By definition of [[Definition:Everywhere Dense|dense set]]: +:$A^- = S$ +where $A^-$ denotes the [[Definition:Closure (Topology)|closure]] of $A$. +By [[Set in Discrete Topology is Clopen]]: +:$A$ is [[Definition:Closed Set (Topology)|closed]] +Then by [[Set is Closed iff Equals Topological Closure]]: +:$A^- = A$ +Thus by [[Countable iff Cardinality not greater than Aleph Zero]]: +:$S$ is [[Definition:Countable Set|countable]] +{{qed}} +\end{proof} + +\begin{proof} +Let $T$ be [[Definition:Separable Space|separable]]. +{{AimForCont}} $S$ is [[Definition:Uncountable Set|uncountable]]. +Then by [[Uncountable Discrete Space is not Separable]], $T$ is not [[Definition:Separable Space|separable]]. +Hence the result by [[Proof by Contradiction]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Basis for the Induction} +Tags: Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk + +\begin{theorem} +Let $r, s, t \in \R, n \in \Z$. +Consider the equation: +:$\displaystyle (1): \quad \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +where $\dbinom {r - t k} k$ etc. are [[Definition:Binomial Coefficient|binomial coefficients]]. +Then equation $(1)$ holds for the special case where $s = n - 1 - r + n t$. +\end{theorem} + +\begin{proof} +Substituting $n - 1 - r + n t$ for $s$ in the {{RHS}}: +{{begin-eqn}} +{{eqn | l = \binom {r + s - t n} n + | r = \binom {r + \paren {n - 1 - r + n t} - t n} n + | c = +}} +{{eqn | r = \binom {r + n - 1 - r + n t - t n} n + | c = +}} +{{eqn | r = \binom {n - 1} n + | c = +}} +{{end-eqn}} +Substituting $n - 1 - r + n t$ for $s$ in the {{LHS}}: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - 1 - r + t k} {n - k} \frac r {r - t k} + | c = +}} +{{eqn | r = \sum_{k \mathop \ge 0} \dfrac {\paren {r - t k}! \paren {n - 1 - r + t k}! \, r} {k! \paren {r - t k - k}! \paren {n - k}! \paren {k - 1 - r + t k}! \paren {r - t k} } + | c = +}} +{{eqn | r = \sum_{k \mathop \ge 0} \frac r {n!} \binom n k \dfrac {\paren {r - t k - 1}! \paren {n - 1 - r + t k}!} {\paren {r - t k - k}! \paren {k - 1 - r + t k}!} + | c = +}} +{{eqn | r = \sum_{k \mathop \ge 0} \frac r {n!} \binom n k \prod_{0 \mathop < j \mathop < k} \paren {r - t k - j} \prod_{0 \mathop < j \mathop < n \mathop - k} \paren {n - 1 - r + t k - j} + | c = +}} +{{eqn | r = \sum_{k \mathop \ge 0} \frac r {n!} \binom n k \paren {-1}^{k - 1} \prod_{0 \mathop < j \mathop < k} \paren {-r + t k + j} \prod_{k \mathop \le j \mathop < n} \paren {- r + t k + j} + | c = +}} +{{end-eqn}} +The two products give a [[Definition:Polynomial|polynomial]] of [[Definition:Degree of Polynomial|degree]] $n - 1$ in $k$. +Hence the sum for all $k$ is $0$. +Thus we have: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - 1 - r + t k} {n - k} \frac r {r - t k} + | r = 0 + | c = +}} +{{eqn | r = \binom {n - 1} n + | c = {{Defof|Binomial Coefficient}} +}} +{{end-eqn}} +Thus the equation indeed holds for the special case where $s = n - 1 - r + n t$. +\end{proof}<|endoftext|> +\section{Continuous iff Meet-Continuous and There Exists Smallest Auxiliary Approximating Relation} +Tags: Approximating Relations, Continuous Lattices, Meet-Continuous Lattices + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Complete Lattice|complete lattice]]. +Then: +:$L$ is [[Definition:Continuous Ordered Set|continuous]] +{{iff}} +:$L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]] and there exists the [[Definition:Smallest Element|smallest]] [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] on $S$ +That is: +:$L$ is [[Definition:Continuous Ordered Set|continuous]] +{{iff}} +:$L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]] and there exists an [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] $\mathcal R$ on $S$ +::for every [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] $\mathcal Q$ on $S$: $\mathcal R \subseteq \mathcal Q$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $L$ be [[Definition:Continuous Ordered Set|continuous]]. +Thus by [[Continuous Lattice is Meet-Continuous]]: +:$L$ is [[Definition:Meet-Continuous Lattice|meet-continuous]]. +Thus by [[Way Below is Approximating Relation]] and [[Way Below Relation is Auxiliary Relation]]: +:$\ll$ is [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] on $S$. +Thus by [[Continuous Lattice iff Auxiliary Approximating Relation is Superset of Way Below Relation]]: +:for every [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] $\mathcal Q$ on $S$: $\ll \subseteq \mathcal Q$ +{{qed|lemma}} +=== Necessary Condition === +Let $L$ be [[Definition:Meet-Continuous Lattice|meet-continuous]]. +Assume that +:there exists an [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] $\mathcal R$ on $S$ +::for every [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] $\mathcal Q$ on $S$: $\mathcal R \subseteq \mathcal Q$ +Let $x \in S$. +By [[Intersection of Relation Segments of Approximating Relations equals Way Below Closure]]: +: $\displaystyle \bigcap \set {x^{\mathcal Q}: \mathcal Q \in \mathit{App}\left({L}\right)} = x^\ll$ +where +:$x^{\mathcal Q}$ denotes the [[Definition:Relation Segment|$\mathcal Q$-segment]] of $x$, +:$\mathit{App}\left({L}\right)$ denotes the [[Definition:Set of Sets|set]] of all [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relations]] on $S$. +By [[Intersection is Subset/General Result]]: +:$x^\ll \subseteq x^{\mathcal R}$ +By definition of [[Definition:Approximating Relation|approximating relation]]: +:$x = \sup \left({x^{\mathcal R} }\right)$ +We will prove that +:$\forall a \in \set {x^{\mathcal Q}: \mathcal Q \in \mathit{App}\left({L}\right)}: x^{\mathcal R} \subseteq a$ +Let $a \in \left\{ {x^{\mathcal Q}: \mathcal Q \in \mathit{App}\left({L}\right)}\right\}$ +Then +:$\exists \mathcal Q \in \mathit{App}\left({L}\right): a = x^{\mathcal Q}$ +By assumption: +:$\mathcal R \subseteq \mathcal Q$ +Thus by [[Relation Segment is Increasing]]: +:$x^{\mathcal R} \subseteq a$ +{{qed|lemma}} +By [[Intersection is Largest Subset/General Result]]: +:$x^{\mathcal R} \subseteq x^\ll$ +By definition of [[Definition:Set Equality|set equality]]: +:$x^{\mathcal R} = x^\ll$ +Thus +:$x = \sup \left({x^\ll}\right)$ +By definition: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +By [[Way Below Closure is Directed in Bounded Below Join Semilattice]]: +:$\forall x \in S: x^\ll$ is [[Definition:Directed Subset|directed]] +By definition of [[Definition:Complete Lattice|complete lattice]]: +:$L$ is [[Definition:Up-Complete|up-complete]]. +Hence $L$ is [[Definition:Continuous Ordered Set|continuous]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Continuous Lattice iff Auxiliary Approximating Relation is Superset of Way Below Relation} +Tags: Approximating Relations, Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $\mathit{App}\left({L}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] on $S$. +Then +:$L$ is [[Definition:Continuous Ordered Set|continuous]] +{{iff}} +:$\forall \mathcal R \in \mathit{App}\left({L}\right): \ll \subseteq \mathcal R$ and $\ll$ is an [[Definition:Approximating Relation|approximating relation]] +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $L$ be [[Definition:Continuous Ordered Set|continuous]]. +Let $\mathcal R \in \mathit{App}\left({L}\right)$ +Let $\left({a, b}\right) \in S \times S$ such that +:$a \ll b$ +By definition of [[Definition:Way Below Closure|way below closure]]: +:$a \in b^\ll$ +where $b^\ll$ denotes the [[Definition:Way Below Closure|way below closure]] of $b$. +By [[Complete Lattice is Bounded]] and [[Continuous Lattice is Meet-Continuous]]: +$L$ is a [[Definition:Bounded Below Set|bounded below]] [[Definition:Meet-Continuous Lattice|meet-continuous lattice]]. +By [[Intersection of Relation Segments of Approximating Relations equals Way Below Closure]]: +: $\displaystyle \bigcap \left\{ {b^{\mathcal R}: \mathcal R \in \mathit{App}\left({L}\right)}\right\} = b^\ll$ +where $b^{\mathcal R}$ denotes the [[Definition:Relation Segment|$\mathcal R$-segment]] of $b$. +By [[Intersection is Subset/General Result]]: +:$b^\ll \subseteq b^{\mathcal R}$ +By definition of [[Definition:Subset|subset]]: +:$a \in b^{\mathcal R}$ +By definition of [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$\left({a, b}\right) \in \mathcal R$ +Thus by definition of [[Definition:Subset|subset]]: +:$\ll \subseteq \mathcal R$ +Thus by [[Way Below is Approximating Relation]]: +:$\ll$ is an [[Definition:Approximating Relation|approximating relation]]. +{{qed|lemma}} +=== Necessary Condition === +Let +:$\forall \mathcal R \in \mathit{App}\left({L}\right): \ll \subseteq \mathcal R$ and $\ll$ is an [[Definition:Approximating Relation|approximating relation]] +Define $\mathcal R := \mathord \ll$. +By definition of [[Definition:Approximating Relation|approximating relation]]: +:$\forall x \in S: x = \sup \left({x^{\mathcal R} }\right)$ +By definitions of [[Definition:Way Below Closure|way below closure]] and [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$\forall x \in S: x = \sup \left({x^\ll}\right)$ +By definition: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +By [[Way Below Closure is Directed in Bounded Below Join Semilattice]]: +:$\forall x \in S: x^\ll$ is [[Definition:Directed Subset|directed]] +By definition of [[Definition:Complete Lattice|complete lattice]]: +:$L$ is [[Definition:Up-Complete|up-complete]]. +Hence $L$ is [[Definition:Continuous Ordered Set|continuous]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Completely Additive Function is Additive} +Tags: Number Theory, Ring Theory + +\begin{theorem} +Let $f: \N \to \C$ be a [[Definition:Completely Additive Function|completely additive function]]. +Then $f$ is also [[Definition:Additive Arithmetic Function|additive]]. +\end{theorem} + +\begin{proof} +Let $m, n$ be [[Definition:Coprime Integers|coprime integers]]. +Then in particular, $m, n \in \Z$. +Hence, since $f$ is [[Definition:Completely Additive Function|completely additive]]: +:$f \left({m \times n}\right) = f \left({m}\right) + f \left({n}\right)$ +and $f$ is [[Definition:Additive Arithmetic Function|additive]], as desired. +{{qed}} +[[Category:Number Theory]] +[[Category:Ring Theory]] +okn9cbt94w16hdr1f8wcq1ox7gqmhnb +\end{proof}<|endoftext|> +\section{Real Logarithm is Completely Additive} +Tags: Logarithms, Number Theory + +\begin{theorem} +Let $\log_b: \R_{>0} \to \R$ be the [[Definition:Real General Logarithm|real logarithm]] to [[Definition:Base of Logarithm|base]] $b$. +Then $\log_b$ is [[Definition:Completely Additive Function|completely additive]]. +\end{theorem} + +\begin{proof} +From [[Sum of General Logarithms]]: +:$\log_b x + \log_b y = \log_b \left({x y}\right)$ +The result follows from the definition of [[Definition:Completely Additive Function|complete additivity]]. +{{qed}} +[[Category:Logarithms]] +[[Category:Number Theory]] +8wryrdf91qouep0q87julzna5febp3i +\end{proof}<|endoftext|> +\section{Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Lemma} +Tags: Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk + +\begin{theorem} +Let this hold for $\tuple {r, s, t, n}$: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +and also for $\tuple {r, s - t, t, n - 1}$. +Then it also holds for $\tuple {r, s + 1, t, n}$. +\end{theorem} + +\begin{proof} +Evaluating the equation for $\tuple {r, s - t, t, n - 1}$: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {\paren {s - t} - t \paren {\paren {n - 1} - k} } {\paren {n - 1} - k} \frac r {r - t k} + | r = \binom {r + \paren {s - t} - t \paren {n - 1} } {n - 1} + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t - t n + t + t k} {n - k - 1} \frac r {r - t k} + | r = \binom {r + s - t - t n + 1} {n - 1} + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k - 1} \frac r {r - t k} + | r = \binom {r + s - t n} {n - 1} + | c = +}} +{{end-eqn}} +Adding the equation in $\tuple {r, s, t, n}$: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \paren {\binom {s - t \paren {n - k} } {n - k - 1} + \binom {s - t \paren {n - k} } {n - k} } \frac r {r - t k} + | r = \binom {r + s - t n} {n - 1} + \binom {r + s - t n} n + | c = +}} +{{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s + 1 - t \paren {n - k} } {n - k } \frac r {r - t k} + | r = \binom {r + s + 1 - t n} n + | c = [[Pascal's Rule]] +}} +{{end-eqn}} +Hence the equation holds for $\tuple {r, s + 1, t, n}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r-kt choose k by r over r-kt by z^k} +Tags: Binomial Coefficients + +\begin{theorem} +Let $n \in \Z_{\ge 0}$ be a [[Definition:Positive Integer|positive integer]]. +Let $A_n \left({x, t}\right)$ be the [[Definition:Polynomial over Real Numbers|polynomial]] of [[Definition:Degree of Polynomial|degree $n$]] defined as: +:$A_n \left({x, t}\right) := \dbinom {x - n t} n \dfrac x {x - n t}$ +for $x \ne n t$. +Let $z = x^{t + 1} - x^t$. +Then: +:$\displaystyle \sum_k A_k \left({r, t}\right) z^k = x^r$ +for [[Definition:Sufficiently Small|sufficiently small]] $z$. +\end{theorem} + +\begin{proof} +From [[Sum over k of -1^k by n choose k by r-kt choose n by r over r-kt|Sum over $k$ of $\left({-1}\right)^k$ by $\dbinom n k$ by $\dbinom {r - k t} n$ by $\dfrac r {r - k t}$]] and renaming variables: +:$\displaystyle \sum_j \left({-1}\right)^j \dbinom k j \dbinom {r - j t} k \dfrac r {r - j t} = \delta_{k 0}$ +where $\delta_{k 0}$ is the [[Definition:Kronecker Delta|Kronecker delta]]. +Thus: +:$\displaystyle \sum_{j, k} \left({-1}\right)^j \dbinom k j \dbinom {r - j t} k \dfrac r {r - j t} w^k = 1$ +We have: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{j, k} \left({-1}\right)^j \dbinom k j \dbinom {r - j t} k \dfrac r {r - j t} w^k + | c = +}} +{{eqn | r = \sum_j \left({-1}\right)^j \dfrac r {r - j t} \sum_k \dbinom k j \dbinom {r - j t} k w^k + | c = +}} +{{eqn | r = \sum_j \left({-1}\right)^j \dfrac r {r - j t} \sum_k \dbinom {r - j t} j \dbinom {r - j t - j} {k - j} w^k + | c = [[Product of r Choose m with m Choose k|Product of $\dbinom r m$ with $\dbinom m k$]] +}} +{{eqn | r = \sum_j \left({-1}\right)^j \dfrac r {r - j t} \dbinom {r - j t} j \sum_k \dbinom {r - j t - j} {k - j} w^k + | c = +}} +{{eqn | r = \sum_j \left({-1}\right)^j A_j \left({r, t}\right) \sum_k \dbinom {r - j t - j} {k - j} w^k + | c = Definition of $A_j \left({r, t}\right)$ +}} +{{eqn | r = \sum_j \left({-1}\right)^j A_j \left({r, t}\right) \left({1 + w}\right)^{r - j t - j} w^j + | c = [[Binomial Theorem]] +}} +{{end-eqn}} +Now let: +:$x = \dfrac 1 {1 + w}$ +{{begin-eqn}} +{{eqn | l = x + | o = := + | r = \dfrac 1 {1 + w} + | c = +}} +{{eqn | ll= \leadsto + | l = z + | r = -\frac w {\left({1 + w}\right)^{1 + t} } + | c = +}} +{{eqn | ll= \leadsto + | l = \left({1 + w}\right)^{r - j k - j} w^j \left({-1}\right)^j + | r = z^r z^j + | c = +}} +{{end-eqn}} +Thus: +{{begin-eqn}} +{{eqn | l = \sum_j A_j \left({r, t}\right) z^j \left({1 + w}\right)^r + | r = 1 + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_j A_j \left({r, t}\right) z^j + | r = \left({1 + w}\right)^{- r} + | c = +}} +{{eqn | r = x^r + | c = +}} +{{end-eqn}} +{{finish|Establish the fact that we have convergence by ratio test and estimates for large $k$. Or use complex variable theory to establish that the function is analytic around $x {{=}} 1$.}} +{{qed}} +\end{proof}<|endoftext|> +\section{Not Preceding implies Approximating Relation and not Preceding} +Tags: Approximating Relations, Complete Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $x, y \in S$ such that +:$x \npreceq y$ +Let $\mathcal R$ be an [[Definition:Approximating Relation|approximating relation]] on $S$. +Then +:$\exists u \in S: \left({u, x}\right) \in \mathcal R \land u \npreceq y$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Approximating Relation|approximating relation]]: +:$x = \sup \left({x^{\mathcal R} }\right)$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$y$ is [[Definition:Upper Bound of Set|upper bound]] for $x^{\mathcal R} \implies x \preceq y$ +By definition of [[Definition:Upper Bound of Set|upper bound]]: +:$\exists u \in S: u \in x^{\mathcal R} \land u \npreceq y$ +Thus by definition of [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$\exists u \in S: \left({u, x}\right) \in \mathcal R \land u \npreceq y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Auxiliary Approximating Relation has Quasi Interpolation Property} +Tags: Approximating Relations, Complete Lattices, Auxiliary Relations + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $x, z \in S$. +Let $\mathcal R$ be an [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] on $S$ such that +:$\left({x, z}\right) \in \mathcal R \land x \ne z$ +Then +:$\exists y \in S: x \preceq y \land \left({y, z}\right) \in \mathcal R \land x \ne y$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$x \preceq z$ +By definition of $\prec$: +:$x \prec z$ +By definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$z \nprec x$ +Then +:$z \npreceq x$ +By [[Not Preceding implies Approximating Relation and not Preceding]]: +:$\exists u \in S: \left({u, z}\right) \land u \npreceq x$ +Define $y = x \vee u$. +Thus by [[Join Succeeds Operands]]: +:$x \preceq y$ +Thus by definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\left({y, z}\right) \in \mathcal R$ +Thus by [[Preceding iff Join equals Larger Operand]]: +:$x \ne y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Preceding iff Join equals Larger Operand} +Tags: Join and Meet, Join and Meet Semilattices + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Join Semilattice|join semilattice]]. +Let $x, y \in S$. +Then +:$x \preceq y$ {{iff}} $x \vee y = y$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let +:$x \preceq y$ +By definition of [[Definition:Join (Order Theory)|join]]: +:$x \vee y = \sup \left\{ {x, y}\right\}$ +By definitions of [[Definition:Upper Bound of Set|upper bound]] and [[Definition:Reflexivity|reflexivity]]: +:$y$ is [[Definition:Upper Bound of Set|upper bound]] for $\left\{ {x, y}\right\}$ +and +:$\forall z \in S: z$ is [[Definition:Upper Bound of Set|upper bound]] for $\left\{ {x, y}\right\} \implies y \preceq z$ +Thus by definition of [[Definition:Supremum of Set|supremum]]: +:$y = \sup \left\{ {x, y}\right\} = x \vee y$ +{{qed|lemma}} +=== Necessary Condition === +Let +:$x \vee y = y$ +Thus by [[Join Succeeds Operands]]: +:$x \preceq y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of -1^k by n choose k by r-kt choose n by r over r-kt} +Tags: Binomial Coefficients + +\begin{theorem} +:$\displaystyle \sum_k \left({-1}\right)^k \dbinom n k \dbinom {r - k t} n \dfrac r {r - k t} = \delta_{n 0}$ +where $\delta_{n 0}$ is the [[Definition:Kronecker Delta|Kronecker delta]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \sum_k \left({-1}\right)^k \dbinom n k \dbinom {r - k t} n \dfrac r {r - k t} = \delta_{n 0}$ +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left({-1}\right)^k \dbinom 0 k \dbinom {r - k t} 0 \dfrac r {r - k t} + | r = \sum_k \left({-1}\right)^k \delta_{0 k} \dbinom {r - k t} 0 \dfrac r {r - k t} + | c = [[Zero Choose n]] +}} +{{eqn | r = \dbinom r 0 \dfrac r r + | c = All terms but for $k = 0$ vanish +}} +{{eqn | r = 1 + | c = [[Binomial Coefficient with Zero]] +}} +{{eqn | r = \delta_{0 0} + | c = +}} +{{end-eqn}} +Thus $P \left({0}\right)$ is seen to hold. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({j}\right)$ is true, where $j \ge 0$, then it logically follows that $P \left({j + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left({-1}\right)^k \dbinom j k \dbinom {r - k t} j \dfrac r {r - k t} = \delta_{j 0}$ +from which it is to be shown that: +:$\displaystyle \sum_k \left({-1}\right)^k \dbinom {j + 1} k \dbinom {r - k t} {j + 1} \dfrac r {r - k t} = \delta_{\left({j + 1}\right) 0}$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \left({-1}\right)^k \dbinom {j + 1} k \dbinom {r - k t} {j + 1} \dfrac r {r - k t} + | c = +}} +{{eqn | r = \sum_k \left({-1}\right)^k \left({\dbinom j k + \dbinom j {k - 1} }\right) \dbinom {r - k t} {j + 1} \dfrac r {r - k t} + | c = {{Defof|Binomial Coefficient}} +}} +{{end-eqn}} +{{finish|brain not working tonight. Ought to be able to split binomial coeffs and reduce but it didn't do what it should. Perhaps try to solve it by reducing to factorials.}} +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0} \sum_k \left({-1}\right)^k \dbinom n k \dbinom {r - k t} n \dfrac r {r - k t} = \delta_{n 0}$ +\end{proof}<|endoftext|> +\section{Sum over k of r-kt choose k by z^k} +Tags: Binomial Coefficients, Sum over k of r-kt choose k by z^k + +\begin{theorem} +Let $n \in \Z_{\ge 0}$ be a [[Definition:Non-Negative Integer|non-negative integer]]. +Then: +:$\displaystyle \sum_k \dbinom {r - t k} k z^k = \frac {x^{r + 1} } {\left({t + 1}\right)x - t}$ +where $\dbinom {r - t k} k$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +From [[Sum over k of r Choose k by s-kt Choose r by -1^k|Sum over $k$ of $\dbinom r k$ by $\dbinom {s - k t} r$ by $\paren {-1}^k$]] and renaming variables: +:$\displaystyle \sum_j \paren {-1}^j \binom k j \binom {r - j t} k = t^k$ +Thus: +{{begin-eqn}} +{{eqn | l = \sum_{j, k} \binom k j \binom {r - j t} k \paren {-1}^j + | r = \sum_{k \mathop \ge 0} t^k + | c = when $k < 0$ we have $\dbinom {r - j t} k = 0$ +}} +{{eqn | ll= \leadsto + | l = \sum_j \paren {-1}^j \sum_k \binom k j \binom {r - j t} k + | r = \frac 1 {1 - t} + | c = [[Sum of Infinite Geometric Sequence]] +}} +{{eqn | ll= \leadsto + | l = \sum_j \paren {-1}^j \sum_k \binom {r - j t} j \binom {r - j t - k} {j - k} + | r = \frac 1 {1 - t} + | c = [[Product of r Choose m with m Choose k|Product of $\dbinom r m$ with $\dbinom m k$]] +}} +{{eqn | ll= \leadsto + | l = \sum_j \paren {-1}^j \binom {r - j t} j \sum_k \binom {r - j t - k} {j - k} + | r = \frac 1 {1 - t} + | c = +}} +{{end-eqn}} +{{finish|... and so on}} +\end{proof} + +\begin{proof} +From [[Sum over k of r-kt choose k by r over r-kt by z^k|Sum over $k$ of $\dbinom {r - k t} k$ by $\dfrac r {r - k t}$ by $z^k$]]: +:$\displaystyle (1): \quad \sum_k \map {A_k} {r, t} z^k = x^r$ +where: +:$\map {A_n} {x, t}$ is the [[Definition:Polynomial over Real Numbers|polynomial]] of [[Definition:Degree of Polynomial|degree $n$]] defined as: +::$\map {A_n} {x, t} := \dbinom {x - n t} n \dfrac x {x - n t}$ +:for $x \ne n t$ +:$z = x^{t + 1} - x^t$. +[[Definition:Differentiation|Differentiating]] $(1)$ {{WRT|Differentiation}} $z$: +{{begin-eqn}} +{{eqn | l = \sum_k \map {A_k} {r, t} k z^{k - 1} + | r = \frac \d {\d z} x^r + | c = [[Power Rule for Derivatives]] +}} +{{eqn | ll= \leadsto + | l = \sum_k \map {A_k} {r, t} k z^k + | r = z \frac \d {\d z} x^r + | c = +}} +{{eqn | r = \paren {x^{t + 1} - x^t} r x^{r - 1} \frac {\d x} {\d z} + | c = [[Chain Rule for Derivatives]] +}} +{{end-eqn}} +We have: +{{begin-eqn}} +{{eqn | l = z + | r = x^{t + 1} - x^t + | c = +}} +{{eqn | ll= \leadsto + | l = \frac {\d z} {\d x} + | r = \paren {t + 1} x^t - t x^{t - 1} + | c = [[Power Rule for Derivatives]] +}} +{{eqn | ll= \leadsto + | l = \frac {\d x} {\d z} + | r = \frac 1 {\paren {t + 1} x^t - t x^{t - 1} } + | c = [[Derivative of Inverse Function]] +}} +{{end-eqn}} +Hence: +{{begin-eqn}} +{{eqn | l = \sum_k k \map {A_k} {r, t} z^k + | r = \frac {\paren {x^{t + 1} - x^t} r x^{r - 1} } {\paren {t + 1} x^t - t x^{t - 1} } + | c = +}} +{{eqn | r = \frac {\paren {x - 1} r x^r} {\paren {t + 1} x - t} + | c = simplifying +}} +{{eqn | ll= \leadsto + | l = \sum_k \map {A_k} {r, t} z^k - \frac t r \sum_k k \map {A_k} {r, t} z^k + | r = x^r - \frac t r \frac {\paren {x - 1} r x^r} {\paren {t + 1} x - t} + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_k \paren {1 - \frac t r k} \map {A_k} {r, t} z^k + | r = \frac {\paren {\paren {t + 1} x - t} x^r - t \paren {x - 1} x^r} {\paren {t + 1} x - t} + | c = +}} +{{eqn | r = \frac {x^{r + 1} } {\paren {t + 1} x - t} + | c = simplifying +}} +{{eqn | ll= \leadsto + | l = \sum_k \frac {r - t k} r \dbinom {r - k t} k \dfrac r {r - k t} z^k + | r = \frac {x^{r + 1} } {\paren {t + 1} x - t} + | c = substituting for $\map {A_k} {r, t}$ +}} +{{eqn | ll= \leadsto + | l = \sum_k \dbinom {r - k t} k z^k + | r = \frac {x^{r + 1} } {\paren {t + 1} x - t} + | c = simplifying +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of r+tk choose k by s-tk choose n-k} +Tags: Binomial Coefficients + +\begin{theorem} +Let $n \in \Z_{\ge 0}$ be a [[Definition:Non-Negative Integer|non-negative integer]]. +Then: +:$\displaystyle \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} = \sum_{k \mathop \ge 0} \dbinom {r + s - k} {n - k} t^k$ +where $\dbinom {r + t k} k$ etc. denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +Let $f \left({r, s, t, n}\right)$ be the [[Definition:Real-Valued Function|function]] defined as: +:$\displaystyle f \left({r, s, t, n}\right) := \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k}$ +We have: +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} + | c = +}} +{{eqn | r = \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} \frac {r + t k} {r + t k} + | c = +}} +{{eqn | r = \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} \frac r {r + t k} + \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} \frac {t k} {r + t k} + | c = +}} +{{end-eqn}} +{{proof wanted|in progress}} +\end{proof}<|endoftext|> +\section{Auxiliary Approximating Relation has Interpolation Property} +Tags: Approximating Relations, Complete Lattices, Auxiliary Relations + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $x, z \in S$ such that +:$x \ll z \land x \ne z$ +Let $\mathcal R$ be an [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] on $S$. +Then +:$\exists y \in S: \left({x, y}\right) \in \mathcal R \land \left({y, z}\right) \in \mathcal R \land x \ne y$ +\end{theorem} + +\begin{proof} +Define $I := \left\{ {u \in S: \exists y \in S: \left({u, y}\right) \in \mathcal R \land \left({y, z}\right) \in \mathcal R}\right\}$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\left({\bot, \bot}\right) \in \mathcal R$ and $\left({\bot, z}\right) \in \mathcal R$ +where $\bot$ denotes the [[Definition:Smallest Element|smallest element]] in $L$. +Then +:$\bot \in I$ +By definition: +:$I$ is a [[Definition:Non-Empty Set|non-empty set]]. +We will prove that +:$I$ is a [[Definition:Lower Set|lower set]]. +Let $a \in I, b \in S$ such that +:$b \preceq a$ +By definition of $I$: +:$\exists s \in S: \left({a, s}\right) \in \mathcal R \land \left({s, z}\right) \in \mathcal R$ +By definitions of [[Definition:Auxiliary Relation|auxiliary relation]] and [[Definition:Reflexivity|reflexivity]]: +:$\left({b, s}\right) \in \mathcal R$ +Thus +:$b \in I$ +{{qed|lemma}} +We will prove that +:$I$ is [[Definition:Directed Subset|directed]]. +Let $a, b \in I$. +By definition of $I$: +:$\exists s \in S: \left({a, s}\right) \in \mathcal R \land \left({s, z}\right) \in \mathcal R$ +and +:$\exists t \in S: \left({b, t}\right) \in \mathcal R \land \left({t, z}\right) \in \mathcal R$ +By [[Auxiliary Relation is Congruent]]: +:$\left({a \vee b, s \vee t}\right) \in \mathcal R$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\left({s \vee t, z}\right) \in \mathcal R$ +Thus by definition of $I$: +:$a \vee b \in I$ +Thus by [[Join Succeeds Operands]]: +:$a \preceq a \vee b$ and $b \preceq a \vee b$ +{{qed|lemma}} +By definition: +:$I$ is [[Definition:Ideal in Ordered Set|ideal]] in $L$. +We will prove that +:$I \subseteq z^{\mathcal R}$ +Let $a \in I$. +By definition of $I$: +:$\exists s \in S: \left({a, s}\right) \in \mathcal R \land \left({s, z}\right) \in \mathcal R$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$a \preceq s$ +Again by definition of [[Definition:Auxiliary Relation|auxiliary relation]] and [[Definition:Reflexivity|reflexivity]]: +:$\left({a, z}\right) \in \mathcal R$ +Thus by definition of [[Definition:Relation Segment|$\mathcal R$-segment]]: +:$a \in z^{\mathcal R}$ +{{qed|lemma}} +By [[Supremum of Subset]] and definition of [[Definition:Approximating Relation|approximating relation]]: +:$\sup I \preceq \sup \left({z^{\mathcal R} }\right) = z$ +We will prove that +:$\sup I = z$ +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$\sup I \ne z$ +By definition of $\prec$: +:$\sup I \prec z$ +Then by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$z \npreceq \sup I$ +By [[Not Preceding implies Approximating Relation and not Preceding]]: +:$\exists y \in S: \left({y, z}\right) \in \mathcal R \land y \npreceq \sup I$ +Again by [[Not Preceding implies Approximating Relation and not Preceding]]: +:$\exists u \in S: \left({u, y}\right) \in \mathcal R \land u \npreceq \sup I$ +By definition of $I$: +:$u \in I$ +This contradicts $u \preceq \sup I$ by definition of [[Definition:Supremum of Set|supremum]]. +{{qed|lemma}} +By [[Way Below iff Second Operand Preceding Supremum of Ideal implies First Operand is Element of Ideal]]: +:$x \in I$ +By definition of $I$: +:$\exists s \in S: \left({x, s}\right) \in \mathcal R \land \left({s, z}\right) \in \mathcal R$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$x \preceq s$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]] and [[Definition:Reflexivity|reflexivity]]: +:$\left({x, z}\right) \in \mathcal R$ +By [[Auxiliary Approximating Relation has Quasi Interpolation Property]]: +:$\exists y \in S: x \preceq y \land \left({y, z}\right) \in \mathcal R \land x \ne y$ +By definition of $\prec$: +:$ x \prec y$ +Define $Y := s \vee y$ +By [[Join Succeeds Operands]]: +:$s \preceq Y$ and $y \preceq Y$ +Then +:$x \ne Y$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$x \preceq x$ +By definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\left({x, Y}\right) \in \mathcal R$ +Again by definition of [[Definition:Auxiliary Relation|auxiliary relation]]: +:$\left({Y, z}\right) \in \mathcal R$ +Hence +:$\exists y \in S: \left({x, y}\right) \in \mathcal R \land \left({y, z}\right) \in \mathcal R \land x \ne y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Way Below has Strong Interpolation Property} +Tags: Approximating Relations, Continuous Lattices, Way Below Relation + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Let $x, z \in S$ such that +:$x \ll z \land x \ne z$ +Then +:$\exists y \in S: x \ll y \land y \ll z \land x \ne y$ +\end{theorem} + +\begin{proof} +By [[Way Below is Approximating Relation]] and [[Way Below Relation is Auxiliary Relation]]: +:$\ll$ is an [[Definition:Auxiliary Relation|auxiliary]] [[Definition:Approximating Relation|approximating relation]] on $S$. +Thus by [[Auxiliary Approximating Relation has Interpolation Property]]: +:$\exists y \in S: x \ll y \land y \ll z \land x \ne y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Way Below has Interpolation Property} +Tags: Continuous Lattices, Way Below Relation + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Let $x, z \in S$ such that +:$x \ll z$ +Then +:$\exists y \in S: x \ll y \land y \ll z$ +\end{theorem} + +\begin{proof} +Case $x \ne z$: +By [[Way Below has Strong Interpolation Property]]: +:$\exists y \in S: x \ll y \land y \ll z \land x \ne y$ +Thus +:$\exists y \in S: x \ll y \land y \ll z$ +Case $x = z$: +Define $y = x$ +Thus +:$x \ll y \land y \ll z$ +{{qed}} +\end{proof}<|endoftext|> +\section{Left Coset Equals Subgroup iff Element in Subgroup} +Tags: Cosets + +\begin{theorem} +:$x H = H \iff x \in H$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x H + | r = H + | c = +}} +{{eqn | ll= \leadstoandfrom + | l = x H + | r = e H + | c = [[Left Coset by Identity]]: $e H = H$ +}} +{{eqn | ll= \leadstoandfrom + | l = x e^{-1} + | o = \in + | r = H + | c = [[Left Cosets are Equal iff Product with Inverse in Subgroup]] +}} +{{eqn | ll= \leadstoandfrom + | l = x + | o = \in + | r = H + | c = [[Definition:Group|Group Properties]] +}} +{{end-eqn}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Right Coset Equals Subgroup iff Element in Subgroup} +Tags: Cosets + +\begin{theorem} +:$H x = H \iff x \in H$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = H x + | r = H + | c = +}} +{{eqn | ll= \leadstoandfrom + | l = H x + | r = H e + | c = [[Right Coset by Identity]]: $H = H e$ +}} +{{eqn | ll= \leadstoandfrom + | l = x e^{-1} + | o = \in + | r = H + | c = [[Right Cosets are Equal iff Product with Inverse in Subgroup]] +}} +{{eqn | ll= \leadstoandfrom + | l = x + | o = \in + | r = H + | c = [[Definition:Group|Group Properties]] +}} +{{end-eqn}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Elements in Same Left Coset iff Product with Inverse in Subgroup} +Tags: Cosets + +\begin{theorem} +: $x, y$ are in the same [[Definition:Left Coset|left coset]] of $H$ {{iff}} $x^{-1} y \in H$. +\end{theorem} + +\begin{proof} +Let: $x H$ denote the [[Definition:Left Coset|left coset]] of $H$ by $x$ +First we note that, from [[Congruence Class Modulo Subgroup is Coset]], we have that the [[Definition:Left Coset|left cosets]] of $G$ form a [[Definition:Partition (Set Theory)|partition]] of $G$. +=== Sufficient Condition === +Suppose $x, y$ are in the same [[Definition:Left Coset|left coset]] of $H$. +It follows from [[Congruence Class Modulo Subgroup is Coset]] that: +: $x \in y H$ and $y \in x H$ {{iff}} $x H = y H$ +From [[Cosets are Equal iff Product with Inverse in Subgroup]], we have that: +: $x H = y H \iff x^{-1} y \in H$ +So if $x, y$ are in the same [[Definition:Left Coset|left coset]] of $H$ then $x^{-1} y \in H$. +{{qed|lemma}} +=== Necessary Condition === +Suppose that $x^{-1} y \in H$. +From [[Left Cosets are Equal iff Product with Inverse in Subgroup]], we have that: +: $x H = y H \iff x^{-1} y \in H$ +Again, it follows from [[Congruence Class Modulo Subgroup is Coset]] that: +: $x \in y H$ and $y \in x H$ iff $x H = y H$ +and so $x, y$ are in the same [[Definition:Left Coset|left coset]] of $H$. +{{qed}} +\end{proof}<|endoftext|> +\section{Elements in Same Right Coset iff Product with Inverse in Subgroup} +Tags: Cosets + +\begin{theorem} +: $x, y$ are in the same [[Definition:Right Coset|right coset]] of $H$ {{iff}} $x y^{-1} \in H$ +\end{theorem} + +\begin{proof} +Let $H x$ denote the [[Definition:Right Coset|right coset]] of $H$ by $x$. +First we note that, from [[Congruence Class Modulo Subgroup is Coset]], we have that the [[Definition:Right Coset|right cosets]] of $G$ form a [[Definition:Partition (Set Theory)|partition]] of $G$. +=== Sufficient Condition === +Suppose $x, y$ are in the same [[Definition:Left Coset|left coset]] of $H$. +It follows from [[Congruence Class Modulo Subgroup is Coset]] that: +: if $x \in H y$ and $y \in H x$ iff $H x = H y$ +From [[Cosets are Equal iff Product with Inverse in Subgroup]], we have that: +: $H x = H y \iff x y^{-1} \in H$ +So if $x, y$ are in the same [[Definition:Right Coset|right coset]] of $H$ then $x y^{-1} \in H$. +{{qed|lemma}} +=== Necessary Condition === +Now suppose that $x y^{-1} \in H$. +From [[Right Cosets are Equal iff Product with Inverse in Subgroup]], we have that: +: $H x = H y \iff x y^{-1} \in H$ +It follows from [[Congruence Class Modulo Subgroup is Coset]] that: +: $x \in H y$ and $y \in H x$ iff $H x = H y$ +and so: +: $x, y$ are in the same [[Definition:Left Coset|left coset]] of $H$ +Hence $x, y$ are in the same [[Definition:Right Coset|right coset]] of $H$ if $x y^{-1} \in H$. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of m+r+s Choose k by n+r-s Choose n-k by r+k Choose m+n} +Tags: Binomial Coefficients + +\begin{theorem} +Let $m, n \in \Z_{\ge 0}$. +Then: +:$\displaystyle \sum_k \binom {m - r + s} k \binom {n + r - s} {n - k} \binom {r + k} {m - n} = \binom r m \binom s n$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | o = + | r = \sum_k \binom {m - r + s} k \binom {n + r - s} {n - k} \binom {r + k} {m - n} + | c = +}} +{{eqn | r = \sum_k \binom {m - r + s} k \binom {n + r - s} {n - k} \left({\sum_j \binom r {m + n - j} \binom k j}\right) + | c = [[Chu-Vandermonde Identity]] +}} +{{eqn | r = \sum_k \sum_j \binom {m - r + s} j \binom {m - r + s - j} {k - j} \binom {n + r - s} {n - k} \binom r {m + n - j} + | c = [[Product of r Choose m with m Choose k|Product of $\dbinom r m$ with $\dbinom m k$]] +}} +{{eqn | r = \sum_j \binom {m - r + s} j \binom r {m + n - j} \left({\sum_k \binom {m - r + s - j} {k - j} \binom {n + r - s} {n - k} }\right) + | c = +}} +{{eqn | r = \sum_j \binom {m - r + s} j \binom r {m + n - j} \binom {m + n - j} {n - j} + | c = [[Chu-Vandermonde Identity]] +}} +{{eqn | r = \sum_j \binom {m - r + s} j \binom r {m + n - j} \binom {m + n - j} m + | c = [[Symmetry Rule for Binomial Coefficients]] +}} +{{eqn | r = \sum_j \binom {m - r + s} j \binom r m \binom {r - m} {n - j} + | c = [[Product of r Choose m with m Choose k|Product of $\dbinom r m$ with $\dbinom m k$]] +}} +{{eqn | r = \binom r m \left({\sum_j \binom {m - r + s} j \binom {r - m} {n - j} }\right) + | c = +}} +{{eqn | r = \binom r m \binom s n + | c = [[Chu-Vandermonde Identity]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Unsigned Stirling Numbers of First Kind by x^k} +Tags: Stirling Numbers, Rising Factorials, Examples of Power Series + +\begin{theorem} +:$\displaystyle \sum_k \left[{n \atop k}\right] x^k = x^{\overline n}$ +where: +:$\displaystyle \left[{n \atop k}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$x^{\overline n}$ denotes [[Definition:Rising Factorial|$x$ to the $n$ rising]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_k \left({-1}\right)^{n - k} \left[{n \atop k}\right] x^k + | r = x^{\underline n} + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | ll= \leadsto + | l = \sum_k \left({-1}\right)^{n - k} \left[{n \atop k}\right] \left({-x}\right)^k + | r = \left({-x}\right)^{\underline n} + | c = putting $-x$ for $x$ +}} +{{eqn | ll= \leadsto + | l = \left({-1}\right)^n \sum_k \left[{n \atop k}\right] x^k + | r = \left({-x}\right)^{\underline n} + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_k \left[{n \atop k}\right] x^k + | r = \left({-1}\right)^n \left({-x}\right)^{\underline n} + | c = +}} +{{eqn | r = x^{\overline n} + | c = [[Rising Factorial in terms of Falling Factorial of Negative]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Capelli's Sum} +Tags: Rising Factorials + +\begin{theorem} +:$\displaystyle \left({x + y}\right)^{\overline n} = \sum_k \binom n k x^{\overline k} y^{\overline {n - k} }$ +where: +:$\dbinom n k$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]] +:$x^{\overline k}$ denotes [[Definition:Rising Factorial|$x$ to the $k$ rising]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{> 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \left({x + y}\right)^{\overline n} = \sum_k \binom n k x^{\overline k} y^{\overline {n - k} }$ +=== Basis for the Induction === +$P \left({1}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \left({x + y}\right)^{\overline 1} + | r = x^{\overline 1} + y^{\overline 1} + | c = [[Number to Power of One Rising is Itself]] +}} +{{eqn | r = x^{\overline 0} y^{\overline 1} + x^{\overline 1} y^{\overline 0} + | c = [[Number to Power of Zero Rising is One]] +}} +{{eqn | r = \binom 1 0 x^{\overline 0} y^{\overline 1} + \binom 1 1 x^{\overline 1} y^{\overline 0} + | c = [[One Choose n]] +}} +{{eqn | r = \sum_k \binom 1 k x^{\overline k} y^{\overline {1 - k} } + | c = +}} +{{end-eqn}} +Thus $P \left({1}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({m}\right)$ is true, where $m \ge 1$, then it logically follows that $P \left({m + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \left({x + y}\right)^{\overline m} = \sum_k \binom m k x^{\overline k} y^{\overline {m - k} }$ +from which it is to be shown that: +:$\displaystyle \left({x + y}\right)^{\overline {m + 1} } = \sum_k \binom {m + 1} k x^{\overline k} y^{\overline {m + 1 - k} }$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \left({x + y}\right)^{\overline {m + 1} } + | r = \left({x + y}\right)^{\overline m} \left({x + y + m}\right) + | c = Definition of [[Definition:Rising Factorial|Rising Factorial]] +}} +{{eqn | r = \left({\sum_k \binom m k x^{\overline k} y^{\overline {m - k} } }\right) \left({x + y + m}\right) + | c = [[Capelli's Sum#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left({\sum_k \binom m k x^{\overline k} y^{\overline {m - k} } }\right) \left({x + k + y + m - k}\right) + | c = +}} +{{eqn | r = \sum_k \binom m k x^{\overline k} \left({x + k}\right) y^{\overline {m - k} } + \sum_k \binom m k x^{\overline k} y^{\overline {m - k} } \left({y + m - k}\right) + | c = +}} +{{eqn | r = \sum_k \binom m k x^{\overline {k + 1} } y^{\overline {m - k} } + \sum_k \binom m k x^{\overline k} y^{\overline {m - k + 1} } + | c = Definition of [[Definition:Rising Factorial|Rising Factorial]] +}} +{{eqn | r = \sum_k \binom m k x^{\overline {k + 1} } y^{\overline {m - k} } + \sum_k \binom m {k + 1} x^{\overline {k + 1} } y^{\overline {m - k} } + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = \sum_k \binom {m + 1} k x^{\overline {k + 1} } y^{\overline {m - k} } + | c = [[Pascal's Rule]] +}} +{{end-eqn}} +So $P \left({m}\right) \implies P \left({m + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{> 0}: \left({x + y}\right)^{\overline n} = \sum_k \binom n k x^{\overline k} y^{\overline {n - k} }$ +\end{proof}<|endoftext|> +\section{Torelli's Sum} +Tags: Rising Factorials + +\begin{theorem} +:$\displaystyle \left({x + y}\right)^{\overline n} = \sum_k \binom n k x \left({x - k z + 1}\right)^{\overline {k - 1} } \left({y + k z}\right)^{\overline {n - k} }$ +where: +:$\dbinom n k$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]] +:$x^{\overline k}$ denotes [[Definition:Rising Factorial|$x$ to the $k$ rising]]. +\end{theorem} + +\begin{proof} +From [[Rising Factorial as Factorial by Binomial Coefficient]]: +:$\left({x + y}\right)^{\overline n} = n! \dbinom {x + y + n - 1} n$ +Recall [[Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk|Sum over $k$ of $\dbinom {r - t k} k$ by $\dbinom {s - t \left({n - k}\right)} {n - k}$ by $\dfrac r {r - t k}$]]: +:$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \left({n - k}\right)} {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ +Let the following substitutions be made: +:$r \gets x$ +:$t \gets -\left({1 - z}\right)$ +:$s \gets y - 1 + n z$ +and so to obtain: +:$\displaystyle \dbinom {x + y + n - 1} n = \sum_k \dbinom {x + \left({1 - z}\right) k} k \dbinom {y - 1 + n z + \left({n - k}\right) \left({1 - z}\right)} {n - k} \dfrac x {x + \left({1 - z}\right) k}$ +Then: +{{begin-eqn}} +{{eqn | l = \dbinom {x + \left({1 - z}\right) k} k + | r = \dfrac {\left({x - k z + 1}\right)^{\overline k} } {k!} + | c = [[Rising Factorial as Factorial by Binomial Coefficient]] +}} +{{eqn | ll= \leadsto + | l = \dfrac x {x + \left({1 - z}\right) k} \dbinom {x + \left({1 - z}\right) k} k + | r = \dfrac {x \left({x - k z + 1}\right)^{\overline {k - 1} } } {k!} + | c = +}} +{{end-eqn}} +and: +{{begin-eqn}} +{{eqn | l = \dbinom {y - 1 + n z + \left({n - k}\right) \left({1 - z}\right)} {n - k} + | r = \dbinom {y - 1 + n z + n - k - n z + k z} {n - k} + | c = +}} +{{eqn | r = \dbinom {y + k z \left({n - k}\right) - 1} {n - k} + | c = +}} +{{eqn | r = \frac 1 {\left({n - 1}\right)!} \left({y + k z}\right)^{\overline {n - k} } + | c = [[Rising Factorial as Factorial by Binomial Coefficient]] +}} +{{end-eqn}} +Hence: +{{begin-eqn}} +{{eqn | l = n! \dbinom {x + y + n - 1} n + | r = \sum_k \frac {n!} {k! \left({n - k}\right)!} x \left({x - k z + 1}\right)^{\overline {k - 1} } \left({y + k z}\right)^{\overline {n - k} } + | c = +}} +{{eqn | ll= \leadsto + | l = \left({x + y}\right)^{\overline n} + | r = \sum_k \binom n k x \left({x - k z + 1}\right)^{\overline {k - 1} } \left({y + k z}\right)^{\overline {n - k} } + | c = +}} +{{end-eqn}} +{{qed}} +{{Namedfor|Ruggiero Torelli|cat = Torelli}} +\end{proof}<|endoftext|> +\section{Way Below iff Second Operand Preceding Supremum of Directed Set There Exists Element of Directed Set First Operand Way Below Element} +Tags: Way Below Relation, Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Let $x, y$ be [[Definition:Element|elements]] of $S$. +Then +:$x \ll y$ +{{iff}} +:for every [[Definition:Directed Subset|directed subset]] $D$ of $S$ such that $y \preceq \sup D$ +::there exists an [[Definition:Element|element]] $d$ of $D$: $x \ll d$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $x \ll y$. +Let $D$ be a [[Definition:Directed Subset|directed subset]] of $S$ such that +:$y \preceq \sup D$ +By [[Way Below has Interpolation Property]]: +:$\exists x' \in S: x \ll x' \land x' \ll y$ +By definition of [[Definition:Element is Way Below|way below relation]]: +:$\exists d \in D: x' \preceq d$ +Thus by [[Preceding and Way Below implies Way Below]] and definition of [[Definition:Reflexivity|reflexivity]]: +:$x \ll d$ +{{qed|lemma}} +=== Necessary Condition === +Assume that +:for every [[Definition:Directed Subset|directed subset]] $D$ of $S$ such that $y \preceq \sup D$ +::there exists an [[Definition:Element|element]] $d$ of $D$: $x \ll d$ +By [[Way Below implies Preceding]]: +:for every [[Definition:Directed Subset|directed subset]] $D$ of $S$ such that $y \preceq \sup D$ +::there exists an [[Definition:Element|element]] $d$ of $D$: $x \preceq d$ +Thus by definition of [[Definition:Element is Way Below|way below relation]]: +$x \ll y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Continuous iff Way Below Closure is Ideal and Element Precedes Supremum} +Tags: Continuous Lattices, Way Below Relation, Up-Complete Semilattices + +\begin{theorem} +Let $L = \left({S, \wedge, \preceq}\right)$ be an [[Definition:Up-Complete|up-complete]] [[Definition:Meet Semilattice|meet semilattice]]. +Then +:$L$ is [[Definition:Continuous Ordered Set|continuous]] +{{iff}} +:$\forall x \in S: x^\ll$ is an [[Definition:Ideal in Ordered Set|ideal]] in $L$ and $x \preceq \sup \left({x^\ll}\right)$ and +::for every [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: $x \preceq \sup I \implies x^\ll \subseteq I$ +where $x^\ll$ denotes the [[Definition:Way Below Closure|way below closure]] of $x$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $L$ be [[Definition:Continuous Ordered Set|continuous]]. +Let $x \in S$. +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$x^\ll$ is [[Definition:Directed Subset|directed]]. +By [[Way Below Closure is Lower Set]]: +:$x^\ll$ is a [[Definition:Lower Set|lower set]]. +Thus by definition: +:$x^\ll$ is an [[Definition:Ideal in Ordered Set|ideal]] in $L$. +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +By definition of [[Definition:Axiom of Approximation|axiom of approximation]]: +:$x = \sup \left({x^\ll}\right)$ +Thus by definition of [[Definition:Reflexivity|reflexivity]]: +:$x \preceq \sup \left({x^\ll}\right)$ +Let $I$ be an [[Definition:Ideal in Ordered Set|ideal]] in $L$ such that +:$x \preceq \sup I$ +We will prove that +:$x^\ll \subseteq I$ +Let $y \in x^\ll$ +By definition of [[Definition:Way Below Closure|way below closure]]: +:$y \ll x$ +Thus by [[Way Below iff Second Operand Preceding Supremum of Ideal implies First Operand is Element of Ideal]]: +:$y \in I$ +{{qed|lemma}} +=== Necessary Condition === +Assume that +:$\forall x \in S: x^\ll$ is an [[Definition:Ideal in Ordered Set|ideal]] in $L$ and $x \preceq \sup \left({x^\ll}\right)$ and +::for every [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: $x \preceq \sup I \implies x^\ll \subseteq I$ +Let $x \in S$. +By assumption: +:$x \preceq \sup \left({x^\ll}\right)$ +By [[Way Below implies Preceding]]: +:$x$ is [[Definition:Upper Bound of Set|upper bound]] for $x^\ll$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$\sup \left({x^\ll}\right) \preceq x$ +Thus by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$x = \sup \left({x^\ll}\right)$ +Thus by definition: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +Thus by assumption and definition of [[Definition:Ideal in Ordered Set|ideal]]: +:$\forall x \in S: x^\ll$ is [[Definition:Directed Subset|directed]]. +Hence $L$ is [[Definition:Continuous Ordered Set|continuous]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Euclidean Borel Sigma-Algebra/Open equals Closed} +Tags: Characterization of Euclidean Borel Sigma-Algebra + +\begin{theorem} +Let $\mathcal O^n$, $\mathcal C^n$ and $\mathcal K^n$ be the collections of [[Definition:Open Set (Topology)|open]] and [[Definition:Closed Set (Topology)|closed]] [[Definition:Subset|subsets]] of the [[Definition:Euclidean Space|Euclidean space]] $\left({\R^n, \tau}\right)$, respectively. +Then: +:$\sigma \left({\mathcal O^n}\right) = \sigma \left({\mathcal C^n}\right)$ +where $\sigma$ denotes [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]]. +\end{theorem} + +\begin{proof} +Recall that a [[Definition:Closed Set (Topology)|closed set]] is by definition the [[Definition:Relative Complement|relative complement]] of an [[Definition:Open Set (Topology)|open set]]. +Hence [[Sigma-Algebra Generated by Complements of Generators]] applies to yield: +:$\sigma \left({\mathcal O^n}\right) = \sigma \left({\mathcal C^n}\right)$ +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Euclidean Borel Sigma-Algebra/Closed equals Compact} +Tags: Characterization of Euclidean Borel Sigma-Algebra + +\begin{theorem} +Let $\mathcal C^n$ and $\mathcal K^n$ be the collections of [[Definition:Closed Set (Topology)|closed]] and [[Definition:Compact (Real Analysis)|compact]] [[Definition:Subset|subsets]] of the [[Definition:Euclidean Space|Euclidean space]] $\left({\R^n, \tau}\right)$, respectively. +Then: +:$\sigma \left({\mathcal C^n}\right) = \sigma \left({\mathcal K^n}\right)$ +where $\sigma$ denotes [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]]. +\end{theorem} + +\begin{proof} +By the [[Heine-Borel Theorem/Euclidean Space|Heine-Borel Theorem]], $\mathcal K^n \subseteq \mathcal C^n$. +Thus from [[Generated Sigma-Algebra Preserves Subset]], $\sigma \left({\mathcal K^n}\right) \subseteq \sigma \left({\mathcal C^n}\right)$. +Next, let, for all $n \in \N$, $B^- \left({\mathbf 0; n}\right)$ be the [[Definition:Closed Ball|closed ball]] of radius $n$ around $\mathbf 0$ in $\R^n$. +Observe that $\R^n = \displaystyle \bigcup_{n \mathop \in \N} B^- \left({\mathbf 0; n}\right)$. +Now let $U \in \mathcal C^n$ be a [[Definition:Closed Set (Topology)|closed]] subset of $\R^n$. +Then from [[Intersection with Subset is Subset]] and [[Intersection Distributes over Union]]: +:$\displaystyle U = U \cap \R^n = U \cap \bigcup_{n \mathop \in \N} B^- \left({\mathbf 0; n}\right) = \bigcup_{n \mathop \in \N} \left({U \cap B^- \left({\mathbf 0; n}\right)}\right)$ +From [[Intersection of Closed Sets is Closed in Topological Space]], $U \cap B^- \left({\mathbf 0; n}\right)$ is [[Definition:Closed Set (Topology)|closed]] for all $n \in \N$. +By definition, $B^- \left({\mathbf 0; n}\right)$ is [[Definition:Bounded Metric Space|bounded]]. +Thus, by the [[Heine-Borel Theorem/Euclidean Space|Heine-Borel Theorem]], $U \cap B^- \left({\mathbf 0; n}\right)$ is [[Definition:Compact|compact]]. +Thus, any [[Definition:Closed Set (Topology)|closed set]] is the [[Definition:Countable Union|countable union]] of [[Definition:Compact|compact]] sets. +By the third axiom for a [[Definition:Sigma-Algebra|$\sigma$-algebra]], this means that $\mathcal C^n \subseteq \sigma \left({\mathcal K^n}\right)$. +Now the definition of [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]] ensures that $\sigma \left({\mathcal C^n}\right) \subseteq \sigma \left({\mathcal K^n}\right)$. +Hence the result, by definition of [[Definition:Set Equality|set equality]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Euclidean Borel Sigma-Algebra/Open equals Rectangle} +Tags: Characterization of Euclidean Borel Sigma-Algebra + +\begin{theorem} +Let $\mathcal O^n$ be the collection of [[Definition:Open Set (Topology)|open]] [[Definition:Subset|subsets]] of the [[Definition:Euclidean Space|Euclidean space]] $\left({\R^n, \tau}\right)$. +Let $\mathcal J_{ho}^n$ be the collection of [[Definition:Half-Open Rectangle|half-open rectangles]] in $\R^n$. +Then: +:$\sigma \left({\mathcal O^n}\right) = \sigma \left({\mathcal J_{ho}^n}\right)$ +where $\sigma$ denotes [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]]. +\end{theorem} + +\begin{proof} +Let $\left[[{\mathbf a \,.\,.\, \mathbf b}\right)) \in \mathcal J^n_{ho}$. +Then: +:$\left[[{\mathbf a \,.\,.\, \mathbf b}\right)) = \left(({-\infty \,.\,.\, \mathbf b}\right)) \cap \left[[{\mathbf a \,.\,.\, +\infty}\right))$ +provides a way of writing this [[Definition:Half-Open Rectangle|half-open $n$-rectangle]] as an [[Definition:Set Intersection|intersection]] of an [[Definition:Open Set (Topology)|open]] and a [[Definition:Closed Set (Topology)|closed set]]. +By [[Characterization of Euclidean Borel Sigma-Algebra/Open equals Closed]], these are both in $\mathcal B \left({\R^n}\right)$, and so [[Sigma-Algebra Closed under Intersection]] yields: +:$\left[[{\mathbf a \,.\,.\, \mathbf b}\right)) \in \sigma \left({\mathcal O^n}\right)$ +Hence, by definition of [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]]: +:$\sigma \left({\mathcal J^n_{ho}}\right) \subseteq \sigma \left({\mathcal O^n}\right)$ +Denote $\mathbf 1 = \left({1, \ldots, 1}\right) \in \R^n$. +Define, for all $k \in \N$, $\mathcal S \left({k}\right)$ by: +:$\mathcal S \left({k}\right) := \left\{{ \left[\left[{2^{-k}\mathbf j \,.\,.\, 2^{-k} \left({\mathbf j + \mathbf 1}\right)}\right)\right) : \mathbf j \in \Z^n}\right\}$ +It is immediate that $\displaystyle \bigcup \mathcal S \left({k}\right) = \R^n$ and $\mathcal S \left({k}\right) \subseteq \mathcal J^n_{ho}$. +Also, $\mathcal S \left({k}\right)$ is [[Definition:Countable|countable]] from [[Cartesian Product of Countable Sets is Countable]]. +Now define, again for all $k \in \N$, $U_k$ by: +:$\displaystyle U_k := \bigcup \, \left\{{S \in \mathcal S \left({k}\right): S \subseteq U}\right\}$ +From [[Set Union Preserves Subsets]], $U_k \subseteq U$. +Also, $U_k \in \sigma \left({\mathcal J^n_{ho}}\right)$ since the [[Definition:Set Union|union]] is [[Definition:Countable|countable]]. +It follows that also $\displaystyle \bigcup_{k \mathop \in \N} U_k \in \sigma \left({\mathcal J^n_{ho}}\right)$. +Next, it is to be shown that $\displaystyle \bigcup_{k \mathop \in \N} U_k = U$. +Note that [[Set Union Preserves Subsets]] ensures $\displaystyle \bigcup_{k \mathop \in \N} U_k \subseteq U$. +For the converse, let $\mathbf x \in U$. +As $U$ is [[Definition:Open Set (Topology)|open]], there exists an $\epsilon > 0$ such that the [[Definition:Open Ball|open ball]] $B \left({\mathbf x; \epsilon}\right)$ is contained in $U$. +Fix $k \in \N$ such that $\sqrt n \, 2^{-k} < \epsilon$, and find $\mathbf j \in \Z^n$ such that: +:$\mathbf x \in \left[\left[{2^{-k} \mathbf j \,.\,.\, 2^{-k} \left({\mathbf j + \mathbf 1}\right)}\right)\right)$ +Now it is to be shown that: +:$\left[\left[{2^{-k} \mathbf j \,.\,.\, 2^{-k} \left({\mathbf j + \mathbf 1}\right)}\right)\right) \subseteq B \left({\mathbf x; \epsilon}\right)$ +To this end, observe that for any $\mathbf y \in \left[\left[{2^{-k} \mathbf j \,.\,.\, 2^{-k} \left({\mathbf j + \mathbf 1}\right)}\right)\right)$, it holds that: +:$d \left({\mathbf x, \mathbf y}\right) \le \operatorname{diam} \left({\left[\left[{2^{-k} \mathbf j \,.\,.\, 2^{-k} \left({\mathbf j + \mathbf 1}\right)}\right)\right)}\right)$ +by definition of [[Definition:Diameter of Bounded Metric Subspace|diameter]]. +Now from [[Diameter of Rectangle]], the right-hand side equals: +:$\left\Vert{2^{-k} \left({\mathbf j + \mathbf 1}\right) - 2^{-k} \mathbf j}\right\Vert = \left\Vert{2^{-k} \mathbf 1}\right\Vert = \sqrt{n} \, 2^{-k}$ +which is smaller than $\epsilon$ by the way $k$ was chosen. +Hence: +:$\left[\left[{2^{-k} \mathbf j \,.\,.\, 2^{-k} \left({\mathbf j + \mathbf 1}\right)}\right)\right) \subseteq B \left({\mathbf x; \epsilon}\right)$ +and so every $\mathbf x \in U$ is contained in some $U_k$. +Thus it follows that $U \subseteq \displaystyle \bigcup_{k \mathop \in \N} U_k$. +Thereby we have shown that: +:$\sigma \left({\mathcal J^n_{ho}}\right) = \sigma \left({\mathcal O^n}\right)$ +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Euclidean Borel Sigma-Algebra/Rectangle equals Rational Rectangle} +Tags: Characterization of Euclidean Borel Sigma-Algebra + +\begin{theorem} +Let $\mathcal J_{ho}^n$ be the collection of [[Definition:Half-Open Rectangle|half-open rectangles]] in $\R^n$. +Let $\mathcal J^n_{ho, \text{rat}}$ be the collection of [[Definition:Half-Open Rectangle|half-open rectangles]] in $\R^n$ with [[Definition:Rational Number|rational]] endpoints. +Then: +:$\sigma \left({\mathcal J_{ho}^n}\right) = \sigma \left({\mathcal J^n_{ho, \text{rat}}}\right)$ +where $\sigma$ denotes [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]]. +\end{theorem} + +\begin{proof} +From [[Generated Sigma-Algebra Preserves Subset]]: +:$\sigma \left({\mathcal J_{ho, \text{rat}}^n}\right) \subseteq \sigma \left({\mathcal J_{ho}^n}\right)$ +For the converse, it will suffice to show: +:$\mathcal J_{ho}^n \subseteq \sigma \left({\mathcal J_{ho, \text{rat}}^n}\right)$ +by definition of [[Definition:Sigma-Algebra Generated by Collection of Subsets|generated $\sigma$-algebra]]. +So, let $\left[[{\mathbf a \,.\,.\, \mathbf b}\right))$ be a [[Definition:Half-Open Rectangle|half-open $n$-rectangle]]. +Let $\left({\mathbf a_m}\right)_{m \in \N}$ be a [[Definition:Sequence|sequence]] in $\Q^n$ with [[Definition:Limit of Sequence|limit]] $\mathbf a$. +Also, let this [[Definition:Sequence|sequence]] be such that $m_1 > m_2 \implies \mathbf a_{m_1} > \mathbf a_{m_2}$, in the [[Definition:Componentwise Ordering|component-wise ordering]]. +Also, choose $\mathbf b' \in \Q^n$ such that $\mathbf b' > \mathbf b$, again in the [[Definition:Componentwise Ordering|component-wise ordering]]. +Then, for any $m \in \N$: +:$\left[\left[{\mathbf a_m \,.\,.\, \mathbf b'}\right)\right) \in \mathcal J_{ho, \text{rat}}^n$ +By [[Sigma-Algebra Closed under Countable Intersection]], it follows that: +:$\displaystyle \bigcap_{m \mathop \in \N} \left[\left[{\mathbf a_m \,.\,.\, \mathbf b'}\right)\right) \in \sigma \left({\mathcal J_{ho, \text{rat}}^n}\right)$ +Now observe, for $\mathbf x \in \R^n$: +{{begin-eqn}} +{{eqn | l = \mathbf x + | o = \in + | r = \bigcap_{m \mathop \in \N} \left[\left[{\mathbf a_m \,.\,.\, \mathbf b'}\right)\right) +}} +{{eqn | ll= \iff + | l = \forall m \in \N: \mathbf x + | o = \in + | r = \left[\left[{\mathbf a_m \,.\,.\, \mathbf b'}\right)\right) + | c = {{Defof|Set Intersection}} +}} +{{eqn | ll= \iff + | l = \forall m \in \N: \mathbf x + | o = \ge + | r = \mathbf a_m \land \mathbf x < \mathbf b' + | c = {{Defof|Half-Open Rectangle}} +}} +{{eqn | ll= \iff + | l = \mathbf x + | o = \ge + | r = \mathbf a \land \mathbf x < \mathbf b' + | c = $\left({\mathbf a_m}\right)_{m \in \N}$ is [[Definition:Increasing Sequence|increasing]] with [[Definition:Limit of Sequence|limit]] $\mathbf a$ +}} +{{eqn | ll= \iff + | l = \mathbf x + | o = \in + | r = \left[\left[{\mathbf a \,.\,.\, \mathbf b'}\right)\right) + | c = {{Defof|Half-Open Rectangle}} +}} +{{end-eqn}} +Next, let $\left({\mathbf b_m}\right)_{m \in \N}$ be an [[Definition:Increasing Sequence|increasing sequence]] in $\Q^n$ with [[Definition:Limit of Sequence|limit]] $\mathbf b$. +Also, let $\mathbf a' \in \Q^n$ be such that $\mathbf a' < \mathbf a$. +Again, it follows that $\left[\left[{\mathbf a' \,.\,.\, \mathbf b_m}\right)\right) \in \mathcal J_{ho, \text{rat}}^n$. +Thus, by the third axiom for a [[Definition:Sigma-Algebra|$\sigma$-algebra]]: +:$\displaystyle \bigcup_{m \mathop \in \N} \left[\left[{\mathbf a' \,.\,.\, \mathbf b_m}\right)\right) \in \sigma \left({\mathcal J^n_{ho}}\right)$ +Similar to the above approach, for any $\mathbf x \in \R^n$: +{{begin-eqn}} +{{eqn | l = \mathbf x + | o = \in + | r = \bigcup_{m \mathop \in \N} \left[\left[{\mathbf a' \,.\,.\, \mathbf b_m}\right)\right) +}} +{{eqn | ll= \iff + | l = \exists m \in \N: \mathbf x + | o = \in + | r = \left[\left[{\mathbf a' \,.\,.\, \mathbf b_m}\right)\right) + | c = {{Defof|Set Union}} +}} +{{eqn | ll= \iff + | l = \exists m \in \N: \mathbf x + | o = < + | r = \mathbf b_m \land \mathbf x \ge \mathbf a' + | c = {{Defof|Half-Open Rectangle}} +}} +{{eqn | ll= \iff + | l = \mathbf x + | o = < + | r = \mathbf b \land \mathbf x \ge \mathbf a' + | c = $\left({\mathbf b_m}\right)_{m \in \N}$ is [[Definition:Increasing Sequence|increasing]] with [[Definition:Limit of Sequence|limit]] $\mathbf b$ +}} +{{eqn | ll= \iff + | l = \mathbf x + | o = \in + | r = \left[\left[{\mathbf a' \,.\,.\, \mathbf b}\right)\right) + | c = {{Defof|Half-Open Rectangle}} +}} +{{end-eqn}} +Hence, it follows that: +:$\displaystyle \bigcup_{m \mathop \in \N} \left[\left[{\mathbf a' \,.\,.\, \mathbf b_m}\right)\right) = \left[\left[{\mathbf a' \,.\,.\, \mathbf b}\right)\right)$ +whence the latter is in $\sigma \left({\mathcal J^n_{ho, \text{rat}}}\right)$. +Hence by [[Sigma-Algebra Closed under Intersection]]: +:$\left[\left[{\mathbf a \,.\,.\, \mathbf b'}\right)\right) \cap \left[\left[{\mathbf a' \,.\,.\, \mathbf b}\right)\right) \in \sigma \left({\mathcal J^n_{ho, \text{rat}}}\right)$ +and finally (the proof of) [[Half-Open Rectangles Closed under Intersection]] yields: +:$\left[\left[{\mathbf a \,.\,.\, \mathbf b'}\right)\right) \cap \left[\left[{\mathbf a' \,.\,.\, \mathbf b}\right)\right) = \left[\left[{\mathbf a \,.\,.\, \mathbf b}\right)\right)$ +since $\mathbf a' < \mathbf a$ and $\mathbf b < \mathbf b'$, thus finishing the proof. +{{qed}} +\end{proof}<|endoftext|> +\section{Rising Factorial as Factorial by Binomial Coefficient} +Tags: Binomial Coefficients, Factorials, Rising Factorials + +\begin{theorem} +Let $x \in \R$ be a [[Definition:Real Number|real number]]. +Let $n \in \Z_{\ge 0}$ be a [[Definition:Positive Integer|positive integer]]. +:$x^{\overline n} = n! \dbinom {x + n - 1} n$ +where: +:$x^{\overline n}$ denotes [[Definition:Rising Factorial|$x$ to the $n$ rising]] +:$n!$ denotes the [[Definition:Factorial|factorial of $n$]] +:$\dbinom {x + n - 1} n$ denotes a [[Definition:Binomial Coefficient|binomial coefficient]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Rising Factorial|$x$ to the $n$ rising]]: +:$x^{\overline n} = x \left({x + 1}\right) \cdots \left({x + n - 1}\right)$ +By definition of the [[Definition:Binomial Coefficient/Real Numbers|binomial coefficient of a real number]]: +:$\dbinom {x + n - 1} n = \dfrac {\left({x + n - 1}\right) \left({x + n - 2}\right) \cdots x} {n!}$ +Hence the result. +{{qed}} +[[Category:Binomial Coefficients]] +[[Category:Factorials]] +[[Category:Rising Factorials]] +281ldsrexhi9ewe5sjbi9fuerv0gh89 +\end{proof}<|endoftext|> +\section{Ramus's Identity} +Tags: Binomial Coefficients, Ramus's Identity + +\begin{theorem} +Let $k, m, n \in \Z_{\ge 0}$ be [[Definition:Positive Integer|positive integers]] such that $0 \le k < m$. +Then: +{{begin-eqn}} +{{eqn | l = \sum_{j \mathop \ge 0} \binom n {j m + k} + | r = \dbinom n k + \dbinom n {m + k} + \dbinom n {2 m + k} + \cdots + | c = +}} +{{eqn | r = \dfrac 1 m \sum_{0 \mathop \le j \mathop < m} \paren {2 \cos \dfrac {j \pi} m}^n \cos \dfrac {j \paren {n - 2 k} \pi} m + | c = +}} +{{end-eqn}} +\end{theorem} + +\begin{proof} +Let $\omega := e^{2 \pi i / m}$. +Then by the [[Binomial Theorem]]: +:$(1): \quad \displaystyle \sum_{0 \mathop \le j \mathop < m} \paren {1 + \omega^j}^n \omega^{-j k} = \sum_t \sum_{0 \mathop \le j \mathop < m} \binom n t \omega^{j \paren {t - k} }$ +By [[Sum of Geometric Sequence]]: +:$\displaystyle \sum_{0 \mathop \ge j \mathop < m} \omega^{j \paren {t - k} } = \begin{cases} \dfrac {1 - \omega^{m \paren {t - k} } } {1 - \omega^{t - k} } & : t - k \not \equiv 0 \pmod m \\ m & : t \equiv k \pmod m \end{cases}$ +We have that: +:$\omega = \exp \dfrac {2 \pi i} m \implies \omega^m = 1$ +and so: +{{begin-eqn}} +{{eqn | l = \sum_{0 \mathop \le j \mathop < m} \omega^{r j} + | r = \frac {1 - \omega^{r m} } {1 - \omega^r} + | c = [[Sum of Geometric Sequence]] +}} +{{eqn | r = m \sqbrk {r \equiv 0 \pmod m} + | c = where $\sqbrk {\, \cdots \,}$ is [[Definition:Iverson's Convention|Iverson's convention]] +}} +{{end-eqn}} +Thus the [[Definition:Summation|summation]] on the {{RHS}} of $(1)$ is: +:$m \displaystyle \sum_{t \bmod m \mathop = k} \binom n t$ +The [[Definition:Summation|summation]] on the {{LHS}} of $(1)$ is: +{{begin-eqn}} +{{eqn | l = \sum_{0 \mathop \le j \mathop < m} \paren {1 + \omega^j}^n \omega^{-j k} + | r = \sum_{0 \mathop \le j \mathop < m} \paren {\omega^{-j / 2} + \omega^{j / 2} }^n \omega^{j \paren {n / 2} - k} + | c = +}} +{{eqn | r = \sum_{0 \mathop \le j \mathop < m} \paren {2 \cos \dfrac {j \pi} m}^n \omega^{j \paren {n / 2} - k} + | c = +}} +{{end-eqn}} +Because the {{RHS}} is [[Definition:Wholly Real|wholly real]], so must the {{LHS}} be. +So, taking the [[Definition:Real Part|real parts]] of the {{LHS}} and equating it to the {{RHS}} reveals the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over Lower Index of Unsigned Stirling Numbers of the First Kind} +Tags: Stirling Numbers, Factorials + +\begin{theorem} +Let $n \in \Z_{\ge 0}$ be a [[Definition:Positive Integer|positive integer]]. +Then: +:$\displaystyle \sum_k \left[{n \atop k}\right] = n!$ +where: +:$\displaystyle \left[{n \atop k}\right]$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$n!$ denotes the [[Definition:Factorial|factorial of $n$]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \sum_k \left[{n \atop k}\right] = n!$ +$P \left({0}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left[{0 \atop k}\right] + | r = \sum_k \delta_{0 k} + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{eqn | r = 1 + | c = all terms vanish but for $k = 0$ +}} +{{eqn | r = 0! + | c = {{Defof|Factorial}} +}} +{{end-eqn}} +Thus $P \left({0}\right)$ is seen to hold. +=== Basis for the Induction === +$P \left({1}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \left[{1 \atop k}\right] + | r = \sum_k \delta_{1 k} + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{eqn | r = 1 + | c = all terms vanish but for $k = 1$ +}} +{{eqn | r = 1! + | c = {{Defof|Factorial}} +}} +{{end-eqn}} +Thus $P \left({1}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({m}\right)$ is true, where $m \ge 2$, then it logically follows that $P \left({m + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \left[{m \atop k}\right] = m!$ +from which it is to be shown that: +:$\displaystyle \sum_k \left[{m + 1 \atop k}\right] = \left({m + 1}\right)!$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \sum_k \left[{m + 1 \atop k}\right] + | r = \sum_k \left({m \left[{m \atop k}\right] + \left[{m \atop k - 1}\right]}\right) + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = m \sum_k \left[{m \atop k}\right] + \sum_k \left[{m \atop k - 1}\right] + | c = +}} +{{eqn | r = m \sum_k \left[{m \atop k}\right] + \sum_k \left[{m \atop k}\right] + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = \left({m + 1}\right) \sum_k \left[{m \atop k}\right] + | c = +}} +{{eqn | r = \left({m + 1}\right) m! + | c = [[Summation over Lower Index of Unsigned Stirling Numbers of the First Kind#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \left({m + 1}\right)! + | c = {{Defof|Factorial}} +}} +{{end-eqn}} +So $P \left({m}\right) \implies P \left({m + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: \sum_k \left[{n \atop k}\right] = n!$ +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over Lower Index of Unsigned Stirling Numbers of the First Kind with Alternating Signs} +Tags: Stirling Numbers, Factorials + +\begin{theorem} +Let $n \in \Z_{\ge 0}$ be a [[Definition:Positive Integer|positive integer]]. +Then: +:$\displaystyle \sum_k \paren {-1}^k {n \brack k} = \delta_{n 0} - \delta_{n 1}$ +where: +:$\displaystyle {n \brack k}$ denotes an [[Definition:Unsigned Stirling Numbers of the First Kind|unsigned Stirling number of the first kind]] +:$\delta_{n 0}$ denotes the [[Definition:Kronecker Delta|Kronecker delta]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \sum_k \paren {-1}^k {n \brack k} = \delta_{n 0} - \delta_{n 1}$ +$\map P 0$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \paren {-1}^k {0 \brack k} + | r = \sum_k \delta_{0 k} + | c = [[Unsigned Stirling Number of the First Kind of 0]] +}} +{{eqn | r = 1 + | c = all terms vanish but for $k = 0$ +}} +{{eqn | r = \delta_{0 0} - \delta_{0 1} + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +Thus $\map P 0$ is seen to hold. +$\map P 1$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \paren {-1}^k {1 \brack k} + | r = \sum_k \paren {-1}^k \delta_{1 k} + | c = [[Unsigned Stirling Number of the First Kind of 1]] +}} +{{eqn | r = -1 + | c = all terms vanish but for $k = 1$ +}} +{{eqn | r = \delta_{1 0} - \delta_{1 1} + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +Thus $\map P 1$ is seen to hold. +=== Basis for the Induction === +$\map P 2$ is the case: +{{begin-eqn}} +{{eqn | l = \sum_k \paren {-1}^k {2 \brack k} + | r = - {2 \brack 1} + {2 \brack 2} + | c = {{Defof|Summation}} +}} +{{eqn | r = - {2 \brack 1} + 1 + | c = [[Unsigned Stirling Number of the First Kind of Number with Self]] +}} +{{eqn | r = -\binom 2 2 + 1 + | c = [[Unsigned Stirling Number of the First Kind of n with n-1]] +}} +{{eqn | r = -1 + 1 + | c = [[Binomial Coefficient with Self]] +}} +{{eqn | r = 0 + | c = [[Binomial Coefficient with Self]] +}} +{{eqn | r = \delta_{2 0} - \delta_{2 1} + | c = {{Defof|Kronecker Delta}} +}} +{{end-eqn}} +Thus $\map P 2$ is seen to hold. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P m$ is true, where $m \ge 2$, then it logically follows that $\map P {m + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \sum_k \paren {-1}^k {m \brack k} = \delta_{m 0} - \delta_{m 1} = 0$ +from which it is to be shown that: +:$\displaystyle \sum_k \paren {-1}^k {m + 1 \brack k} = \delta_{\paren {m + 1} 0} - \delta_{\paren {m + 1} 1} = 0$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \sum_k \paren {-1}^k {m + 1 \brack k} + | r = \sum_k \paren {-1}^k \paren {m {m \brack k} + {m \brack k - 1} } + | c = {{Defof|Unsigned Stirling Numbers of the First Kind}} +}} +{{eqn | r = m \sum_k \paren {-1}^k {m \brack k} + \sum_k \paren {-1}^k {m \brack k - 1} + | c = +}} +{{eqn | r = m \sum_k \paren {-1}^k {m \brack k} - \sum_k \paren {-1}^k {m \brack k} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = \paren {m - 1} \sum_k {m \brack k} + | c = +}} +{{eqn | r = \paren {m + 1} \times 0 + | c = [[Summation over Lower Index of Unsigned Stirling Numbers of the First Kind with Alternating Signs#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +So $\map P m \implies \map P {m + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: \sum_k \paren {-1}^k {n \brack k} = \delta_{n 0} - \delta_{n 1}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Beta Function of Real Number with 1} +Tags: Beta Function + +\begin{theorem} +:$\Beta \left({x, 1}\right) = \Beta \left({1, x}\right) = \dfrac 1 x$ +\end{theorem} + +\begin{proof} +By definition: +{{begin-eqn}} +{{eqn | l = \Beta \left({x, 1}\right) + | r = \int_0^1 t^{x - 1} \left({1 - t}\right)^{1 - 1} \rd t + | c = {{Defof|Beta Function}} +}} +{{eqn | r = \int_0^1 t^{x - 1} \rd t + | c = +}} +{{eqn | r = \int_0^1 t^{x - 1} \rd t + | c = +}} +{{eqn | r = \left[{\frac {t^x} x}\right]_0^1 + | c = +}} +{{eqn | r = \frac 1 x - \frac 0 x + | c = +}} +{{eqn | r = \frac 1 x + | c = +}} +{{end-eqn}} +{{qed|lemma}} +{{begin-eqn}} +{{eqn | l = \Beta \left({1, x}\right) + | r = \int_0^1 t^{1 - 1} \left({1 - t}\right)^{x - 1} \rd t + | c = {{Defof|Beta Function}} +}} +{{eqn | r = \int_0^1 \left({1 - t}\right)^{x - 1} \rd t + | c = +}} +{{eqn | r = \int_1^0 -\left({z}\right)^{x - 1} \rd z + | c = [[Integration by Substitution]] +}} +{{eqn | r = -\left[{\frac {z^x} x}\right]_1^0 + | c = +}} +{{eqn | r = -\frac 0 x + \frac 1 x + | c = +}} +{{eqn | r = \frac 1 x + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Way Below Closure is Lower Set} +Tags: Join and Meet Semilattices, Way Below Relation + +\begin{theorem} +Let $L = \struct {S, \vee, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $x \in S$. +Then +:$x^\ll$ is a [[Definition:Lower Set|lower set]]. +\end{theorem} + +\begin{proof} +Let $y \in x^\ll, z \in S$ such that: +:$z \preceq y$ +By definition of [[Definition:Way Below Closure|way below closure]]: +:$y \ll x$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$x \preceq x$ +By [[Preceding and Way Below implies Way Below]]: +:$z \ll x$ +Thus by definition of [[Definition:Way Below Closure|way below closure]]: +:$z \in x^\ll$ +Thus by definition: +:$x^\ll$ is a [[Definition:Lower Set|lower set]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Continuous iff For Every Element There Exists Ideal Element Precedes Supremum} +Tags: Continuous Lattices, Up-Complete Semilattices + +\begin{theorem} +Let $L = \left({S, \wedge, \preceq}\right)$ be an [[Definition:Up-Complete|up-complete]] [[Definition:Meet Semilattice|meet semilattice]]. +Then +:$L$ is [[Definition:Continuous Ordered Set|continuous]] +{{iff}} +:for every [[Definition:Element|element]] $x$ of $S$ there exists [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: +::$x \preceq \sup I$ and for every [[Definition:Ideal in Ordered Set|ideal]] $J$ in $L: x \preceq \sup J \implies I \subseteq J$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $L$ be [[Definition:Continuous Ordered Set|continuous]]. +By [[Continuous iff Way Below Closure is Ideal and Element Precedes Supremum]]: +:$\forall x \in S: x^\ll$ is an [[Definition:Ideal in Ordered Set|ideal]] in $L$ and $x \preceq \sup \left({x^\ll}\right)$ and +::for every [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: $x \preceq \sup I \implies x^\ll \subseteq I$ +where $x^\ll$ denotes the [[Definition:Way Below Closure|way below closure]] of $x$. +Thus +:for every [[Definition:Element|element]] $x$ of $S$ there exists [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: +::$x \preceq \sup I$ and for every [[Definition:Ideal in Ordered Set|ideal]] $J$ in $L: x \preceq \sup J \implies I \subseteq J$ +{{qed|lemma}} +=== Necessary Condition === +Assume that +:for every [[Definition:Element|element]] $x$ of $S$ there exists [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: +::$x \preceq \sup I$ and for every [[Definition:Ideal in Ordered Set|ideal]] $J$ in $L: x \preceq \sup J \implies I \subseteq J$ +Let $x \in S$. +There exists [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: +:$x \preceq \sup I$ and for every [[Definition:Ideal in Ordered Set|ideal]] $J$ in $L: x \preceq \sup J \implies I \subseteq J$ +We will prove that +:$I \subseteq x^\ll$ +where $x^\ll$ denotes the [[Definition:Way Below Closure|way below closure]] of $x$. +Let $y \in I$. +Let $J$ be an [[Definition:Ideal in Ordered Set|ideal]] in $L$ such that +:$x \preceq \sup J$ +Then $I \subseteq J$ +Thus by definition of [[Definition:Subset|subset]]: +:$y \in J$ +By [[Way Below iff Second Operand Preceding Supremum of Ideal implies First Operand is Element of Ideal]]: +:$y \ll x$ +Thus by definition of [[Definition:Way Below Closure|way below closure]]: +:$y \in x^\ll$ +{{qed|lemma}} +By [[Way Below iff Second Operand Preceding Supremum of Ideal implies First Operand is Element of Ideal]] +:$\forall y \in x^\ll: y \in I$ +By definition of [[Definition:Subset|subset]]: +:$x^\ll \subseteq I$ +Thus by definition of [[Definition:Set Equality|set equality]]: +:$\forall x \in S: x^\ll$ is an [[Definition:Ideal in Ordered Set|ideal]] in $L$ and $x \preceq \sup \left({x^\ll}\right)$ and +::for every [[Definition:Ideal in Ordered Set|ideal]] $I$ in $L$: $x \preceq \sup I \implies x^\ll \subseteq I$ +Hence by [[Continuous iff Way Below Closure is Ideal and Element Precedes Supremum]]: +:$L$ is [[Definition:Continuous Ordered Set|continuous]] +{{qed}} +\end{proof}<|endoftext|> +\section{Beta Function of x+1 with y plus Beta Function of x with y+1} +Tags: Beta Function + +\begin{theorem} +:$\Beta \left({x + 1, y}\right) + \Beta \left({x, y + 1}\right) = \Beta \left({x, y}\right)$ +\end{theorem} + +\begin{proof} +By definition: +{{begin-eqn}} +{{eqn | l = \Beta \left({x + 1, y}\right) + \Beta \left({x, y + 1}\right) + | r = \int_0^1 t^x \left({1 - t}\right)^{y - 1} \rd t + \int_0^1 t^{x - 1} \left({1 - t}\right)^y \rd t + | c = {{Defof|Beta Function}} +}} +{{eqn | r = \int_0^1 \left({t^x \left({1 - t}\right)^{y - 1} + t^{x - 1} \left({1 - t}\right)^y}\right) \rd t + | c = +}} +{{eqn | r = \int_0^1 t^{x - 1} \left({1 - t}\right)^{y - 1} \left({t + 1 - t}\right) \rd t + | c = +}} +{{eqn | r = \int_0^1 t^{x - 1} \left({1 - t}\right)^{y - 1} \rd t + | c = +}} +{{eqn | r = \Beta \left({x, y}\right) + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Beta Function of x with y+1 by x+y over y} +Tags: Beta Function + +\begin{theorem} +:$\map \Beta {x, y} = \dfrac {x + y} y \map \Beta {x, y + 1}$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Beta Function|Beta function]]: +:$\displaystyle \Beta \left({x + 1, y}\right) = \int_0^1 t^x \left({1 - t}\right)^{y - 1} \rd t$ +With a view to expressing the [[Definition:Primitive (Calculus)|primitive]] in the form: +:$\displaystyle \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$ +let: +{{begin-eqn}} +{{eqn | l = u + | r = t x + | c = +}} +{{eqn | ll= \leadsto + | l = \frac {\d u} {\d x} + | r = x t^{x - 1} + | c = [[Power Rule for Derivatives]] +}} +{{end-eqn}} +and let: +{{begin-eqn}} +{{eqn | l = \frac {\d v} {\d x} + | r = \paren {1 - t}^{y - 1} + | c = +}} +{{eqn | ll= \leadsto + | l = v + | r = -\frac {\paren {1 - t}^y} y + | c = [[Primitive of Power]] +}} +{{end-eqn}} +Then: +{{begin-eqn}} +{{eqn | o = + | r = \int_0^1 t^{x - 1} \paren {1 - t}^{y - 1} \rd t + | c = +}} +{{eqn | r = \sqbrk {t^x \frac {-\paren {1 - t}^y} y}_0^1 - \int_0^1 x t^{x - 1} \frac {-\paren {1 - t}^y} y \rd t + | c = [[Integration by Parts]] +}} +{{eqn | r = \frac x y \int_0^1 t^{x - 1} \paren {1 - t}^y \rd t + | c = as the left hand term vanishes +}} +{{eqn | r = \frac x y \map \Beta {x, y + 1} + | c = {{Defof|Beta Function}} +}} +{{end-eqn}} +Hence: +{{begin-eqn}} +{{eqn | l = \map \Beta {x, y} + | r = \map \Beta {x + 1, y} + \map \Beta {x, y + 1} + | c = [[Beta Function of x+1 with y plus Beta Function of x with y+1]] +}} +{{eqn | r = \frac x y \map \Beta {x, y + 1} + \map \Beta {x, y + 1} + | c = from above +}} +{{eqn | r = \frac {x + y} y \map \Beta {x, y + 1} + | c = simplifying +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Partial Gamma Function expressed as Integral} +Tags: Gamma Function + +\begin{theorem} +Let $m \in \Z_{\ge 1}$. +Let $\map {\Gamma_m} x$ denote the [[Definition:Partial Gamma Function|partial Gamma function]], defined as: +:$\map {\Gamma_m} x := \dfrac {m^x m!} {x \paren {x + 1} \paren {x + 2} \cdots \paren {x + m} }$ +Then: +:$\displaystyle \map {\Gamma_m} x = \int_0^m \paren {1 - \frac t m}^m t^{x - 1} \rd t$ +for $x > 0$. +\end{theorem} + +\begin{proof} +=== [[Partial Gamma Function expressed as Integral/Lemma|Lemma]] === +First we establish: +{{:Partial Gamma Function expressed as Integral/Lemma}} +The proof continues by [[Principle of Mathematical Induction|induction]] on $m$. +For all $m \in \Z_{\ge 1}$, let $\map P m$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \map {\Gamma_m} x = m^x \int_0^1 \paren {1 - t}^m t^{x - 1} \rd t$ +=== Basis for the Induction === +$\map P 1$ is the case: +{{begin-eqn}} +{{eqn | l = m^x \int_0^1 \paren {1 - t}^m t^{x - 1} \rd t + | r = \int_0^1 \paren {1 - t} t^{x - 1} \rd t + | c = +}} +{{eqn | r = \int_0^1 t^{x - 1} \rd t - \int_0^1 t^x \rd t + | c = +}} +{{eqn | r = \sqbrk {\frac {t^x} x}_0^1 - \sqbrk {\frac {t^{x + 1} } {x + 1} }_0^1 + | c = +}} +{{eqn | r = \frac 1 x - \frac 1 {x + 1} + | c = +}} +{{eqn | r = \frac {x + 1 - x} {x \paren {x + 1} } + | c = +}} +{{eqn | r = \frac 1 {x \paren {x + 1} } + | c = +}} +{{eqn | r = \frac {1^x 1!} {x \paren {x + 1} } + | c = +}} +{{end-eqn}} +Thus $\map P 1$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \map {\Gamma_k} x = k^x \int_0^1 \paren {1 - t}^k t^{x - 1} \rd t$ +from which it is to be shown that: +:$\displaystyle \map {\Gamma_{k + 1} } x = \paren {k + 1}^x \int_0^1 \paren {1 - t}^{k + 1} t^{x - 1} \rd t$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +With a view to expressing the [[Definition:Primitive (Calculus)|primitive]] in the form: +:$\displaystyle \int u \frac {\rd v} {\rd x} \rd x = u v - \int v \frac {\rd u} {\rd x} \rd x$ +let: +{{begin-eqn}} +{{eqn | l = u + | r = \paren {1 - t}^{k + 1} + | c = +}} +{{eqn | ll= \leadsto + | l = \frac {\rd u} {\rd t} + | r = -\paren {k + 1} \paren {1 - t}^k + | c = [[Power Rule for Derivatives]] +}} +{{end-eqn}} +and let: +{{begin-eqn}} +{{eqn | l = \frac {\rd v} {\rd t} + | r = t^{x - 1} + | c = +}} +{{eqn | ll= \leadsto + | l = v + | r = \frac {t^x} x + | c = [[Primitive of Power]] +}} +{{end-eqn}} +Then: +{{begin-eqn}} +{{eqn | r = \paren {k + 1}^x \int_0^1 \paren {1 - t}^{k + 1} t^{x - 1} \rd t + | o = + | c = +}} +{{eqn | r = \paren {k + 1}^x \sqbrk {-\paren {k + 1} \paren {1 - t}^k \frac {t^x} x}_0^1 - \paren {k + 1}^x \int_0^1 \paren {-\paren {k + 1} \frac {t^x} x} \paren {\paren {1 - t}^k} \rd t + | c = [[Integration by Parts]] +}} +{{eqn | r = \frac {\paren {k + 1}^{x + 1} } x \int_0^1 \paren {1 - t}^k t^x \rd t + | c = $u v$ term vanishes +}} +{{eqn | r = \frac {\paren {k + 1}^{x + 1} } x \frac {\map {\Gamma_k} {x + 1} } {k^{x + 1} } + | c = [[Partial Gamma Function expressed as Integral#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \frac {\paren {k + 1}^{x + 1} } x \frac {k^{x + 1} k!} {k^{x + 1} \paren {x + 1} \paren {x + 2} \cdots \paren {x + k} \paren {x + 1 + k} } + | c = +}} +{{eqn | r = \frac {\paren {k + 1}^{x + 1} k!} {x \paren {x + 1} \paren {x + 2} \cdots \paren {x + k} \paren {x + k + 1} } + | c = +}} +{{eqn | r = \frac {\paren {k + 1}^x \paren {k + 1}!} {x \paren {x + 1} \paren {x + 2} \cdots \paren {x + k} \paren {x + k + 1} } + | c = +}} +{{eqn | r = \map {\Gamma_{k + 1} } x + | c = +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall m \in \Z_{\ge 1}: \map {\Gamma_m} x = \int_0^m \paren {1 - \frac t m}^m t^{x - 1} \rd t$ +for $x > 0$. +{{qed}} +\end{proof}<|endoftext|> +\section{Partial Gamma Function expressed as Integral/Lemma} +Tags: Gamma Function + +\begin{theorem} +:$(1): \quad \displaystyle \int_0^m \paren {1 - \frac t m}^m t^{x - 1} \rd t = m^x \int_0^1 \paren {1 - t}^m t^{x - 1} \rd t$ +for $x > 0$. +\end{theorem} + +\begin{proof} +Let: +{{begin-eqn}} +{{eqn | l = z + | r = \frac t m + | c = +}} +{{eqn | ll= \leadsto + | l = \frac {\d t} {\d z} + | r = m + | c = +}} +{{end-eqn}} +Recalculating the limits: +{{begin-eqn}} +{{eqn | l = t + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = z + | r = 0 + | c = +}} +{{eqn | l = t + | r = m + | c = +}} +{{eqn | ll= \leadsto + | l = z + | r = 1 + | c = +}} +{{end-eqn}} +Hence: +{{begin-eqn}} +{{eqn | l = \paren {1 - \frac t m}^m + | r = \paren {1 - z}^m + | c = +}} +{{eqn | l = t^{x - 1} + | r = \paren {m z}^{x - 1} + | c = +}} +{{eqn | r = m^{x - 1} z^{x - 1} + | c = +}} +{{end-eqn}} +Thus $(1)$ can be written: +{{begin-eqn}} +{{eqn | l = \int_0^m \paren {1 - \frac t m}^m t^{x - 1} \rd t + | r = m^x \int_0^1 \paren {1 - z}^m z^{x - 1} \rd z + | c = [[Integration by Substitution]] +}} +{{eqn | r = m^x \int_0^1 \paren {1 - t}^m t^{x - 1} \rd t + | c = changing the name of the dummy variable +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Integral Form of Gamma Function equivalent to Euler Form} +Tags: Gamma Function, Integral Form of Gamma Function equivalent to Euler Form, Equivalence of Definitions of Gamma Function + +\begin{theorem} +{{TFAENocat|def = Gamma Function}} +=== [[Definition:Integral Form of Gamma Function|Integral Form]] === +{{:Definition:Integral Form of Gamma Function}} +=== [[Definition:Euler Form of Gamma Function|Euler Form]] === +{{:Definition:Euler Form of Gamma Function}} +\end{theorem} + +\begin{proof} +It is taken for granted that the [[Definition:Gamma Function|Gamma function]] [[Definition:Strictly Increasing Mapping|increases monotonically]] on $\R_{\ge 1}$. +{{handwaving|Replace the above with a link to a proof}} +We begin with an inequality that can easily be verified using cross multiplication. +{{handwaving|... so verify it.}} +Let $x$ be a [[Definition:Real Number|real number]] between $0$ and $1$. +Let $n$ is a [[Definition:Positive Integer|positive integer]]. +Then: +:$\displaystyle \frac {\log \Gamma \left({n - 1}\right) - \log \Gamma \left({n}\right)} {\left({n - 1}\right) - n} \le \frac {\log \Gamma \left({x + n}\right) - \log \Gamma \left({n}\right)} {\left({x + n}\right) - n} \le \frac {\log \Gamma \left({n + 1}\right) - \log \Gamma \left({n}\right)}{\left({n + 1}\right) - n}$ +Since n is a [[Definition:Positive Integer|positive integer]], we can make use of the identity: +:$\Gamma \left({n}\right) = \left({n - 1}\right)!$ +Simplifying, we get: +:$\log \left({n - 1}\right) \le \dfrac {\log \Gamma \left({x + n}\right) - \log \left({\left({n - 1}\right)!}\right)} x \le \log \left({n}\right)$ +We now make use of the identity: +:$\displaystyle \Gamma \left({x + n}\right) = \prod_{k \mathop = 1}^n \left({x + n - k}\right) \Gamma \left({x}\right)$ +along with the fact that the [[Gamma Function is Log-Convex]], to simplify the inequality: +:$\displaystyle \left({n - 1}\right)^x \left({n - 1}\right)! \prod_{k \mathop = 1}^n \left({x + n - k}\right)^{-1} \le \Gamma \left({x}\right) \le n^x \left({n - 1}\right)!\prod_{k \mathop = 1}^n \left({x + n - k}\right)^{-1}$ +Taking the limit as $n$ goes to infinity and using the [[Squeeze Theorem]]: +:$\displaystyle \Gamma \left({x}\right) = \lim_{n \mathop \to \infty} n^x n! \prod_{k \mathop = 0}^n \left({x + n - k}\right)^{-1}$ +which is another representation of [[Definition:Gamma Function/Euler Form|Euler's form]]. +This proves equivalence for $x$ between $0$ and $1$. +The result follows from the [[Gamma Difference Equation]]. +{{qed}} +\end{proof} + +\begin{proof} +First we present a [[Integral Form of Gamma Function equivalent to Euler Form/Lemma|lemma]]: +{{:Integral Form of Gamma Function equivalent to Euler Form/Lemma}} +Recall the definition of the [[Definition:Partial Gamma Function|partial Gamma function]]: +:$\displaystyle \Gamma_m \left({x}\right) := \frac {m^x m!} {x \left({x + 1}\right) \left({x + 2}\right) \cdots \left({x + m}\right)}$ +We have that: +{{begin-eqn}} +{{eqn | r = \int_0^\infty e^{-t} t^{x - 1} \rd t - \Gamma_m \left({x}\right) + | o = + | c = +}} +{{eqn | r = \int_0^m e^{-t} t^{x - 1} \rd t + \int_m^\infty e^{-t} t^{x - 1} \rd t - \Gamma_m \left({x}\right) + | c = +}} +{{eqn | r = \int_0^m e^{-t} t^{x - 1} \rd t + \int_m^\infty e^{-t} t^{x - 1} \rd t - \int_0^m \left({1 - \frac t m}\right)^m t^{x - 1} \rd t + | c = [[Partial Gamma Function expressed as Integral]] +}} +{{eqn | r = \int_m^\infty e^{-t} t^{x - 1} \rd t + \int_0^m \left({e^t - \left({1 - \frac t m}\right)^m t^{x - 1} }\right) \rd t + | c = +}} +{{end-eqn}} +We have that for large $t$: +:$t^{x - 1} < t^{t / 2}$ +and so as $m \to \infty$: +:$\displaystyle \int_m^\infty e^{-t} t^{x - 1} \rd t \to 0$ +Then: +{{begin-eqn}} +{{eqn | o = + | r = \int_0^m \left({e^t - \left({1 - \frac t m}\right)^m t^{x - 1} }\right) \rd t + | c = +}} +{{eqn | o = \le + | r = \int_0^m \frac {t^2 e^{-t} } m e^{-t} t^{x - 1} \rd t + | c = [[Integral Form of Gamma Function equivalent to Euler Form/Lemma|Lemma]] +}} +{{eqn | r = \frac 1 m \int_0^m t^{x + 1} e^{-t} \rd t + | c = +}} +{{eqn | o = < + | r = \frac 1 m \int_0^\infty t^{x + 1} e^{-t} \rd t + | c = +}} +{{end-eqn}} +Now we have that as $m \to \infty$: +:$\displaystyle \frac 1 m \int_0^\infty t^{x + 1} e^{-t} \rd t \to 0$ +so: +:$\displaystyle \int_0^\infty e^{-t} t^{x - 1} \rd t - \Gamma_m \left({x}\right) = 0$ +leading to: +:$\displaystyle \int_0^\infty e^{-t} t^{x - 1} \rd t = \lim_{m \mathop \to \infty} \dfrac {m^x m!} {x \left({x + 1}\right) \left({x + 2}\right) \cdots \left({x + m}\right)}$ +as was to be demonstrated. +{{qed}} +\end{proof}<|endoftext|> +\section{Derivative of Composite Function/Second Derivative} +Tags: Differential Calculus + +\begin{theorem} +:$D_x^2 w = D_u^2 w \paren {D_x^1 u}^2 + D_u^1 w D_x^2 u$ +\end{theorem} + +\begin{proof} +For ease of understanding, let [[Definition:Leibniz's Notation for Derivatives|Leibniz's notation]] be used: +:$\dfrac {\d^k u} {\d x^k} := D_x^k u$ +Then we have: +{{begin-eqn}} +{{eqn | l = D_x^2 w + | r = \map {\dfrac {\d} {\d x} } {\dfrac {\d w} {\d x} } + | c = +}} +{{eqn | r = \map {\dfrac {\d} {\d x} } {\dfrac {\d w} {\d u} \dfrac {\d u} {\d x} } + | c = [[Derivative of Composite Function]] +}} +{{eqn | r = \dfrac {\d u} {\d x} \map {\dfrac {\d} {\d x} } {\dfrac {\d w} {\d u} } + \dfrac {\d w} {\d u} \dfrac {\d^2 u} {\d x^2} + | c = [[Product Rule for Derivatives]] +}} +{{eqn | r = \dfrac {\d u} {\d x} \map {\dfrac {\d} {\d u} } {\dfrac {\d w} {\d u} } \dfrac {\d u} {\d x} + \dfrac {\d w} {\d u} \dfrac {\d^2 u} {\d x^2} + | c = [[Derivative of Composite Function]] +}} +{{eqn | r = \map {\dfrac {\d^2 w} {\d u^2} } {\dfrac {\d u} {\d x} }^2 + \dfrac {\d w} {\d u} \dfrac {\d^2 u} {\d x^2} + | c = +}} +{{eqn | r = D_u^2 w \paren {D_x^1 u}^2 + D_u^1 w D_x^2 u + | c = {{Defof|Leibniz's Notation for Derivatives}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Faà di Bruno's Formula} +Tags: Differential Calculus, Faà di Bruno's Formula + +\begin{theorem} +Let $D_x^k u$ denote the [[Definition:Nth Derivative|$k$th derivative]] of a [[Definition:Real Function|function]] $u$ {{WRT|Differentiation}} $x$. +Then: +:$\displaystyle D_x^n w = \sum_{j \mathop = 0}^n D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = n \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } n! \prod_{m \mathop = 1}^n \dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} }$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle D_x^n w = \sum_{j \mathop = 0}^n D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = n \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } n! \prod_{m \mathop = 1}^n \dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} }$ +The [[Faà di Bruno's Formula/Example/0|case for $n = 0$]] is: +{{:Faà di Bruno's Formula/Example/0}} +which is consistent with the definition of the [[Definition:Zeroth Derivative|zeroth derivative]]. +The [[Faà di Bruno's Formula/Example/1|case for $n = 1$]] is: +{{:Faà di Bruno's Formula/Example/1}} +which is consistent with [[Derivative of Composite Function]]. +=== Basis for the Induction === +$P \left({2}\right)$ is the [[Faà di Bruno's Formula/Example/2|case]]: +{{:Faà di Bruno's Formula/Example/2}} +This is consistent with [[Derivative of Composite Function/Second Derivative|Derivative of Composite Function: Second Derivative]]. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 2$, then it logically follows that $P \left({r + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle D_x^r w = \sum_{j \mathop = 0}^r D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = r \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } r! \prod_{m \mathop = 1}^r \dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} }$ +from which it is to be shown that: +:$\displaystyle D_x^{r + 1} w = \sum_{j \mathop = 0}^{r + 1} D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = r \mathop + 1 \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } \left({r + 1}\right)! \prod_{m \mathop = 1}^{r + 1} \dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} }$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +Note that when $k_m = 0$: +:$\dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} } = 1$ +which shows that any contribution to the [[Definition:Summation|summation]] where $k_m = 0$ can be disregarded. +Let $j = 0$. +Consider the set of $k_p$ such that: +:$k_1 + k_2 + \cdots = 0$ +:$1 \times k_1 + 2 k_2 + \cdots = r$ +:$k_1, k_2, \ldots \ge 0$ +It is apparent by inspection that, for all $r > 0$, no set of $k_p$ can fulfil these conditions. +Therefore when $j = 0$ the [[Definition:Summation|summation]] is [[Definition:Vacuous Summation|vacuous]]. +Also note that from: +:$1 \times k_1 + 2 k_2 + \cdots = r$ +it follows that: +:$k_{r + 1} = k_{r + 2} = \cdots = 0$ +Thus, while there are only [[Definition:Finite Set|finitely many]] $k$'s, their upper limit need not be explicitly considered. +Let $c \left({r, j, k_1, k_2, \ldots}\right)$ be the [[Definition:Coefficient|coefficient]] of $D_u^j w$ in $D_x^r w$. +We establish some [[Definition:Lemma|lemmata]]: +[[Faà di Bruno's Formula/Lemma 1|Lemma 1]]: +{{:Faà di Bruno's Formula/Lemma 1}} +[[Faà di Bruno's Formula/Lemma 2|Lemma 2]]: +{{:Faà di Bruno's Formula/Lemma 2}} +{{finish}} +By [[Definition:Differentiation|differentiating]] {{WRT|Differentiation}} $x$: +{{begin-eqn}} +{{eqn | l = c \left({r + 1, j, k_1, k_2, \ldots}\right) + | r = c \left({r, j - 1, k_1 - 1, k_2, \ldots}\right) + | c = +}} +{{eqn | o = + | ro= + + | r = \left({k_1 + 1}\right) c \left({r, j, k_1 + 1, k_2 - 1, k_3, \ldots}\right) + | c = +}} +{{eqn | o = + | ro= + + | r = \left({k_2 + 1}\right) c \left({r, j, k_1, k_2 + 1, k_3 - 1, k_4, \ldots}\right) + | c = +}} +{{eqn | o = + | ro= + + | r = \cdots + | c = +}} +{{end-eqn}} +The equations: +:$k_1 + k_2 + \cdots = j$ +and: +:$k_1 + 2 k_2 + \cdots = r$ +are preserved by this [[Proof by Mathematical Induction#Induction Step|induction step]]. +Thus it is possible to factor out: +:$\dfrac {r!} {k_1! \left({1!}\right)^{k_1} \cdots k_r! \left({r!}\right)^{k_r} }$ +from each term on the {{RHS}} of the equation for $c \left({r + 1, j, k_1, k_2, \ldots}\right)$. +Thus we are left with: +:$k_1 + 2 k_2 + 3 k_3 + \cdots = r + 1$ +So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n \in \Z_{\ge 0}: D_x^n w = \sum_{j \mathop = 0}^n D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = n \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } n! \prod_{m \mathop = 1}^n \dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} }$ +\end{proof} + +\begin{proof} +For convenience, let: +:$w_j := D_u^j w$ +:$u_k := D_x^k u$ +Then: +{{begin-eqn}} +{{eqn | l = D_x \left({w_j}\right) + | r = w_{j + 1} u_1 + | c = [[Derivative of Composite Function]] +}} +{{eqn | l = D_x \left({u_k}\right) + | r = u_{k + 1} + | c = {{Defof|Higher Derivative}} +}} +{{end-eqn}} +Thus: +{{begin-eqn}} +{{eqn | l = D_x^1 w + | r = w_1 u_1 + | c = [[Derivative of Composite Function]] +}} +{{eqn | l = D_x^2 w + | r = \left({w_2 u_1 u_1 + w_1 u_2}\right) + | c = [[Derivative of Composite Function/Second Derivative|Derivative of Composite Function: Second Derivative]] +}} +{{eqn | l = D_x^3 w + | r = \left({\left({w_3 u_1 u_1 u_1 + w_2 u_2 u_1 + w_2 u_1 u_2}\right) + \left({w_2 u_1 u_2 + w_1 u_3}\right)}\right) + | c = [[Derivative of Composite Function/Third Derivative|Derivative of Composite Function: Third Derivative]] or directly +}} +{{end-eqn}} +Analogously, let a corresponding tableau be set up of [[Definition:Set Partition|set partitions]] as follows: +{{begin-eqn}} +{{eqn | l = \mathcal D^1 + | r = \set 1 + | c = +}} +{{eqn | l = \mathcal D^2 + | r = \set {\set 2 \mid \set 1} + \set {2, 1} + | c = +}} +{{eqn | l = \mathcal D^3 + | r = \set {\set 3 \mid \set 2 \mid \set 1} + \set {\set {3, 2} \mid \set 1} + \set {\set 2 \mid \set {3, 1} } + \set {\set 3 \mid \set {2, 1} } + \set {3, 2, 1} + | c = +}} +{{end-eqn}} +Thus inspired, let $a_1 a_2 \cdots a_j$ denote a [[Definition:Set Partition|partition]] of the [[Definition:Set|set]] $\set {1, 2, \ldots, n}$. +Let: +{{begin-eqn}} +{{eqn | l = \mathcal D a_1 a_2 \cdots a_j + | o = := + | r = \set n a_1 a_2 \cdots a_j + | c = +}} +{{eqn | ro= + + | o = + | r = \left({a_1 \cup \set n}\right) a_2 \cdots a_j + | c = +}} +{{eqn | ro= + + | o = + | r = a_1 \left({a_2 \cup \set n}\right) \cdots a_j + | c = +}} +{{eqn | ro= + + | o = + | r = \cdots + | c = +}} +{{eqn | ro= + + | o = + | r = a_1 a_2 \cdots \left({a_j \cup \set n}\right) + | c = +}} +{{end-eqn}} +This rule is isomorphic to: +{{begin-eqn}} +{{eqn | l = D_x \left({w_j u_{r_1} u_{r_2} \ldots u_{r_j} }\right) + | r = w_{j + 1} u_1 u_{r_1} u_{r_2} \ldots u_{r_j} + | c = +}} +{{eqn | ro= + + | o = + | r = w_j u_1 u_{r_1 + 1} u_{r_2} \ldots u_{r_j} + | c = +}} +{{eqn | ro= + + | o = + | r = w_j u_1 u_{r_1} u_{r_2 + 1} \ldots u_{r_j} + | c = +}} +{{eqn | ro= + + | o = + | r = \cdots + | c = +}} +{{eqn | ro= + + | o = + | r = w_j u_1 u_{r_1} u_{r_2} \ldots u_{r_j + 1} + | c = +}} +{{end-eqn}} +where the term $w_j u_{r_1} u_{r_2} \ldots u_{r_j}$ corresponds to a [[Definition:Set Partition|partition]] $a_1 a_2 \cdots a_j$. +Thus there exists a [[Definition:Bijection|bijection]] from $\mathcal D^n$ to $D_x^n w$. +{{explain|Link this to [[Number of Set Partitions by Number of Components]]}} +Thus, collecting like terms in $D_x^n w$, we obtain a sum of terms: +:$c \left({k_1, k_2, \ldots}\right) w_j u_i^{k_1} u_2^{k_2} \ldots$ +where: +:$j = k_1 + k_2 + \cdots$ +and: +:$n = k_1 + 2 k_2 + \cdots$ +and where: +:$c \left({k_1, k_2, \ldots}\right)$ is the number of [[Definition:Set Partition|partitions]] of $\set {1, 2, \ldots, n}$ into $j$ [[Definition:Subset|subsets]] where there are $k_t$ [[Definition:Subset|subsets]] with $t$ [[Definition:Element|elements]]. +Consider an [[Definition:Array|array]] of $k_t$ boxes of capacity $t$. +The number of ways to put $n$ different [[Definition:Element|elements]] into these boxes is the [[Definition:Multinomial Coefficient|multinomial coefficient]]: +:$\dbinom n {1, 1, \ldots, 1, 2, 2, \ldots, 2, 3, 3, \ldots, 3, 4, \ldots} = \dfrac {n!} {\left({1!}\right)^{k_1} \left({2!}\right)^{k_2} \left({3!}\right)^{k_3} \cdots}$ +It remains to divide by $k_1! \, k_2! \, k_3! \ldots$ corresponding to the number of ways each group of $k_t$ can be [[Definition:Permutation (Ordered Selection)|permuted]] +Hence: +:$c \left({k_1, k_2, \ldots}\right) = \dfrac {n!} {k_1! \left({1!}\right)^{k_1} \, k_2! \left({2!}\right)^{k_2} k_3! \left({3!}\right)^{k_3} \cdots}$ +and the result follows. +{{qed}} +\end{proof} + +\begin{proof} +We have that: +: $\dfrac {D_x^k u} {k!}$ is the coefficient of $z^k$ in $u \left({x + z}\right)$ +: $\dfrac {D_u^j w} {j!}$ is the coefficient of $y^j$ in $w \left({u + y}\right)$. +Hence the coefficient of $z^n$ in $w \left({u \left({x + z}\right)}\right)$ is: +:$\dfrac {D_x^n w} {n!} = \displaystyle \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = n \\ \forall p \mathop \ge 1: k_p \mathop \ge 0} } \dfrac {j!} {k_1! \, k_2! \cdots k_n!} \left({\dfrac {D_x^1 u} {1!} }\right)^{k_1} \left({\dfrac {D_x^2 u} {2!} }\right)^{k_2} \cdots \left({\dfrac {D_x^n u} {n!} }\right)^{k_n}$ +{{finish|plenty of details to be filled in}} +\end{proof} + +\begin{proof} +$D_x^n$ can be expressed as a [[Definition:Determinant of Matrix|determinant]]: +:$D_x^n = \begin{vmatrix} +\dbinom {n - 1} 0 u_1 & \dbinom {n - 1} 1 u_2 & \dbinom {n - 1} 2 u_3 & \cdots & \dbinom {n - 1} {n - 2} u_{n - 1} & \dbinom {n - 1} {n - 1} u_n \\ + -1 & \dbinom {n - 2} 0 u_1 & \dbinom {n - 2} 1 u_2 & \cdots & \dbinom {n - 2} {n - 3} u_{n - 2} & \dbinom {n - 2} {n - 2} u_{n - 1} \\ + 0 & -1 & \dbinom {n - 3} 0 u_1 & \cdots & \dbinom {n - 3} {n - 4} u_{n - 3} & \dbinom {n - 3} {n - 3} u_{n - 2} \\ + \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ + 0 & 0 & 0 & \cdots & -1 & \dbinom 0 0 u_1 +\end{vmatrix}$ +where $u_j := \paren {D_x^j u} D_u$. +Both sides of this equation are differential operators which are to be applied to $w$. +{{finish|Fill in the details}} +\end{proof}<|endoftext|> +\section{Cardinality of Reduced Residue System} +Tags: Reduced Residue Systems, Euler Phi Function + +\begin{theorem} +Let $n \ge 2$. +Let $\Z'_n$ be the [[Definition:Reduced Residue System|reduced residue system modulo $n$]]. +Then: +:$\card {\Z'_n} = \map \phi n$ +where $\map \phi n$ is the [[Definition:Euler Phi Function|Euler phi function]]. +\end{theorem} + +\begin{proof} +Recall the [[Definition:Reduced Residue System|definition]] of $\Z'_n$: +:$\Z'_n = \set {\eqclass k n \in \Z_n: k \perp n}$ +and the [[Definition:Euler Phi Function|definition]] of $\map \phi n$: +:$\map \phi n = \card {\set {k: 1 \le k \le n, k \perp n} }$ +The result follows from [[Integer is Congruent to Integer less than Modulus]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Norm of Linear Functional/Corollary} +Tags: Linear Transformations on Hilbert Spaces, Definition Equivalences + +\begin{theorem} +For all $h \in H$, the following inequality holds: +:$\left|{Lh}\right| \le \left\|{L}\right\| \left\|{h}\right\|$ +\end{theorem} + +\begin{proof} +If $h = \mathbf 0$ there is nothing to prove. +Let $h \ne \mathbf 0$. +By the definition of the [[Definition:Supremum of Set|supremum]]: +: $\dfrac{\left|{Lh}\right|} {\left\Vert{h}\right\Vert} \le \left\Vert{L}\right\Vert_3 = \left\Vert{L}\right\Vert$ +whence: +: $\left|{Lh}\right| \le \left\|{L}\right\| \left\|{h}\right\|$ +{{qed}} +\end{proof}<|endoftext|> +\section{Faà di Bruno's Formula/Example/0/Proof} +Tags: Faà di Bruno's Formula + +\begin{theorem} +Consider [[Faà di Bruno's Formula]]: +{{:Faà di Bruno's Formula}} +When $n = 0$ we have: +{{:Faà di Bruno's Formula/Example/0}} +\end{theorem} + +\begin{proof} +In the [[Definition:Summation|summation]]: +:$\displaystyle \sum_{j \mathop = 0}^0 D_u^j w \sum_{\substack {\sum_{p \mathop \ge 0} k_p \mathop = j \\ \sum_{p \mathop \ge 0} p k_p \mathop = 0 \\ \forall p \ge 0: k_p \mathop \ge 0} } 0! \prod_{m \mathop = 0}^1 \dfrac {\paren {D_x^m u}^{k_m} } {k_m! \paren {m!}^{k_m} }$ +the only element appearing is for $j = 0$, and the [[Definition:Product Notation (Algebra)|product]] is [[Definition:Vacuous Product|vacuous]]. +Thus: +:$\displaystyle \prod_{m \mathop = 0}^1 \dfrac {\paren {D_x^m u}^{k_m} } {k_m! \paren {m!}^{k_m} } = 1$ +and we are left with: +{{begin-eqn}} +{{eqn | l = \sum_{j \mathop = 0}^0 D_u^j w + | r = D_u^0 w + | c = +}} +{{eqn | r = w + | c = {{Defof|Zeroth Derivative}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Faà di Bruno's Formula/Example/1/Proof} +Tags: Faà di Bruno's Formula + +\begin{theorem} +Consider [[Faà di Bruno's Formula]]: +{{:Faà di Bruno's Formula}} +When $n = 1$ we have: +{{:Faà di Bruno's Formula/Example/1}} +\end{theorem} + +\begin{proof} +In the [[Definition:Summation|summation]]: +:$\displaystyle \sum_{j \mathop = 0}^1 D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = 1 \\ \forall p \ge 1: k_p \mathop \ge 0} } 1! \prod_{m \mathop = 1}^1 \dfrac {\paren {D_x^m u}^{k_m} } {k_m! \paren {m!}^{k_m} }$ +we need to consider $j = 0$ and $j = 1$. +Let $j = 0$. +Consider the set of $k_p$ such that: +:$k_1 + k_2 + \cdots = 0$ +:$1 \times k_1 + 2 k_2 + \cdots = 1$ +:$k_1, k_2, \ldots \ge 0$ +It is apparent by inspection that no set of $k_p$ can fulfil these conditions. +Therefore when $j = 0$ the [[Definition:Summation|summation]] is [[Definition:Vacuous Summation|vacuous]] +Let $j = 1$. +Consider the set of $k_p$ such that: +:$k_1 + k_2 + \cdots = 1$ +:$1 \times k_1 + 2 k_2 + \cdots = 1$ +:$k_1, k_2, \ldots \ge 0$ +By inspection, it is seen that these can be satisfied only by: +:$k_1 = 1$ +and all other $k_p = 0$. +When $k_m = 0$: +:$\dfrac {\paren {D_x^m u}^{k_m} } {k_m! \paren {m!}^{k_m} } = 1$ +by definition of [[Definition:Zeroth Derivative|zeroth derivative]] and [[Definition:Factorial|factorial of $0$]]. +Thus any contribution to the [[Definition:Summation|summation]] where $k_m = 0$ can be disregarded. +Thus we have: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{j \mathop = 0}^1 \sum_{\substack {k_1 \mathop = j \\ k_1 \mathop = 1 \\ k_1 \mathop \ge 0} } D_u^j w \dfrac {1!} {k_1! \paren {1!}^{k_1} } \paren {D_x^1 u}^{k_1} + | c = +}} +{{eqn | r = \sum_{k_1 \mathop = 1} D_u^1 w \dfrac {1!} {k_1! \paren {1!}^{k_1} } \paren {D_x^1 u}^{k_1} + | c = simplifying: $j = 0$ is [[Definition:Vacuous Summation|vacuous]] +}} +{{eqn | r = D_u w D_x u + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Faà di Bruno's Formula/Example/2/Proof} +Tags: Faà di Bruno's Formula + +\begin{theorem} +Consider [[Faà di Bruno's Formula]]: +{{:Faà di Bruno's Formula}} +When $n = 2$ we have: +{{:Faà di Bruno's Formula/Example/2}} +\end{theorem} + +\begin{proof} +In the [[Definition:Summation|summation]]: +:$\displaystyle \sum_{j \mathop = 0}^2 D_u^j w \sum_{\substack {\sum_{p \mathop \ge 1} k_p \mathop = j \\ \sum_{p \mathop \ge 1} p k_p \mathop = 2 \\ \forall p \ge 1: k_p \mathop \ge 0} } 2! \prod_{m \mathop = 1}^2 \dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} }$ +we need to consider $j = 0, j = 1$ and $j = 2$. +Note that when $k_m = 0$: +:$\dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} } = 1$ +by definition of [[Definition:Zeroth Derivative|zeroth derivative]] and [[Definition:Factorial|factorial of $0$]]. +Thus any contribution to the [[Definition:Summation|summation]] where $k_m = 0$ can be disregarded. +Let $j = 0$. +Consider the set of $k_p$ such that: +:$k_1 + k_2 + \cdots = 0$ +:$1 \times k_1 + 2 k_2 + \cdots = 2$ +:$k_1, k_2, \ldots \ge 0$ +It is apparent by inspection that no set of $k_p$ can fulfil these conditions. +Therefore when $j = 0$ the [[Definition:Summation|summation]] is [[Definition:Vacuous Summation|vacuous]] +Let $j = 1$. +Consider the set of $k_p$ such that: +:$k_1 + k_2 + \cdots = 1$ +:$1 \times k_1 + 2 k_2 + \cdots = 2$ +:$k_1, k_2, \ldots \ge 0$ +By inspection, it is seen that these can be satisfied only by: +:$k_2 = 1$ +and all other $k_p = 0$. +Let $j = 2$. +Consider the set of $k_p$ such that: +:$k_1 + k_2 + \cdots = 2$ +:$1 \times k_1 + 2 k_2 + \cdots = 2$ +:$k_1, k_2, \ldots \ge 0$ +By inspection, it is seen that these can be satisfied only by: +:$k_1 = 2$ +and all other $k_p = 0$. +Thus we have: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{j \mathop = 0}^2 D_u^j w \sum_{\substack {k_1 \mathop + k_2 \mathop = j \\ k_1 \mathop + 2 k_2 \mathop = 2 \\ k_1, k_2 \mathop \ge 0} } 2! \dfrac {\left({D_x^1 u}\right)^{k_1} \left({D_x^2 u}\right)^{k_2} } {k_1! \left({1!}\right)^{k_1} k_2! \left({2!}\right)^{k_2} } + | c = +}} +{{eqn | r = D_u^1 w \dfrac {2! \left({D_x^1 u}\right)^0 \left({D_x^2 u}\right)^1} {0! \left({1!}\right)^0 1! 2^1} + D_u^2 w \dfrac {2! \left({D_x^1 u}\right)^2 \left({D_x^2 u}\right)^0} {2! \left({1!}\right)^2 0! \left({2!}\right)^0} + | c = substituting for $k_1$ and $k_2$ for each case +}} +{{eqn | r = D_u^1 w \left({D_x^2 u}\right) + D_u^2 w \left({D_x^1 u}\right)^2 + | c = simplifying +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Faà di Bruno's Formula/Lemma 1} +Tags: Faà di Bruno's Formula + +\begin{theorem} +:$D_x \left({\left({D_x^m u}\right)^{k_m} }\right) = k_m \left({D_x^m u}\right)^{k_m - 1} D_x^{m + 1} u$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = D_x \left({\left({D_x^m u}\right)^{k_m} }\right) + | r = \left({k_m \left({D_x^m u}\right)^{k_m - 1} }\right) D_x \left({D_x^m u}\right) + | c = [[Derivative of Power of Function]] +}} +{{eqn | r = k_m \left({\left({D_x^m u}\right)^{k_m - 1} }\right) D_x^{m + 1} u + | c = {{Defof|Higher Derivative}} +}} +{{end-eqn}} +{{qed}} +[[Category:Faà di Bruno's Formula]] +lxvuaw0ammntxkyzm0qexwv6cw3pn3e +\end{proof}<|endoftext|> +\section{Faà di Bruno's Formula/Lemma 2} +Tags: Faà di Bruno's Formula + +\begin{theorem} +:$\displaystyle D_x \left({\prod_{m \mathop = 1}^r \left({\dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} } }\right) }\right) = \prod_{m \mathop = 1}^r \left({\dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} } }\right) \sum_{m \mathop = 1}^r k_m \dfrac {D_x^{m + 1} u} {D_x^m u}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | r = D_x \left({\prod_{m \mathop = 1}^r \left({\dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} } }\right) }\right) + | o = + | c = +}} +{{eqn | r = \prod_{m \mathop = 1}^r \left({\dfrac 1 {k_m! \left({m!}\right)^{k_m} } }\right) D_x \left({\prod_{m \mathop = 1}^r \left({\left({D_x^m u}\right)^{k_m} }\right) }\right) + | c = +}} +{{eqn | r = \prod_{m \mathop = 1}^r \left({\dfrac 1 {k_m! \left({m!}\right)^{k_m} } }\right) \sum_{m \mathop = 1}^r \left({D_x \left({\left({D_x^m u}\right)^{k_m} }\right) \prod_{s \mathop \ne m} \left({\left({D_x^s u}\right)^{k_s} }\right) }\right) + | c = [[Product Rule for Derivatives/General Result|Product Rule for Derivatives: General Result]] +}} +{{eqn | r = \prod_{m \mathop = 1}^r \left({\dfrac 1 {k_m! \left({m!}\right)^{k_m} } }\right) \sum_{m \mathop = 1}^r \left({\left({k_m \left({D_x^m u}\right)^{k_m - 1} D_x^{m + 1} u}\right) \prod_{s \mathop \ne m} \left({\left({D_x^s u}\right)^{k_s} }\right)}\right) + | c = [[Faà di Bruno's Formula/Lemma 1|Faà di Bruno's Formula: Lemma 1]] +}} +{{eqn | r = \prod_{m \mathop = 1}^r \left({\dfrac 1 {k_m! \left({m!}\right)^{k_m} } }\right) \sum_{m \mathop = 1}^r k_m \dfrac {D_x^{m + 1} u} {D_x^m u} \prod_{m \mathop = 1}^r \left({\left({D_x^m u}\right)^{k_m} }\right) + | c = +}} +{{eqn | r = \prod_{m \mathop = 1}^r \left({\dfrac {\left({D_x^m u}\right)^{k_m} } {k_m! \left({m!}\right)^{k_m} } }\right) \sum_{m \mathop = 1}^r k_m \dfrac {D_x^{m + 1} u} {D_x^m u} + | c = +}} +{{end-eqn}} +{{qed}} +[[Category:Faà di Bruno's Formula]] +56df0zm1pg9z1et79yyuorg5w41mfb0 +\end{proof}<|endoftext|> +\section{Supremum of Ideals is Upper Adjoint} +Tags: Continuous Lattices, Galois Connections + +\begin{theorem} +Let $L = \left({S, \vee, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Join Semilattice|join semilattice]]. +Let $\mathit{Ids}\left({L}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +Let $P = \left({\mathit{Ids}\left({L}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\mathord \precsim = \subseteq\restriction_{\mathit{Ids}\left({L}\right)\times \mathit{Ids}\left({L}\right)}$ +Let $f: \mathit{Ids}\left({L}\right) \to S$ be a [[Definition:Mapping|mapping]] such that +:$\forall I \in \mathit{Ids}\left({L}\right): f\left({I}\right) = \sup I$ +Then $f$ is an [[Definition:Galois Connection|upper adjoint of Galois connection]]. +\end{theorem} + +\begin{proof} +Define $d: S \to \mathit{Ids}\left({L}\right)$ +:$\forall t \in S: d\left({t}\right) = \inf \left({f^{-1}\left[{t^\succeq}\right]}\right)$ +where +:$t^\succeq$ denotes the [[Definition:Upper Closure/Element|upper closure]] of $t$, +:$f^{-1}\left[{t^\succeq}\right]$ denotes the [[Definition:Image of Subset under Relation|image]] of $t^\succeq$ over $f^{-1}$. +We will prove that +:$\forall t \in S: d\left({t}\right) = \min \left({f^{-1}\left[{t^\succeq}\right]}\right)$ +Let $t \in S$. +By [[Continuous iff For Every Element There Exists Ideal Element Precedes Supremum]]: +:there exists an [[Definition:Ideal in Ordered Set|ideal]] $J$ in $L$ such that +::$t \preceq \sup J$ and for every [[Definition:Ideal in Ordered Set|ideal]] $K$ in $L$: $t \preceq \sup K \implies J \subseteq K$ +We will prove that +:$\forall K \in \mathit{Ids}\left({L}\right): K$ is [[Definition:Lower Bound of Set|lower bound]] for $f^{-1}\left[{t^\succeq}\right] \implies K \precsim J$ +Let $K \in \mathit{Ids}\left({L}\right)$ such that +:$K$ is [[Definition:Lower Bound of Set|lower bound]] for $f^{-1}\left[{t^\succeq}\right]$ +By definition of $f$: +:$t \preceq f\left({J}\right)$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$f\left({J}\right) \in t^\succeq$ +By definition of [[Definition:Image of Subset under Relation|image of set]]: +:$J \in f^{-1}\left[{t^\succeq}\right]$ +Thus by definition of [[Definition:Lower Bound of Set|lower bound]]: +:$K \precsim J$ +{{qed|lemma}} +We will prove that +:$J$ is [[Definition:Lower Bound of Set|lower bound]] for $f^{-1}\left[{t^\succeq}\right]$ +Let $K \in \mathit{Ids}\left({L}\right)$ such that +:$K \in f^{-1}\left[{t^\succeq}\right]$ +By definition of [[Definition:Image of Subset under Relation|image of set]]: +:$f\left({K}\right) \in t^\succeq$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$t \preceq f\left({K}\right)$ +By definition of $f$: +:$t \preceq \sup K$ +Then +:$J \subseteq K$ +Thus by definition of $\precsim$: +:$J \precsim K$ +{{qed|lemma}} +By definition of [[Definition:Supremum of Set|supremum]]: +:$t \preceq \sup \left({\inf \left({f^{-1}\left[{t^\succeq}\right]}\right)}\right)$ +By definition of $f$: +:$t \preceq f\left({\inf \left({f^{-1}\left[{t^\succeq}\right]}\right)}\right)$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$f\left({\inf \left({f^{-1}\left[{t^\succeq}\right]}\right)}\right) \in t^\succeq$ +By definition of [[Definition:Image of Subset under Relation|image of set]]: +:$\inf \left({f^{-1}\left[{t^\succeq}\right]}\right) \in f^{-1}\left[{t^\succeq}\right]$ +Thus by definition of [[Definition:Smallest Element|smallest element]]: +:$d\left({t}\right) = \min \left({f^{-1}\left[{t^\succeq}\right]}\right)$ +{{qed|lemma}} +By [[Supremum of Ideals is Increasing]]: +:$f$ is an [[Definition:Increasing Mapping|increasing mapping]]. +By [[Galois Connection is Expressed by Minimum]]: +:$\left({f, d}\right)$ is a [[Definition:Galois Connection|Galois connection]]. +Hence $f$ is an [[Definition:Galois Connection|upper adjoint of Galois connection]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Supremum of Ideals is Increasing} +Tags: Increasing Mappings + +\begin{theorem} +Let $L = \left({S, \preceq}\right)$ be an [[Definition:Up-Complete|up-complete]] [[Definition:Ordered Set|ordered set]]. +Let $\mathit{Ids}\left({L}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +Let $P = \left({\mathit{Ids}\left({L}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\mathord \precsim = \subseteq\restriction_{\mathit{Ids}\left({L}\right)\times \mathit{Ids}\left({L}\right)}$ +Let $f: \mathit{Ids}\left({L}\right) \to S$ be a [[Definition:Mapping|mapping]] such that +:$\forall I \in \mathit{Ids}\left({L}\right): f\left({I}\right) = \sup I$ +Then $f$ is an [[Definition:Increasing Mapping|increasing mapping]]. +\end{theorem} + +\begin{proof} +Let $I, J \in \mathit{Ids}\left({L}\right)$ such that +:$I \precsim J$ +By definition of $\precsim$: +:$I \subseteq J$ +By definition of [[Definition:Up-Complete|up-complete]]: +:$I$ and $J$ admit [[Definition:Supremum of Set|suprema]] in $L$. +By [[Supremum of Subset]]: +:$\sup I \preceq \sup J$ +Thus by definition of $f$: +:$f\left({I}\right) \preceq f\left({J}\right)$ +Hence $f$ is an [[Definition:Increasing Mapping|increasing mapping]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Derivative of Composite Function/Third Derivative} +Tags: Differential Calculus + +\begin{theorem} +:$D_x^3 w = D_u^3 w \paren {D_x^1 u}^3 + 3 D_u^2 w D_x^2 u D_x^1 u + D_u^1 w D_x^3 u$ +\end{theorem} + +\begin{proof} +For ease of understanding, let [[Definition:Leibniz's Notation for Derivatives|Leibniz's notation]] be used: +:$\dfrac {\d^k u} {\d x^k} := D_x^k u$ +Then we have: +{{begin-eqn}} +{{eqn | l = D_x^3 w + | r = \map {\dfrac \d {\d x} } {\dfrac {\d^2 w} {\d x^2} } + | c = +}} +{{eqn | r = \map {\dfrac \d {\d x} } {\dfrac {\d^2 w} {\d u^2} \paren {\dfrac {\d u} {\d x} }^2 + \dfrac {\d w} {\d u} \dfrac {\d^2 u} {\d x^2} } + | c = [[Derivative of Composite Function/Second Derivative|Derivative of Composite Function: Second Derivative]] +}} +{{eqn | r = \map {\dfrac \d {\d x} } {\dfrac {\d^2 w} {\d u^2} } \paren {\dfrac {\d u} {\d x} }^2 + \dfrac {\d^2 w} {\d u^2} \map {\dfrac \d {\d x} } {\paren {\dfrac {\d u} {\d x} }^2} + | c = [[Product Rule for Derivatives]] +}} +{{eqn | o = + | ro= + + | r = \map {\dfrac \d {\d x} } {\dfrac {\d w} {\d u} } \dfrac {\d^2 u} {\d x^2} + \dfrac {\d w} {\d u} \map {\dfrac \d {\d x} } {\dfrac {\d^2 u} {\d x^2} } + | c = +}} +{{eqn | r = \dfrac {\d^3 w} {\d u^3} \dfrac {\d u} {\d x} \paren {\dfrac {\d u} {\d x} }^2 + \dfrac {\d^2 w} {\d u^2} 2 \dfrac {\d u} {\d x} \dfrac {\d^2 u} {\d x^2} + | c = [[Derivative of Composite Function]] +}} +{{eqn | o = + | ro= + + | r = \dfrac {\d^2 w} {\d u^2} \dfrac {\d u} {\d x} \dfrac {\d^2 u} {\d x^2} + \dfrac {\d w} {\d u} \paren {\dfrac {\d^3 u} {\d x^3} } + | c = +}} +{{eqn | r = \dfrac {\d^3 w} {\d u^3} \paren {\dfrac {\d u} {\d x} }^3 + 2 \dfrac {\d^2 w} {\d u^2} \dfrac {\d^2 u} {\d x^2} \dfrac {\d u} {\d x} + | c = simplifying +}} +{{eqn | o = + | ro= + + | r = \dfrac {\d^2 w} {\d u^2} \dfrac {\d^2 u} {\d x^2} \dfrac {\d u} {\d x} + \dfrac {\d w} {\d u} \paren {\dfrac {\d^3 u} {\d x^3} } + | c = +}} +{{eqn | r = \dfrac {\d^3 w} {\d u^3} \paren {\dfrac {\d u} {\d x} }^3 + 3 \dfrac {\d^2 w} {\d u^2} \dfrac {\d^2 u} {\d x^2} \dfrac {\d u} {\d x} + \dfrac {\d w} {\d u} \paren {\dfrac {\d^3 u} {\d x^3} } + | c = simplifying +}} +{{eqn | r = D_u^3 w \paren {D_x^1 u}^3 + 3 D_u^2 w D_x^2 u D_x^1 u + D_u^1 w D_x^3 u + | c = [[Definition:Leibniz's Notation for Derivatives|Leibniz's Notation]] +}} +{{end-eqn}} +{{qed}} +[[Category:Differential Calculus]] +kiwj42mfwm8i3qy33qkqwbvx9nxljff +\end{proof}<|endoftext|> +\section{Number of Set Partitions by Number of Components} +Tags: Combinatorics, Stirling Numbers, Number of Set Partitions by Number of Components, Set Partitions + +\begin{theorem} +Let $S$ be a [[Definition:Finite Set|(finite) set]] whose [[Definition:Cardinality|cardinality]] is $n$. +Let $\map f {n, k}$ denote the number of different ways $S$ can be [[Definition:Set Partition|partitioned]] into $k$ [[Definition:Component of Partition|components]]. +Then: +:$\displaystyle \map f {n, k} = {n \brace k}$ +where $\displaystyle {n \brace k}$ denotes a [[Definition:Stirling Numbers of the Second Kind|Stirling number of the second kind]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$. +For all $n \in \Z_{\ge 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\displaystyle \map f {n, k} = {n \brace k}$ +$\map P 0$ is the [[Definition:Degenerate Case|degenerate case]]: +:$\displaystyle \map f {0, k} = \delta_{0 k} = {0 \brace k}$ +That is: the [[Definition:Empty Set|empty set]] can be [[Definition:Set Partition|partitioned]] one and only one way: into $0$ [[Definition:Subset|subsets]]. +Thus $\map P 0$ is seen to hold. +The remainder of the proof considers $n \in \Z_{> 0}$. +First we note that when $k < 1$ or $k > n$: +:$\displaystyle \map f {n, k} = 0 = {n \brace k}$ +Hence, throughout, we consider only such $k$ as $1 \le k \le n$. +We define the representative [[Definition:Set|set]] of [[Definition:Cardinality|cardinality]] $n$ to be: +:$S_n := \set {1, 2, \ldots, n}$ +=== Basis for the Induction === +$\map P 1$ is the case $\map f {1, 1}$. +There is exactly one way to [[Definition:Set Partition|partition]] $\set 1$, and that is: +:$\set {\set 1}$ +From [[Stirling Number of the Second Kind of Number with Self]]: +:$\displaystyle {1 \brace 1} = 1$ +Thus $\map P 1$ is seen to hold. +This is the [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P m$ is true, where $m \ge 1$, then it logically follows that $\map P {m + 1}$ is true. +So this is the [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \map f {m, k} = {m \brace k}$ +from which it is to be shown that: +:$\displaystyle \map f {m + 1, k} = {m + 1 \brace k}$ +=== Induction Step === +This is the [[Definition:Induction Step|induction step]]: +By definition, the number of [[Definition:Set Partition|partitions]] of $S_m$ into $k$ [[Definition:Subset|subsets]] is $\map f {m, k}$. +A [[Definition:Set Partition|partition]] of $S_{m + 1}$ can be generated by adding [[Definition:Element|element]] $m + 1$ into one of the existing [[Definition:Set Partition|partitions]] of $S_m$. +There are two ways this can be done: +:$(1): \quad$ The [[Definition:Subset|subset]] $\set {m + 1}$ may be added, in one way, to one of the [[Definition:Set Partition|partitions]] of $S_m$ into $k - 1$ [[Definition:Subset|subsets]]. +:$(2): \quad$ The [[Definition:Element|element]] $m + 1$ may be added to any one of the $k$ [[Definition:Subset|subsets]] in one of the [[Definition:Set Partition|partitions]] of $S_m$ into $k$ [[Definition:Subset|subsets]]. +Option $(1)$ gives $1$ [[Definition:Set Partition|partition]] of $S_{m + 1}$ for each [[Definition:Set Partition|partition]] of $S_m$ into $k - 1$ [[Definition:Subset|subsets]], that is: $\map f {m, k - 1}$. +Option $(2)$ gives $k$ [[Definition:Set Partition|partitions]] of $S_{m + 1}$ for each [[Definition:Set Partition|partition]] of $S_m$ into $k$ [[Definition:Subset|subsets]], that is: $k \map f {m, k}$. +Thus: +:$\map f {m + 1, k} = k \map f {m, k} + \map f {m, k - 1}$ +By the [[Number of Set Partitions by Number of Components#Induction Hypothesis|induction hypothesis]]: +:$\displaystyle \map f {m + 1, k} = k {m \brace k} + {m \brace k - 1}$ +So by definition of [[Definition:Stirling Numbers of the Second Kind|Stirling numbers of the second kind]]: +:$\displaystyle \map f {m + 1, k} = {m + 1 \brace k}$ +So $\map P m \implies \map P {m + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\displaystyle \forall n, k \in \Z_{\ge 0}: \map f {n, k} = {n \brace k}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Summation of Summation over Divisors of Function of Two Variables} +Tags: Summations, Divisors + +\begin{theorem} +Let $c, d, n \in \Z$. +Then: +:$\displaystyle \sum_{d \mathop \divides n} \sum_{c \mathop \divides d} \map f {c, d} = \sum_{c \mathop \divides n} \sum_{d \mathop \divides \paren {n / c} } \map f {c, c d}$ +where $c \divides d$ denotes that $c$ is a [[Definition:Divisor of Integer|divisor]] of $d$. +\end{theorem} + +\begin{proof} +From [[Exchange of Order of Summation with Dependency on Both Indices]]: +{{:Exchange of Order of Summation with Dependency on Both Indices}} +We have that: +:$\map R d$ is the [[Definition:Propositional Function|propositional function]]: +::$d \divides n$ +:$\map S {d, c}$ is the [[Definition:Propositional Function|propositional function]]: +::$c \divides d$ +Thus $\map {R'} {d, c}$ is the [[Definition:Propositional Function|propositional function]]: +::Both $d \divides n$ and $c \divides d$ +This is the same as: +::$c \divides n$ and $\dfrac d c \divides \dfrac n c$ +Similarly, $\map {S'} c$ is the [[Definition:Propositional Function|propositional function]]: +::$\exists d$ such that both $d \divides n$ and $c \divides d$ +This is the same as: +::$c \divides n$ +This gives: +:$\displaystyle \sum_{d \mathop \divides n} \sum_{c \mathop \divides d} \map f {c, d} = \sum_{c \mathop \divides n} \sum_{\paren {d / c} \mathrel \divides \paren {n / c} } \map f {c, d}$ +Replacing $d / c$ with $d$: +:$\displaystyle \sum_{d \mathop \divides n} \sum_{c \mathop \divides d} \map f {c, d} = \sum_{c \mathop \divides n} \sum_{d \mathop \divides \paren {n / c} } \map f {c, c d}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Floor of Half of n+m plus Floor of Half of n-m+1} +Tags: Floor Function + +\begin{theorem} +Let $n, m \in \Z$ be [[Definition:Integer|integers]]. +:$\floor {\dfrac {n + m} 2} + \floor {\dfrac {n - m + 1} 2} = n$ +where $\floor x$ denotes the [[Definition:Floor Function|floor]] of $x$. +\end{theorem} + +\begin{proof} +Either $n + m$ or $n - m + 1$ is [[Definition:Even Integer|even]]. +Thus: +:$\dfrac {n + m} 2 \bmod 1 + \dfrac {n - m + 1} 2 \bmod 1 = \dfrac 1 2 < 1$ +and so: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac {n + m} 2} + \floor {\dfrac {n - m + 1} 2} + | r = \floor {\dfrac {n + m} 2 + \dfrac {n - m + 1} 2} + | c = [[Sum of Floors not greater than Floor of Sum]] +}} +{{eqn | r = \floor {\dfrac {n + m + n - m + 1} 2} + | c = +}} +{{eqn | r = \floor {n + \dfrac 1 2} + | c = +}} +{{eqn | r = n + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Ceiling of Half of n+m plus Ceiling of Half of n-m+1} +Tags: Ceiling Function + +\begin{theorem} +Let $n, m \in \Z$ be [[Definition:Integer|integers]]. +:$\left\lceil{\dfrac {n + m} 2}\right\rceil + \left\lceil{\dfrac {n - m + 1} 2}\right\rceil = n + 1$ +where $\left\lceil{x}\right\rceil$ denotes the [[Definition:Ceiling Function|ceiling]] of $x$. +\end{theorem} + +\begin{proof} +Either $n + m$ or $n - m + 1$ is [[Definition:Even Integer|even]]. +Thus either $\dfrac {n + m} 2$ or $\dfrac {n - m + 1} 2$ is an [[Definition:Integer|integer]]. +So: +{{begin-eqn}} +{{eqn | l = \left\lceil{\dfrac {n + m} 2}\right\rceil + \left\lceil{\dfrac {n - m + 1} 2}\right\rceil + | r = \left\lceil{\dfrac {n + m} 2 + \dfrac {n - m + 1} 2}\right\rceil + | c = [[Sum of Ceilings not less than Ceiling of Sum]] +}} +{{eqn | r = \left\lceil{\dfrac {n + m + n - m + 1} 2}\right\rceil + | c = +}} +{{eqn | r = \left\lceil{n + \dfrac 1 2}\right\rceil + | c = +}} +{{eqn | r = n + 1 + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Floor of Non-Integer} +Tags: Floor Function + +\begin{theorem} +Let $x \in \R$ be a [[Definition:Real Number|real number]]. +Let $x \notin \Z$. +Then: +:$\left\lfloor{x}\right\rfloor < x$ +where $\left\lfloor{x}\right\rfloor$ denotes the [[Definition:Floor Function|floor]] of $x$. +\end{theorem} + +\begin{proof} +From [[Floor is between Number and One Less]]: +:$\left\lfloor{x}\right\rfloor \le x$ +From [[Real Number is Integer iff equals Floor]]: +:$x = \left \lfloor {x} \right \rfloor \iff x \in \Z$ +But we have $x \notin \Z$. +So: +:$\left \lfloor {x} \right \rfloor \ne x$ +and so: +:$\left \lfloor {x} \right \rfloor < x$ +{{qed}} +\end{proof}<|endoftext|> +\section{Logarithm of Base} +Tags: Logarithms + +\begin{theorem} +Let $b \in \R_{>0}$ such that $b \ne 1$. +Then: +:$\log_b b = 1$ +where $\log_b$ denotes the [[Definition:General Logarithm|logarithm]] to [[Definition:Base of Logarithm|base $b$]]. +\end{theorem} + +\begin{proof} +Let $a \in \R_{>0}$ such that $a \ne 1$. +Then: +{{begin-eqn}} +{{eqn | l = \log_b b + | r = \dfrac {\log_a b} {\log_a b} + | c = [[Change of Base of Logarithm]] +}} +{{eqn | r = 1 + | c = +}} +{{end-eqn}} +{{qed}} +[[Category:Logarithms]] +8p8v7a9h3w1b8jvsqgyq3scehh3d4y0 +\end{proof}<|endoftext|> +\section{Conditions for Floor of Log base b of x to equal Floor of Log base b of Floor of x} +Tags: Logarithms, Floor Function, Conditions for Floor of Log base b of x to equal Floor of Log base b of Floor of x + +\begin{theorem} +Let $b \in \R$ be a [[Definition:Real Number|real number]]. +:$\forall x \in \R_{\ge 1}: \left\lfloor{\log_b x}\right\rfloor = \left\lfloor{\log_b \left\lfloor{x}\right\rfloor}\right\rfloor \iff b \in \Z_{> 1}$ +where $\left\lfloor{x}\right\rfloor$ denotes the [[Definition:Floor Function|floor of $x$]]. +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let: +:$\forall x \in \R_{\ge 1}: \left\lfloor{\log_b x}\right\rfloor = \left\lfloor{\log_b \left\lfloor{x}\right\rfloor}\right\rfloor$ +Let $x = b$. +Then: +:$\left\lfloor{\log_b b}\right\rfloor = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor$ +{{begin-eqn}} +{{eqn | l = \left\lfloor{\log_b b}\right\rfloor + | r = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor + | c = +}} +{{eqn | ll= \leadsto + | l = \left\lfloor{1}\right\rfloor + | r = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor + | c = [[Logarithm of Base]] +}} +{{eqn | ll= \leadsto + | l = 1 + | r = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor + | c = [[Real Number is Integer iff equals Floor]] +}} +{{end-eqn}} +{{AimForCont}} $b \notin \Z$. +{{begin-eqn}} +{{eqn | l = \left\lfloor{b}\right\rfloor + | o = < + | r = b + | c = [[Floor of Non-Integer]] +}} +{{eqn | ll= \leadsto + | l = \log_b \left\lfloor{b}\right\rfloor + | o = < + | r = 1 + | c = +}} +{{eqn | ll= \leadsto + | l = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor + | o = < + | r = \left\lfloor{\log_b b}\right\rfloor + | c = +}} +{{eqn | ll= \leadsto + | l = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor + | o = \ne + | r = \left\lfloor{\log_b b}\right\rfloor + | c = which [[Definition:Contradiction|contradicts]] $\left\lfloor{\log_b b}\right\rfloor = \left\lfloor{\log_b \left\lfloor{b}\right\rfloor}\right\rfloor$ +}} +{{end-eqn}} +Thus by [[Proof by Contradiction]]: +:$b \in \Z$ +But for $\log_b$ to be defined, $b > 0$ and $b \ne 1$. +Hence: +:$b \in \Z_{> 1}$ +{{qed|lemma}} +=== Sufficient Condition === +Let $b \in \Z_{> 1}$. +Let $\left\lfloor{\log_b x}\right\rfloor = n$. +Then: +{{begin-eqn}} +{{eqn | l = n + | m = \left\lfloor{\log_b x}\right\rfloor + | c = +}} +{{eqn | ll= \iff + | l = n + | o = \le + | m = \log_b x + | mo= < + | r = n + 1 + | c = [[Integer equals Floor iff Number between Integer and One More]] +}} +{{eqn | ll= \iff + | l = b^n + | o = \le + | m = x + | mo= < + | r = b^{n + 1} + | c = [[Power Function is Strictly Increasing over Positive Reals/Natural Exponent|Power Function is Strictly Increasing over Positive Reals]] +}} +{{eqn | ll= \iff + | l = b^n + | o = \le + | m = \left \lfloor {x}\right \rfloor + | mo= < + | r = b^{n + 1} + | c = [[Number not less than Integer iff Floor not less than Integer]] +}} +{{eqn | ll= \iff + | l = n + | o = \le + | m = \log_b \left\lfloor{x}\right\rfloor + | mo= < + | r = n + 1 + | c = [[Power Function is Strictly Increasing over Positive Reals/Natural Exponent|Power Function is Strictly Increasing over Positive Reals]] +}} +{{eqn | ll= \iff + | l = n + | m = \left \lfloor {\log_b \left\lfloor{x}\right\rfloor}\right \rfloor + | c = [[Integer equals Floor iff Number between Integer and One More]] +}} +{{eqn | ll= \iff + | l = \left\lfloor{\log_b x}\right\rfloor + | m = \left\lfloor{\log_b \left\lfloor{x}\right\rfloor}\right\rfloor + | c = Definition of $n$ +}} +{{end-eqn}} +{{qed}} +\end{proof} + +\begin{proof} +We have that: +:[[Logarithm is Strictly Increasing]] +and: +:[[Natural Logarithm Function is Continuous]] +Suppose that $\log_b x \in \Z$: let $\log_b x = n$, say. +Then: +:$x = b^n$ +It follows that $x \in \Z \iff b \in \Z$. +Thus by [[McEliece's Theorem (Integer Functions)]]: +:$\forall x \in \R_{\ge 1}: \left\lfloor{\log_b x}\right\rfloor = \left\lfloor{\log_b \left\lfloor{x}\right\rfloor}\right\rfloor \iff b \in \Z_{> 1}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Floor of x+m over n} +Tags: Floor Function, Floor of x+m over n + +\begin{theorem} +Let $m, n \in \Z$ such that $n > 0$. +Let $x \in \R$. +Then: +:$\floor {\dfrac {x + m} n} = \floor {\dfrac {\floor x + m} n}$ +where $\floor x$ denotes the [[Definition:Floor Function|floor of $x$]]. +\end{theorem} + +\begin{proof} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: f \left({x}\right) = \dfrac {x + m} n$ +It is clear that $f$ is both [[Definition:Strictly Increasing Real Function|strictly increasing]] and [[Definition:Continuous Real Function|continuous]] on the whole of $\R$. +Let $\dfrac {x + m} n \in \Z$. +Then: +{{begin-eqn}} +{{eqn | l = \exists s \in \Z: \dfrac {x + m} n + | r = s + | c = +}} +{{eqn | ll= \leadsto + | l = x + m + | r = n s + | c = +}} +{{eqn | ll= \leadsto + | l = x + | r = n s - m + | c = +}} +{{eqn | o = \in + | r = \Z + | c = +}} +{{end-eqn}} +Thus: +:$\forall x \in \R: f \left({x}\right) \in \Z \implies x \in \Z$ +So the conditions are fulfilled for [[McEliece's Theorem (Integer Functions)]] to be applied: +:$\left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor \iff \left(f \left({x}\right) \in \Z \implies x \in \Z)\right)$ +Hence the result. +{{qed}} +\end{proof} + +\begin{proof} +Let: +:$y = x - \floor x$ +:$M = m + \floor x$ +We now have: +:$(1): \quad 0 \le y < 1$ +and +:$\floor y = 0$ +Write: +:$(2): \quad M = k n + r$ +with $k \in \Z$ and $0 \le r \le n - 1$. +By $(1)$ and $(2)$: +:$(3): \quad 0 \le r + y < n - 1 + 1 = n$ +We have: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac {y + M} n} + | r = \floor {\dfrac {y + r} n + k} + | c = +}} +{{eqn | r = k + \floor {\dfrac {r + y} n} + | c = +}} +{{eqn | r = k + | c = from $(3)$ +}} +{{eqn | r = \floor {\dfrac M n} + | c = +}} +{{end-eqn}} +Substituting $y$ and $M$, we obtain: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac {x - \floor x + m + \floor x} n } + | r = \floor {\dfrac {x + m} n } + | c = +}} +{{eqn | r = \floor {\dfrac {m + \floor x} n} + | c = +}} +{{end-eqn}} +and the result follows. +{{qed}} +\end{proof}<|endoftext|> +\section{McEliece's Theorem (Integer Functions)} +Tags: Floor Function, Ceiling Function + +\begin{theorem} +Let $f: \R \to \R$ be a [[Definition:Continuous Real Function|continuous]], [[Definition:Strictly Increasing Real Function|strictly increasing real function]] defined on an [[Definition:Real Interval|interval]] $A$. +Let: +:$\forall x \in A: \left \lfloor{x}\right \rfloor \in A, \left \lceil{x}\right \rceil \in A$ +where: +:$\left \lfloor{x}\right \rfloor$ denotes the [[Definition:Floor Function|floor]] of $x$ +:$\left \lceil{x}\right \rceil$ denotes the [[Definition:Ceiling Function|ceiling]] of $x$ +Then: +:$\forall x \in A: \left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor \iff \left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil \iff \left(f \left({x}\right) \in \Z \implies x \in \Z)\right)$ +\end{theorem} + +\begin{proof} +Let $x \in A$. +Hence {{hypothesis}} we have that both $\left \lfloor{x}\right \rfloor \in A$ and $\left \lceil{x}\right \rceil \in A$. +=== Necessary Condition === +Let $f \left({x}\right) \in \Z$. +Let: +:$\left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor$ +Then: +{{begin-eqn}} +{{eqn | l = f \left({x}\right) + | r = \left \lfloor{f \left({x}\right)}\right \rfloor + | c = [[Real Number is Integer iff equals Floor]] +}} +{{eqn | r = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor + | c = {{hypothesis}} +}} +{{end-eqn}} +{{AimForCont}} $x \notin \Z$. +{{begin-eqn}} +{{eqn | l = \left \lfloor{x}\right \rfloor + | o = < + | r = x + | c = [[Floor of Non-Integer]] +}} +{{eqn | ll= \leadsto + | l = f \left({\left \lfloor{x}\right \rfloor}\right) + | o = < + | r = f \left({x}\right) + | c = as $f$ is [[Definition:Strictly Increasing Real Function|strictly increasing]] +}} +{{eqn | ll= \leadsto + | l = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor + | o = < + | r = \left \lfloor{f \left({x}\right)}\right \rfloor + | c = as $\left \lfloor{f \left({x}\right)}\right \rfloor = f \left({x}\right)$ by [[Real Number is Integer iff equals Floor]] +}} +{{eqn | ll= \leadsto + | l = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor + | o = \ne + | r = \left \lfloor{f \left({x}\right)}\right \rfloor + | c = which [[Definition:Contradiction|contradicts]] $\left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor$ +}} +{{end-eqn}} +Thus by [[Proof by Contradiction]]: +:$x \in \Z$ +Similarly, let: +:$\left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil$ +Then: +{{begin-eqn}} +{{eqn | l = f \left({x}\right) + | r = \left \lceil{f \left({x}\right)}\right \rceil + | c = [[Real Number is Integer iff equals Ceiling]] +}} +{{eqn | r = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil + | c = {{hypothesis}} +}} +{{end-eqn}} +{{AimForCont}} $x \notin \Z$. +{{begin-eqn}} +{{eqn | l = \left \lceil{x}\right \rceil + | o = > + | r = x + | c = [[Ceiling of Non-Integer]] +}} +{{eqn | ll= \leadsto + | l = f \left({\left \lceil{x}\right \rceil}\right) + | o = > + | r = f \left({x}\right) + | c = as $f$ is [[Definition:Strictly Increasing Real Function|strictly increasing]] +}} +{{eqn | ll= \leadsto + | l = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil + | o = > + | r = \left \lceil{f \left({x}\right)}\right \rceil + | c = as $\left \lceil{f \left({x}\right)}\right \rceil = f \left({x}\right)$ by [[Real Number is Integer iff equals Ceiling]] +}} +{{eqn | ll= \leadsto + | l = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil + | o = \ne + | r = \left \lceil{f \left({x}\right)}\right \rceil + | c = which [[Definition:Contradiction|contradicts]] $\left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil$ +}} +{{end-eqn}} +Thus by [[Proof by Contradiction]]: +:$x \in \Z$ +Thus: +:$\forall x \in A: \left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor \implies \left(f \left({x}\right) \in \Z \implies x \in \Z)\right)$ +and: +:$\forall x \in A: \left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil \implies \left(f \left({x}\right) \in \Z \implies x \in \Z)\right)$ +{{qed|lemma}} +=== Sufficient Condition === +Let $f$ be such that: +:$f \left({x}\right) \in \Z \implies x \in \Z$ +{{AimForCont}} there exists $x \in A$ such that: +:$\left \lfloor{f \left({x}\right)}\right \rfloor \ne \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor$ +We have by definition of the [[Definition:Floor Function|floor function]] that $x \ge \left \lfloor{x}\right \rfloor$. +As $f$ is [[Definition:Strictly Increasing Real Function|strictly increasing]], it cannot be the case that $\left \lfloor{f \left({x}\right)}\right \rfloor < \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor$. +So it must be that: +:$\left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor < \left \lfloor{f \left({x}\right)}\right \rfloor$ +Because $f$ is [[Definition:Continuous Real Function|continuous]]: +:$\exists y \in A: \left \lfloor{x}\right \rfloor < y \le x$ +such that $f \left({y}\right) \in \Z$ +But by definition of the [[Definition:Floor Function|floor function]], $y$ cannot be an [[Definition:Integer|integer]]. +Thus by [[Proof by Contradiction]]: +:$\left({f \left({x}\right) \in \Z \implies x \in \Z}\right) \implies \left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor$ +{{qed|lemma}} +{{AimForCont}}, similarly, that there exists $x \in A$ such that: +:$\left \lceil{f \left({x}\right)}\right \rceil \ne \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil$ +We have by definition of the [[Definition:Ceiling Function|ceiling function]] that $x \le \left \lceil{x}\right \rceil$. +As $f$ is [[Definition:Strictly Increasing Real Function|strictly increasing]], it cannot be the case that $\left \lceil{f \left({x}\right)}\right \rceil > \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil$. +So it must be that: +:$\left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil > \left \lceil{f \left({x}\right)}\right \rceil$ +Because $f$ is [[Definition:Continuous Real Function|continuous]]: +:$\exists y \in A: \left \lceil{x}\right \rceil > y \ge x$ +such that $f \left({y}\right) \in \Z$ +But by definition of the [[Definition:Ceiling Function|ceiling function]], $y$ cannot be an [[Definition:Integer|integer]]. +Thus by [[Proof by Contradiction]]: +:$\left({f \left({x}\right) \in \Z \implies x \in \Z}\right) \implies \left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil$ +{{qed|lemma}} +Thus we have: +:$\left({f \left({x}\right) \in \Z \implies x \in \Z}\right) \iff \left \lfloor{f \left({x}\right)}\right \rfloor = \left \lfloor{f \left({\left \lfloor{x}\right \rfloor}\right)}\right \rfloor$ +and +:$\left({f \left({x}\right) \in \Z \implies x \in \Z}\right) \iff \left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil$ +Hence the result. +{{qed}} +{{Namedfor|Robert James McEliece|cat = McEliece}} +\end{proof}<|endoftext|> +\section{Ceiling of Non-Integer} +Tags: Ceiling Function + +\begin{theorem} +Let $x \in \R$ be a [[Definition:Real Number|real number]]. +Let $x \notin \Z$. +Then: +:$\left \lceil{x}\right \rceil > x$ +where $\left \lceil{x}\right \rceil$ denotes the [[Definition:Ceiling Function|ceiling ]] of $x$. +\end{theorem} + +\begin{proof} +From [[Ceiling is between Number and One More]]: +:$\left \lceil{x}\right \rceil \ge x$ +From [[Real Number is Integer iff equals Ceiling]]: +:$x = \left \lceil {x} \right \rceil \iff x \in \Z$ +But we have $x \notin \Z$. +So: +:$\left \lceil {x} \right \rceil \ne x$ +and so: +:$\left \lceil {x} \right \rceil > x$ +{{qed}} +\end{proof}<|endoftext|> +\section{Ceiling of x+m over n} +Tags: Ceiling Function, Ceiling of x+m over n + +\begin{theorem} +Let $m, n \in \Z$ such that $n > 0$. +Let $x \in \R$. +Then: +:$\ceiling {\dfrac {x + m} n} = \ceiling {\dfrac {\ceiling x + m} n}$ +where $\ceiling x$ denotes the [[Definition:Ceiling Function|ceiling of $x$]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \left \lceil{\dfrac {x + m} n}\right \rceil + | r = -\left \lfloor{-\dfrac {x + m} n}\right \rfloor + | c = [[Floor of Negative equals Negative of Ceiling]] +}} +{{eqn | r = -\left \lfloor{\dfrac {- x - m} n}\right \rfloor + | c = +}} +{{eqn | r = -\left \lfloor{\dfrac {\left \lfloor{- x}\right \rfloor - m} n}\right \rfloor + | c = [[Floor of x+m over n|Floor of $\dfrac{x + m} n$]] +}} +{{eqn | r = -\left \lfloor{\dfrac {-\left \lceil{x}\right \rceil - m} n}\right \rfloor + | c = [[Floor of Negative equals Negative of Ceiling]] +}} +{{eqn | r = -\left \lfloor{-\dfrac {\left \lceil{x}\right \rceil + m} n}\right \rfloor + | c = +}} +{{eqn | r = \left \lceil{\dfrac {\left \lceil{x}\right \rceil + m} n}\right \rceil + | c = [[Floor of Negative equals Negative of Ceiling]] +}} +{{end-eqn}} +{{qed}} +\end{proof} + +\begin{proof} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: f \left({x}\right) = \dfrac {x + m} n$ +It is clear that $f$ is both [[Definition:Strictly Increasing Real Function|strictly increasing]] and [[Definition:Continuous Real Function|continuous]] on the whole of $\R$. +Let $\dfrac {x + m} n \in \Z$. +Then: +{{begin-eqn}} +{{eqn | l = \exists s \in \Z: \dfrac {x + m} n + | r = s + | c = +}} +{{eqn | ll= \leadsto + | l = x + m + | r = n s + | c = +}} +{{eqn | ll= \leadsto + | l = x + | r = n s - m + | c = +}} +{{eqn | o = \in + | r = \Z + | c = +}} +{{end-eqn}} +Thus: +:$\forall x \in \R: f \left({x}\right) \in \Z \implies x \in \Z$ +So the conditions are fulfilled for [[McEliece's Theorem (Integer Functions)]] to be applied: +:$\left \lceil{f \left({x}\right)}\right \rceil = \left \lceil{f \left({\left \lceil{x}\right \rceil}\right)}\right \rceil \iff \left(f \left({x}\right) \in \Z \implies x \in \Z)\right)$ +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over k of Floor of k over 2} +Tags: Floor Function, Summations + +\begin{theorem} +:$\displaystyle \sum_{k \mathop = 1}^n \floor {\dfrac k 2} = \floor {\dfrac {n^2} 4}$ +\end{theorem} + +\begin{proof} +By [[Permutation of Indices of Summation]]: +:$\displaystyle \sum_{k \mathop = 1}^n \floor {\dfrac k 2} = \sum_{k \mathop = 1}^n \floor {\dfrac {n + 1 - k} 2}$ +and so: +:$\displaystyle \sum_{k \mathop = 1}^n \floor {\dfrac k 2} = \dfrac 1 2 \sum_{k \mathop = 1}^n \paren {\floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} }$ +First take the case where $n$ is [[Definition:Even Integer|even]]. +For $k$ [[Definition:Odd Integer|odd]]: +:$\floor {\dfrac k 2} = \dfrac k 2 - \dfrac 1 2$ +and: +:$\floor {\dfrac {n + 1 - k} 2} = \dfrac {n + 1 - k} 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} + | r = \dfrac k 2 - \dfrac 1 2 + \dfrac {n + 1 - k} 2 + | c = +}} +{{eqn | r = \dfrac {k - 1 + n + 1 - k} 2 + | c = +}} +{{eqn | r = \dfrac n 2 + | c = +}} +{{end-eqn}} +For $k$ [[Definition:Even Integer|even]]: +:$\floor {\dfrac k 2} = \dfrac k 2$ +and: +:$\floor {\dfrac {n + 1 - k} 2} = \dfrac {n + 1 - k} 2 - \dfrac 1 2 = \dfrac {n - k} 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} + | r = \dfrac k 2 + \dfrac {n - k} 2 + | c = +}} +{{eqn | r = \dfrac {k + n - k} 2 + | c = +}} +{{eqn | r = \dfrac n 2 + | c = +}} +{{end-eqn}} +So: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 1}^n \floor {\dfrac k 2} + | r = \dfrac 1 2 \sum_{k \mathop = 1}^n \paren {\floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} } + | c = +}} +{{eqn | r = \dfrac 1 2 \sum_{k \mathop = 1}^n \paren {\dfrac n 2} + | c = +}} +{{eqn | r = \dfrac 1 2 n \dfrac n 2 + | c = +}} +{{eqn | r = \dfrac {n^2} 4 + | c = +}} +{{eqn | r = \floor {\dfrac {n^2} 4} + | c = as $\dfrac {n^2} 4$ is an [[Definition:Integer|integer]] +}} +{{end-eqn}} +{{qed|lemma}} +Next take the case where $n$ is [[Definition:Odd Integer|odd]]. +For $k$ [[Definition:Odd Integer|odd]]: +:$\floor {\dfrac k 2} = \dfrac k 2 - \dfrac 1 2$ +and: +:$\floor {\dfrac {n + 1 - k} 2} = \dfrac {n + 1 - k} 2 - \dfrac 1 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} + | r = \dfrac k 2 - \dfrac 1 2 + \dfrac {n + 1 - k} 2 - \dfrac 1 2 + | c = +}} +{{eqn | r = \dfrac {k - 1 + n + 1 - k - 1} 2 + | c = +}} +{{eqn | r = \dfrac {n - 1} 2 + | c = +}} +{{end-eqn}} +For $k$ [[Definition:Even Integer|even]]: +:$\floor {\dfrac k 2} = \dfrac k 2$ +and: +:$\floor {\dfrac {n + 1 - k} 2} = \dfrac {n + 1 - k} 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} + | r = \dfrac k 2 + \dfrac {n - k + 1} 2 + | c = +}} +{{eqn | r = \dfrac {k + n - k + 1} 2 + | c = +}} +{{eqn | r = \dfrac {n + 1} 2 + | c = +}} +{{end-eqn}} +Let $n = 2 t + 1$. +Then: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 1}^n \floor {\dfrac k 2} + | r = \dfrac 1 2 \sum_{k \mathop = 1}^n \paren {\floor {\dfrac k 2} + \floor {\dfrac {n + 1 - k} 2} } + | c = +}} +{{eqn | r = \dfrac 1 2 \sum_{k \mathop = 1}^{2 t + 1} \paren {\floor {\dfrac k 2} + \floor {\dfrac {2 t + 2 - k} 2} } + | c = +}} +{{eqn | r = \dfrac t 2 \dfrac {\paren {2 t + 1} + 1} 2 + \dfrac {t + 1} 2 \dfrac {\paren {2 t + 1} - 1} 2 + | c = there are $t$ [[Definition:Even Integer|even]] terms and $t + 1$ [[Definition:Odd Integer|odd]] terms +}} +{{eqn | r = \dfrac {2 t^2 + 2 t} 4 + \dfrac {2 t^2 + 2 t} 4 + | c = multiplying out +}} +{{eqn | r = \dfrac {4 t^2 + 4 t} 4 + \dfrac 1 4 - \dfrac 1 4 + | c = +}} +{{eqn | r = \dfrac {\paren {2 t + 1}^2} 4 - \dfrac 1 4 + | c = +}} +{{eqn | r = \dfrac {n^2} 4 - \dfrac 1 4 + | c = +}} +{{eqn | r = \floor {\dfrac {n^2} 4} + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over k of Ceiling of k over 2} +Tags: Ceiling Function, Summations + +\begin{theorem} +:$\displaystyle \sum_{k \mathop = 1}^n \left \lceil{\dfrac k 2}\right \rceil = \left \lceil{\dfrac {n \left({n + 2}\right)} 4}\right \rceil$ +\end{theorem} + +\begin{proof} +By [[Permutation of Indices of Summation]]: +:$\displaystyle \sum_{k \mathop = 1}^n \left \lceil{\dfrac k 2}\right \rceil = \sum_{k \mathop = 1}^n \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil$ +and so: +:$\displaystyle \sum_{k \mathop = 1}^n \left \lceil{\dfrac k 2}\right \rceil = \dfrac 1 2 \sum_{k \mathop = 1}^n \left({\left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil}\right)$ +First take the case where $n$ is [[Definition:Even Integer|even]]. +For $k$ [[Definition:Odd Integer|odd]]: +:$\left \lceil{\dfrac k 2}\right \rceil = \dfrac k 2 + \dfrac 1 2$ +and: +:$\left \lceil{\dfrac {n + 1 - k} 2}\right \rceil = \dfrac {n + 1 - k} 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil + | r = \dfrac k 2 + \dfrac 1 2 + \dfrac {n + 1 - k} 2 + | c = +}} +{{eqn | r = \dfrac {k + 1 + n + 1 - k} 2 + | c = +}} +{{eqn | r = \dfrac {n + 2} 2 + | c = +}} +{{end-eqn}} +For $k$ [[Definition:Even Integer|even]]: +:$\left \lceil{\dfrac k 2}\right \rceil = \dfrac k 2$ +and: +:$\left \lceil{\dfrac {n + 1 - k} 2}\right \rceil = \dfrac {n + 1 - k} 2 + \dfrac 1 2 = \dfrac {n - k + 2} 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil + | r = \dfrac k 2 + \dfrac {n - k + 2} 2 + | c = +}} +{{eqn | r = \dfrac {k + n - k + 2} 2 + | c = +}} +{{eqn | r = \dfrac {n + 2} 2 + | c = +}} +{{end-eqn}} +So: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 1}^n \left \lceil{\dfrac k 2}\right \rceil + | r = \dfrac 1 2 \sum_{k \mathop = 1}^n \left({\left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil}\right) + | c = +}} +{{eqn | r = \dfrac 1 2 \sum_{k \mathop = 1}^n \left({\dfrac {n + 2} 2}\right) + | c = +}} +{{eqn | r = \dfrac 1 2 n \left({\dfrac {n + 2} 2}\right) + | c = +}} +{{eqn | r = \dfrac {n \left({n + 2}\right)} 4 + | c = +}} +{{eqn | r = \left \lceil{\dfrac {n \left({n + 2}\right)} 4}\right \rceil + | c = as $\dfrac {n \left({n + 2}\right)} 4$ is an [[Definition:Integer|integer]] +}} +{{end-eqn}} +{{qed|lemma}} +Next take the case where $n$ is [[Definition:Odd Integer|odd]]. +For $k$ [[Definition:Odd Integer|odd]]: +:$\left \lceil{\dfrac k 2}\right \rceil = \dfrac k 2 + \dfrac 1 2$ +and: +:$\left \lceil{\dfrac {n + 1 - k} 2}\right \rceil = \dfrac {n + 1 - k} 2 + \dfrac 1 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil + | r = \dfrac k 2 + \dfrac 1 2 + \dfrac {n + 1 - k} 2 + \dfrac 1 2 + | c = +}} +{{eqn | r = \dfrac {k + 1 + n + 1 - k + 1} 2 + | c = +}} +{{eqn | r = \dfrac {n + 3} 2 + | c = +}} +{{end-eqn}} +For $k$ [[Definition:Even Integer|even]]: +:$\left \lceil{\dfrac k 2}\right \rceil = \dfrac k 2$ +and: +:$\left \lceil{\dfrac {n + 1 - k} 2}\right \rceil = \dfrac {n + 1 - k} 2$ +Hence: +{{begin-eqn}} +{{eqn | l = \left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil + | r = \dfrac k 2 + \dfrac {n - k + 1} 2 + | c = +}} +{{eqn | r = \dfrac {k + n - k + 1} 2 + | c = +}} +{{eqn | r = \dfrac {n + 1} 2 + | c = +}} +{{end-eqn}} +Let $n = 2 t + 1$. +Then: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 1}^n \left \lceil{\dfrac k 2}\right \rceil + | r = \dfrac 1 2 \sum_{k \mathop = 1}^n \left({\left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {n + 1 - k} 2}\right \rceil}\right) + | c = +}} +{{eqn | r = \dfrac 1 2 \sum_{k \mathop = 1}^{2 t + 1} \left({\left \lceil{\dfrac k 2}\right \rceil + \left \lceil{\dfrac {2 t + 2 - k} 2}\right \rceil}\right) + | c = +}} +{{eqn | r = \dfrac t 2 \dfrac {\left({2 t + 1}\right) + 1} 2 + \dfrac {t + 1} 2 \dfrac {\left({2 t + 1}\right) + 3} 2 + | c = there are $t$ [[Definition:Even Integer|even]] terms and $t + 1$ [[Definition:Odd Integer|odd]] terms +}} +{{eqn | r = \dfrac {2 t^2 + 2 t} 4 + \dfrac {2 t^2 + 6 t + 4} 4 + | c = multiplying out +}} +{{eqn | r = \dfrac {4 t^2 + 8 t + 3} 4 + \dfrac 1 4 + | c = +}} +{{eqn | r = \dfrac {\left({2 t + 1}\right) \left({2 t + 3}\right)} + \dfrac 1 4 + | c = +}} +{{eqn | r = \dfrac {n \left({n + 2}\right)} 4 + \dfrac 1 4 + | c = +}} +{{eqn | r = \left \lceil{\dfrac {n \left({n + 2}\right)} 4}\right \rceil + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over k of Floor of mk+x over n} +Tags: Floor Function, Summations + +\begin{theorem} +Let $m, n \in \Z$ such that $n > 0$. +Let $x \in \R$. +Then: +:$\displaystyle \sum_{0 \mathop \le k \mathop < n} \left \lfloor{\dfrac {m k + x} n}\right \rfloor = \dfrac {\left({m - 1}\right) \left({n - 1}\right)} 2 + \dfrac {d - 1} 2 + d \left \lfloor{\dfrac x d}\right \rfloor$ +where: +:$\left \lfloor{x}\right \rfloor$ denotes the [[Definition:Floor Function|floor]] of $x$ +:$d$ is the [[Definition:Greatest Common Divisor of Integers|greatest common divisor]] of $m$ and $n$. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Modulo 1|modulo 1]]: +:$\displaystyle \sum_{0 \mathop \le k \mathop < n} \left \lfloor{\dfrac {m k + x} n}\right \rfloor = \sum_{0 \mathop \le k \mathop < n} \dfrac {m k + x} n - \sum_{0 \mathop \le k \mathop < n} \left\{ {\dfrac {m k + x} n}\right\}$ +where $\left\{ {y}\right\}$ in this context denotes the [[Definition:Fractional Part|fractional part]] of $y$. +First we have: +{{begin-eqn}} +{{eqn | l = \sum_{0 \mathop \le k \mathop < n} \dfrac {m k + x} n + | r = \frac m n \sum_{0 \mathop \le k \mathop < n} k + \sum_{0 \mathop \le k \mathop < n} \dfrac x n + | c = +}} +{{eqn | r = \frac m n \frac {n \left({n - 1}\right)} 2 + n \dfrac x n + | c = [[Closed Form for Triangular Numbers]] +}} +{{eqn | r = \frac {m \left({n - 1}\right)} 2 + x + | c = +}} +{{end-eqn}} +Let $S$ be defined as: +:$\displaystyle S := \sum_{0 \mathop \le k \mathop < n} \left\{ {\dfrac {m k + x} n}\right\}$ +Thus: +:$\displaystyle (1): \quad \sum_{0 \mathop \le k \mathop < n} \left \lfloor{\dfrac {m k + x} n}\right \rfloor = \dfrac {m \left({n - 1}\right)} 2 + x - S$ +Let $d = \gcd \left\{ {m, n}\right\}$. +Let: +{{begin-eqn}} +{{eqn | l = t + | r = \frac n d +}} +{{eqn | l = u + | r = \frac m d +}} +{{eqn | ll= \leadsto + | l = \frac m n + | r = \frac u t + | c = +}} +{{eqn | ll= \leadsto + | l = m t + | r = u n + | c = +}} +{{eqn | ll= \leadsto + | l = u + | r = \frac {m t} n + | c = +}} +{{end-eqn}} +We have that: +{{begin-eqn}} +{{eqn | l = \left\{ {\dfrac {m k + x} n}\right\} + | r = \left\{ {\dfrac {m k + x} n + u}\right\} + | c = {{Defof|Fractional Part}}: $u$ is an [[Definition:Integer|integer]] +}} +{{eqn | r = \left\{ {\dfrac {m k + x} n + \frac {m t} n}\right\} + | c = +}} +{{eqn | r = \left\{ {\dfrac {m \left({k + t}\right) + x} n}\right\} + | c = +}} +{{end-eqn}} +Thus $S$ consists of $d$ copies of the same [[Definition:Summation|summation]]: +{{begin-eqn}} +{{eqn | l = S + | r = \sum_{0 \mathop \le k \mathop < n} \left\{ {\dfrac {m k + x} n}\right\} + | c = +}} +{{eqn | r = d \sum_{0 \mathop \le k \mathop < t} \left\{ {\dfrac {m k + x} n}\right\} + | c = +}} +{{end-eqn}} +and so: +{{begin-eqn}} +{{eqn | l = \sum_{0 \mathop \le k \mathop < t} \left\{ {\dfrac {m k + x} n}\right\} + | r = \sum_{0 \mathop \le k \mathop < t} \left\{ {\dfrac x n + \dfrac {u k} t}\right\} + | c = substituting $\dfrac u t$ for $\dfrac m n$ +}} +{{eqn | r = \sum_{0 \mathop \le k \mathop < t} \left\{ {\dfrac {x \bmod d} n + \dfrac k t}\right\} + | c = as $t \perp u$ +}} +{{eqn | r = \sum_{0 \mathop \le k \mathop < t} \dfrac {x \bmod d} n + \dfrac k t + | c = as $\dfrac {x \bmod d} n < \dfrac 1 t$ +}} +{{eqn | r = t \dfrac {x \bmod d} n + \frac 1 t \sum_{0 \mathop \le k \mathop < t} k + | c = +}} +{{eqn | r = \dfrac {t \left({x \bmod d}\right)} n + \frac 1 t \frac {t \left({t - 1}\right)} 2 + | c = [[Closed Form for Triangular Numbers]] +}} +{{eqn | r = \dfrac {t \left({x \bmod d}\right)} n + \frac {t - 1} 2 + | c = +}} +{{eqn | ll= \leadsto + | l = S + | r = d \left({\dfrac {t \left({x \bmod d}\right)} n + \frac {t - 1} 2}\right) + | c = +}} +{{eqn | r = \dfrac {n \left({x \bmod d}\right)} n + \frac {n - d} 2 + | c = as $n = d t$ +}} +{{eqn | r = x \bmod d + \frac {n - d} 2 + | c = +}} +{{end-eqn}} +{{explain|Greater detail needed as to why $\displaystyle \sum_{0 \mathop \le k \mathop < t} \left\{ {\dfrac x n + \dfrac {u k} t}\right\} {{=}} \sum_{0 \mathop \le k \mathop < t} \left\{ {\dfrac {x \bmod d} n + \dfrac k t}\right\}$}} +Thus: +{{begin-eqn}} +{{eqn | l = \sum_{0 \mathop \le k \mathop < n} \left \lfloor{\dfrac {m k + x} n}\right \rfloor + | r = \frac {m \left({n - 1}\right)} 2 + x - S + | c = from $(1)$ +}} +{{eqn | r = \frac {m \left({n - 1}\right)} 2 + x - d \left({\dfrac {t \left({x \bmod d}\right)} n + \frac {t - 1} 2}\right) + | c = +}} +{{eqn | r = \frac {m \left({n - 1}\right)} 2 + x - x \bmod d - \frac {n - d} 2 + | c = +}} +{{eqn | r = \frac {m \left({n - 1}\right)} 2 + x - x + d \left \lfloor{\frac x d}\right \rfloor - \frac {n - 1} 2 + \frac {d - 1} 2 + | c = {{Defof|Modulo Operation}} and algebra +}} +{{eqn | r = \frac {\left({m - 1}\right) \left({n - 1}\right)} 2 + \frac {d - 1} 2 + d \left \lfloor{\frac x d}\right \rfloor + | c = simplification +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over k of Floor of x plus k over y} +Tags: Floor Function, Summations + +\begin{theorem} +Let $x, y \in \R$ such that $y > 0$. +Then: +:$\displaystyle \sum_{0 \mathop \le k \mathop < y} \left \lfloor{x + \dfrac k y}\right \rfloor = \left \lfloor{x y + \left \lfloor{x + 1}\right \rfloor \left({\left \lceil{y}\right \rceil - y}\right)}\right \rfloor$ +\end{theorem} + +\begin{proof} +When $x$ increases by $1$, both sides increase by $\left \lceil{y}\right \rceil$. +So we can assume $0 \le x < 1$. +When $x = 0$, both sides are equal to $0$. +When $x$ increases past $1 - \dfrac k y$ for $0 \le k < y$, both sides increase by $1$. +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Summation over k of Ceiling of mk+x over n} +Tags: Ceiling Function, Summations + +\begin{theorem} +Let $m, n \in \Z$ such that $n > 0$. +Let $x \in \R$. +Then: +:$\displaystyle \sum_{0 \mathop \le k \mathop < n} \left \lceil{\dfrac {m k + x} n}\right \rceil = \dfrac {\left({m + 1}\right) \left({n - 1}\right)} 2 - \dfrac {d - 1} 2 + d \left \lceil{\dfrac x d}\right \rceil$ +where: +:$\left \lceil{x}\right \rceil$ denotes the [[Definition:Ceiling Function|ceiling]] of $x$ +:$d$ is the [[Definition:Greatest Common Divisor of Integers|greatest common divisor]] of $m$ and $n$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{0 \mathop \le k \mathop < n} \left \lceil{\dfrac {m k + x} n}\right \rceil + | r = \sum_{0 \mathop \le k \mathop < n} \left({-\left \lfloor{-\dfrac {m k + x} n}\right \rfloor}\right) + | c = [[Floor of Negative equals Negative of Ceiling]] +}} +{{eqn | r = -\sum_{0 \mathop \le k \mathop < n} \left \lfloor{\dfrac {-m k - x} n}\right \rfloor + | c = +}} +{{eqn | r = -\left({\dfrac {\left({\left({-m}\right) - 1}\right) \left({n - 1}\right)} 2 + \dfrac {d - 1} 2 + d \left \lfloor{\dfrac {\left({-x}\right)} d}\right \rfloor}\right) + | c = [[Summation over k of Floor of mk+x over n|Summation over $k$ of $\left \lfloor{\dfrac {m k + x} n}\right \rfloor$]] +}} +{{eqn | r = \dfrac {\left({m + 1}\right) \left({n - 1}\right)} 2 - \dfrac {d - 1} 2 - d \left \lfloor{- \dfrac x d}\right \rfloor + | c = +}} +{{eqn | r = \dfrac {\left({m + 1}\right) \left({n - 1}\right)} 2 - \dfrac {d - 1} 2 + d \left \lceil{\dfrac x d}\right \rceil + | c = [[Floor of Negative equals Negative of Ceiling]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Semantic Consequence preserved in Supersignature} +Tags: Predicate Logic, Model Theory + +\begin{theorem} +Let $\mathcal L, \mathcal L'$ be [[Definition:Signature for Predicate Logic|signatures]] for the [[Definition:Language of Predicate Logic|language of predicate logic]]. +Let $\mathcal L'$ be a [[Definition:Supersignature|supersignature]] of $\mathcal L$. +Let $\mathbf A$ be an [[Definition:Sentence|$\mathcal L$-sentence]]. +Let $\Sigma$ be a [[Definition:Set|set]] of [[Definition:Sentence|$\mathcal L$-sentences]]. +Then the following are [[Definition:Logically Equivalent|equivalent]]: +:$\mathcal A \models_{\mathrm{PL}} \mathbf A$ for all [[Definition:Structure for Predicate Logic|$\mathcal L$-structure]] $\mathcal A$ for which $\mathcal A \models_{\mathrm{PL}} \Sigma$ +:$\mathcal A' \models_{\mathrm{PL}} \mathbf A$ for all [[Definition:Structure for Predicate Logic|$\mathcal L'$-structure]] $\mathcal A'$ for which $\mathcal A' \models_{\mathrm{PL}} \Sigma$ +where $\models_{\mathrm{PL}}$ denotes the [[Definition:Model (Predicate Logic)|models]] relation. +That is to say, the notion of [[Definition:Semantic Consequence (Predicate Logic)|semantic consequence]] is preserved in passing to a [[Definition:Supersignature|supersignature]]. +\end{theorem} + +\begin{proof} +{{finish| +* every $\mathcal A$ arises as the reduct of some $\mathcal A'$; +* every $\mathcal A'$ has the same valuations as its reduct. +}} +\end{proof}<|endoftext|> +\section{Satisfiability preserved in Supersignature} +Tags: Predicate Logic, Model Theory + +\begin{theorem} +Let $\mathcal L, \mathcal L'$ be [[Definition:Signature for Predicate Logic|signatures]] for the [[Definition:Language of Predicate Logic|language of predicate logic]]. +Let $\mathcal L'$ be a [[Definition:Supersignature|supersignature]] of $\mathcal L$. +Let $\Sigma$ be a [[Definition:Set|set]] of [[Definition:Sentence|$\mathcal L$-sentences]]. +Then the following are [[Definition:Logically Equivalent|equivalent]]: +:$\mathcal A \models_{\mathrm{PL}} \Sigma$ for some [[Definition:Structure for Predicate Logic|$\mathcal L$-structure]] $\mathcal A$ +:$\mathcal A' \models_{\mathrm{PL}} \Sigma$ for some [[Definition:Structure for Predicate Logic|$\mathcal L'$-structure]] $\mathcal A'$ +where $\models_{\mathrm{PL}}$ is the [[Definition:Model (Predicate Logic)|models]] relation. +That is to say, the notion of [[Definition:Satisfiable Set of Formulas|satisfiability]] is preserved in passing to a [[Definition:Supersignature|supersignature]]. +\end{theorem} + +\begin{proof} +{{finish|* every $\mathcal A$ arises as the reduct of some $\mathcal A'$; +* every $\mathcal A'$ has the same valuations as its reduct. +}} +\end{proof}<|endoftext|> +\section{Floor Function is Replicative} +Tags: Floor Function, Replicative Functions + +\begin{theorem} +The [[Definition:Floor Function|floor function]] is a [[Definition:Replicative Function|replicative function]] in the sense that: +:$\displaystyle \forall n \in \Z_{> 0}: \sum_{k \mathop = 0}^{n - 1} \left \lfloor{x + \frac k n}\right \rfloor = \left \lfloor{n x}\right \rfloor$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^{n - 1} \left \lfloor{x + \dfrac k n}\right \rfloor + | r = \left \lfloor{x n + \left \lfloor{x + 1}\right \rfloor \left({\left \lceil{n}\right \rceil - n}\right)}\right \rfloor + | c = [[Summation over k of Floor of x plus k over y|Summation over $k$ of $\left \lfloor{x + \dfrac k y}\right \rfloor$]], setting $y = n$ +}} +{{eqn | r = \left \lfloor{x n + \left \lfloor{x + 1}\right \rfloor \left({n - n}\right)}\right \rfloor + | c = [[Real Number is Integer iff equals Ceiling]] +}} +{{eqn | r = \left \lfloor{n x + \left \lfloor{x + 1}\right \rfloor \times 0}\right \rfloor + | c = +}} +{{eqn | r = \left \lfloor{n x}\right \rfloor + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Subtract Half is Replicative Function} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: \map f x = x - \dfrac 1 2$ +Then $f$ is a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^{n - 1} \map f {x + \frac k n} + | r = \sum_{k \mathop = 0}^{n - 1} \paren {x - \frac 1 2 + \frac k n} + | c = +}} +{{eqn | r = n x - \frac n 2 + \frac 1 n \sum_{k \mathop = 0}^{n - 1} k + | c = +}} +{{eqn | r = n x - \frac n 2 + \frac 1 n \frac {n \paren {n - 1} } 2 + | c = [[Closed Form for Triangular Numbers]] +}} +{{eqn | r = n x - \frac n 2 + \frac n 2 - \frac 1 2 + | c = +}} +{{eqn | r = n x - \frac 1 2 + | c = +}} +{{eqn | r = \map f {n x} + | c = +}} +{{end-eqn}} +Hence the result by definition of [[Definition:Replicative Function|replicative function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Membership of Set of Integers is Replicative Function} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: \map f x = \sqbrk {x \in \Z}$ +where $\sqbrk {\cdots}$ is [[Definition:Iverson's Convention|Iverson's convention]]. +Then $f$ is a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +First note that the interval between $x$ and $x + \dfrac {n - 1} n$ is less than $1$. +Thus there can be no more than one $k$ such that $0 \le k < n$ such that: +:$x + \dfrac k n \in \Z$ +Hence: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} \le 1$ +First let: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} = 1$ +Then: +{{begin-eqn}} +{{eqn | l = x + \frac k n + | o = \in + | r = \Z + | c = +}} +{{eqn | ll= \leadsto + | l = n \paren {x + \frac k n} + | o = \in + | r = \Z + | c = +}} +{{eqn | ll= \leadsto + | l = n x + k + | o = \in + | r = \Z + | c = +}} +{{eqn | ll= \leadsto + | l = n x + | o = \in + | r = \Z + | c = +}} +{{eqn | ll= \leadsto + | l = \sqbrk {n x \in \Z} + | r = 1 + | c = +}} +{{end-eqn}} +{{qed|lemma}} +Let: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} = 0$ +{{AimForCont}} $\sqbrk {n x \in \Z} = 1$. +Then: +{{begin-eqn}} +{{eqn | l = n x + | o = \in + | r = \Z + | c = +}} +{{eqn | lll= \leadsto + | ll= \forall k \in \Z: + | l = n x + k + | o = \in + | r = \Z + | c = +}} +{{end-eqn}} +But at least one $n x + k$ such that $0 \le k < n$ is a [[Definition:Multiple of Integer|multiple]] of $n$. +Hence: +:$\exists k \in \Z: 0 \le k < n: \sqbrk {x + \dfrac k n \in \Z} = 1$ +So: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} = 1$ +which [[Definition:Contradiction|contradicts]] the supposition that $\sqbrk {n x \in \Z} = 1$. +Hence the result by definition of [[Definition:Replicative Function|replicative function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Membership of Set of Strictly Positive Integers is Replicative Function} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: \map f x = \sqbrk {x \in \Z_{> 0} }$ +where $\sqbrk \cdots$ is [[Definition:Iverson's Convention|Iverson's convention]]. +Then $f$ is a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +Let $x \in \R$ such that $x > 0$. +Then for all $k \in \Z$ such that $0 \le k < n$: +:$x + \dfrac k n \in \Z_{> 0}$ +and so from [[Membership of Set of Integers is Replicative Function]]: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z_{> 0} } = \sqbrk {n x \in \Z_{> 0} }$ +Let $x \le 0$. +Then for all $k \in \Z$ such that $0 \le k < n$: +:$x + \dfrac k n < 1$ +and so: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z_{> 0} } = 0 = \sqbrk {n x \in \Z_{> 0} }$ +{{qed}} +\end{proof}<|endoftext|> +\section{Membership of Equivalence Class of m mod pi is Replicative Function} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: \map f x = \sqbrk {\exists r \in \Q, \exists m \in \Z: x = r \pi + m}$ +where $\sqbrk {\cdots}$ is [[Definition:Iverson's Convention|Iverson's convention]]. +Then $f$ is a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +Let $\map f x = 1$. +Then: +:$\exists r \in \Q, \exists m \in \Z: x = r \pi + m$ +and: +{{begin-eqn}} +{{eqn | l = x + | r = r \pi + m + | c = +}} +{{eqn | ll= \leadsto + | l = n x + | r = \paren {r n} \pi + m n + | c = +}} +{{end-eqn}} +But $r n \in Q$ and $m n \in \Z$. +So: +:$\map f x = 1 \implies \map f {n x} = 1$ +Let $n \in \Z_{>0}$. +Let $k \in \Z: 0 \le k < n$. +Then: +{{begin-eqn}} +{{eqn | l = x + \frac k n + | r = r \pi + m + \frac k n + | c = +}} +{{eqn | ll= \leadsto + | l = x + \frac k n + | r = \paren {r + \frac {k \pi} n} \pi + m + | c = +}} +{{end-eqn}} +Thus, when $0 \le k < n$ it follows that the [[Definition:Coefficient|coefficient]] of $\pi$ cannot be [[Definition:Rational Number|rational]]. +Thus: +:$\map f x = 1 \implies \map f {x + \dfrac k n} = 0$ +and so: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \map f {x + \frac k n} = \map f {n x}$ +{{qed|lemma}} +Now let $\map f {n x} = 1$. +Then: +:$r_n \pi + m_n = n x$ +for some [[Definition:Rational Number|rational]] $r_n$ and [[Definition:Integer|integer]] $m_n$. +Thus exactly one of $m_n + k$ where $0 \le n < k$ is a [[Definition:Multiple of Integer|multiple]] of $n$. +Therefore there exists exactly one $k \in \Z$ such that $0 \le n < k$ such that: +:$\map f {x + \dfrac k n} = 1$ +Therefore: +:$\displaystyle \sum_{k \mathop = 0}^{n - 1} \map f {x + \frac k n} = 1 = \map f {n x}$ +Hence the result by definition of [[Definition:Replicative Function|replicative function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Logarithm of Absolute Value of 2 times Sine of pi x is Replicative Function} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$\forall x \in \R: \map f x = \log \, \size {2 \sin \pi x}$ +Then $f$ is a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +We have that: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^{n - 1} \map f {x + \frac k n} + | r = \sum_{k \mathop = 0}^{n - 1} \log \, \size {2 \sin \pi \paren {x + \frac k n} } + | c = +}} +{{eqn | r = \log \prod_{k \mathop = 0}^{n - 1} \size {2 \sin \pi \paren {x + \frac k n} } + | c = [[Sum of Logarithms]] +}} +{{end-eqn}} +Thus to demonstrate that $f$ is [[Definition:Replicative Function|replicative]], it is sufficient to demonstrate that: +:$\displaystyle \prod_{k \mathop = 0}^{n - 1} \left({2 \sin \pi \left({x + \frac k n}\right)}\right) = 2 \sin \pi n x$ +By [[Product Formula for Sine]]: +{{begin-eqn}} +{{eqn | l = 2 \sin \pi n x + | r = 2^n \prod_{k \mathop = 0}^{n - 1} \paren {\map \sin {\pi x + \frac {k \pi} n} } +}} +{{eqn | r = \prod_{k \mathop = 0}^{n - 1} \paren {2 \sin \pi \paren {x + \frac k n} } +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Supremum of Ideals is Upper Adjoint implies Lattice is Continuous} +Tags: Continuous Lattices, Galois Connections + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Up-Complete|up-complete]] [[Definition:Lattice|lattice]]. +Let $\mathit{Ids}\left({L}\right)$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $L$. +Let $P = \left({\mathit{Ids}\left({L}\right), \precsim}\right)$ be an [[Definition:Ordered Set|ordered set]] where $\mathord \precsim = \subseteq\restriction_{\mathit{Ids}\left({L}\right)\times \mathit{Ids}\left({L}\right)}$ +Let $f: \mathit{Ids}\left({L}\right) \to S$ be a [[Definition:Mapping|mapping]] such that +:$\forall I \in \mathit{Ids}\left({L}\right): f\left({I}\right) = \sup I$ +Let $f$ be an [[Definition:Galois Connection|upper adjoint of a Galois connection]]. +Then $L$ is [[Definition:Continuous Ordered Set|continuous]]. +\end{theorem} + +\begin{proof} +We will prove that +:$\forall x \in S: \exists I \in \mathit{Ids}\left({L}\right): x \preceq \sup I \land \forall J \in \mathit{Ids}\left({L}\right): x \preceq \sup J \implies I \subseteq J$ +Let $x \in S$. +Define $I := \inf \left({f^{-1}\left[{x^\succeq}\right]}\right)$. +By definition of $P$: +:$I \in \mathit{Ids}\left({L}\right)$ +We will prove that +:$\forall J \in \mathit{Ids}\left({L}\right): x \preceq \sup J \implies I \subseteq J$ +Let $J \in \mathit{Ids}\left({L}\right)$ such that +:$x \preceq \sup J$ +By definition of $f$: +:$x \preceq f\left({J}\right)$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$f\left({J}\right) \in x^\succeq$ +By definition of [[Definition:Image of Subset under Relation|image of set]]: +:$J \in f^{-1}\left[{x^\succeq}\right]$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$I \precsim J$ +Hence by definition of $\precsim$: +:$I \subseteq J$ +{{qed|lemma}} +By definition of [[Definition:Galois Connection|upper adjoint of a Galois connection]]: +:there exists a [[Definition:Mapping|mapping]] $d: S \to \mathit{Ids}\left({L}\right)$: $\left({f, d}\right)$ is a [[Definition:Galois Connection|Galois connection]]. +By [[Galois Connection is Expressed by Minimum]] +:$d\left({x}\right) = \min \left({f^{-1} \left[{x^\succeq}\right]}\right)$ +By definition of [[Definition:Smallest Element|smallest element]]: +:$I \in f^{-1} \left[{x^\succeq}\right]$ +By definition of [[Definition:Image of Subset under Relation|image of set]]: +:$f\left({I}\right) \in x^\succeq$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$x \preceq f\left({I}\right)$ +Thus by definition of $f$: +:$x \preceq \sup I$ +Hence +:$\exists I \in \mathit{Ids}\left({L}\right): x \preceq \sup I \land \forall J \in \mathit{Ids}\left({L}\right): x \preceq \sup J \implies I \subseteq J$ +{{qed|lemma}} +Hence by [[Continuous iff For Every Element There Exists Ideal Element Precedes Supremum]]: +:$L$ is [[Definition:Continuous Ordered Set|continuous]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum of Replicative Functions is Replicative} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ and $g: \R \to \R$ be [[Definition:Real Function|real functions]]. +Let $f$ and $g$ both be [[Definition:Replicative Function|replicative functions]]. +Then the [[Definition:Pointwise Sum|pointwise sum]] of $f$ and $g$ is also a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^{n - 1} \left({f + g}\right) \left({x + \frac k n}\right) + | r = \sum_{k \mathop = 0}^{n - 1} \left({f \left({x + \frac k n}\right) + g \left({x + \frac k n}\right)}\right) + | c = {{Defof|Pointwise Sum}} +}} +{{eqn | r = \sum_{k \mathop = 0}^{n - 1} f \left({x + \frac k n}\right) + \sum_{k \mathop = 0}^{n - 1} g \left({x + \frac k n}\right) + | c = +}} +{{eqn | r = f \left({n x}\right) + g \left({n x}\right) + | c = {{Defof|Replicative Function}} +}} +{{eqn | r = \left({f + g}\right) \left({n x}\right) + | c = {{Defof|Pointwise Sum}} +}} +{{end-eqn}} +Hence the result by definition of [[Definition:Replicative Function|replicative function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Constant Multiple of Replicative Function is Replicative} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be a [[Definition:Real Function|real function]]. +Let $f$ be a [[Definition:Replicative Function|replicative function]]. +Let $c \in \R$ be a [[Definition:Constant|constant]]. +Let $g: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$g \left({x}\right) = c f \left({x}\right)$ +Then $g$ is also a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^{n - 1} g \left({x + \frac k n}\right) + | r = \sum_{k \mathop = 0}^{n - 1} c f \left({x + \frac k n}\right) + | c = +}} +{{eqn | r = c \sum_{k \mathop = 0}^{n - 1} f \left({x + \frac k n}\right) + | c = +}} +{{eqn | r = c f \left({n x}\right) + | c = {{Defof|Replicative Function}} +}} +{{eqn | r = g \left({n x}\right) + | c = +}} +{{end-eqn}} +Hence the result by definition of [[Definition:Replicative Function|replicative function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Replicative Function of x minus Floor of x is Replicative} +Tags: Replicative Functions + +\begin{theorem} +Let $f: \R \to \R$ be a [[Definition:Real Function|real function]]. +Let $f$ be a [[Definition:Replicative Function|replicative function]]. +Let $g: \R \to \R$ be the [[Definition:Real Function|real function]] defined as: +:$g \left({x}\right) = f \left({x - \left \lfloor{x}\right \rfloor}\right)$ +Then $g$ is also a [[Definition:Replicative Function|replicative function]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 0}^{n - 1} g \left({x + \frac k n}\right) + | r = \sum_{k \mathop = 0}^{n - 1} \left({f \left({x + \frac k n - \left \lfloor{x + \frac k n}\right \rfloor}\right)}\right) + | c = +}} +{{end-eqn}} +{{ProofWanted}} +\end{proof}<|endoftext|> +\section{Closed Form for Sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...} +Tags: Sequences, Ceiling Function, Closed Forms + +\begin{theorem} +Let $a_1, a_2, a_3, \ldots$ be the sequence: +:$\left \langle{a_n}\right \rangle = 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \ldots$ +Then: +:$a_n = \left \lceil{\dfrac {\sqrt {1 + 8 n} - 1} 2}\right \rceil$ +\end{theorem} + +\begin{proof} +From [[Closed Form for Triangular Numbers]], for $n = 1, 3, 6, 10, \ldots$: +:$n = \dfrac {a_n \left({a_n + 1}\right)} 2$ +Thus by the [[Quadratic Formula]]: +$a_n = \dfrac {-1 \pm \sqrt {1 + 8 n} } 2$ +In this context it is the [[Definition:Positive Real Number|positive]] root that is required. +The result follows by definition of [[Definition:Ceiling Function|ceiling function]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum of Sequence as Summation of Difference of Adjacent Terms} +Tags: Summations, Sum of Sequence as Summation of Difference of Adjacent Terms + +\begin{theorem} +Let $n \in \Z_{> 0}$ be a [[Definition:Strictly Positive Integer|strictly positive integer]]. +Then: +:$\displaystyle \sum_{k \mathop = 1}^n a_k = n a_n - \sum_{k \mathop = 1}^{n - 1} k \left({a_{k + 1} - a_k}\right)$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 1}^n a_k + | r = \sum_{k \mathop = 1}^n \left({k - \left({k - 1}\right)}\right) a_k + | c = +}} +{{eqn | r = \sum_{k \mathop = 1}^n k a_k - \sum_{k \mathop = 1}^n \left({k - 1}\right) a_k + | c = +}} +{{eqn | r = \sum_{k \mathop = 1}^n k a_k - \sum_{k \mathop = 0}^{n - 1} k a_{k + 1} + | c = [[Translation of Index Variable of Summation]] +}} +{{eqn | r = n a_n + \sum_{k \mathop = 1}^{n - 1} k a_k - \sum_{k \mathop = 1}^{n - 1} k a_{k + 1} + 0 \times a_0 + | c = extracting the end terms +}} +{{eqn | r = n a_n + \sum_{k \mathop = 1}^{n - 1} k \left({a_k - a_{k + 1} }\right) + | c = +}} +{{eqn | r = n a_n - \sum_{k \mathop = 1}^{n - 1} k \left({a_{k + 1} - a_k}\right) + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof} + +\begin{proof} +From [[Abel's Lemma: Formulation 2]], after renaming and reassigning variables: +:$\displaystyle \sum_{k \mathop = 1}^n a_k b_k = \sum_{k \mathop = 1}^{n - 1} A_k \left({a_k - a_{k + 1} }\right) + A_n a_n$ +where: +:$\left \langle {a} \right \rangle$ and $\left \langle {b} \right \rangle$ be [[Definition:Sequence|sequences]] in $\R$ +:$\displaystyle A_n = \sum_{k \mathop = 1}^n {b_k}$ be the [[Definition:Partial Sum|partial sum]] of $\left \langle {b} \right \rangle$ from $1$ to $n$. +Let $\left \langle{b}\right \rangle$ be defined as: +:$\forall k: b_k = 1$ +Thus: +:$\displaystyle A_n = \sum_{k \mathop = 1}^n 1 = n$ +and so: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = 1}^n a_k + | r = \sum_{k \mathop = 1}^{n - 1} k \left({a_k - a_{k + 1} }\right) + n a_n + | c = +}} +{{eqn | r = n a_n - \sum_{k \mathop = 1}^{n - 1} k \left({a_{k + 1} - a_k}\right) + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Continuous Lattice and Way Below implies Preceding implies Preceding} +Tags: Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Continuous Ordered Set|continuous]] [[Definition:Complete Lattice|complete lattice]]. +Let $a, b \in S$. +Let +:$\forall c \in S: c \ll a \implies c \preceq b$ +Then $a \preceq b$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Way Below Closure|way below closure]]: +:$\forall c \in a^\ll: c \preceq b$ +By definition: +:$b$ is an [[Definition:Upper Bound of Set|upper bound]] for $a^\ll$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$\sup \left({a^\ll}\right) \preceq b$ +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]]. +Thus by [[Definition:Axiom of Approximation|axiom of approximation]]: +:$a = \sup \left({a^\ll}\right) \preceq b$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Floor of Log base b of k} +Tags: Summations, Floor Function, Logarithms + +\begin{theorem} +Let $n \in \Z_{> 0}$ be a [[Definition:Strictly Positive Integer|strictly positive integer]]. +Let $b \in \Z$ such that $b \ge 2$. +Then: +:$\displaystyle \sum_{k \mathop = 1}^n \left \lfloor{\log_b k}\right \rfloor = \left({n + 1}\right) \left \lfloor{\log_b n}\right \rfloor - \dfrac {b^{\left \lfloor{\log_b n}\right \rfloor + 1} - b} {b - 1}$ +\end{theorem} + +\begin{proof} +From [[Sum of Sequence as Summation of Difference of Adjacent Terms]]: +:$\displaystyle \sum_{k \mathop = 1}^n \left \lfloor{\log_b k}\right \rfloor = n \left \lfloor{\log_b n}\right \rfloor - \sum_{k \mathop = 1}^{n - 1} k \left({\left \lfloor{\log_b {k + 1} }\right \rfloor - \left \lfloor{\log_b k}\right \rfloor}\right)$ +Let $S$ be defined as: +:$\displaystyle S := \sum_{k \mathop = 1}^{n - 1} k \left({\left \lfloor{\log_b {k + 1} }\right \rfloor - \left \lfloor{\log_b k}\right \rfloor}\right)$ +As $b \ge 2$, we have that: +:$\log_b {k + 1} - \log_b k < 1$ +As $b$ is an [[Definition:Integer|integer]]: +:$\left \lfloor{\log_b {k + 1} }\right \rfloor - \left \lfloor{\log_b k}\right \rfloor = 1$ +{{iff}} $k + 1$ is a [[Definition:Integer Power|power]] of $b$. +So: +{{begin-eqn}} +{{eqn | l = S + | r = \sum_{k \mathop = 1}^{n - 1} k \left[{k + 1 \text{ is a power of } b}\right] + | c = +}} +{{eqn | r = \sum_{1 \mathop \le t \mathop < \log_b n} \left({b^t - 1}\right) + | c = +}} +{{eqn | r = \sum_{1 \mathop \le t \mathop < \log_b n} b^t - \left \lfloor{\log_b n}\right \rfloor + | c = +}} +{{eqn | r = \frac {b^{\left \lfloor{\log_b n}\right \rfloor + 1} - 1} {b - 1} - \left \lfloor{\log_b n}\right \rfloor + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Floor of Root k} +Tags: Summations, Floor Function + +\begin{theorem} +Let $n \in \Z_{> 0}$ be a [[Definition:Strictly Positive Integer|strictly positive integer]]. +Let $b \in \Z$ such that $b \ge 2$. +Then: +:$\displaystyle \sum_{k \mathop = 1}^n \left \lfloor{\sqrt k}\right \rfloor = \left \lfloor{\sqrt n}\right \rfloor \left({n - \dfrac {\left({2 \left \lfloor{\sqrt n}\right \rfloor + 5}\right) \left({\left \lfloor{\sqrt n}\right \rfloor - 1}\right)} 6 }\right)$ +\end{theorem} + +\begin{proof} +From [[Sum of Sequence as Summation of Difference of Adjacent Terms]]: +:$\displaystyle \sum_{k \mathop = 1}^n \left \lfloor{\sqrt k}\right \rfloor = n \left \lfloor{\sqrt n}\right \rfloor - \sum_{k \mathop = 1}^{n - 1} k \left({\left \lfloor{\sqrt {k + 1} }\right \rfloor - \left \lfloor{\sqrt k}\right \rfloor}\right)$ +Let $S$ be defined as: +:$\displaystyle S := \sum_{k \mathop = 1}^{n - 1} k \left({\left \lfloor{\sqrt {k + 1} }\right \rfloor - \left \lfloor{\sqrt k}\right \rfloor}\right)$ +We have that: +:$\sqrt {k + 1} - \sqrt k < 1$ +and so: +:$\left \lfloor{\sqrt {k + 1} }\right \rfloor - \left \lfloor{\sqrt k}\right \rfloor = 1$ +{{iff}} $k + 1$ is a [[Definition:Square Number|square number]]. +So: +{{begin-eqn}} +{{eqn | l = S + | r = \sum_{k \mathop = 1}^{n - 1} k \left[{k + 1 \text{ is a square number} }\right] + | c = +}} +{{eqn | l = S + | r = \sum_{k \mathop = 2}^{n} (k - 1) \left[{k \text{ is a square number} }\right] + | c = +}} +{{eqn | r = \sum_{2 \mathop \le t \mathop \le \sqrt n} \left({t^2 - 1}\right) + | c = $1$ is not included in this [[Definition:Summation|summation]] +}} +{{eqn | r = \sum_{1 \mathop \le t \mathop \le \sqrt n} t^2 - 1 - \sum_{2 \mathop \le t \mathop \le \sqrt n} 1 + | c = +}} +{{eqn | r = \sum_{1 \mathop \le t \mathop \le \sqrt n} t^2 - \sum_{1 \mathop \le t \mathop \le \sqrt n} 1 + | c = +}} +{{eqn | r = \frac {\left \lfloor{\sqrt n}\right \rfloor \left({\left \lfloor{\sqrt n}\right \rfloor + 1}\right) \left({2 \left \lfloor{\sqrt n}\right \rfloor + 1}\right)} 6 - \left \lfloor{\sqrt n}\right \rfloor + | c = [[Sum of Sequence of Squares]] +}} +{{eqn | r = \frac {\left \lfloor{\sqrt n}\right \rfloor \left({\left \lfloor{\sqrt n}\right \rfloor + 1}\right) \left({2 \left \lfloor{\sqrt n}\right \rfloor + 1}\right) - 6 \left \lfloor{\sqrt n}\right \rfloor} 6 + | c = +}} +{{eqn | r = \left \lfloor{\sqrt n}\right \rfloor \frac {\left({\left \lfloor{\sqrt n}\right \rfloor + 1}\right) \left({2 \left \lfloor{\sqrt n}\right \rfloor + 1}\right) - 6} 6 + | c = +}} +{{eqn | r = \left \lfloor{\sqrt n}\right \rfloor \frac {2 \left \lfloor{\sqrt n}\right \rfloor^2 + 3 \left \lfloor{\sqrt n}\right \rfloor - 5} 6 + | c = +}} +{{eqn | ll= \leadsto + | l = \sum_{k \mathop = 1}^n \left \lfloor{\sqrt k}\right \rfloor + | r = n \left \lfloor{\sqrt n}\right \rfloor - \left \lfloor{\sqrt n}\right \rfloor \frac {\left({2 \left \lfloor{\sqrt n}\right \rfloor + 5}\right) \left({\left \lfloor{\sqrt n}\right \rfloor - 1}\right)} 6 + | c = +}} +{{eqn | r = \left \lfloor{\sqrt n}\right \rfloor \left({n - \dfrac {\left({2 \left \lfloor{\sqrt n}\right \rfloor + 5}\right) \left({\left \lfloor{\sqrt n}\right \rfloor - 1}\right)} 6 }\right) + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Top is Meet Irreducible} +Tags: Order Theory, Meet Irreducible + +\begin{theorem} +Let $\left({S, \wedge, \preceq}\right)$ be a [[Definition:Bounded Above Set|bounded above]] [[Definition:Meet Semilattice|meet semilattice]]. +Then $\top$ is [[Definition:Meet Irreducible|meet irreducible]] +where $\top$ denotes the [[Definition:Greatest Element|greatest element]] in $S$. +\end{theorem} + +\begin{proof} +Let $x, y \in S$ such that +:$\top = x \wedge y$ +By [[Meet Precedes Operands]] +:$\top \preceq x$ and $\top \preceq y$ +By definition of [[Definition:Greatest Element|greatest element]]: +:$x \preceq \top$ +Thus by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$\top = x$ +{{qed}} +\end{proof}<|endoftext|> +\section{Meet Irreducible iff Finite Infimum equals Element} +Tags: Order Theory, Meet Irreducible + +\begin{theorem} +Let $L = \left({S, \wedge, \preceq}\right)$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $x \in S$. +Then +:$x$ is [[Definition:Meet Irreducible|meet irreducible]] +{{iff}} +:for every [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] $A$ of $S$: $x = \inf A \implies x \in A$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $x$ be [[Definition:Meet Irreducible|meet irreducible]]. +We will prove the result by [[Principle of Mathematical Induction|induction]] on [[Definition:Cardinality|cardinality]] of $A$. +==== Base case ==== +:for every [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] $A$ of $S$: $\left\vert{A}\right\vert = 1 \land x = \inf A \implies x \in A$ +Let $A$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $S$ such that +:$\left\vert{A}\right\vert = 1 \land x = \inf A$ +Then +:$A = \left\{ {a}\right\}$ +By [[Infimum of Singleton]]: +:$x = a$ +Thus by definition of [[Definition:Singleton|singleton]]: +:$x \in A$ +{{qed|lemma}} +==== Induction Hypothesis ==== +:$n \ge 1$ and for every [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] $A$ of $S$: $\left\vert{A}\right\vert = n \land x = \inf A \implies x \in A$ +==== Induction Step ==== +:$n \ge 1$ and for every [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] $A$ of $S$: $\left\vert{A}\right\vert = n+1 \land x = \inf A \implies x \in A$ +Let $A$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $S$ such that +:$\left\vert{A}\right\vert = n+1 \land x = \inf A$ +Then +:$A = \left\{ {a_1, \dots, a_n, a_{n+1} }\right\}$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$\inf A = \left({a_1 \wedge \dots \wedge a_n}\right) \wedge a_{n+1}$ +By definition of [[Definition:Meet Irreducible|meet irreducible]]: +:$x = a_1 \wedge \dots \wedge a_n$ or $x = a_{n+1}$ +By Induction Hypothesis: +:$x \in \left\{ {a_1, \dots, a_n}\right\}$ or $x = a_{n+1}$ +Thus by definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x \in A$ +{{qed|lemma}} +=== Necessary Condition === +Assume that +:for every [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] $A$ of $S$: $x = \inf A \implies x \in A$ +Let $y, z \in S$ such that +:$x = y \wedge z$ +By definition of [[Definition:Meet (Order Theory)|meet]]: +:$x = \inf \left\{ {y, z}\right\}$ +By assumption: +:$x \in \left\{ {y, z}\right\}$ +Thus by definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x = y$ or $x = z$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over k of Sum over j of Floor of n + jb^k over b^k+1} +Tags: Summations, Floor Function + +\begin{theorem} +Let $n, b \in \Z$ such that $n \ge 0$ and $b \ge 2$. +Then: +:$\displaystyle \sum_{k \mathop \ge 0} \sum_{1 \mathop \le j \mathop < b} \left \lfloor{\dfrac {n + j b^k} {b^{k + 1} } }\right \rfloor = n$ +\end{theorem} + +\begin{proof} +We have that $\left \lfloor{\dfrac {n + j b^k} {b^{k + 1} } }\right \rfloor$ is in the form $\left \lfloor{\dfrac {m k + x} n}\right \rfloor$ so that: +{{begin-eqn}} +{{eqn | l = \sum_{1 \mathop \le j \mathop < b} \left \lfloor{\dfrac {n + j b^k} {b^{k + 1} } }\right \rfloor + | r = \sum_{1 \mathop \le j \mathop < b} \left \lfloor{\dfrac {j + \frac n {b^k} } b}\right \rfloor + | c = +}} +{{eqn | r = \sum_{0 \mathop \le j \mathop < b} \left \lfloor{\dfrac {j + \frac n {b^k} } b}\right \rfloor - \left \lfloor{\dfrac n {b^{k + 1} } }\right \rfloor + | c = +}} +{{eqn | r = \dfrac {\left({1 - 1}\right) \left({b - 1}\right)} 2 + \dfrac {\left({1 - 1}\right)} 2 + 1 \left \lfloor{\dfrac n {b^k} }\right \rfloor - \left \lfloor{\dfrac n {b^{k + 1} } }\right \rfloor + | c = (find link) +}} +{{eqn | r = \left \lfloor{\dfrac n {b^k} }\right \rfloor - \left \lfloor{\dfrac n {b^{k + 1} } }\right \rfloor + | c = +}} +{{end-eqn}} +{{LinkWanted}} +Thus: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop \ge 0} \sum_{1 \mathop \le j \mathop < b} \left \lfloor{\dfrac {n + j b^k} {b^{k + 1} } }\right \rfloor + | r = \sum_{k \mathop \ge 0} \left({\left \lfloor{\dfrac n {b^k} }\right \rfloor - \left \lfloor{\dfrac n {b^{k + 1} } }\right \rfloor}\right) + | c = +}} +{{eqn | r = \lim_{k \mathop \to \infty} \left \lfloor{\dfrac n 1}\right \rfloor - \left \lfloor{\dfrac n {b^{k + 1} } }\right \rfloor + | c = [[Definition:Telescoping Series|Telescoping Series]] +}} +{{eqn | r = n + | c = +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Sum over j of Function of Floor of mj over n} +Tags: Summations, Floor Function + +\begin{theorem} +Let $f$ be a [[Definition:Real Function|real function]]. +Then: +:$\displaystyle \sum_{0 \mathop \le j \mathop < n} \map f {\floor {\dfrac {m j} n} } = \sum_{0 \mathop \le r \mathop < m} \ceiling {\dfrac {r n} m} \paren {\map f {r - 1} - \map f r} + n \map f {m - 1}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = r + | m = \floor{\dfrac {m j} n} + | c = +}} +{{eqn | ll= \leadsto + | l = r + | o = \le + | m = \dfrac {m j} n + | mo= < + | r = r + 1 + | c = +}} +{{eqn | ll= \leadsto + | l = \dfrac {r n} m + | o = \le + | m = j + | mo= < + | r = \dfrac {\paren {r + 1} } m + | c = +}} +{{eqn | ll= \leadsto + | l = \ceiling {\dfrac {r n} m} + | o = \le + | m = j + | mo= < + | r = \ceiling {\dfrac {\paren {r + 1} } m} + | c = as $j$ is an [[Definition:Integer|integer]] +}} +{{end-eqn}} +Hence: +{{begin-eqn}} +{{eqn | o = + | r = \sum_{0 \mathop \le j \mathop < n} \map f {\floor {\dfrac {m j} n} } + | c = +}} +{{eqn | r = \sum_{0 \mathop \le \ceiling {\frac {r n} m} \mathop < n} \map f r + | c = +}} +{{eqn | r = \sum_{0 \mathop \le r \mathop < m} \map f r \paren {\ceiling {\dfrac {\paren {r + 1} } m} - \ceiling {\dfrac {r n} m} } + | c = +}} +{{eqn | r = \map f 0 \ceiling {\dfrac n m} + \map f 1 \paren {\ceiling {\dfrac {2 n} m} - \ceiling {\dfrac n m} } + \cdots + \map f {m - 1} \paren {\ceiling {\dfrac {m n} m} - \ceiling {\dfrac {\paren {m - 1} n} m} } + | c = +}} +{{eqn | r = \ceiling {\dfrac n m} \paren {\map f 0 + \map f 1} + \ceiling {\dfrac {2 n} m} \paren {\map f 0 + \map f 1} + \cdots + \ceiling {\dfrac {\paren {m - 1} n} m} \paren {\map f {m - 2} + \map f {m - 1} } + n \map f {m - 1} + | c = +}} +{{eqn | r = \sum_{0 \mathop \le r \mathop < m} \ceiling {\dfrac {r n} m} \paren {\map f {r - 1} + \map f r} + n \map f {m - 1} + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{General Reciprocity Law} +Tags: Summations, Floor Function + +\begin{theorem} +:$\displaystyle \sum_{0 \mathop \le j \mathop < \alpha n} f \left({\left \lfloor{\dfrac {m j} n}\right \rfloor}\right) = \sum_{0 \mathop \le r \mathop < \alpha m} \left \lceil{\dfrac {r n} m}\right \rceil \left({f \left({r - 1}\right) - f \left({r}\right)}\right) + \left \lceil{\alpha n}\right \rceil f \left({\left \lceil{\alpha m}\right \rceil - 1}\right)$ +for $\alpha \in \R$. +\end{theorem}<|endoftext|> +\section{Equivalence of Definitions of Legendre Symbol} +Tags: Legendre Symbol + +\begin{theorem} +Let $p$ be an [[Definition:Odd Prime|odd prime]]. +Let $a \in \Z$. +{{TFAE|def = Legendre Symbol}} +\end{theorem} + +\begin{proof} +From [[Integer to Power of p-1 over 2 Modulo p|Integer to Power of $\dfrac {p - 1} 2$ Modulo $p$]], one of the following cases holds: +:$(1): \quad a^{\frac{(p - 1)} 2} \bmod p = 0$ +:$(2): \quad a^{\frac{(p - 1)} 2} \bmod p = 1$ +:$(3): \quad a^{\frac{(p - 1)} 2} \bmod p = p - 1$ +Let $\paren {\dfrac a p}$ be defined as the [[Definition:Legendre Symbol/Definition 1|Legendre symbol by definition 1]]: +{{:Definition:Legendre Symbol/Definition 1}} +By [[Negative Number is Congruent to Modulus minus Number]] we have: +:$p - 1 \pmod p = -1$ +Thus $\paren {\dfrac a p}$ is the [[Definition:Legendre Symbol/Definition 2|Legendre symbol by definition 2]]: +{{:Definition:Legendre Symbol/Definition 2}} +{{qed}} +[[Category:Legendre Symbol]] +6mmfykrvmn3tw8fytzql9zcxr16oxlz +\end{proof}<|endoftext|> +\section{Upper Closure of Element without Element is Filter implies Element is Meet Irreducible} +Tags: Order Theory, Meet Irreducible + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Lattice|lattice]]. +Let $x \in S$. +Let +: $x^\succeq \setminus \left\{ {x}\right\}$ be a [[Definition:Filter in Ordered Set|filter]] in $L$. +Then $x$ is [[Definition:Meet Irreducible|meet irreducible]]. +\end{theorem} + +\begin{proof} +Let $a, b \in S$. +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$x = a \wedge b$ and $x \ne a$ and $x \ne b$ +By [[Meet Precedes Operands]]: +:$x \preceq b$ and $x \preceq a$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$b, a \in x^\succeq$ +By definitions of [[Definition:Singleton|singleton]] and [[Definition:Set Difference|difference]]: +:$b, a \in x^\succeq \setminus \left\{ {x}\right\}$ +By definition of [[Definition:Filtered Subset|filtered]]: +:$\exists z \in x^\succeq \setminus \left\{ {x}\right\}: z \preceq a \land z \preceq b$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$z \preceq x$ +By definition of [[Definition:Upper Set|upper set]]: +:$x \in x^\succeq \setminus \left\{ {x}\right\}$ +Thus this contradicts $x \in \left\{ {x}\right\}$ by definition of [[Definition:Singleton|singleton]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Maximal Element of Complement of Filter is Meet Irreducible} +Tags: Order Theory, Meet Irreducible + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Lattice|lattice]]. +Let $F$ be a [[Definition:Filter in Ordered Set|filter]] in $L$. +Let $p \in S$. +Let $p = \max \complement_S\left({F}\right)$. +Then $p$ is [[Definition:Meet Irreducible|meet irreducible]]. +\end{theorem} + +\begin{proof} +Let $x, y \in S$. +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$p = x \wedge y$ and $p \ne x$ and $p \ne y$ +By [[Meet Precedes Operands]]: +:$p \preceq x$ and $p \preceq y$ +By definition of $\prec$: +:$p \prec x$ and $p \prec y$ +We will prove that +:$x \notin F$ or $y \notin F$ +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$x \in F \land y \in F$ +By definition of [[Definition:Filtered Subset|filtered]]: +:$\exists z \in F: z \preceq x \land z \preceq y$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$z \preceq p$ +By definition of [[Definition:Upper Set|upper set]]: +:$p \in F$ +Thus this contradicts $p \in \complement_S\left({F}\right)$ by definition of [[Definition:Greatest Element|greatest element]]. +{{qed|lemma}} +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \in \complement_S\left({F}\right)$ or $y \in \complement_S\left({F}\right)$ +Thus by definition of [[Definition:Greatest Element|greatest element]]: +this contradicts $p \prec x$ and $p \prec y$ +{{qed}} +\end{proof}<|endoftext|> +\section{De Polignac's Formula/Technique} +Tags: De Polignac's Formula + +\begin{theorem} +When calculating $\mu$, the easiest way to calculate the next term is simply to divide the previous term by $p$ and discard the remainder: +:$\floor {\dfrac n {p^{k + 1} } } = \floor {\floor {\dfrac n {p^k} } / p}$ +\end{theorem} + +\begin{proof} +From [[Floor of x+m over n/Corollary|Floor of $\dfrac {x + m} n$: Corollary]]: +:$\floor {\dfrac {x + m} n} = \floor {\dfrac {\floor x + m} n}$ +which is valid for all [[Definition:Integer|integers]] $m, n$ such that $n > 0$. +In this instance, $m = 0$ and $n = p$, while $x = \dfrac n {p^k}$. +{{qed}} +\end{proof}<|endoftext|> +\section{Not Preceding implies There Exists Meet Irreducible Element Not Preceding} +Tags: Order Theory, Meet Irreducible + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Let $x, y \in S$ such that +:$y \npreceq x$ +Then +:$\exists p \in S: p$ is [[Definition:Meet Irreducible|meet irreducible]] and $x \preceq p$ and $y \npreceq p$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$L$ satisfies [[Definition:Axiom of Approximation|axiom of approximation]] +and +:$\forall x \in S: x^\ll$ is [[Definition:Directed Subset|directed]]. +By [[Axiom of Approximation in Up-Complete Semilattice]] +:$\exists u \in S: u \ll y \land u \npreceq x$ +By [[Way Below implies There Exists Way Below Open Filter Subset of Way Above Closure]]: +:there exists [[Definition:Way Below Open|way below open]] [[Definition:Filter in Ordered Set|filter]] $F$ in $L$: $y \in F \subseteq u^\gg$ +By [[Way Above Closure is Subset of Upper Closure of Element]]: +:$u^\gg \subseteq u^\succeq$ +By definition of [[Definition:Upper Set|upper set]]: +:$x \notin F$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \in \complement_S\left({F}\right)$ +By [[Upper Way Below Open Subset Complement is Non Empty implies There Exists Maximal Element of Complement]]: +:$\exists m \in \complement_S\left({F}\right): x \preceq m \land m = \max \complement_S\left({F}\right)$ +Thus by [[Maximal Element of Complement of Filter is Meet Irreducible]]: +:$m$ is [[Definition:Meet Irreducible|meet irreducible]]. +Thus +:$x \preceq m$ +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$y \preceq m$ +By definition of [[Definition:Upper Set|upper set]]: +:$m \in F$ +This contradicts $m \in \complement_S\left({F}\right)$ by definition of [[Definition:Greatest Element|greatest element]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Termial on Real Numbers is Extension of Integers} +Tags: Termial Function + +\begin{theorem} +The [[Definition:Termial|termial function]] as [[Definition:Termial/Real Numbers|defined]] on the [[Definition:Real Number|real numbers]] is an [[Definition:Extension of Mapping|extension]] of its definition on the [[Definition:Integer|integers]] $\Z$. +\end{theorem} + +\begin{proof} +From the definition of the [[Definition:Termial|termial function]] on the [[Definition:Integer|integers]]: +:$\displaystyle n? = \sum_{k \mathop = 1}^n k = 1 + 2 + \cdots + n$ +From [[Closed Form for Triangular Numbers]], we have that: +:$\displaystyle \forall n \in \Z_{> 0}: \sum_{k \mathop = 1}^n k = \dfrac {n \paren {n + 1} } 2$ +This [[Definition:Agreement of Mappings|agrees]] with the definition of the [[Definition:Termial/Real Numbers|termial function]] on the [[Definition:Real Number|real numbers]]. +Hence the result, by definition of [[Definition:Extension of Mapping|extension]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Floor of m+n-1 over n} +Tags: Floor Function + +\begin{theorem} +Let $m, n \in \Z$ such that $n > 0$. +Then: +:$\floor {\dfrac {m + n - 1} n} = \ceiling {\dfrac m n}$ +The identity does not necessarily apply for $n < 0$. +\end{theorem} + +\begin{proof} +First let $n > 0$ as stated. +Suppose $n \divides m$. +Then $m = k n$ for some $k \in \Z$. +It follows that: +:$\floor {\dfrac {m + n - 1} n} = \floor {k + 1 - \dfrac 1 n} = k$ +and: +:$\ceiling {\dfrac m n} = k$ +Now suppose $n \nmid m$. +Since $n > 0$, we have $m = k n + r$ for some $k \in\Z$ and $r \in \N$, $0 < r < n$. +Therefore: +:$\floor {\dfrac {m + n - 1} n} = \floor {k + 1 + \dfrac {r - 1} n} = k + 1$ +and: +:$\ceiling {\dfrac m n} = k + 1$ +{{qed|lemma}} +Setting $m = 1, n = -2$ we have: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac {m + n - 1} n} + | r = \floor {\dfrac {1 + \paren {-2} - 1} {\left({-2}\right)} } + | c = +}} +{{eqn | r = \ceiling 1 + | c = +}} +{{eqn | r = 1 + | c = +}} +{{eqn | o = \ne + | r = 0 + | c = +}} +{{eqn | r = \ceiling {\dfrac 1 {\paren {-2} } } + | c = +}} +{{eqn | r = \ceiling {\dfrac m n} + | c = +}} +{{end-eqn}} +Thus, as stated, it is confirmed that the identity does not hold for $n < 0$. +It is noted that when $n = 0$ the expressions on either side are not defined. +{{qed}} +\end{proof}<|endoftext|> +\section{Characteristics of Floor and Ceiling Function} +Tags: Floor Function, Ceiling Function + +\begin{theorem} +Let $f: \R \to \Z$ be an [[Definition:Integer-Valued Function|integer-valued function]] which satisfies both of the following: +:$(1): \quad \map f {x + 1} = \map f x + 1$ +:$(2): \quad \forall n \in \Z_{> 0}: \map f x = \map f {\dfrac {\map f {n x} } n}$ +Then either: +:$\forall x \in \Q: \map f x = \floor x$ +or: +:$\forall x \in \Q: \map f x = \ceiling x$ +\end{theorem} + +\begin{proof} +From $(1)$, by [[Principle of Mathematical Induction|induction]] we have: +:$\forall n \in \N: \map f {x + n} = \map f x + n$ +and +:$\forall n \in\N: \map f {x - n} = \map f x - n$ +and therefore, in particular: +:$(3): \quad \forall n \in \Z: \map f n = \map f 0 + n$ +From $(2)$, we get +{{begin-eqn}} +{{eqn | l = \map f 0 + | r = \map f {\map f 0} +}} +{{eqn | r = \map f 0 + \map f 0 + | c = using $(3)$ and $f$ being [[Definition:Integer-Valued Function|integer valued]] +}} +{{end-eqn}} +Hence +:$\map f 0 = 0$ +Thus from $(3)$ it follows that: +:$\forall n \in \Z: \map f n = n$ +Suppose that $\map f {\dfrac 1 2} = k \le 0$. +Then: +{{begin-eqn}} +{{eqn | l = k + | r = \map f {\dfrac 1 {1 - 2 k} \map f {\dfrac 1 2 - k} } + | c = +}} +{{eqn | r = \map f {\dfrac 1 {1 - 2 k} \paren {\map f {\dfrac 1 2} - k} } + | c = +}} +{{eqn | r = \map f 0 + | c = +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +We show that in this case, by [[Principle of Mathematical Induction|induction]]: +:$\map f {\dfrac 1 n} = 0$ for all $n \in \N$ +Induction hypothesis: +:$\map f {\dfrac 1 {n - 1} } = 0$ +Then from $(1)$: +:$\map f {\dfrac n {n - 1} } = \map f {\dfrac 1 {n - 1} + 1} = 0 + 1 = 1$ +so: +{{begin-eqn}} +{{eqn | l = \map f {\dfrac 1 n} + | r = \map f {\dfrac 1 n \map f {\dfrac n {n - 1} } } + | c = +}} +{{eqn | r = \map f {\dfrac 1 {n - 1} } + | c = using $(2)$ +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +Finally, we show by induction on $m$ that even: +:$\map f {\dfrac m n} = 0$ +for $m \in \set {1, \ldots, n - 1}$. +Above we have shown this for $m = 1$. +Let $1 \le m < n$. +If $m \divides n$, then +:$\map f {\dfrac m n} = \map f {\dfrac 1 {n / m} } = 0$ +Otherwise, write: +:$n = \paren {k - 1} m + r$ +Then: +:$k > 1$ +and: +:$1 \le r \le m - 1$ +We therefore have: +:$k m = n + m - r$ +so by the induction hypothesis: +:$\map f {\dfrac {k m} n} = \map f {1 + \dfrac {m - r} n} = 1 + \map f {\dfrac {m - r} n} = 1$ +Then: +{{begin-eqn}} +{{eqn | l = \map f {\dfrac m n} + | r = \map f {\dfrac 1 m \map f {\dfrac {m k} n} } + | c = +}} +{{eqn | r = \map f {\dfrac 1 m} + | c = +}} +{{eqn | r = 0 + | c = +}} +{{end-eqn}} +By $(1)$, this shows that +:$\map f {\dfrac 1 2} \le 0 \implies \map f x = \floor x$ +for all [[Definition:Rational Number|rational]] $x$. +Suppose that $\map f {\dfrac 1 2} = k > 0$. +Then the [[Definition:Integer-Valued Function|integer-valued function]] $g: \R \to \Z$ satisfies: +:$\map g x = -\map f {-x}$ +satisfies $(1)$ and $(2)$, and also: +{{begin-eqn}} +{{eqn | l = \map g {\dfrac 1 2} + | r = 1 - \map f {\dfrac 1 2} + | c = +}} +{{eqn | o = \ge + | r = 0 + | c = +}} +{{eqn | ll= \leadsto + | l = \map f x + | r = -\map g {-x} + | c = +}} +{{eqn | r = -\floor {-x} + | c = +}} +{{eqn | r = \ceiling x + | c = [[Floor of Negative equals Negative of Ceiling]] +}} +{{end-eqn}} +Thus: +:$\map f {\dfrac 1 2} > 0 \implies \map f x = \ceiling x$ +for all [[Definition:Rational Number|rational]] $x$. +{{qed}} +\end{proof}<|endoftext|> +\section{Characteristics of Floor and Ceiling Function/Real Domain} +Tags: Floor Function, Ceiling Function + +\begin{theorem} +Let $f: \R \to \Z$ be an [[Definition:Integer-Valued Function|integer-valued function]] which satisfies both of the following: +:$(1): \quad \map f {x + 1} = \map f x + 1$ +:$(2): \quad \forall n \in \Z_{> 0}: \map f x = \map f {\dfrac {\map f {n x} } n}$ +Then it is not necessarily the case that either: +:$\forall x \in \R: \map f x = \floor x$ +or: +:$\forall x \in \R: \map f x = \ceiling x$ +\end{theorem} + +\begin{proof} +Let $h: \R \to \R$ be a [[Definition:Real Function|real function]] such that for all $x, y \in \R$: +{{begin-eqn}} +{{eqn | n = 3 + | l = \map h 1 + | r = 1 + | c = +}} +{{eqn | n = 4 + | l = \map h x + \map h y + | r = \map h {x + y} + | c = +}} +{{end-eqn}} +Consider the [[Definition:Integer-Valued Function|integer-valued function]] $f: \R \to \Z$ defined as: +:$\map f x = \floor {\map h x}$ +We claim that $f$ satisfies $(1)$ and $(2)$. +Proof for $(1)$: +We have that: +:$\map h {x + 1} = \map h x + \map h 1 = \map h x + 1$ +by $(4)$ and $(3)$. +It follows that: +{{begin-eqn}} +{{eqn | l = \map f {x + 1} + | r = \floor {\map h {x + 1} } + | c = +}} +{{eqn | r = \floor {\map h x + 1} + | c = +}} +{{eqn | r = \floor {\map h x} + 1 + | c = +}} +{{eqn | r = \map f x + 1 + | c = +}} +{{end-eqn}} +Thus $h$ satisfies $(1)$. +{{qed|lemma}} +Proof for $(2)$: +Since $h$ satisfies $(4)$, it is an [[Definition:Additive Function|additive function]]. +By $(3)$ and since [[Additive Function is Linear for Rational Factors]], this implies +:$(5): \quad \map h x = x$ +for all $x \in \Q$. +Let $x \in \R$. +Define $\alpha$ and $\beta$ by +:$(6): \quad \alpha := \floor {\map h x} = \map f x$ +:$(7): \quad \beta := \map h x - \alpha$ +Then: +{{begin-eqn}} +{{eqn | n = 8 + | l = 0 + | o = \le + | r = \beta < 1 + | c = +}} +{{eqn | ll= \leadsto + | l = 0 + | o = \le + | r = n \beta < n + | c = +}} +{{eqn | ll= \leadsto + | l = 0 + | o = \le + | r = \floor {n \beta} \le n - 1 + | c = +}} +{{end-eqn}} +and: +{{begin-eqn}} +{{eqn | l = \map f {\dfrac {\map f n x} n} + | r = \floor {\map h {\dfrac {\floor {\map h {n x} } } n} } +}} +{{eqn | r = \floor {\dfrac {\floor {n \map h x} } n} + | c = $(5)$, [[Additive Function is Linear for Rational Factors]] +}} +{{eqn | r = \floor {\dfrac {\floor {n \paren {\alpha + \beta} } } n} + | c = $(6)$, $(7)$ +}} +{{eqn | r = \floor {\dfrac {n \alpha + \floor {n \beta} } n} + | c = as $\alpha \in \Z$ +}} +{{eqn | r = \alpha + \floor {\dfrac 1 n \floor {n \beta} } + | c = +}} +{{eqn | r = \floor {\map h x} + | c = $(8)$ +}} +{{eqn | r = \map f x + | c = Definition of $\map f x$ +}} +{{end-eqn}} +Thus $h$ satisfies $(2)$. +{{qed|lemma}} +We have that: +:[[Rational Numbers form Subfield of Real Numbers]] +:[[Vector Space on Field Extension is Vector Space]] +Thus we can consider $\R$ as a [[Definition:Vector Space|vector space]] over $\Q$. +We also have that [[Square Root of 2 is Irrational]] +Hence the set $\set {1, \sqrt 2}$ is a [[Definition:Linearly Independent|linearly independent set]] in the [[Definition:Vector Space|vector space]] $\R$. +From [[Vector Space has Basis Between Linearly Independent Set and Finite Spanning Set]]: +:there exists a [[Definition:Basis (Linear Algebra)|basis]] $B$ of $\R$ which includes $1$ and $\sqrt 2$. +Then each $x \in \R$ can be written as a finite [[Definition:Summation|sum]]: +:$x := \displaystyle \sum_{i \mathop = 1}^n b_i x_i$ +where $b_i \in B$, $x_i \in \Q$ and $n$ depends on $x$. +Let $f$ be defined as: +:$\map f x = \displaystyle \sum_{i \mathop = 1}^n \map f {b_i} x_i$ +From [[Expression of Vector as Linear Combination from Basis is Unique]], we have: +:$\map f x + \map f y = \map f {x + y}$ +no matter how $\map f b$ is defined for $b \in B$. +Let $f$ be further defined as: +:$\map f 1 = 1$ +and, for example: +:$\map f {\sqrt 2} = 4$ +Then $f$ satisfies $(1)$ and $(2)$. +But: +:$\map f {\sqrt 2} \notin \set {1, 2}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Continuous Replicative Function} +Tags: Replicative Functions, Continuous Functions + +\begin{theorem} +Let $f: \R \to \R$ be a [[Definition:Real Function|real function]]. +Let $f$ be [[Definition:Continuous Real Function|continuous]] on $\R$. +Let $f$ also be a [[Definition:Replicative Function|replicative function]]. +Then $f$ is of the form: +:$f \left({x}\right) = \left({x - \dfrac 1 2}\right) a$ +where $a \in \R$. +\end{theorem} + +\begin{proof} +Let $f$ be a [[Definition:Replicative Function|replicative function]]. +Then: +:$\forall n > 0: f \left({n x + 1}\right) - f \left({n x}\right) = f \left({x + 1}\right) - f \left({x}\right)$ +If $f$ is then also [[Definition:Continuous Real Function|continuous]]: +:$\forall x \in \R: f \left({x + 1}\right) - f \left({x}\right)$ +and so: +:$g \left({x}\right) = f \left({x}\right) - c \left \lfloor{x}\right \rfloor$ +is both [[Definition:Replicative Function|replicative]] and [[Definition:Periodic Function|periodic]]. +We have: +:$\displaystyle \int_0^1 e^{2 \pi i n x} g \left({x}\right) \mathrm d x = \dfrac 1 n \int_0^1 e^{2 \pi y} g \left({y}\right) \mathrm d y$ +Expanding in a [[Definition:Fourier Series|Fourier series]] shows: +:$g \left({x}\right) = \left({x - \dfrac 1 2}\right) a$ +for $0 < x < 1$. +Thus it follows that: +:$f \left({x}\right) = \left({x - \dfrac 1 2}\right) a$ +{{qed}} +{{MissingLinks|The above needs to be linked to the results used.}} +\end{proof}<|endoftext|> +\section{Sum over k to p over 2 of Floor of 2kq over p} +Tags: Prime Numbers + +\begin{theorem} +Let $p \in \Z$ be an [[Definition:Odd Prime|odd prime]]. +Let $q \in \Z$ be an [[Definition:Odd Integer|odd integer]]. +Then: +:$\displaystyle \sum_{0 \mathop \le k \mathop < p / 2} \floor {\dfrac {2 k q} p}r \equiv \sum_{0 \mathop \le k \mathop < p / 2} \floor {\dfrac {k q} p} \pmod 2$ +\end{theorem} + +\begin{proof} +When $k < \dfrac p 4$ we have: +{{begin-eqn}} +{{eqn | l = \floor {\dfrac {\paren {p - 1 - 2 k} q} p} + | r = q - \ceiling {\dfrac {\paren {2 k + 1} q} p} + | c = +}} +{{eqn | r = q - 1 - \floor {\dfrac {\paren {2 k + 1} q} p} + | c = +}} +{{eqn | o = \equiv + | r = \floor {\dfrac {\paren {2 k + 1} q} p} + | rr= \pmod 2 + | c = +}} +{{end-eqn}} +Thus it is possible to replace the last terms: +:$\floor {\dfrac {\paren {p - 1} q} p}, \floor {\dfrac {\paren {p - 3} q} p}, \ldots$ +by: +:$\floor {\dfrac q p}, \floor {\dfrac {3 q} p}, \ldots$ +The result follows. +{{qed}} +{{MissingLinks|Links needed to results that back up the reasoning.}} +\end{proof}<|endoftext|> +\section{Way Below implies There Exists Way Below Open Filter Subset of Way Above Closure} +Tags: Continuous Lattices + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] [[Definition:Lattice|lattice]]. +Let $x, y \in S$ such that +:$x \ll y$ +where $\ll$ denotes the [[Definition:Element is Way Below|way below relation]]. +Then there exists a [[Definition:Way Below Open|way below open]] [[Definition:Filter in Ordered Set|filter]] in $L$: $y \in F \land F \subseteq x^\gg$ +where $x^\gg$ denotes the [[Definition:Way Above Closure|way above closure]] of $x$. +\end{theorem} + +\begin{proof} +We will prove that +:$x^\gg$ is [[Definition:Way Below Open|way below open]]. +Let $z \in x^\gg$. +By definition of [[Definition:Way Above Closure|way above closure]]: +:$x \ll z$ +By [[Way Below has Interpolation Property]]: +:$\exists x' \in S: x \ll x' \land x' \ll z$ +Thus by definition of [[Definition:Way Above Closure|way above closure]]: +:$x' \in x^\gg$ +Thus +:$x' \ll z$ +{{qed|lemma}} +Then +:$\forall z \in x^\gg: \exists y \in x^\gg: y \ll z$ +By [[Axiom:Axiom of Choice|Axiom of Choice]] define a [[Definition:Mapping|mapping]] $f: x^\gg \to x^\gg$: +:$\forall z \in x^\gg: f\left({z}\right) \ll z$ +By definition of [[Definition:Way Above Closure|way above closure]]: +:$y \in x^\gg$ +Define $V := \left\{ {z^\succeq: \exists n \in \N: z = f^n\left({y}\right)}\right\}$ +We will prove that +:$\forall X, Y \in V: \exists Z \in V: X \cup Y \subseteq Z$ +Let $X, Y \in V$. +By definition of $V$: +:$\exists z_1 \in S: X = z_1^\succeq \land \exists n_1 \in \N: z_1 = f^{n_1}\left({y}\right)$ +and +:$\exists z_2 \in S: Y = z_2^\succeq \land \exists n_2 \in \N: z_2 = f^{n_2}\left({y}\right)$ +We will prove that +:$\forall n, k \in \N: f^{n+k}\left({y}\right) \preceq f^n\left({y}\right)$ +Let $n \in \N$. +'''Base Case''': +By definition of [[Definition:Reflexivity|reflexivity]]: +:$f^{n+0}\left({y}\right) \preceq f^n\left({y}\right)$ +'''Induction Hypothesis''': +:$f^{n+k}\left({y}\right) \preceq f^n\left({y}\right)$ +'''Induction Step''': +By definition of $f$: +:$f^{n+k+1}\left({y}\right) \ll f^{n+k}\left({y}\right)$ +By [[Way Below implies Preceding]]: +:$f^{n+k+1}\left({y}\right) \preceq f^{n+k}\left({y}\right)$ +By Induction Hypothesis and definition of [[Definition:Transitivity|transitivity]]: +:$f^{n+k+1}\left({y}\right) \preceq f^{n}\left({y}\right)$ +{{qed|lemma}} +[[Definition:WLOG|WLOG]]: suppose $n_1 \le n_2$ +Then +:$\exists k \in \N: n_2 = n_1+k$ +Then +:$z_2 \preceq z_1$ +By [[Preceding iff Meet equals Less Operand]]: +:$z_1 \wedge z_2 = z_2$ +By definition of $V$: +:$Z := \left({z_1 \wedge z_2}\right)^\succeq \in V$ +By [[Meet Precedes Operands]]: +:$z_1 \wedge z_2 \preceq z_1$ and $z_1 \wedge z_2 \preceq z_2$ +By [[Upper Closure is Decreasing]]: +:$z_1^\succeq \subseteq Z$ and $z_2^\succeq \subseteq Z$ +Thus by [[Union of Subsets is Subset]]: +:$X \cup Y \subseteq Z$ +{{qed|lemma}} +Define $F := \bigcup V$. +We will prove that +:$F$ is [[Definition:Way Below Open|way below open]]. +Let $u \in F$. +By definition of [[Definition:Set Union/General Definition|union]]: +:$\exists Y \in V: u \in Y$ +By definition of $V$: +:$\exists z \in S: Y = z^\succeq \land \exists n \in \N: z = f^n\left({y}\right)$ +By definition of $f$: +:$z \in x^\gg$ +By definition of $f$: +:$f\left({z}\right) \ll z$ +Then +:$z' := f\left({z}\right) = f^{n+1}\left({y}\right)$ +By definition of $V$: +:${z'}^\succeq \in V$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$z' \preceq z'$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$z' \in {z'}^\succeq$ +By definition of [[Definition:Set Union/General Definition|union]]: +:$z' \in F$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$z \preceq u$ +By [[Preceding and Way Below implies Way Below]]: +:$z' \ll u$ +Hence +:$\exists g \in F: g \ll u$ +{{qed|lemma}} +By [[Upper Closure of Element is Filter]]: +:$\forall X \in V: X$ is a [[Definition:Filtered Subset|filtered]] [[Definition:Upper Set|upper set]]. +By [[Union of Upper Sets is Upper]]: +:$F$ is an [[Definition:Upper Set|upper set]]. +By [[Union of Filtered Sets is Filtered]]: +:$F$ is [[Definition:Filtered Subset|filtered]]. +By definition of [[Definition:Filter in Ordered Set|filter]]: +:$F$ is a [[Definition:Way Below Open|way below open]] [[Definition:Filter in Ordered Set|filter]] in $L$. +Then +:$f^0\left({y}\right) = y$ +By definition of $V$: +:$y^\succeq \in V$ +By definitions of [[Definition:Upper Closure/Element|upper closure of element]] and [[Definition:Reflexivity|reflexivity]]: +:$y \in y^\succeq$ +By definition of [[Definition:Set Union/General Definition|union]]: +:$y \in F$ +It remains to prove that +:$F \subseteq x^\gg$ +Let $u \in F$. +By definition of [[Definition:Set Union/General Definition|union]]: +:$\exists Y \in V: u \in Y$ +By definition of $V$: +:$\exists z \in S: Y = z^\succeq \land \exists n \in \N: z = f^n\left({y}\right)$ +By definition of $f$: +:$z \in x^\gg$ +By definition of [[Definition:Way Above Closure|way above closure]]: +:$x \ll z$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$z \preceq u$ and $x \preceq x$ +By [[Preceding and Way Below implies Way Below]]: +:$x \ll u$ +Thus by definition of [[Definition:Way Above Closure|way above closure]]: +:$u \in x^\gg$ +{{qed}} +\end{proof}<|endoftext|> +\section{Powers of Group Elements/Sum of Indices/Additive Notation} +Tags: Group Theory, Index Laws + +\begin{theorem} +:$\forall m, n \in \Z: m g + n g = \paren {m + n} g$ +\end{theorem} + +\begin{proof} +All elements of a [[Definition:Group|group]] are [[Definition:Invertible Element|invertible]], so we can directly use the result from [[Index Laws for Monoids/Sum of Indices|Index Laws for Monoids: Sum of Indices]]: +:$\forall m, n \in \Z: g^m \circ g^n = g^{m + n}$ +where in this context the [[Definition:Group Operation|group operation]] is $+$ and [[Definition:Power of Group Element|$n$th power of $g$]] is denoted $n g$. +{{qed}} +\end{proof}<|endoftext|> +\section{Powers of Group Elements/Negative Index/Additive Notation} +Tags: Group Theory, Index Laws + +\begin{theorem} +:$\forall n \in \Z: -\paren {n g} = \paren {-n} g = n \paren {-g}$ +\end{theorem} + +\begin{proof} +All elements of a [[Definition:Group|group]] are [[Definition:Invertible Element|invertible]], so we can directly use the result from [[Index Laws for Monoids/Sum of Indices|Index Laws for Monoids: Sum of Indices]]: +:$\forall n \in \Z: \paren {g^n}^{-1} = g^{-n} = \paren {g^{-1} }^n$ +where in this context: +:the [[Definition:Group Operation|group operation]] is $+$ +:the [[Definition:Power of Group Element|$n$th power of $g$]] is denoted $n g$ +:the [[Definition:Inverse Element|inverse]] of $g$ is $-g$. +{{qed}} +\end{proof}<|endoftext|> +\section{Powers of Group Elements/Product of Indices/Additive Notation} +Tags: Group Theory, Index Laws + +\begin{theorem} +:$\forall m, n \in \Z: n \paren {m g} = \paren {m n} g = m \paren {n g}$ +\end{theorem} + +\begin{proof} +All elements of a [[Definition:Group|group]] are [[Definition:Invertible Element|invertible]], so we can directly use the result from [[Index Laws for Monoids/Product of Indices|Index Laws for Monoids: Product of Indices]]: +:$\forall m, n \in \Z: g^{m n} = \paren {g^m}^n = \paren {g^n}^m$ +where in this context: +:the [[Definition:Group Operation|group operation]] is $+$ +:the [[Definition:Power of Group Element|$n$th power of $g$]] is denoted $n g$ +{{qed}} +\end{proof}<|endoftext|> +\section{Power of Product in Abelian Group/Additive Notation} +Tags: Abelian Groups + +\begin{theorem} +: $k \left({x + y}\right) = k x + k y$ +\end{theorem} + +\begin{proof} +By definition of [[Definition:Abelian Group|abelian group]], $x$ and $y$ [[Definition:Commute|commute]]. +That is: +:$x + y = y + x$ +The result follows from [[Power of Product of Commutative Elements in Group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Power of Idempotent Element} +Tags: Idempotence + +\begin{theorem} +Let $\struct {S, \circ}$ be an [[Definition:Algebraic Structure|algebraic structure]]. +Let $s \in S$ be an [[Definition:Idempotent Element|idempotent element]] with respect to $\circ$. +Then: +:$\forall n \in \Z_{> 0}: s^n = s$ +where $s^n$ is defined as: +:$s^n = \begin{cases} s & : n = 1 \\ +s^{n - 1} \circ s & : n > 1 \end{cases}$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{> 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$s^n = s$ +$P \left({1}\right)$ is the case: +:$s^1 = s$ +which holds by definition. +Thus $P \left({1}\right)$ is seen to hold. +=== Basis for the Induction === +$P \left({2}\right)$ is the case: +{{begin-eqn}} +{{eqn | l = s^2 + | r = s^1 \circ s + | c = Definition of $s^n$ +}} +{{eqn | r = s \circ s + | c = Definition of $s^1$ +}} +{{eqn | r = s + | c = {{Defof|Idempotent Element}} +}} +{{end-eqn}} +Thus $P \left({2}\right)$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 2$, then it logically follows that $P \left({k + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$s^k = s$ +from which it is to be shown that: +:$s^{k + 1} = s$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = s^{k + 1} + | r = s^k \circ s + | c = +}} +{{eqn | r = s \circ s + | c = [[Power of Idempotent Element#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = s + | c = [[Power of Idempotent Element#Basis for the Induction|Basis for the Induction]] +}} +{{end-eqn}} +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\forall n \in \Z_{> 0}: s^n = s$ + +[[Category:Idempotence]] +d7rj1kcs86m65c7frk9092f545vlpib +\end{proof}<|endoftext|> +\section{Powers of Group Element Commute} +Tags: Group Theory, Powers (Abstract Algebra), Commutativity + +\begin{theorem} +Let $\struct {G, \circ}$ be a [[Definition:Group|group]]. +Let $g \in G$. +Let $m, n \in \N_{>0}$. +Then: +:$\forall m, n \in \N_{>0}: g^n \circ g^m = g^m \circ g^n$ +\end{theorem} + +\begin{proof} +By definition, a [[Definition:Group|group]] is also a [[Definition:Semigroup|semigroup]]. +The result follows as a special case of [[Powers of Semigroup Element Commute]] +{{Qed}} +\end{proof}<|endoftext|> +\section{Strictly Positive Real Numbers under Multiplication form Subgroup of Non-Zero Real Numbers} +Tags: Real Multiplication, Subgroups + +\begin{theorem} +Let $\R_{>0}$ be the set of [[Definition:Strictly Positive Real Number|strictly positive real numbers]], that is: +:$\R_{>0} = \set {x \in \R: x > 0}$ +The [[Definition:Algebraic Structure|structure]] $\struct {\R_{>0}, \times}$ forms a [[Definition:Subgroup|subgroup]] of $\struct {\R_{\ne 0}, \times}$, where $\R_{\ne 0}$ is the [[Definition:Set|set]] of [[Definition:Real Number|real numbers]] without [[Definition:Zero (Number)|zero]], that is: +:$\R_{\ne 0} = \R \setminus \set 0$ +\end{theorem} + +\begin{proof} +From [[Non-Zero Real Numbers under Multiplication form Abelian Group]] we have that $\struct {\R_{\ne 0}, \times}$ is a [[Definition:Group|group]]. +We know that $\R_{>0} \ne \O$, as (for example) $1 \in \R_{>0}$. +Now, verify that the conditions for [[Two-Step Subgroup Test]] are satisfied: +=== Closure under $\times$ === +Let $a, b \in \R_{>0}$. +We take on board the fact that the [[Real Numbers form Ordered Integral Domain]]. +Then: +:$a b \in \R_{\ne 0}$ +From [[Positive Elements of Ordered Ring]] : +:$a \times b > 0$ +so $a b \in \R_{>0}$. +{{qed|lemma}} +=== Closure under Inverse === +Let $a \in \R_{>0}$. +Then $a^{-1} = \dfrac 1 a \in \R_{>0}$. +{{qed|lemma}} +Hence, by the [[Two-Step Subgroup Test]], $\struct {\R_{>0}, \times}$ is a [[Definition:Subgroup|subgroup]] of $\struct {\R_{\ne 0}, \times}$. +{{qed}} +\end{proof}<|endoftext|> +\section{Strictly Positive Rational Numbers under Multiplication form Subgroup of Non-Zero Rational Numbers} +Tags: Rational Multiplication, Subgroups + +\begin{theorem} +Let $\Q_{> 0}$ be the set of [[Definition:Strictly Positive Rational Number|strictly positive rational numbers]], that is $\Q_{> 0} = \set { x \in \Q: x > 0}$. +The [[Definition:Algebraic Structure|structure]] $\struct {\Q_{> 0}, \times}$ is a [[Definition:Subgroup|subgroup]] of $\struct {\Q_{\ne 0}, \times}$, where $\Q_{\ne 0}$ is the set of [[Definition:Rational Number|rational numbers]] without [[Definition:Zero (Number)|zero]]: $\Q_{\ne 0} = \Q \setminus \set 0$. +\end{theorem} + +\begin{proof} +From [[Non-Zero Rational Numbers under Multiplication form Abelian Group]] we have that $\struct {\Q_{\ne 0}, \times}$ is a [[Definition:Group|group]]. +We know that $\Q_{> 0} \ne \O$, as (for example) $1 \in \Q_{> 0}$. +Let $a, b \in \Q_{> 0}$. +Then: +:$a b \in \Q_{\ne 0}$ and $ab > 0$ +Hence: +:$a b \in \Q_{> 0}$ +Let $a \in \Q_{> 0}$. +Then: +:$a^{-1} = \dfrac 1 a \in \Q_{> 0}$ +So, by the [[Two-Step Subgroup Test]], $\struct {\Q_{> 0}, \times}$ is a [[Definition:Subgroup|subgroup]] of $\struct {\Q_{\ne 0}, \times}$. +{{qed}} +\end{proof}<|endoftext|> +\section{Union of Upper Sets is Upper} +Tags: Upper Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Preordered Set|preordered set]]. +Let $A$ be a [[Definition:Set of Sets|set]] of [[Definition:Subset|subsets]] of $S$ such that +:$\forall X \in A: X$ is an [[Definition:Upper Set|upper set]]. +Then: +:$\bigcup A$ is also an [[Definition:Upper Set|upper set]]. +\end{theorem} + +\begin{proof} +Let $x \in \bigcup A, y \in S$ such that +:$x \preceq y$ +By definition of [[Definition:Set Union/General Definition|union]]: +:$\exists Y \in A: x \in Y$ +By assumption: +:$Y$ is an [[Definition:Upper Set|upper set]]. +By definition of [[Definition:Upper Set|upper set]]: +:$y \in Y$ +Thus by definition of [[Definition:Set Union/General Definition|union]]: +:$y \in \bigcup A$ +Hence +:$\bigcup A$ is an [[Definition:Upper Set|upper set]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Set of Rotations in Space about Fixed Point forms Infinite Group} +Tags: Examples of Groups + +\begin{theorem} +Let $\SS$ be a [[Definition:Rigid|rigid]] [[Definition:Body|body]] in [[Definition:Ordinary Space|space]]. +Let $O$ be a fixed [[Definition:Point|point]] in [[Definition:Ordinary Space|space]]. +The [[Definition:Set|set]] of all [[Definition:Space Rotation|rotations]] of $\SS$ through some [[Definition:Straight Line|line]] through $O$ forms an [[Definition:Infinite Group|infinite group]]. +\end{theorem} + +\begin{proof} +{{ProofWanted|Needs the mathematical definition of a rotation in space to be defined before we start.}} +\end{proof}<|endoftext|> +\section{Group of Rotations about Fixed Point is not Abelian} +Tags: Examples of Groups + +\begin{theorem} +Let $\SS$ be a [[Definition:Rigid|rigid]] [[Definition:Body|body]] in [[Definition:Ordinary Space|space]]. +Let $O$ be a fixed [[Definition:Point|point]] in [[Definition:Ordinary Space|space]]. +Let $\GG$ be the [[Definition:Group|group]] of all [[Definition:Space Rotation|rotations]] of $\SS$ around $O$. +Then $\GG$ is not an [[Definition:Abelian Group|abelian group]]. +\end{theorem} + +\begin{proof} +Let $\SS$ be a [[Definition:Square (Geometry)|square]] [[Definition:Lamina|lamina]]. +Let $O$ be the center of $\SS$. +Recall the definition of the [[Definition:Symmetry Group of Square|symmetry group of the square]] $D_4$: +{{:Definition:Symmetry Group of Square}} +We have that: +:Reflection $t_x$ can be achieved by a [[Definition:Space Rotation|rotation]] of $\SS$ of $\pi$ [[Definition:Radian|radians]] about $x$. +:Reflection $t_y$ can be achieved by a [[Definition:Space Rotation|rotation]] of $\SS$ of $\pi$ [[Definition:Radian|radians]] about $y$. +Thus $D_4$ forms a [[Definition:Subgroup|subgroup]] of $\GG$. +From [[Symmetry Group of Square is Group]] we have that $D_4$ is not [[Definition:Abelian Group|abelian]]. +From [[Subgroup of Abelian Group is Abelian]] it follows that $\GG$ is also not [[Definition:Abelian Group|abelian]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Union of Filtered Sets is Filtered} +Tags: Preorder Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Preordered Set|preordered set]]. +Let $A$ be a [[Definition:Set of Sets|set]] of [[Definition:Subset|subsets]] of $S$ such that +:$\forall X \in A: X$ is [[Definition:Filtered Subset|filtered]] +and +:$\forall X, Y \in A: \exists Z \in A: X \cup Y \subseteq Z$ +Then: +:$\bigcup A$ is also [[Definition:Filtered Subset|filtered]]. +\end{theorem} + +\begin{proof} +Let $x, y \in \bigcup A$. +By definition of [[Definition:Set Union/General Definition|union]]: +:$\exists X \in A: x \in X$ +and +:$\exists Y \in A: y \in Y$ +By assumption: +:$\exists Z \in A: X \cup Y \subseteq Z$ +By definition of [[Definition:Set Union|union]]: +:$x, y \in X \cup Y$ +By definition of [[Definition:Subset|subset]]: +:$x, y \in Z$ +By assumption: +:$Z$ is [[Definition:Filtered Subset|filtered]]. +By definition of [[Definition:Filtered Subset|filtered]]: +:$\exists z \in Z: z \preceq x \land z \preceq y$ +Thus by definition of [[Definition:Set Union/General Definition|union]]: +:$z \in \bigcup A$ +Hence +:$\bigcup A$ is [[Definition:Filtered Subset|filtered]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Special Orthogonal Group is Group} +Tags: Orthogonal Groups + +\begin{theorem} +Let $k$ be a [[Definition:Field (Abstract Algebra)|field]]. +The $n$th [[Definition:Special Orthogonal Group|orthogonal group]] on $k$ is a [[Definition:Group|group]]. +\end{theorem} + +\begin{proof} +A direct corollary of [[Special Orthogonal Group is Subgroup of Orthogonal Group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Unit Matrix is its own Inverse} +Tags: Unit Matrices, Inverse Matrices + +\begin{theorem} +The [[Definition:Inverse Matrix|inverse]] of the [[Definition:Unit Matrix|unit matrix]] $\mathbf I_n$ of [[Definition:Order of Square Matrix|order]] $n$ is $\mathbf I_n$. +That is, a [[Definition:Unit Matrix|unit matrix]] it its own [[Definition:Inverse Matrix|inverse]]. +\end{theorem} + +\begin{proof} +By definition, a [[Definition:Unit Matrix|unit matrix]] is a [[Definition:Diagonal Matrix|diagonal matrix]]. +From [[Inverse of Diagonal Matrix]], the [[Definition:Inverse Matrix|inverse]] of a [[Definition:Diagonal Matrix|diagonal matrix]]: +:$\mathbf D = \begin{bmatrix} +a_{11} & 0 & \cdots & 0 \\ +0 & a_{22} & \cdots & 0 \\ +\vdots & \vdots & \ddots & \vdots \\ +0 & 0 & \cdots & a_{nn} \\ +\end{bmatrix}$ +is the [[Definition:Diagonal Matrix|diagonal matrix]]: +: $\mathbf D^{-1} = \begin{bmatrix} +\dfrac 1 {a_{11}} & 0 & \cdots & 0 \\ +0 & \dfrac 1 {a_{22}} & \cdots & 0 \\ +\vdots & \vdots & \ddots & \vdots \\ +0 & 0 & \cdots & \dfrac 1 {a_{nn}} \\ +\end{bmatrix}$ +When $\mathbf D$ is the [[Definition:Unit Matrix|unit matrix]] $\mathbf I_n$, all elements $a_{kk}$ are equal to $1$: +:$\mathbf I_n = \begin{bmatrix} +1 & 0 & \cdots & 0 \\ +0 & 1 & \cdots & 0 \\ +\vdots & \vdots & \ddots & \vdots \\ +0 & 0 & \cdots & 1 \\ +\end{bmatrix}$ +Hence: +:$\mathbf I_n^{-1} = \begin{bmatrix} +\dfrac 1 1 & 0 & \cdots & 0 \\ +0 & \dfrac 1 1 & \cdots & 0 \\ +\vdots & \vdots & \ddots & \vdots \\ +0 & 0 & \cdots & \dfrac 1 1 \\ +\end{bmatrix}$ +Hence the result. +{{qed}} +[[Category:Unit Matrices]] +[[Category:Inverse Matrices]] +rgio764lguz6z2g6wb4yn16z1brin39 +\end{proof}<|endoftext|> +\section{Way Above Closure is Subset of Upper Closure of Element} +Tags: Upper Closures + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $x \in S$. +Then $x^\gg \subseteq x^\succeq$ +where +:$x^\gg$ denotes the [[Definition:Way Above Closure|way above closure]] of $x$, +:$x^\succeq$ denotes the [[Definition:Upper Closure/Element|upper closure]] of $x$. +\end{theorem} + +\begin{proof} +Let $y \in x^\gg$. +By definition of [[Definition:Way Above Closure|way above closure]]: +:$x \ll y$ +where $\ll$ denotes the [[Definition:Element is Way Below|way below relation]]. +By [[Way Below implies Preceding]]: +:$x \preceq y$ +Thus by definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$y \in x^\succeq$ +{{qed}} +\end{proof}<|endoftext|> +\section{Diagonal Matrix is Symmetric} +Tags: Symmetric Matrices, Diagonal Matrices + +\begin{theorem} +Let $D$ be a [[Definition:Diagonal Matrix|diagonal matrix]]. +Then $D$ is [[Definition:Symmetric Matrix|symmetric]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Diagonal Matrix|diagonal matrix]]: +:$\forall j, k: j \ne k \implies a_{jk} = 0 = a_{kj}$ +So by definition of [[Definition:Transpose of Matrix|transpose]] of $D$: +:$D = D^\intercal$ +where $D^\intercal$ denotes the [[Definition:Transpose of Matrix|transpose]]. +Hence the result, by definition of [[Definition:Symmetric Matrix|symmetric matrix]]. +{{qed}} +[[Category:Symmetric Matrices]] +[[Category:Diagonal Matrices]] +dv7n9kzvzryg6tjumxlrly9jp6semgo +\end{proof}<|endoftext|> +\section{Upper Way Below Open Subset Complement is Non Empty implies There Exists Maximal Element of Complement} +Tags: Complete Lattices + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $X$ be [[Definition:Upper Set|upper]] [[Definition:Way Below Open|way below open]] [[Definition:Subset|subset]] of $S$. +Let $x \in S$ such that +:$x \in \relcomp S X$ +Then +:$\exists m \in S: x \preceq m \land m = \max \relcomp S X$ +\end{theorem} + +\begin{proof} +Define $A := \set {C \in \map {\mathit {Chains} } L: C \subseteq \relcomp S X \land x \in C}$ +where $\map {\mathit {Chains} } L$ denotes the [[Definition:Set of Sets|set]] of all [[Definition:Chain (Set Theory)|chains]] of $L$. +We will prove that +:$\forall Z: Z \ne \O \land Z \subseteq A \land \paren {\forall X, Y \in Z: X \subseteq Y \lor Y \subseteq X} \implies \bigcup Z \in A$ +Let $Z$ such that +:$Z \ne \O \land Z \subseteq A \land \paren {\forall X, Y \in Z: X \subseteq Y \lor Y \subseteq X}$ +We will prove that +:$\bigcup Z$ is a [[Definition:Chain (Set Theory)|chain]] of $L$ +Let $a, b \in \bigcup Z$ +By definition of [[Definition:Set Union/General Definition|union]]: +:$\exists Y_1 \in Z: a \in Y_1$ +and +:$\exists Y_2 \in Z: b \in Y_2$ +By assumption: +:$Y_1 \subseteq Y_2$ or $Y_2 \subseteq Y_1$ +By definition of [[Definition:Subset|subset]]: +:$a, b \in Y_1$ or $a, b \in Y_2$ +By definition of $A$: +:$Y_1, Y_2 \in \map {\mathit {Chains} } L$ +Thus by definition of [[Definition:Connected Relation|connected relation]] +:$a \preceq b$ or $b \preceq a$ +{{qed|lemma}} +By definition of [[Definition:Non-Empty Set|non-empty set]]: +:$\exists Y: Y \in Z$ +By definition of $A$: +:$x \in Y$ +By definition of [[Definition:Set Union/General Definition|union]]: +:$x \in \bigcup Z$ +By definition of $A$: +:$\forall Y \in Z: Y \subseteq \relcomp S X$ +By [[Union of Subsets is Subset/Set of Sets]]: +:$\bigcup Z \subseteq \relcomp S X$ +Thus by definition of $A$ +:$\bigcup Z \in A$ +{{qed|lemma}} +By [[Singleton is Chain]]: +:$\set x$ is a [[Definition:Chain (Set Theory)|chain]] of $L$. +By definition of $A$: +:$\set x \in A$ +By [[Zorn's Lemma]]: +:$\exists Y \in A: Y$ is a [[Definition:Maximal Element|maximal element]] of $A$. +By definition of [[Definition:Maximal Element|maximal element]]: +:$\forall Z \in A: Y \subseteq Z \implies Y = Z$ +By definition of $A$: +:$Y \in \map {\mathit {Chains} } L \land Y \subseteq \relcomp S X \land x \in Y$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$\sup Y$ is [[Definition:Upper Bound of Set|upper bound]] for $Y$. +By definition of [[Definition:Upper Bound of Set|upper bound]]: +:$x \preceq \sup Y$ +We will prove that +:$\lnot \exists y \in S: y \in \relcomp S X \land y \succ \sup Y$ +{{AimForCont}} that +:$\exists y \in S: y \in \relcomp S X \land y \succ \sup Y$ +By definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$y \notin Y$ +By definition of $\succ$ +:$\sup Y \preceq y$ +We wiil prove that +:$Y \cup \set y$ is a [[Definition:Chain (Set Theory)|chain]] of $L$. +Let $a, b \in Y \cup \set y$ +Case $a, b \in Y$. +Thus by definition of [[Definition:Connected Relation|connected relation]]: +:$a \preceq b$ or $b \preceq a$ +Case $a \in Y \land b \in \set y$ +By definition of [[Definition:Singleton|singleton]]: +:$b = y$ +By definition of [[Definition:Supremum of Set|supremum]]: +:$a \preceq \sup Y$ +By definition of [[Definition:Transitivity|transitivity]]: +:$a \preceq b$ +Thus +:$a \preceq b$ or $b \preceq a$ +Case $a \in \set y \land b \in Y$ +Analogical case as previous. +Case $a, b \in \set y$ +By definition of [[Definition:Singleton|singleton]]: +:$ a = y$ and $b = y$ +Be definition of [[Definition:Reflexivity|reflexivity]]: +:$a \preceq b$ +Thus +:$a \preceq b$ or $b \preceq a$ +{{qed|lemma}} +By definitions of [[Definition:Singleton|singleton]] and [[Definition:Subset|subset]]: +:$\set y \subseteq \relcomp S X$ +By [[Union of Subsets is Subset]]: +:$Y \cup \set y \subseteq \relcomp S X$ +By definition of [[Definition:Set Union|union]]: +:$x \in Y \cup \set y$ +By definition of $A$: +:$Y \cup \set y \in A$ +By [[Set is Subset of Union]]: +:$Y \subseteq Y \cup \set y$ +Then +:$Y = Y \cup \set y$ +By definitions of [[Definition:Set Union|union]] and [[Definition:Singleton|singleton]]: +:$y \in Y$ +This contradicts $y \notin Y$. +{{qed|lemma}} +We will prove that +:$\sup Y \in \relcomp S X$ +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$\sup Y \in X$ +By definition of [[Definition:Way Below Open|way below open]]: +:$\exists y \in X: y \ll \sup Y$ +By [[Chain is Directed]]: +:$Y$ is [[Definition:Directed Subset|directed]]. +By definition of [[Definition:Element is Way Below|way below relation]]: +:$\exists d \in Y: y \preceq d$ +By definition of [[Definition:Upper Set|upper set]]: +:$d \in X$ +Thus it contradicts $d \in \relcomp S X$ by definition of [[Definition:Subset|subset]]. +{{qed|lemma}} +By definition of [[Definition:Maximal Element|maximal element]] +:$\sup Y = \max \relcomp S X$ +Hence +:$\exists m \in S: x \preceq m \land m = \max \relcomp S X$ +{{qed}} +\end{proof}<|endoftext|> +\section{Unit Matrix is Orthogonal} +Tags: Unit Matrices, Orthogonal Matrices + +\begin{theorem} +The [[Definition:Unit Matrix|unit matrix]] $\mathbf I_n$ of [[Definition:Order of Square Matrix|order]] $n$ is [[Definition:Orthogonal Matrix|orthogonal]]. +\end{theorem} + +\begin{proof} +By [[Unit Matrix is its own Inverse]] the [[Definition:Inverse Matrix|inverse]] $I_n^{-1}$ of $I_n$ is $I_n$. +By definition a [[Definition:Unit Matrix|unit matrix]] is a [[Definition:Diagonal Matrix|diagonal matrix]]. +Hence by [[Diagonal Matrix is Symmetric]]: +:$I_n = I_n^\intercal$ +where $I_n^\intercal$ is the [[Definition:Transpose of Matrix|transpose]] of $I_n$. +Thus: +:$I_n^{-1} = I_n^\intercal$ +and the result follows by definition of [[Definition:Orthogonal Matrix|orthogonal]]. +{{qed}} +[[Category:Unit Matrices]] +[[Category:Orthogonal Matrices]] +thfuv0wq4j5hsyxq6htlcafz1z4aotx +\end{proof}<|endoftext|> +\section{Unit Matrix is Proper Orthogonal} +Tags: Unit Matrices, Orthogonal Matrices + +\begin{theorem} +The [[Definition:Unit Matrix|unit matrix]] $\mathbf I_n$ of [[Definition:Order of Square Matrix|order]] $n$ is [[Definition:Proper Orthogonal Matrix|proper orthogonal]]. +\end{theorem} + +\begin{proof} +By [[Unit Matrix is Orthogonal]], $\mathbf I_n$ is an [[Definition:Orthogonal Matrix|orthogonal matrix]]. +By [[Determinant of Unit Matrix]], the [[Definition:Determinant of Matrix|determinant]] of $\mathbf I_n$ is equal to $1$. +The result follows by definition of [[Definition:Proper Orthogonal Matrix|proper orthogonal]]. +{{qed}} +[[Category:Unit Matrices]] +[[Category:Orthogonal Matrices]] +jukceu1rs4hk2cse2pnlfcn8ztarw3v +\end{proof}<|endoftext|> +\section{Inverse of Orthogonal Matrix is Orthogonal} +Tags: Orthogonal Matrices, Inverse Matrices + +\begin{theorem} +Let $\mathbf A$ be an [[Definition:Orthogonal Matrix|orthogonal matrix]]. +Then its [[Definition:Inverse Matrix|inverse]] $\mathbf A^{-1}$ is also [[Definition:Orthogonal Matrix|orthogonal]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Orthogonal Matrix|orthogonal matrix]]: +:$\mathbf A^\intercal = \mathbf A^{-1}$ +where $\mathbf A^\intercal$ is the [[Definition:Transpose of Matrix|transpose]] of $\mathbf A$. +By [[Inverse of Inverse of Matrix]]: +:$\paren {\mathbf A^{-1} }^{-1} = \mathbf A$ +By [[Transpose of Transpose of Matrix]]: +:$\paren {\mathbf A^\intercal}^\intercal = \mathbf A$ +Thus we have: +:$\paren {\mathbf A^{-1} }^{-1} = \mathbf A = \paren {\mathbf A^\intercal}^\intercal = \paren {\mathbf A^{-1} }^\intercal$ +and so by definition $\mathbf A^{-1}$ is [[Definition:Orthogonal Matrix|orthogonal]]. +{{qed}} +[[Category:Orthogonal Matrices]] +[[Category:Inverse Matrices]] +8qgfo01t3z6dht0dvrmkf741k1527ht +\end{proof}<|endoftext|> +\section{Inverse of Inverse of Matrix} +Tags: Inverse Matrices + +\begin{theorem} +Let $\mathbf A$ be an [[Definition:Invertible Matrix|invertible matrix]]. +Then: +:$\paren {\mathbf A^{-1} }^{-1} = \mathbf A$ +That is, an [[Definition:Invertible Matrix|invertible matrix]] equals the [[Definition:Inverse Matrix|inverse]] of its [[Definition:Inverse Matrix|inverse]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Inverse Matrix|inverse matrix]]: +:$\mathbf A^{-1} \mathbf A = \mathbf I$ +where $\mathbf I$ is the [[Definition:Unit Matrix|unit matrix]]. +Thus the [[Definition:Inverse Matrix|inverse]] of $\mathbf A^{-1}$ is $\mathbf A$. +Hence the result. +{{qed}} +[[Category:Inverse Matrices]] +c92664gz3mew2c1geggrxuvcjmj5c4x +\end{proof}<|endoftext|> +\section{Inverse of Proper Orthogonal Matrix is Proper Orthogonal} +Tags: Orthogonal Matrices, Inverse Matrices + +\begin{theorem} +Let $\mathbf A$ be a [[Definition:Proper Orthogonal Matrix|proper orthogonal matrix]]. +Then its [[Definition:Inverse Matrix|inverse]] $\mathbf A^{-1}$ is also [[Definition:Proper Orthogonal Matrix|proper orthogonal]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Proper Orthogonal Matrix|proper orthogonal matrix]]: +:$\mathbf A$ is [[Definition:Orthogonal Matrix|orthogonal]] +:the [[Definition:Determinant of Matrix|determinant]] of $\mathbf A$ is equal to $1$. +By [[Inverse of Orthogonal Matrix is Orthogonal]], $\mathbf A^{-1}$ is [[Definition:Orthogonal Matrix|orthogonal]]. +By [[Determinant of Inverse Matrix]]: +:$\det \mathbf A^{-1} = \dfrac 1 {\det \mathbf A} = 1$ +Hence, by definition, $\mathbf A^{-1}$ is [[Definition:Proper Orthogonal Matrix|proper orthogonal]]. +{{qed}} +[[Category:Orthogonal Matrices]] +[[Category:Inverse Matrices]] +sxpg2zjfvvqirrj1e87ohv80ib8a4k4 +\end{proof}<|endoftext|> +\section{Special Orthogonal Group is Subgroup of Orthogonal Group} +Tags: Orthogonal Groups + +\begin{theorem} +Let $k$ be a [[Definition:Field (Abstract Algebra)|field]]. +Let $\map {\operatorname O} {n, k}$ be the $n$th [[Definition:Orthogonal Group|orthogonal group]] on $k$. +Let $\map {\operatorname {SO} } {n, k}$ be the $n$th [[Definition:Special Orthogonal Group|special orthogonal group]] on $k$. +Then $\map {\operatorname {SO} } {n, k}$ is a [[Definition:Subgroup|subgroup]] of $\map {\operatorname O} {n, k}$. +\end{theorem} + +\begin{proof} +We have that [[Unit Matrix is Proper Orthogonal]], so $\map {\operatorname {SO} } {n, k}$ is not [[Definition:Empty Set|empty]]. +Let $\mathbf A, \mathbf B \in \map {\operatorname {SO} } {n, k}$. +Then, by definition, $\mathbf A$ and $\mathbf B$ are [[Definition:Proper Orthogonal Matrix|proper orthogonal]]. +Then by [[Inverse of Proper Orthogonal Matrix is Proper Orthogonal]]: +:$\mathbf B^{-1}$ is a [[Definition:Proper Orthogonal Matrix|proper orthogonal matrix]]. +By [[Product of Proper Orthogonal Matrices is Proper Orthogonal Matrix]]: +:$\mathbf A \mathbf B^{-1}$ is a [[Definition:Proper Orthogonal Matrix|proper orthogonal matrix]]. +Thus by definition of [[Definition:Special Orthogonal Group|special orthogonal group]]: +:$\mathbf A \mathbf B^{-1} \in \map {\operatorname {SO} } {n, k}$ +Hence the result by [[One-Step Subgroup Test]]. +{{qed}} +[[Category:Orthogonal Groups]] +c84yl527lbmgzjz3uiuiri8mcwzpl8t +\end{proof}<|endoftext|> +\section{Negative Matrix is Inverse for Hadamard Product} +Tags: Negative Matrices, Hadamard Product + +\begin{theorem} +Let $\struct {G, \cdot}$ be a [[Definition:Group|group]] whose [[Definition:Identity Element|identity]] is $e$. +Let $\map {\MM_G} {m, n}$ be a [[Definition:Matrix Space|$m \times n$ matrix space]] over $\struct {G, \cdot}$. +Let $\mathbf A$ be an [[Definition:Element|element]] of $\map {\MM_G} {m, n}$. +Let $-\mathbf A$ be the [[Definition:Negative Matrix/General Group|negative]] of $\mathbf A$. +Then $-\mathbf A$ is the [[Definition:Inverse Element|inverse]] for the operation $\circ$, where $\circ$ is the [[Definition:Hadamard Product|Hadamard product]]. +\end{theorem} + +\begin{proof} +Let $\mathbf A = \sqbrk a_{m n} \in \map {\MM_G} {m, n}$. +Then: +{{begin-eqn}} +{{eqn | l = \mathbf A \circ \paren {-\mathbf A} + | r = \sqbrk a_{m n} \circ \paren {-\sqbrk a_{m n} } + | c = Definition of $\mathbf A$ +}} +{{eqn | r = \sqbrk a_{m n} \circ \sqbrk {a^{-1} }_{m n} + | c = {{Defof|Negative Matrix|subdef = General Group}} +}} +{{eqn | r = \sqbrk {a \cdot \paren {a^{-1} } }_{m n} + | c = {{Defof|Hadamard Product}} +}} +{{eqn | r = \sqbrk e_{m n} + | c = {{Defof|Inverse Element}} +}} +{{eqn | ll= \leadsto + | l = \mathbf A \circ \paren {-\mathbf A} + | r = \mathbf e + | c = {{Defof|Zero Matrix over General Monoid}} +}} +{{end-eqn}} +The result follows from [[Zero Matrix is Identity for Hadamard Product]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Cancellable Infinite Semigroup is not necessarily Group} +Tags: Semigroups, Cancellability + +\begin{theorem} +Let $\struct {S, \circ}$ be a [[Definition:Semigroup|semigroup]] whose [[Definition:Underlying Set|underlying set]] is [[Definition:Infinite Set|infinite]]. +Let $\struct {S, \circ}$ be such that all [[Definition:Element|elements]] of $S$ are [[Definition:Cancellable Element|cancellable]]. +Then it is not necessarily the case that $\struct {S, \circ}$ is a [[Definition:Group|group]]. +\end{theorem} + +\begin{proof} +Consider the [[Definition:Semigroup|semigroup]] $\struct {\N, +}$. +From [[Natural Numbers under Addition form Commutative Semigroup]], $\struct {\N, +}$ forms a [[Definition:Semigroup|semigroup]]. +From [[Natural Numbers are Infinite]], the [[Definition:Underlying Set|underlying set]] of $\struct {\N, +}$ is [[Definition:Infinite Set|infinite]]. +From [[Natural Number Addition is Cancellable]], all elements of $\struct {\N, +}$ are [[Definition:Cancellable Element|cancellable]]. +But from [[Natural Numbers under Addition do not form Group]], $\struct {\N, +}$ is not a [[Definition:Group|group]]. +\end{proof}<|endoftext|> +\section{Left Regular Representation wrt Left Cancellable Element on Finite Semigroup is Bijection} +Tags: Semigroups, Regular Representations, Cancellability + +\begin{theorem} +Let $\struct {S, \circ}$ be a [[Definition:Finite|finite]] [[Definition:Semigroup|semigroup]]. +Let $a \in S$ be [[Definition:Left Cancellable Element|left cancellable]]. +Then the [[Definition:Left Regular Representation|left regular representation]] $\lambda_a$ of $\struct {S, \circ}$ with respect to $a$ is a [[Definition:Bijection|bijection]]. +\end{theorem} + +\begin{proof} +By [[Left Cancellable iff Left Regular Representation Injective]], $\lambda_a$ is an [[Definition:Injection|injection]]. +[[Definition:By Hypothesis|By hypothesis]], $S$ is [[Definition:Finite Set|finite]]. +From [[Injection from Finite Set to Itself is Surjection]], $\lambda_a$ is a [[Definition:Surjection|surjection]]. +Thus $\lambda_a$ is [[Definition:Injection|injective]] and [[Definition:Surjection|surjective]], and therefore a [[Definition:Bijection|bijection]]. +{{qed}} +[[Category:Semigroups]] +[[Category:Regular Representations]] +[[Category:Cancellability]] +lkm98i64qmrup50xs7e5y34akkjnvud +\end{proof}<|endoftext|> +\section{Singleton is Chain} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $x \in S$. +Then $\left\{ {x}\right\}$ is a [[Definition:Chain (Set Theory)|chain]] of $\left({S, \preceq}\right)$. +\end{theorem} + +\begin{proof} +It suffices to prove that +:$\left\{ {x}\right\}$ is [[Definition:Connected Relation|connected]] +Let $y, z \in \left\{ {x}\right\}$ +By definition of [[Definition:Singleton|singleton]]: +:$y = x$ and $z = x$ +By definition of [[Definition:Reflexivity|reflexivity]]; +:$y \preceq z$ +Thus +:$y \preceq z$ or $z \preceq y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Identity Elements occupy Diagonal of Cayley Table in Inverse Row Form} +Tags: Cayley Tables + +\begin{theorem} +Let $\struct {G, \circ}$ be a [[Definition:Finite Group|finite group]]. +Let $\CC$ be a [[Definition:Cayley Table|Cayley table]] for $\struct {G, \circ}$ presented in [[Definition:Inverse Row form of Cayley Table for Group|inverse row form]]. +Then all the [[Definition:Entry of Cayley Table|entries]] in the [[Definition:Main Diagonal|main diagonal]] of $\CC$ +are instances of the [[Definition:Identity Element|identity element]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Inverse Row form of Cayley Table for Group|inverse row form]], the rows of $\CC$ are headed by the [[Definition:Inverse Element|inverse elements]] of the [[Definition:Element|elements]] which head the corresponding columns. +The [[Definition:Entry of Cayley Table|entries]] in the [[Definition:Main Diagonal|main diagonal]] of $\CC$ have the same column number as row number. +Let $\sqbrk c_{k k}$ denote the [[Definition:Entry of Cayley Table|entry]] of $\CC$ corresponding to the [[Definition:Element|element]] where the $k$th row intersects the $k$th column. +Let $a$ be the [[Definition:Element|element]] which heads column $k$. +Then, by definition, $a^{-1}$ is the [[Definition:Element|element]] which heads row $k$. +Thus the [[Definition:Element|element]] which occupies [[Definition:Entry of Cayley Table|entry]] $\struct c_{k k}$ is $a^{-1} \circ a = e$. +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Latin Square is not necessarily Cayley Table of Group} +Tags: Cayley Tables + +\begin{theorem} +While it is true that the [[Definition:Cayley Table|Cayley table]] of a [[Definition:Finite Group|(finite) group]] is in the form of a [[Definition:Latin Square|Latin square]] it is not necessarily the case that a [[Definition:Latin Square|Latin square]] is the [[Definition:Cayley Table|Cayley table]] of a [[Definition:Group|group]]. +\end{theorem} + +\begin{proof} +[[Proof by Counterexample]]: +Let $\struct {S, \circ}$ be the [[Definition:Algebraic Structure|algebraic structure]] defined by the following [[Definition:Cayley Table|Cayley table]]: +:$\begin{array}{c|ccccc} +\circ & e & a & b & c & d \\ +\hline +e & e & a & b & c & d \\ +a & a & e & d & b & c \\ +b & b & c & e & d & a \\ +c & c & d & a & e & b \\ +d & d & b & c & a & e \\ +\end{array}$ +By inspection it can be seen that the [[Definition:Cayley Table|Cayley table]] for $\struct {S, \circ}$ is a [[Definition:Latin Square|Latin square]]. +However, we have that: +:$\paren {a \circ b} \circ c = d \circ c = a$ +:$a \circ \paren {b \circ c} = a \circ d = c$ +Thus $\circ$ is not an [[Definition:Associative Operation|associative operation]]. +So, by definition, $\struct {S, \circ}$ is not a [[Definition:Group|group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Scaling preserves Modulo Addition} +Tags: Modulo Addition + +\begin{theorem} +Let $m \in \Z_{> 0}$. +Let $x, y, c \in \Z$. +Let $x \equiv y \pmod m$. +Then: +:$c x \equiv c y \pmod m$ +\end{theorem} + +\begin{proof} +Let $x \equiv y \pmod m$. +Then by definition of [[Definition:Congruence Modulo Integer|congruence]]: +:$\exists k \in Z: x - y = k m$ +Hence: +:$c x - c y = c k m$ +and so by definition of [[Definition:Congruence Modulo Integer|congruence]]: +:$c x \equiv c y \pmod m$ +{{qed}} +[[Category:Modulo Addition]] +5ro93s15864yankv4wl8fdte2utm0ix +\end{proof}<|endoftext|> +\section{Modulo Addition is Linear} +Tags: Modulo Addition + +\begin{theorem} +Let $m \in \Z_{> 0}$. +Let $x_1, x_2, y_1, y_2, c_1, c_2 \in \Z$. +Let: +:$x_1 \equiv y_1 \pmod m$ +:$x_2 \equiv y_2 \pmod m$ +Then: +:$c_1 x_1 + c_2 x_2 \equiv c_1 y_1 + c_2 y_2 \pmod m$ +\end{theorem} + +\begin{proof} +By [[Scaling preserves Modulo Addition]]: +:$c_1 x_1 \equiv c_1 y_1 \pmod m$ +:$c_2 x_2 \equiv c_2 y_2 \pmod m$ +and so by [[Modulo Addition is Well-Defined]]: +:$c_1 x_1 + c_2 x_2 \equiv c_1 y_1 + c_2 y_2 \pmod m$ +{{qed}} +\end{proof}<|endoftext|> +\section{Euler Phi Function of Prime} +Tags: Euler Phi Function, Prime Numbers + +\begin{theorem} +Let $p$ be a [[Definition:Prime Number|prime number]] $p > 1$. +Then: +:$\map \phi p = p - 1$ +where $\phi: \Z_{>0} \to \Z_{>0}$ is the [[Definition:Euler Phi Function|Euler $\phi$ function]]. +\end{theorem} + +\begin{proof} +From the definition of a [[Definition:Prime Number|prime number]], the only [[Definition:Strictly Positive Integer|(strictly) positive integer]] less than or equal to a [[Definition:Prime Number|prime]] $p$ which is ''not'' [[Definition:Coprime Integers|prime to]] $p$ is $p$ itself. +Thus it follows directly that: +:$\map \phi p = p - 1$ +{{qed}} +\end{proof}<|endoftext|> +\section{Chain is Directed} +Tags: Order Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $C$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Chain (Set Theory)|chain]] of $S$. +Then $C$ is [[Definition:Directed Subset|directed]]. +\end{theorem} + +\begin{proof} +Let $x, y \in C$. +By definition of [[Definition:Connected Relation|connected relation]]: +:$x \preceq y$ or $y \preceq x$ +{{WLOG}}, suppose that +:$x \preceq y$ +Define $z = y$. +Thus by definition of [[Definition:Reflexivity|reflexivity]] +:$x \preceq z$ and $y \preceq z$ +Hence $C$ is [[Definition:Directed Subset|directed]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Reduced Residue System Modulo Prime} +Tags: Reduced Residue Systems, Prime Numbers + +\begin{theorem} +Let $p$ be a [[Definition:Prime Number|prime number]]. +The [[Definition:Reduced Residue System|reduced residue system modulo $p$]] contains $p - 1$ [[Definition:Element|elements]]: +:$Z'_p = \set {\eqclass 1 m, \eqclass 2 m, \ldots, \eqclass {p - 1} m}$ +and so can be defined as: +:$Z'_p = Z_p \setminus \set {\eqclass 0 m}$ +\end{theorem} + +\begin{proof} +From [[Prime not Divisor implies Coprime]], each of $1, 2, \ldots, p - 1$ is [[Definition:Coprime Integers|coprime]] to $p$. +The result follows by definition of [[Definition:Reduced Residue System|reduced residue system modulo $p$]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Multiplication on Reduced Residue System is Closed} +Tags: Modulo Multiplication, Reduced Residue Systems + +\begin{theorem} +Let $m \in \Z_{> 0}$ be a [[Definition:Strictly Positive Integer|(strictly) positive integer]]. +Let $\Z'_m$ be the [[Definition:Reduced Residue System|reduced residue system modulo $m$]]: +:$\Z'_m = \set {\eqclass k m \in \Z_m: k \perp m}$ +Let $S = \struct {\Z'_m, \times_m}$ be the [[Definition:Algebraic Structure|algebraic structure]] consisting of $\Z'_m$ under the [[Definition:Modulo Multiplication|modulo multiplication]]. +Then $S$ is [[Definition:Closed Algebraic Structure|closed]], in the sense that: +:$\forall a, b \in \Z'_m: a \times_m b \in \Z'_m$ +\end{theorem} + +\begin{proof} +Let $\eqclass r m, \eqclass s m \in \Z'_m$. +Then by definition of [[Definition:Reduced Residue System|reduced residue system]]: +:$r, s \perp m$ +By [[Bézout's Lemma]]: +:$\exists u_1, v_1 \in \Z: u_1 r + v_1 m = 1$ +:$\exists u_2, v_2 \in \Z: u_2 s + v_2 m = 1$ +Then: +{{begin-eqn}} +{{eqn | l = \paren {u_1 r + v_1 m} \paren {u_2 s + v_2 m} + | r = u_1 u_2 r s + v_1 u_2 s m + u_1 v_2 r m + v_1 v_2 m^2 + | c = +}} +{{eqn | r = \paren {u_1 u_2} r s + \paren {v_1 u_2 s + u_1 v_2 r + v_1 v_2 m} m + | c = +}} +{{eqn | r = 1 + | c = +}} +{{end-eqn}} +So, again by [[Bézout's Lemma]], $r s$ is [[Definition:Coprime Integers|coprime to $m$]]. +So the [[Definition:Product Element|product]] of two [[Definition:Element|elements]] of $\struct {\Z'_m, \times_m}$ is again in $\struct {\Z'_m, \times_m}$. +That is, $\struct {\Z'_m, \times_m}$ is [[Definition:Closed Algebraic Structure|closed]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Modulo Multiplication on Reduced Residue System is Cancellable} +Tags: Modulo Multiplication, Reduced Residue Systems + +\begin{theorem} +Let $m \in \Z_{> 0}$ be a [[Definition:Strictly Positive Integer|(strictly) positive integer]]. +Let $\Z'_m$ be the [[Definition:Reduced Residue System|reduced residue system modulo $m$]]: +:$\Z'_m = \set {\eqclass k m \in \Z_m: k \perp m}$ +Let $S = \struct {\Z'_m, \times_m}$ be the [[Definition:Algebraic Structure|algebraic structure]] consisting of $\Z'_m$ under [[Definition:Modulo Multiplication|modulo multiplication]]. +Then $\times_m$ is [[Definition:Cancellable Operation|cancellable]], in the sense that: +:$\forall a, b, c \in \Z'_m: a \times_m c = b \times_m c \implies a = b$ +and: +:$\forall a, b, c \in \Z'_m: c \times_m a = c \times_m b \implies a = b$ +\end{theorem} + +\begin{proof} +Let $a, b, c \in \Z'_m$ such that $a \times_m c = b \times_m c$ +Let $p, q, r$ be [[Definition:Integer|integers]] such that: +:$p \in a$ +:$q \in b$ +:$r \in c$ +By definition of [[Definition:Residue Class|residue class]], this means: +{{begin-eqn}} +{{eqn | l = p r + | o = \equiv + | r = q r + | rr= \pmod m + | c = +}} +{{eqn | ll= \leadsto + | l = p + | o = \equiv + | r = q + | rr= \pmod m + | c = [[Cancellability of Congruences/Corollary 1|Cancellability of Congruences: Corollary 1]] +}} +{{end-eqn}} +Thus as $p \in a$ and $q \in b$ it follows that $a = b$. +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Order Generating iff Every Element is Infimum} +Tags: Complete Lattices, Order Generating + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $X$ be a [[Definition:Subset|subset]] of $S$. +Then +:$X$ is [[Definition:Order Generating|order generating]] +{{iff}} +:$\forall x \in S: \exists Y \subseteq X: x = \inf Y$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $X$ be [[Definition:Order Generating|order generating]]. +Let $x \in S$. +By definition of [[Definition:Order Generating|order generating]]: +:$x = \map \inf {x^\succeq \cap X}$ +Thus +:$\exists Y \subseteq X: x = \inf Y$ +{{qed|lemma}} +=== Necessary Condition === +Let +:$\forall x \in S: \exists Y \subseteq X: x = \inf Y$ +Let $x \in S$. +By assumption: +:$\exists Y \subseteq X: x = \inf Y$ +Define $Z := x^\succeq \cap X$. +We will prove that +:$\forall b \in S: b$ is [[Definition:Lower Bound of Set|lower bound]] for $Z \implies b \preceq x$ +Let $b \in S$ such that +:$b$ is [[Definition:Lower Bound of Set|lower bound]] for $Z$. +Let $c \in Y$. +By definition of [[Definition:Infimum of Set|infimum]]: +:$x$ is [[Definition:Lower Bound of Set|lower bound]] for $Y$. +By definition of [[Definition:Lower Bound of Set|lower bound]]: +:$x \preceq c$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$c \in x^\succeq$ +By definition of [[Definition:Subset|subset]]: +:$c \in X$ +By definition of [[Definition:Set Intersection|intersection]]: +:$c \in Z$ +Thus by definition of [[Definition:Lower Bound of Set|lower bound]]: +:$b \preceq c$ +By definition of [[Definition:Lower Bound of Set|lower bound]]: +:$b$ is [[Definition:Lower Bound of Set|lower bound]] for $Y$ +Thus by definition of [[Definition:Infimum of Set|infimum]]: +:$b \preceq x$ +{{qed|lemma}} +We will prove that +:$x$ is [[Definition:Lower Bound of Set|lower bound]] for $Z$ +Let $a \in Z$ +By definition of [[Definition:Set Intersection|intersection]]: +:$a \in x^\succeq$ +Thus by definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$x \preceq a$ +{{qed|lemma}} +Thus by definitions of [[Definition:Complete Lattice|complete lattice]] and [[Definition:Infimum of Set|infimum]]: +:$x^\succeq \cap X$ admits an [[Definition:Infimum of Set|infimum]] and $x = \map \inf {x^\succeq \cap X}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Weierstrass Factorization Theorem} +Tags: Complex Analysis, Infinite Products, Entire Functions + +\begin{theorem} +Let $f$ be an [[Definition:Entire Function|entire function]]. +Let $0$ be a zero of $f$ of [[Definition:Multiplicity (Analytic Function)|multiplicity]] $m \ge 0$. +Let the [[Definition:Sequence|sequence]] $\sequence {a_n}$ consist of the nonzero [[Definition:Zero of Function|zeroes]] of $f$, repeated according to [[Definition:Multiplicity (Complex Analysis)|multiplicity]]. +\end{theorem} + +\begin{proof} +From [[Weierstrass Product Theorem]], the [[Definition:Complex Function|function]]: +:$\displaystyle \map h z = z^m \prod_{n \mathop = 1}^\infty \map {E_{p_n} } {\frac z {a_n} }$ +defines an [[Definition:Entire Function|entire function]] that has the same [[Definition:Zero of Function|zeroes]] as $f$ counting [[Definition:Multiplicity (Complex Analysis)|multiplicity]]. +Thus $f / h$ is both an [[Definition:Entire Function|entire function]] and non-vanishing. +As $f / h$ is both [[Definition:Holomorphic Function|holomorphic]] and nowhere zero there exists a [[Definition:Holomorphic Function|holomorphic function]] $g$ such that: +:$e^g = f / h$ +Therefore: +:$f = e^g h$ +as desired. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Axiom Schemata for Finite Group} +Tags: Finite Groups + +\begin{theorem} +The following [[Definition:Axiom Schema|axiom schemata]] for the definition of a [[Definition:Finite Group|finite group]] are [[Definition:Logical Equivalence|logically equivalent]]: +\end{theorem} + +\begin{proof} +Let $S$ be an [[Definition:Algebraic Structure|algebraic structure]] of [[Definition:Finite Order (Structure)|finite order]] which fulfils the [[Definition:Group Axioms|group axioms]]. +It is to be shown that $S$ also fulfils all the [[Definition:Finite Group Axioms|finite group axioms]]. +We have that $\text {FG} 0$ and $\text {FG} 1$ are the same as $\text G 0$ and $\text G 1$ and so [[Definition:A Priori|a priori]] $\text {FG} 0$ and $\text {FG} 1$ are fulfilled. +[[Definition:By Hypothesis|By hypothesis]] $S$ is of [[Definition:Finite Order (Structure)|finite order]]. +That is, there exists some [[Definition:Strictly Positive Integer|(strictly) positive integer]] $n$ such that $s$ has exactgly $n$ [[Definition:Element|elements]]. +That is, $\text {FG} 2$ is fulfilled. +As $S$ fulfils the [[Definition:Group Axioms|group axioms]], it is by definition a [[Definition:Group|group]]. +Therefore the [[Cancellation Laws]] hold: +:$b a = c a \implies b = c$ +:$a b = a c \implies b = c$ +That is, $\text {FG} 3$ is fulfilled. +Thus, $S$ fulfils all the [[Definition:Finite Group Axioms|finite group axioms]]. +{{qed|lemma}} +Let $S$ be an [[Definition:Algebraic Structure|algebraic structure]] which fulfils the [[Definition:Finite Group Axioms|finite group axioms]]. +It is to be shown that $S$ also fulfils all the [[Definition:Group Axioms|group axioms]]. +We have that $\text G 0$ and $\text G 1$ are the same as $\text {FG} 0$ and $\text {FG} 1$ and so [[Definition:A Priori|a priori]] $\text G 0$ and $\text G 1$ are fulfilled. +By definition, an [[Definition:Algebraic Structure|algebraic structure]] which fulfils [[Definition:Group Axioms|group axioms]] $\text G 0$ and $\text G 1$ is a [[Definition:Semigroup|semigroup]]. +From [[Cancellable Finite Semigroup is Group]], it then follows that $S$ is a [[Definition:Group|group]]. +That is, $S$ fulfils all the [[Definition:Group Axioms|group axioms]] $\text G 0$, $\text G 1$, $\text G 2$ and $\text G 3$. +Hence the result. +{{qed}} +[[Category:Finite Groups]] +j7vmvepggdd73ql70gasxnpgizbyf6k +\end{proof}<|endoftext|> +\section{Order Generating iff Every Superset Closed on Infima is Whole Space} +Tags: Complete Lattices, Order Generating + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $X$ be a [[Definition:Subset|subset]] of $S$. +Then +:$X$ is [[Definition:Order Generating|order generating]] +{{iff}} +:$\forall Y \subseteq S: Y \supseteq X \land \left({\forall Z \subseteq Y: \inf Z \in Y}\right) \implies Y = S$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $X$ be [[Definition:Order Generating|order generating]]. +Let $Y \subseteq S$ such that +:$Y \supseteq X \land \left({\forall Z \subseteq Y: \inf Z \in Y}\right)$ +We will prove that +:$S \subseteq Y$ +Let $s \in S$. +By [[Order Generating iff Every Element is Infimum]]: +:$\exists Z \subseteq X: s = \inf Z$ +By [[Subset Relation is Transitive]]: +:$Z \subseteq Y$ +Thus by assumption: +:$s \in Y$ +{{qed|lemma}} +By definition of [[Definition:Set Equality|set equality]]: +:$Y = S$ +{{qed|lemma}} +=== Necessary Condition === +Assume that +:$\forall Y \subseteq S: Y \supseteq X \land \left({\forall Z \subseteq Y: \inf Z \in Y}\right) \implies Y = S$ +Define $Y := \left\{ {\inf Z: Z \subseteq X}\right\}$ +By definition of [[Definition:Subset|subset]]: +:$Y \subseteq S$ +We will prove that +:$X \subseteq Y$ +Let $x \in X$. +By definitions of [[Definition:Singleton|singleton]] and [[Definition:Subset|subset]]: +:$\left\{ {x}\right\} \subseteq X$ +By [[Infimum of Singleton]]: +:$\inf \left\{ {x}\right\} = x$ +Thus by definition of $Y$: +:$x \in Y$ +{{qed|lemma}} +We will prove that +:$\forall x \in S: \exists Z \subseteq X: x = \inf Z$ +Let $x \in S$. +We will prove that +:$\forall Z \subseteq Y: \inf Z \in Y$ +Let $Z \subseteq Y$. +Define $T := \bigcup \left\{ {A \subseteq X: \inf A \in Z}\right\}$ +By [[Union of Subsets is Subset]]: +:$T \subseteq X \subseteq S$ +Define $N := \left\{ {\inf A: A \subseteq X \land \inf A \in Z}\right\}$ +We will prove that +:$Z \subseteq N$ +Let $y \in Z$. +By definition of [[Definition:Subset|subset]]: +:$y \in Y$ +By definition of $Y$: +:$\exists Z \subseteq X: y = \inf Z$ +Thus by definition of $N$: +:$y \in N$ +{{qed|lemma}} +By definition of [[Definition:Subset|subset]]: +:$N \subseteq Z$ +By definition of [[Definition:Set Equality|set equality]]: +:$Z = N$ +By [[Infimum of Infima]]: +:$\inf Z = \inf T$ +Thus +:$\inf Z \in Y$ +{{qed|lemma}} +By assumption: +:$Y = S$ +Then +:$x \in Y$ +Thus by definition of $Y$: +:$\exists Z \subseteq X: x = \inf Z$ +{{qed|lemma}} +Hence $X$ is [[Definition:Order Generating|order generating]] by [[Order Generating iff Every Element is Infimum]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Group Isomorphism Preserves Inverses} +Tags: Group Isomorphisms, Inverse Elements, Group Isomorphism Preserves Inverses + +\begin{theorem} +Let $\phi: \struct {G, \circ} \to \struct {H, *}$ be a [[Definition:Group Isomorphism|group isomorphism]]. +Let: +:$e_G$ be the [[Definition:Identity Element|identity]] of $\struct {G, \circ}$ +:$e_H$ be the [[Definition:Identity Element|identity]] of $\struct {H, *}$. +Then: +: $\forall g \in G: \map \phi {g^{-1} } = \paren {\map \phi g}^{-1}$ +\end{theorem} + +\begin{proof} +An [[Definition:Group Isomorphism|group isomorphism]] is by definition a [[Definition:Group Epimorphism|group epimorphism]]. +The result follows from [[Epimorphism Preserves Inverses]]. +{{Qed}} +\end{proof} + +\begin{proof} +Let $g \in G$. +{{begin-eqn}} +{{eqn | l = \phi \left({g}\right) * \phi \left({g^{-1} }\right) + | r = \phi \left({g \circ g^{-1} }\right) + | c = {{Defof|Group Isomorphism}} +}} +{{eqn | r = \phi \left({e_G}\right) + | c = {{Defof|Inverse Element}} +}} +{{eqn | r = e_H + | c = [[Group Isomorphism Preserves Identity]] +}} +{{end-eqn}} +It follows from [[Inverse in Group is Unique]] that $\phi \left({g^{-1} }\right)$ is the [[Definition:Unique|unique]] [[Definition:Inverse Element|inverse element]] of $\phi \left({g}\right)$ in $\left({H, *}\right)$. +That is: +: $\forall g \in G: \phi \left({g^{-1}}\right) = \left({\phi \left({g}\right)}\right)^{-1}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Preimage of Composite Relation} +Tags: Composite Relations + +\begin{theorem} +Let $\RR_1 \subseteq S_1 \times T_1$ and $\RR_2 \subseteq S_2 \times T_2$ be [[Definition:Relation|relations]]. +Let $\RR_2 \circ \RR_1 \subseteq S_1 \times T_2$ be the [[Definition:Composition of Relations|composition of $\RR_1$ and $\RR_2$]]. +Then the [[Definition:Preimage of Relation|preimage]] of $\RR_2 \circ \RR_1$ is given by: +:$\Preimg {\RR_2 \circ \RR_1} = \Preimg {\Img {\RR_1} \cap \Preimg {\RR_2} }$ +\end{theorem} + +\begin{proof} +{{proof wanted}} +[[Category:Composite Relations]] +6lh1ebouq13pwncjkma96kpqrizpu1t +\end{proof}<|endoftext|> +\section{Image of Composite Relation} +Tags: Composite Relations + +\begin{theorem} +Let $\RR_1 \subseteq S_1 \times T_1$ and $\RR_2 \subseteq S_2 \times T_2$ be [[Definition:Relation|relations]]. +Let $\RR_2 \circ \RR_1 \subseteq S_1 \times T_2$ be the [[Definition:Composition of Relations|composition of $\RR_1$ and $\RR_2$]]. +Then the [[Definition:Image of Relation|image]] of $\RR_2 \circ \RR_1$ is given by: +:$\Img {\RR_2 \circ \RR_1} = \Img {\Img {\RR_1} \cap \Preimg {\RR_2} }$ +\end{theorem} + +\begin{proof} +We have by definition of [[Definition:Composition of Relations|composition of $\RR_1$ and $\RR_2$]]: +:$\RR_2 \circ \RR_1 := \set {\tuple {x, z} \in S_1 \times T_2: \exists y \in S_2 \cap T_1: \tuple {x, y} \in \RR_1 \land \tuple {y, z} \in \RR_2}$ +Let $\left({x, z}\right) \in \RR_2 \circ \RR_1$. +By definition of [[Definition:Image of Relation|image]]: +:$z \in \Img {\RR_2 \circ \RR_1}$ +By definition of [[Definition:Composition of Relations|composition of $\RR_1$ and $\RR_2$]]: +:$z \in \Img {\RR_2}$ +But also: +:$z \in \Img {\Img {\RR_1} }$ +We also have that $\Img {\RR_2} = \Img {\Preimg {\RR_2} }$ +That is: +$z \in \Img {\Img {\RR_1} } \cap \Img {\Preimg {\RR_2} }$ +{{finish|Not convinced this is going to work.}} +[[Category:Composite Relations]] +b5ge9pk84j3e46bqba3xyq39i1lm3y0 +\end{proof}<|endoftext|> +\section{Weierstrass Product Theorem} +Tags: Infinite Products + +\begin{theorem} +Let $\sequence {a_k}$ be a [[Definition:Sequence|sequence]] of non-zero [[Definition:Complex Number|complex numbers]] such that: +:$\cmod {a_n} \to \infty$ as $n \to \infty$ +Let $\sequence {p_n}$ be a [[Definition:Sequence|sequence]] of [[Definition:Non-Negative Integer|non-negative integers]] for which the [[Definition:Series|series]]: +:$\displaystyle \sum_{n \mathop = 1}^\infty \size {\dfrac r {a_n} }^{1 + p_n}$ +[[Definition:Convergent Series|converges]] for every $r \in \R_{> 0}$. +Let: +:$\displaystyle \map f z = \prod_{n \mathop = 1}^\infty \map {E_{p_n} } {\frac z {a_n} }$ +where $E_{p_n}$ are [[Definition:Weierstrass Elementary Factor|Weierstrass elementary factors]]. +Then $f$ is [[Definition:Entire Function|entire]] and its [[Definition:Zero of Function|zeroes]] are the points $a_n$, counted with [[Definition:Multiplicity (Complex Analysis)|multiplicity]]. +\end{theorem} + +\begin{proof} +By: +:[[Locally Uniformly Absolutely Convergent Product is Locally Uniformly Convergent]] +:[[Infinite Product of Analytic Functions is Analytic]] +:[[Zeroes of Infinite Product of Analytic Functions]] +it suffices to show that the product $\displaystyle \prod_{n \mathop = 1}^\infty \map {E_{p_n} } {\frac z {a_n} }$ [[Definition:Local Uniform Absolute Convergence of Product|converges locally uniformly absolutely]]. +By [[Bounds for Weierstrass Elementary Factors]] and [[Weierstrass M-Test]], this is the case. +{{stub}} +{{qed}} +\end{proof}<|endoftext|> +\section{Isomorphism between Gaussian Integer Units and Rotation Matrices Order 4} +Tags: Examples of Group Isomorphisms: Order 4, Group of Rotation Matrices Order 4, Group of Gaussian Integer Units + +\begin{theorem} +Let $\struct {U_\C, \times}$ be the [[Definition:Group of Gaussian Integer Units|group of Gaussian integer units]] under [[Definition:Complex Multiplication|complex multiplication]]. +Let $\struct {R_4, \times}$ be the [[Definition:Group of Rotation Matrices Order 4|group of rotation matrices of order $4$]] under [[Definition:Modulo Addition|modulo addition]]. +Then $\struct {U_\C, \times}$ and $\struct {R_4, \times}$ are [[Definition:Isomorphic Algebraic Structures|isomorphic algebraic structures]]. +\end{theorem} + +\begin{proof} +Establish the [[Definition:Mapping|mapping]] $f: U_C \to R_4$ as follows: +{{begin-eqn}} +{{eqn | l = \map f 1 + | r = r_0 +}} +{{eqn | l = \map f i + | r = r_1 +}} +{{eqn | l = \map f {-1} + | r = r_2 +}} +{{eqn | l = \map f {-i} + | r = r_3 +}} +{{end-eqn}} +From [[Isomorphism by Cayley Table]], the two [[Definition:Cayley Table|Cayley tables]] can be compared by eye to ascertain that $f$ is an [[Definition:Isomorphism (Abstract Algebra)|isomorphism]]: +=== [[Group of Gaussian Integer Units/Cayley Table|Cayley Table of Gaussian Integer Units]] === +The [[Definition:Cayley Table|Cayley table]] for $\struct {U_\C, \times}$ is as follows: +{{:Group of Gaussian Integer Units/Cayley Table}} +=== [[Group of Rotation Matrices Order 4/Cayley Table|Group of Rotation Matrices Order $4$]] === +The [[Definition:Cayley Table|Cayley table]] for $\struct {R_4, \times}$ is as follows: +{{:Group of Rotation Matrices Order 4/Cayley Table}} +\end{proof}<|endoftext|> +\section{Isomorphism between Gaussian Integer Units and Reduced Residue System Modulo 5 under Multiplication} +Tags: Examples of Group Isomorphisms: Order 4, Multiplicative Group of Reduced Residues Modulo 5, Group of Gaussian Integer Units + +\begin{theorem} +Let $\struct {U_\C, \times}$ be the [[Definition:Group of Gaussian Integer Units|group of Gaussian integer units]] under [[Definition:Complex Multiplication|complex multiplication]]. +Let $\struct {\Z'_5, \times_5}$ be the [[Multiplicative Group of Reduced Residues Modulo 5|multiplicative group of reduced residues modulo $5$]]. +Then $\struct {U_\C, \times}$ and $\struct {\Z'_5, \times_5}$ are [[Definition:Isomorphic Algebraic Structures|isomorphic algebraic structures]]. +\end{theorem} + +\begin{proof} +Establish the [[Definition:Mapping|mapping]] $f: U_C \to \Z'_5$ as follows: +{{begin-eqn}} +{{eqn | l = \map f 1 + | r = \eqclass 1 5 +}} +{{eqn | l = \map f i + | r = \eqclass 2 5 +}} +{{eqn | l = \map f {-1} + | r = \eqclass 4 5 +}} +{{eqn | l = \map f {-i} + | r = \eqclass 3 5 +}} +{{end-eqn}} +From [[Isomorphism by Cayley Table]], the two [[Definition:Cayley Table|Cayley tables]] can be compared by eye to ascertain that $f$ is an [[Definition:Isomorphism (Abstract Algebra)|isomorphism]]: +=== [[Group of Gaussian Integer Units/Cayley Table|Cayley Table of Gaussian Integer Units]] === +The [[Definition:Cayley Table|Cayley table]] for $\struct {U_\C, \times}$ is as follows: +{{:Group of Gaussian Integer Units/Cayley Table}} +=== [[Multiplicative Group of Reduced Residues Modulo 5/Cayley Table|Multiplicative Group of Reduced Residues Modulo $5$]] === +The [[Definition:Cayley Table|Cayley table]] for $\struct {\Z'_5, \times_5}$ is as follows: +{{:Multiplicative Group of Reduced Residues Modulo 5/Cayley Table}} +\end{proof}<|endoftext|> +\section{Group Generated by Reciprocal of z and 1 minus z} +Tags: Groups of Order 6, Group Generated by Reciprocal of z and 1 minus z + +\begin{theorem} +Let $\struct {S, \circ}$ denote the '''[[Definition:Group Generated by Reciprocal of z and 1 minus z|group generated by $\dfrac 1 z$ and $1 - z$]]'''. +Then $\struct {S, \circ}$ is a [[Definition:Finite Group|finite group]] of [[Definition:Order of Structure|order $6$]]. +\end{theorem} + +\begin{proof} +By definition: +:$S = \set {f_1, f_2, f_3, f_4, f_5, f_6}$ +where $f_1, f_2, \ldots, f_6$ are [[Definition:Complex Function|complex functions]] defined for all $z \in \C \setminus \set {0, 1}$ as: +{{begin-eqn}} +{{eqn | l = \map {f_1} z + | r = z +}} +{{eqn | l = \map {f_2} z + | r = \dfrac 1 {1 - z} +}} +{{eqn | l = \map {f_3} z + | r = \dfrac {z - 1} z +}} +{{eqn | l = \map {f_4} z + | r = \dfrac 1 z +}} +{{eqn | l = \map {f_5} z + | r = 1 - z +}} +{{eqn | l = \map {f_6} z + | r = \dfrac z {z - 1} +}} +{{end-eqn}} +Also by definition, $\circ$ denotes [[Definition:Composition of Mappings|composition of functions]]. +First it is necessary to establish the [[Definition:Cayley Table|Cayley table]] for $\struct {S, \circ}$. +First note that it is apparent by definition of [[Definition:Composition of Mappings|composition of functions]] that: +:$\forall n: f_1 \circ f_n = f_n = f_n \circ f_1$ +It remains to establish the rest of the [[Definition:Composition of Mappings|compositions]] +{{begin-eqn}} +{{eqn | l = f_2 \circ f_2 + | r = \dfrac 1 {1 - \dfrac 1 {1 - z} } +}} +{{eqn | r = \dfrac {1 - z} {1 - z - 1} +}} +{{eqn | r = \dfrac {z - 1} z +}} +{{eqn | r = f_3 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_2 \circ f_3 + | r = \dfrac 1 {1 - \dfrac {z - 1} z} +}} +{{eqn | r = \dfrac z {z - \paren {z - 1} } +}} +{{eqn | r = z +}} +{{eqn | r = f_1 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_2 \circ f_4 + | r = \dfrac 1 {1 - \dfrac 1 z} +}} +{{eqn | r = \dfrac z {z - 1} +}} +{{eqn | r = f_6 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_2 \circ f_5 + | r = \dfrac 1 {1 - \paren {1 - z} } +}} +{{eqn | r = \dfrac 1 z +}} +{{eqn | r = f_4 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_2 \circ f_6 + | r = \dfrac 1 {1 - \dfrac z {z - 1} } +}} +{{eqn | r = \dfrac {z - 1} {z - 1 - z} +}} +{{eqn | r = 1 - z +}} +{{eqn | r = f_5 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_3 \circ f_2 + | r = \dfrac {\dfrac 1 {1 - z} - 1} {\dfrac 1 {1 - z} } +}} +{{eqn | r = \paren {1 - z} \dfrac {1 - \paren {1 - z} } {1 - z} +}} +{{eqn | r = z +}} +{{eqn | r = f_1 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_3 \circ f_3 + | r = \dfrac {\dfrac {z - 1} z - 1} {\dfrac {z - 1} z} +}} +{{eqn | r = \dfrac {z - 1 - z} z \dfrac z {z - 1} +}} +{{eqn | r = \dfrac 1 {1 - z} +}} +{{eqn | r = f_2 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_3 \circ f_4 + | r = \dfrac {\dfrac 1 z - 1} {\dfrac 1 z} +}} +{{eqn | r = z \dfrac {1 - z} z +}} +{{eqn | r = 1 - z +}} +{{eqn | r = f_5 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_3 \circ f_5 + | r = \dfrac {\paren {1 - z} - 1} {1 - z} +}} +{{eqn | r = \dfrac z {z - 1} +}} +{{eqn | r = f_6 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_3 \circ f_6 + | r = \dfrac {\dfrac z {z - 1} - 1} {\dfrac z {z - 1} } +}} +{{eqn | r = \dfrac {z - \paren {z - 1} } {z - 1} \dfrac {z - 1} z +}} +{{eqn | r = \dfrac 1 z +}} +{{eqn | r = f_4 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_4 \circ f_2 + | r = \dfrac 1 {\dfrac 1 {1 - z} } +}} +{{eqn | r = 1 - z +}} +{{eqn | r = f_5 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_4 \circ f_3 + | r = \dfrac 1 {\dfrac {z - 1} z} +}} +{{eqn | r = \dfrac z {z - 1} +}} +{{eqn | r = f_6 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_4 \circ f_4 + | r = \dfrac 1 {1 / z} +}} +{{eqn | r = z +}} +{{eqn | r = f_1 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_4 \circ f_5 + | r = \dfrac 1 {1 - z} +}} +{{eqn | r = f_2 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_4 \circ f_6 + | r = \dfrac 1 {\dfrac z {z - 1} } +}} +{{eqn | r = \dfrac {z - 1} z +}} +{{eqn | r = f_3 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_5 \circ f_2 + | r = 1 - \dfrac 1 {1 - z} +}} +{{eqn | r = \dfrac {1 - z - 1} {1 - z} +}} +{{eqn | r = \dfrac z {z - 1} +}} +{{eqn | r = f_6 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_5 \circ f_3 + | r = 1 - \dfrac {z - 1} z +}} +{{eqn | r = \dfrac {z - \paren {z - 1} } z +}} +{{eqn | r = \dfrac 1 z +}} +{{eqn | r = f_4 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_5 \circ f_4 + | r = 1 - \dfrac 1 z +}} +{{eqn | r = \dfrac {z - 1} z +}} +{{eqn | r = f_3 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_5 \circ f_5 + | r = 1 - \paren {1 - z} +}} +{{eqn | r = z +}} +{{eqn | r = f_1 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_5 \circ f_6 + | r = 1 - \dfrac z {z - 1} +}} +{{eqn | r = \dfrac {z - 1 - z} {z - 1} +}} +{{eqn | r = \dfrac 1 {1 - z} +}} +{{eqn | r = f_2 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_6 \circ f_2 + | r = \dfrac {\dfrac 1 {1 - z} } {\dfrac 1 {1 - z} - 1} +}} +{{eqn | r = \dfrac 1 {1 - z} \dfrac {1 - z} {1 - \paren {1 - z} } +}} +{{eqn | r = \dfrac 1 z +}} +{{eqn | r = f_4 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_6 \circ f_3 + | r = \dfrac {\dfrac {z - 1} z} {\dfrac {z - 1} z - 1} +}} +{{eqn | r = \dfrac {z - 1} z \dfrac z {z - 1 - z} +}} +{{eqn | r = 1 - z +}} +{{eqn | r = f_5 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_6 \circ f_4 + | r = \dfrac {\dfrac 1 z} {\dfrac 1 z - 1} +}} +{{eqn | r = \dfrac 1 z \dfrac z {1 - z} +}} +{{eqn | r = \dfrac 1 {1 - z} +}} +{{eqn | r = f_2 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_6 \circ f_5 + | r = \dfrac {1 - z} {1 - z - 1} +}} +{{eqn | r = \dfrac {z - 1} z +}} +{{eqn | r = f_3 +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = f_6 \circ f_6 + | r = \dfrac {\dfrac z {z - 1} } {\dfrac z {z - 1} - 1} +}} +{{eqn | r = \dfrac z {z - 1} \dfrac {z - 1} {z - 1 - z} +}} +{{eqn | r = z +}} +{{eqn | r = f_1 +}} +{{end-eqn}} +Hence the [[Group Generated by Reciprocal of z and 1 minus z/Cayley Table|Cayley table]] is established: +{{:Group Generated by Reciprocal of z and 1 minus z/Cayley Table}} +Taking the [[Definition:Group Axioms|group axioms]] in turn: +=== $\text G 0$: Closure === +By inspection it can be seen that $\struct {S, \circ}$ is [[Definition:Closed Algebraic Structure|closed]]. +{{qed|lemma}} +=== $\text G 1$: Associativity === +From [[Composition of Mappings is Associative]], it follows that $\struct {S, \circ}$ is [[Definition:Associative Operation|associative]]. +{{qed|lemma}} +=== $\text G 2$: Identity === +We have that: +:$\forall n: f_1 \circ f_n = f_n = f_n \circ f_1$ +Thus $\struct {S, \circ}$ has an [[Definition:Identity Element|identity element]]. +{{qed|lemma}} +=== $\text G 3$: Inverses === +From the above analysis: +{{begin-eqn}} +{{eqn | l = f_1 \circ f_1 + | r = f_1 +}} +{{eqn | l = f_2 \circ f_3 + | r = f_1 +}} +{{eqn | l = f_3 \circ f_2 + | r = f_1 +}} +{{eqn | l = f_4 \circ f_4 + | r = f_1 +}} +{{eqn | l = f_5 \circ f_5 + | r = f_1 +}} +{{eqn | l = f_6 \circ f_6 + | r = f_1 +}} +{{end-eqn}} +Thus every element of $\struct {S, \circ}$ has an [[Definition:Inverse Element|inverse]]. +{{qed|lemma}} +All the [[Definition:Group Axioms|group axioms]] are thus seen to be fulfilled, and so $\struct {S, \circ}$ is a [[Definition:Group|group]]. +$\struct {S, \circ}$ has $6$ [[Definition:Element|elements]] and so is a [[Definition:Finite Group|finite group]] of [[Definition:Order of Structure|order $6$]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Group Generated by Reciprocal of z and Minus z is Klein Four-Group} +Tags: Examples of Group Isomorphisms: Order 4, Klein Four-Group, Group Generated by Reciprocal of z and Minus z + +\begin{theorem} +Let $K_4$ denote the [[Definition:Klein Four-Group|Klein $4$-group]]. +Let $S$ be the [[Group Generated by Reciprocal of z and Minus z|group generated by $1 / z$ and $-z$]]. +Then $K_4$ and $S$ are [[Definition:Isomorphic Algebraic Structures|isomorphic algebraic structures]]. +\end{theorem} + +\begin{proof} +Establish the [[Definition:Mapping|mapping]] $\phi: K_4 \to S$ as follows: +{{begin-eqn}} +{{eqn | l = \map \phi e + | r = z +}} +{{eqn | l = \map \phi a + | r = -z +}} +{{eqn | l = \map \phi b + | r = \dfrac 1 z +}} +{{eqn | l = \map \phi c + | r = -\dfrac 1 z +}} +{{end-eqn}} +From [[Isomorphism by Cayley Table]], the two [[Definition:Cayley Table|Cayley tables]] can be compared by eye to ascertain that $\phi$ is an [[Definition:Isomorphism (Abstract Algebra)|isomorphism]]: +=== [[Klein Four-Group/Cayley Table|Cayley Table of Klein $4$-Group]] === +The [[Definition:Cayley Table|Cayley table]] for $K_4$ is as follows: +{{:Klein Four-Group/Cayley Table}} +=== [[Group Generated by Reciprocal of z and Minus z/Cayley Table|Group Generated by $1 / z$ and $-z$]] === +The [[Definition:Cayley Table|Cayley table]] for $S$ is as follows: +{{:Group Generated by Reciprocal of z and Minus z/Cayley Table}} +\end{proof}<|endoftext|> +\section{Group of Reflection Matrices Order 4 is Klein Four-Group} +Tags: Examples of Group Isomorphisms: Order 4, Klein Four-Group, Group of Reflection Matrices Order 4 + +\begin{theorem} +Let $K_4$ denote the [[Definition:Klein Four-Group|Klein $4$-group]]. +Let $R_4$ be the [[Group of Reflection Matrices Order 4|Group of Reflection Matrices Order $4$]]. +Then $K_4$ and $R_4$ are [[Definition:Isomorphic Algebraic Structures|isomorphic algebraic structures]]. +\end{theorem} + +\begin{proof} +Establish the [[Definition:Mapping|mapping]] $\phi: K_4 \to R_4$ as follows: +{{begin-eqn}} +{{eqn | l = \map \phi e + | r = r_0 +}} +{{eqn | l = \map \phi a + | r = r_1 +}} +{{eqn | l = \map \phi b + | r = r_2 +}} +{{eqn | l = \map \phi c + | r = r_3 +}} +{{end-eqn}} +From [[Isomorphism by Cayley Table]], the two [[Definition:Cayley Table|Cayley tables]] can be compared by eye to ascertain that $\phi$ is an [[Definition:Isomorphism (Abstract Algebra)|isomorphism]]: +=== [[Klein Four-Group/Cayley Table|Cayley Table of Klein $4$-Group]] === +The [[Definition:Cayley Table|Cayley table]] for $K_4$ is as follows: +{{:Klein Four-Group/Cayley Table}} +=== [[Group of Reflection Matrices Order 4/Cayley Table|Group of Reflection Matrices Order $4$]] === +The [[Definition:Cayley Table|Cayley table]] for $S$ is as follows: +{{:Group of Reflection Matrices Order 4/Cayley Table}} +\end{proof}<|endoftext|> +\section{Multiplicative Group of Reduced Residues Modulo 8 is Klein Four-Group} +Tags: Examples of Group Isomorphisms: Order 4, Klein Four-Group, Multiplicative Group of Reduced Residues Modulo 8 + +\begin{theorem} +Let $K_4$ denote the [[Definition:Klein Four-Group|Klein $4$-group]]. +Let $R_4$ be the [[Multiplicative Group of Reduced Residues Modulo 8|multiplicative group of reduced residues Modulo $8$]]. +Then $K_4$ and $R_4$ are [[Definition:Isomorphic Algebraic Structures|isomorphic algebraic structures]]. +\end{theorem} + +\begin{proof} +Establish the [[Definition:Mapping|mapping]] $\phi: K_4 \to R_4$ as follows: +{{begin-eqn}} +{{eqn | l = \map \phi e + | r = \eqclass 1 8 +}} +{{eqn | l = \map \phi a + | r = \eqclass 3 8 +}} +{{eqn | l = \map \phi b + | r = \eqclass 5 8 +}} +{{eqn | l = \map \phi c + | r = \eqclass 7 8 +}} +{{end-eqn}} +From [[Isomorphism by Cayley Table]], the two [[Definition:Cayley Table|Cayley tables]] can be compared by eye to ascertain that $\phi$ is an [[Definition:Isomorphism (Abstract Algebra)|isomorphism]]: +=== [[Klein Four-Group/Cayley Table|Cayley Table of Klein $4$-Group]] === +The [[Definition:Cayley Table|Cayley table]] for $K_4$ is as follows: +{{:Klein Four-Group/Cayley Table}} +=== [[Multiplicative Group of Reduced Residues Modulo 8/Cayley Table|Multiplicative Group of Reduced Residues Modulo $8$]] === +The [[Definition:Cayley Table|Cayley table]] for $S$ is as follows: +{{:Multiplicative Group of Reduced Residues Modulo 8/Cayley Table}} +\end{proof}<|endoftext|> +\section{Klein Four-Group and Group of Cyclic Group of Order 4 are not Isomorphic} +Tags: Examples of Group Isomorphisms: Order 4, Klein Four-Group, Cyclic Group of Order 4, Klein Four-Group and Group of Cyclic Group of Order 4 are not Isomorphic + +\begin{theorem} +The [[Definition:Klein Four-Group|Klein $4$-group]] $K_4$ and the [[Definition:Cyclic Group|cyclic group]] of [[Definition:Order of Structure|order $4$]] $C_4$ are not [[Definition:Group Isomorphism|isomorphic]]. +\end{theorem} + +\begin{proof} +Recall the [[Klein Four-Group/Cayley Table|Cayley table]] for $K_4$: +{{:Klein Four-Group/Cayley Table}} +From [[Finite Cyclic Group is Isomorphic to Integers under Modulo Addition]], $C_4$ can be exemplified using the [[Definition:Additive Group of Integers Modulo 4|additive group of integers modulo $4$]]. +Recall the [[Modulo Addition/Cayley Table/Modulo 4|Cayley table]] for $\struct {\Z_4, +_4}$: +{{:Modulo Addition/Cayley Table/Modulo 4}} +Note that all [[Definition:Element|elements]] of $K_4$ are [[Definition:Self-Inverse Element|self-inverse]]. +However, for example: +:$\eqclass 1 4 +_4 \eqclass 1 4 = \eqclass 2 4$ +and so $\eqclass 1 4$ is not [[Definition:Self-Inverse Element|self-inverse]]. +Thus there can be no [[Definition:Bijection|bijection]] between $K_4$ and $\struct {\Z_4, +_4}$ such that: +:$\forall a, b \in K_4: \map \phi a +_4 \map \phi b = \map \phi {a b}$ +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Order Generating iff Not Preceding implies There Exists Element Preceding and Not Preceding} +Tags: Complete Lattices, Order Generating + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $X$ be a [[Definition:Subset|subset]] of $S$. +Then +:$X$ is [[Definition:Order Generating|order generating]] +{{iff}} +:$\forall x, y \in S: \left({ y \npreceq x \implies \exists p \in X: x \preceq p \land y \npreceq p}\right)$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $X$ be [[Definition:Order Generating|order generating]]. +Let $x, y \in S$ such that +:$y \npreceq x$ +By [[Order Generating iff Every Element is Infimum]]: +:$\exists P \subseteq X: x = \inf P$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$y$ is [[Definition:Lower Bound of Set|lower bound]] for $P \implies y \preceq x$ +By definition of [[Definition:Lower Bound of Set|lower bound]]: +:$\exists p \in P: y \npreceq p$ +Thus by definition of [[Definition:Subset|subset]]: +:$p \in X$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$x$ is [[Definition:Lower Bound of Set|lower bound]] for $P$. +Thus by definition of [[Definition:Lower Bound of Set|lower bound]]: +:$x \preceq p$ +Thus +:$y \npreceq p$ +{{qed|lemma}} +=== Necessary Condition === +Suppose that +:$\forall x, y \in S: \left({ y \npreceq x \implies \exists p \in X: x \preceq p \land y \npreceq p}\right)$ +Let $x \in S$. +Thus by definition of [[Definition:Complete Lattice|complete lattice]]: +:$x^\succeq \cap X$ admits an [[Definition:Infimum of Set|infimum]]. +Define $y := \inf \left({x^\succeq \cap X}\right)$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$y$ is [[Definition:Lower Bound of Set|lower bound]] for $x^\succeq \cap X$ +We will prove that +:$x$ is [[Definition:Lower Bound of Set|lower bound]] for $x^\succeq \cap X$ +Let $a \in x^\succeq \cap X$ +By definition of [[Definition:Set Intersection|intersection]]: +:$a \in x^\succeq$ +Thus by definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$x \preceq a$ +{{qed|lemma}} +By definition of [[Definition:Infimum of Set|infimum]]: +:$x \preceq y$ +By definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$y \nprec x$ +It remains to prove that +:$y = x$ +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$y \ne x$ +By definition of $\prec$ +:$y \npreceq x$ or $y = x$ +Case $y \npreceq x$ +By assumption: +:$\exists p \in X: x \preceq p \land y \npreceq p$ +By definition of [[Definition:Upper Closure/Element|upper closure of element]]: +:$p \in x^\succeq$ +By definition of [[Definition:Set Intersection|intersection]]: +:$p \in x^\succeq \cap X$ +By definition of [[Definition:Lower Bound of Set|lower bound]]: +:$y \preceq p$ +Thus this contradicts $y \npreceq p$ +Case $y = x$ +Thus this contradicts $y \ne x$ +{{qed}} +\end{proof}<|endoftext|> +\section{Permutation Induces Equivalence Relation/Corollary} +Tags: Symmetric Groups, Equivalence Relations + +\begin{theorem} +:$i \mathrel {\mathcal R_\pi} j$ {{iff}} $i$ and $j$ are in the same [[Definition:Cyclic Permutation|cycle]] of $\pi$. +\end{theorem} + +\begin{proof} +We have that [[Permutation Induces Equivalence Relation]]. +The [[Definition:Equivalence Class|equivalence classes]] of that [[Definition:Equivalence Relation|equivalence relation]] are the [[Definition:Cyclic Permutation|cycles]] of $\pi$. +Hence the result by definition of [[Definition:Equivalence Class|equivalence class]]. +{{qed}} +[[Category:Symmetric Groups]] +[[Category:Equivalence Relations]] +r1yzoalv7uf4e0a7t9ld6j0e4d4r65j +\end{proof}<|endoftext|> +\section{Order of Group Element not less than Order of Power} +Tags: Order of Group Elements, Order of Group Element not less than Order of Power + +\begin{theorem} +Let $\left({G, \circ}\right)$ be a [[Definition:Group|group]] whose [[Definition:Identity Element|identity]] is $e$. +Let $g \in G$ be an [[Definition:Element|element]] of $g$. +Let $\left\lvert{g}\right\rvert$ denote the [[Definition:Order of Group Element|order]] of $g$ in $G$. +Then: +:$\forall m \in \Z: \left\lvert{g^m}\right\rvert \le \left\lvert{g}\right\rvert$ +where $g^m$ denotes the [[Definition:Power of Group Element|$m$th power of $g$ in $G$]]. +\end{theorem} + +\begin{proof} +Let $\left\lvert{g}\right\rvert = n$. +Then from [[Order of Power of Group Element]]: +:$\forall m \in \Z: \left\lvert{g^m}\right\rvert = \dfrac n {\gcd \left\{ {m, n}\right\} }$ +where $\gcd \left\{ {m, n}\right\}$ denotes the [[Definition:Greatest Common Divisor of Integers|greatest common divisor]] of $m$ and $n$. +The result follows from [[Greatest Common Divisor is at least 1]]. +{{qed}} +\end{proof} + +\begin{proof} +Let $g^n = e$. +Let $h = g^m$. +Then: +:$h^n = g^{m n} = \paren {g^n}^m = e^m = e$ +Hence by definition of [[Definition:Order of Group Element|order of group element]]: +:$\order h \le n$ +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Order of Group Element equals Order of Coprime Power} +Tags: Order of Group Elements, Order of Group Element equals Order of Coprime Power + +\begin{theorem} +Let $\struct {G, \circ}$ be a [[Definition:Group|group]] whose [[Definition:Identity Element|identity]] is $e$. +Let $g \in G$ be an [[Definition:Element|element]] of $g$. +Let $\order g$ denote the [[Definition:Order of Group Element|order]] of $g$ in $G$. +Then: +:$\forall m \in \Z: \order {g^m} = \order g \iff m \perp \order g$ +where: +:$g^m$ denotes the [[Definition:Power of Group Element|$m$th power of $g$ in $G$]] +:$\perp$ denotes [[Definition:Coprime Integers|coprimality]]. +\end{theorem} + +\begin{proof} +Let $\order g = n$. +Then from [[Order of Power of Group Element]]: +:$\forall m \in \Z: \order {g^m} = \dfrac n {\gcd \set {m, n}}$ +where $\gcd \set {m, n}$ denotes the [[Definition:Greatest Common Divisor of Integers|greatest common divisor]] of $m$ and $n$. +Thus: +:$\order {g^m} = \order g \iff \gcd \set {m, n} = 1$ +The result follows by definition of [[Definition:Coprime Integers|coprime integers]]. +{{qed}} +\end{proof} + +\begin{proof} +Let $\order g = n$. +=== Necessary Condition === +Let $m \perp n$. +Then by [[Bézout's Lemma]]: +:$\exists x, y \in \Z: x m + y n = 1$ +Let $h = g^m$. +Then: +:$h^x = g^{m x} = g^{1 - y n} = g g^{- y n} = g e = g$ +and so $g$ is also a [[Definition:Power of Group Element|power]] of $h$. +Hence from [[Order of Group Element not less than Order of Power]]: +:$\order g \le \order h \le \order g$ +and it follows that: +:$\order g = \order h$ +{{qed|lemma}} +=== Sufficient Condition === +We prove the [[Definition:Contrapositive Statement|contrapositive]]. +Suppose $m \not \perp n$. +Then: +:$\exists d \in \Z_{>1}: \exists a, b \in \Z: m = a d \land n = b d$ +Let $h = g^m$. +Then: +:$h^b = \paren {g^m}^{n/d} = g^{a n} = \paren {g^n}^a = e^a = e$ +Hence: +:$\order h \le b < n$ +and it follows that: +:$\order g \ne \order h$ +{{qed}} +\end{proof}<|endoftext|> +\section{Unique Composition of Group Element whose Order is Product of Coprime Integers} +Tags: Order of Group Elements + +\begin{theorem} +Let $\struct {G, \circ}$ be a [[Definition:Group|group]] whose [[Definition:Identity Element|identity]] is $e$. +Let $g \in G$ be an [[Definition:Element|element]] of $g$. +Let: +:$\order g = m n$ +where: +:$\order g$ denotes the [[Definition:Order of Group Element|order]] of $g$ in $G$ +:$m$ and $n$ are [[Definition:Coprime Integers|coprime integers]]. +Then $g$ can be expressed [[Definition:Unique|uniquely]] as the [[Definition:Product Element|product]] of two [[Definition:Commuting Elements|commuting elements]] $a$ and $b$ of [[Definition:Order of Group Element|order]] $m$ and $n$ respectively. +\end{theorem} + +\begin{proof} +Let $g_1 = g^n$ and $g_2 = g^m$. +By [[Powers of Group Element Commute]], $g_1$ and $g_2$ [[Definition:Commuting Elements|commute]]. +We have: +:${g_1}^m = g^{n m} = e$ +:${g_2}^n = g^{m n} = e$ +It follows that: +:the [[Definition:Order of Group Element|order]] of $g_1$ is $m$ +:the [[Definition:Order of Group Element|order]] of $g_2$ is $n$ +otherwise if either $g_1$ or $g_2$ were of a smaller [[Definition:Order of Group Element|order]] then $g$ would also be of a smaller [[Definition:Order of Group Element|order]]. +By [[Bézout's Lemma]]: +:$\exists u, v \in \Z: u n + v m = 1$ +as $m \perp n$. +Thus: +:$g = g^{u n + v m} = \paren {g^n}^u \paren {g^m}^v = {g_1}^u {g_2}^v$ +Also by [[Bézout's Lemma]]: +:$u \perp m$ +and: +:$v \perp n$ +Thus by [[Order of Group Element equals Order of Coprime Power]]: +:$\order { {g_1}^u} = m$ +and: +:$\order { {g_2}^v} = n$ +We have that $g_1$ and $g_2$ [[Definition:Commute|commute]]. +So by [[Commutativity of Powers in Group]], ${g_1}^u$ and ${g_2}^v$ also [[Definition:Commuting Elements|commute]]. +Putting $a = g_1^u$ and $b = g_2^v$, we have $a$ and $b$ which satisfy the required conditions. +It remains to prove [[Definition:Unique|uniqueness]]. +Suppose that: +:$(1): \quad g = r_1 r_2 = s_1 s_2$ +where: +:$r_1$ and $r_2$ [[Definition:Commuting Elements|commute]] +:$s_1$ and $s_2$ [[Definition:Commuting Elements|commute]] +:$\order {r_1} = \order {s_1} = m$ +:$\order {r_2} = \order {s_2} = n$ +Raising $(1)$ to the [[Definition:Power of Group Element|$n u$th power]]: +:$g^{n u} = {r_1}^{n u} {r_2}^{n u} = {s_1}^{n u} {s_2}^{n u}$ +and so: +{{begin-eqn}} +{{eqn | l = {r_1}^{n u} {r_2}^{n u} + | r = {s_1}^{n u} {s_2}^{n u} + | c = +}} +{{eqn | l = {r_1}^{n u} \paren { {r_2}^n}^u + | r = {s_1}^{n u} \paren { {s_2}^n}^u + | c = +}} +{{eqn | l = {r_1}^{n u} e^u + | r = {s_1}^{n u} e^u + | c = as $\order {r_2} = \order {s_2} = n$ +}} +{{eqn | ll= \leadsto + | l = {r_1}^{n u} + | r = {s_1}^{n u} + | c = +}} +{{eqn | ll= \leadsto + | l = {r_1}^{1 - m v} + | r = {s_1}^{1 - m v} + | c = +}} +{{eqn | ll= \leadsto + | l = r_1 \paren { {r_1}^m}^{-v} + | r = s_1 \paren { {s_1}^m}^{-v} + | c = +}} +{{eqn | ll= \leadsto + | l = r_1 e^{-v} + | r = s_1 e^{-v} + | c = +}} +{{eqn | ll= \leadsto + | l = r_1 + | r = s_1 + | c = +}} +{{end-eqn}} +It follows directly from $(1)$ that $r_2 = s_2$. +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Order of Cyclic Group equals Order of Generator} +Tags: Order of Group Elements, Order of Groups, Cyclic Groups + +\begin{theorem} +Let $G$ be a [[Definition:Finite Group|finite]] [[Definition:Cyclic Group|cyclic group]] which is [[Definition:Generator of Cyclic Group|generated]] by $a \in G$. +Then: +:$\order a = \order G$ +where: +:$\order a$ denotes the [[Definition:Order of Group Element|order]] of $a$ in $G$ +:$\order G$ denotes the [[Definition:Order of Structure|order]] of $G$. +\end{theorem} + +\begin{proof} +Let $\order a = n$. +From [[List of Elements in Finite Cyclic Group]]: +:$G = \set {a_0, a_1, \ldots, a_{n - 1} }$ +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Group whose Order equals Order of Element is Cyclic} +Tags: Order of Group Elements, Order of Groups, Cyclic Groups + +\begin{theorem} +Let $G$ be a [[Definition:Finite Group|finite group]] of [[Definition:Order of Group Element|order]] $n$. +Let $g \in G$ have [[Definition:Order of Group Element|order]] $n$. +Then $G$ is a [[Definition:Cyclic Group|cyclic group]] which is [[Definition:Generator of Cyclic Group|generated]] by $g$. +\end{theorem} + +\begin{proof} +The [[Definition:Subgroup|subgroup]] of $G$ [[Definition:Generator of Subgroup|generated]] by $g$ is: +:$\gen g = \set {g^0, g^1, g^2, \ldots, g^{n - 1} }$ +This contains $n$ [[Definition:Element|elements]]. +Thus: +:$\gen g = G$ +and the result follows by definition of [[Definition:Cyclic Group|cyclic group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Integer Powers of 2 under Multiplication form Infinite Abelian Group} +Tags: Examples of Abelian Groups, Examples of Infinite Groups + +\begin{theorem} +Let $S$ be the [[Definition:Set|set]] of [[Definition:Integer|integers]] defined as: +:$S = \set {2^k: k \in \Z}$ +Then $\struct {S, \times}$ is an [[Definition:Infinite Group|infinite]] [[Definition:Abelian Group|abelian group]]. +\end{theorem} + +\begin{proof} +It can be seen by inspection that $S \subseteq \Q_{>0}$. +That is, all the [[Definition:Element|elements]] of $S$ are [[Definition:Strictly Positive Rational Number|strictly positive rational numbers]]. +From [[Strictly Positive Rational Numbers under Multiplication form Countably Infinite Abelian Group]]: +:$\struct {\Q_{>0}, \times}$ is an [[Definition:Infinite Group|infinite]] [[Definition:Abelian Group|abelian group]]. +It is noted that $S$ is an [[Definition:Infinite Set|infinite set]] and so trivially $S \ne \varnothing$. +Let $a, b \in S$. +Then: +:$\exists k_1 \in \Z: a = 2^{k_1}$ +:$\exists k_2 \in \Z: b = 2^{k_2}$ +We have that: +:$\dfrac 1 {2^{k_2} } 2^{k_2} = 1$ +and so $\dfrac 1 {2^{k_2} } = 2^{-k_2} = b^{-1}$ is the [[Definition:Inverse Element|inverse]] of $b \in \struct {\Q_{>0}, \times}$. +Then we have: +{{begin-eqn}} +{{eqn | l = a \times b^{-1} + | r = 2^{k_1} \times \dfrac 1 {2^{k_2} } + | c = +}} +{{eqn | r = 2^{k_1 - k_2} + | c = +}} +{{end-eqn}} +We have that: +:$k_1 + k_2 \in \Z$ +and so $a \times b^{-1} \in \S$. +Hence by the [[One-Step Subgroup Test]], $\struct {S, \times}$ is a [[Definition:Subgroup|subgroup]] of $\struct {\Q_{>0}, \times}$. +It has been established that $S$ is an [[Definition:Infinite Set|infinite set]]. +Hence by definition $\struct {S, \times}$ is an [[Definition:Infinite Group|infinite group]]. +Finally, from [[Subgroup of Abelian Group is Abelian]], $\struct {S, \times}$ is an [[Definition:Abelian Group|abelian group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Numbers of form 1 + 2m over 1 + 2n form Infinite Abelian Group under Multiplication} +Tags: Examples of Abelian Groups, Examples of Infinite Groups + +\begin{theorem} +Let $S$ be the [[Definition:Set|set]] of [[Definition:Integer|integers]] defined as: +:$S = \set {\dfrac {1 + 2 m} {1 + 2 n}: m, n \in \Z}$ +Then $\struct {S, \times}$ is an [[Definition:Infinite Group|infinite]] [[Definition:Abelian Group|abelian group]]. +\end{theorem} + +\begin{proof} +Let $k \in \Z$. +Then $1 + 2 k \ne 0$. +Thus: +:$\forall x \in S: x \in \Q_{\ne 0}$ +Thus by definition of [[Definition:Subset|subset]]: +:$S \subseteq \Q_{\ne 0}$ +From [[Non-Zero Rational Numbers under Multiplication form Abelian Group]]: +:$\struct {\Q_{\ne 0}, \times}$ is an [[Definition:Infinite Group|infinite]] [[Definition:Abelian Group|abelian group]]. +It is noted that $S$ is an [[Definition:Infinite Set|infinite set]] and so trivially $S \ne \varnothing$. +Consider $a = \dfrac {1 + 2 m} {1 + 2 n} \in S$. +We have that: +:$\dfrac {1 + 2 m} {1 + 2 n} \times \dfrac {1 + 2 n} {1 + 2 m} = 1$ +and so $\dfrac {1 + 2 n} {1 + 2 m}$ is the [[Definition:Inverse Element|inverse]] of $b \in \struct {\Q_{>0}, \times}$. +By inspection it can be seen that $b^{-1} \in S$. +Let $a, b \in S$. +Then: +:$\exists m_1, n_1 \in \Z: a = \dfrac {1 + 2 m_1} {1 + 2 n_1}$ +:$\exists m_2, n_2 \in \Z: b = \dfrac {1 + 2 m_2} {1 + 2 n_2}$ +Then we have: +{{begin-eqn}} +{{eqn | l = a \times b + | r = \dfrac {1 + 2 m_1} {1 + 2 n_1} \dfrac {1 + 2 m_2} {1 + 2 n_2} + | c = +}} +{{eqn | r = \dfrac {\paren {1 + 2 m_1} \paren {1 + 2 m_2} } {\paren {1 + 2 n_1} \paren {1 + 2 n_2} } + | c = +}} +{{eqn | r = \dfrac {1 + 2 m_1 + 2 m_2 + 4 m_1 m_2} {1 + 2 n_1 + 2 n_2 + 4 n_1 n_2} + | c = +}} +{{eqn | r = \dfrac {1 + 2 \paren {m_1 + m_2 + 2 m_1 m_2} } {1 + 2 \paren {n_1 + n_2 + 2 n_1 n_2} } + | c = +}} +{{eqn | r = \dfrac {1 + 2 m} {1 + 2 n} + | c = where $m = m_1 + m_2 + 2 m_1 m_2, n = n_1 + n_2 + 2 n_1 n_2$ +}} +{{end-eqn}} +Hence by the [[Two-Step Subgroup Test]], $\struct {S, \times}$ is a [[Definition:Subgroup|subgroup]] of $\struct {\Q_{>0}, \times}$. +It has been established that $S$ is an [[Definition:Infinite Set|infinite set]]. +Hence by definition $\struct {S, \times}$ is an [[Definition:Infinite Group|infinite group]]. +Finally, from [[Subgroup of Abelian Group is Abelian]], $\struct {S, \times}$ is an [[Definition:Abelian Group|abelian group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Set of Meet Irreducible Elements Excluded Top is Order Generating} +Tags: Continuous Lattices, Order Generating, Meet Irreducible + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Continuous Ordered Set|continuous]] [[Definition:Complete Lattice|complete lattice]]. +Let $X = \mathit{IRR}\left({L}\right) \setminus \left\{ {\top}\right\}$ +where $\mathit{IRR}\left({L}\right)$ denotes the [[Definition:Set|set]] of all [[Definition:Meet Irreducible|meet irreducible]] [[Definition:Element|element]] of $S$, +:$\top$ denotes the [[Definition:Top (Lattice Theory)|top]] of $L$. +Then $X$ is [[Definition:Order Generating|order generating]]. +\end{theorem} + +\begin{proof} +We will prove that +:$\forall x, y \in S: \left({ y \npreceq x \implies \exists p \in X: x \preceq p \land y \npreceq p }\right)$ +Let $x, y \in S$ such that +:$y \npreceq x$ +By [[Not Preceding implies There Exists Meet Irreducible Element Not Preceding]] +:$\exists p \in S: p$ is [[Definition:Meet Irreducible|meet irreducible]] and $x \preceq p$ and $y \npreceq p$ +By definition of [[Definition:Greatest Element|greatest element]]: +:$p \ne \top$ and $p \in \mathit{IRR}\left({L}\right)$ +By definitions of [[Definition:Set Difference|difference]] and [[Definition:Singleton|singleton]]: +:$p \in X$ +Thus +:$\exists p \in X: x \preceq p \land y \npreceq p$ +{{qed|lemma}} +Hence by [[Order Generating iff Not Preceding implies There Exists Element Preceding and Not Preceding]]: +:$X$ is [[Definition:Order Generating|order generating]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Superset of Order Generating is Order Generating} +Tags: Complete Lattices, Order Generating + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $X, Y$ be [[Definition:Subset|subsets]] of $S$ such that +:$X$ is [[Definition:Order Generating|order generating]] +and +:$X \subseteq Y$ +Then $Y$ is [[Definition:Order Generating|order generating]]. +\end{theorem} + +\begin{proof} +Let $x \in S$. +Thus by definition of [[Definition:Complete Lattice|complete lattice]]: +:$x^\succeq \cap Y$ admits an [[Definition:Infimum of Set|infimum]]. +By definition of [[Definition:Complete Lattice|complete lattice]]: +:$x^\succeq$ admits an [[Definition:Infimum of Set|infimum]] +and +:$x^\succeq \cap X$ admits an [[Definition:Infimum of Set|infimum]]. +By [[Intersection is Subset]]: +:$x^\succeq \cap Y \subseteq x^\succeq$ +By [[Infimum of Subset]]: +:$\inf \left({x^\succeq}\right) \preceq \inf \left({x^\succeq \cap Y}\right)$ +By [[Infimum of Upper Closure of Element]]: +:$x \preceq \inf \left({x^\succeq \cap Y}\right)$ +By [[Set Intersection Preserves Subsets/Corollary]]: +:$x^\succeq \cap X \subseteq x^\succeq \cap Y$ +By [[Infimum of Subset]]: +:$\inf \left({x^\succeq \cap Y}\right) \preceq \inf \left({x^\succeq \cap X}\right)$ +By definition of [[Definition:Order Generating|order generating]]: +:$\inf \left({x^\succeq \cap Y}\right) \preceq x$ +Thus by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$x = \inf \left({x^\succeq \cap Y}\right)$ +{{qed}} +\end{proof}<|endoftext|> +\section{Modulus 1 Rational Argument Complex Numbers under Multiplication form Infinite Abelian Group} +Tags: Examples of Abelian Groups, Examples of Infinite Groups + +\begin{theorem} +Let $S$ be the [[Definition:Set|set]] defined as: +:$S = \set {\cos \theta + i \sin \theta: \theta \in \Q}$ +Then the [[Definition:Algebraic Structure|algebraic structure]] $\struct {S, \times}$ is an [[Definition:Infinite Group|infinite]] [[Definition:Abelian Group|abelian group]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Polar Form of Complex Number|polar form of complex numbers]], the [[Definition:Element|elements]] of $S$ are also [[Definition:Element|elements]] of the [[Definition:Circle Group|circle group]] $\struct {K, \times}$: +:$K = \set {z \in \C: \cmod z = 1}$ +$S$ is [[Definition:Infinite Set|infinite]] by construction. +Thus $S \subseteq C$ and trivially $S \ne \O$. +Let $a, b \in S$. +Then: +:$a = \cos \theta_1 + i \sin \theta_1$ +and: +:$b = \cos \theta_2 + i \sin \theta_2$ +for some $\theta_1, \theta_2 \in \Q$. +We have that: +{{begin-eqn}} +{{eqn | l = a \times b + | r = \paren {\cos \theta_1 + i \sin \theta_1} \paren {\cos \theta_2 + i \sin \theta_2} + | c = +}} +{{eqn | r = \map \cos {\theta_1 + \theta_2} + i \map \sin {\theta_1 + \theta_2} + | c = +}} +{{eqn | o = \in + | r = S + | c = +}} +{{end-eqn}} +and: +{{begin-eqn}} +{{eqn | l = b^{-1} + | r = \cos \theta_2 - i \sin \theta_2 + | c = +}} +{{eqn | o = \in + | r = S + | c = +}} +{{end-eqn}} +Hence by the [[Two-Step Subgroup Test]], $\struct {S, \times}$ is a [[Definition:Subgroup|subgroup]] of $\struct {K, \times}$. +It has been established that $S$ is an [[Definition:Infinite Set|infinite set]]. +Hence by definition $\struct {S, \times}$ is an [[Definition:Infinite Group|infinite group]]. +Finally, from [[Subgroup of Abelian Group is Abelian]], $\struct {S, \times}$ is an [[Definition:Abelian Group|abelian group]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Inversion Mapping is Automorphism iff Group is Abelian} +Tags: Inversion Mappings, Abelian Groups, Group Automorphisms + +\begin{theorem} +Let $\struct {G, \circ}$ be a [[Definition:Group|group]]. +Let $\iota: G \to G$ be the [[Definition:Inversion Mapping|inversion mapping]] on $G$, defined as: +:$\forall g \in G: \map \iota g = g^{-1}$ +Then $\iota$ is an [[Definition:Group Automorphism|automorphism]] {{iff}} $G$ is [[Definition:Abelian Group|abelian]]. +\end{theorem} + +\begin{proof} +From [[Inversion Mapping is Permutation]], $\iota$ is a [[Definition:Permutation|permutation]]. +It remains to be shown that $\iota$ has the [[Definition:Morphism Property|morphism property]] {{iff}} $G$ is [[Definition:Abelian Group|abelian]]. +=== Sufficient Condition === +Suppose $\iota$ is an [[Definition:Group Automorphism|automorphism]]. +Then: +{{begin-eqn}} +{{eqn | l = \forall x, y \in G: \map \iota {x \circ y} + | r = \map \iota x \circ \map \iota y + | c = {{Defof|Morphism Property}} +}} +{{eqn | ll= \leadsto + | l = \paren {x \circ y}^{-1} + | r = x^{-1} \circ y^{-1} + | c = Definition of $\iota$ +}} +{{end-eqn}} +Thus from [[Inverse of Commuting Pair]], $x$ [[Definition:Commute|commutes]] with $y$. +This holds for all $x, y \in G$. +So $\struct {G, \circ}$ is [[Definition:Abelian Group|abelian]] by definition. +{{qed|lemma}} +=== Necessary Condition === +Let $\struct {G, \circ}$ be [[Definition:Abelian Group|abelian]]. +{{begin-eqn}} +{{eqn | l = \forall x, y \in G: \paren {x \circ y}^{-1} + | r = x^{-1} \circ y^{-1} + | c = [[Inverse of Commuting Pair]] +}} +{{eqn | ll= \leadsto + | l = \map \iota {x \circ y} + | r = \map \iota x \circ \map \iota y + | c = Definition of $\iota$ +}} +{{end-eqn}} +Thus $\iota$ has the [[Definition:Morphism Property|morphism property]] and is therefore an [[Definition:Group Automorphism|automorphism]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Even Order Group has Odd Number of Order 2 Elements} +Tags: Finite Groups, Order of Group Elements + +\begin{theorem} +Let $G$ be a [[Definition:Group|group]] whose [[Definition:Identity Element|identity]] is $e$. +Let $G$ be of even [[Definition:Order of Structure|order]]. +Then $G$ has an [[Definition:Odd Integer|odd number]] of [[Definition:Element|elements]] of [[Definition:Order of Group Element|order $2$]]. +\end{theorem} + +\begin{proof} +Let $S = \set {x \in G: \order x > 2}$ be the [[Definition:Set|set]] of all [[Definition:Element|elements]] of $G$ whose [[Definition:Order of Group Element|order]] is strictly greater than $2$. +Let $h \in S$. +Then from [[Order of Group Element equals Order of Inverse]]: +:$h^{-1} \in S$. +Because $\order h > 2$ it follows that $h^{-1} \ne h$ by definition of [[Definition:Self-Inverse Element|self-inverse]]. +Thus every [[Definition:Element|element]] in $S$ can be paired off with its [[Definition:Inverse Element|inverse]] which is also in $S$. +It follows that $S$ has an [[Definition:Even Integer|even number]] of [[Definition:Element|elements]]. +Thus $G \setminus S$ also contains an [[Definition:Even Integer|even number]] of [[Definition:Element|elements]]. +From [[Identity is Only Group Element of Order 1]], there is precisely $1$ [[Definition:Element|element]] of $G$ whose [[Definition:Order of Group Element|order]] is less than $2$. +This leaves $G$ with an [[Definition:Odd Integer|odd number]] of [[Definition:Element|elements]] of order $2$. +{{qed}} +\end{proof}<|endoftext|> +\section{Roots of Resolvent of Cubic} +Tags: Cubic Equations + +\begin{theorem} +Let $P$ be the [[Definition:Cubic Equation|cubic equation]]: +: $a x^3 + b x^2 + c x + d = 0$ with $a \ne 0$ +Let $\map r P$ be the [[Definition:Cubic Equation/Resolvent|resolvent equation]] of $P$, given by: +: $u^6 - 2 R u^3 - Q^3$ +Let the [[Definition:Root of Polynomial|roots]] of $P$ be $\alpha_1, \alpha_2, \alpha_3$. +Then the [[Definition:Root of Polynomial|roots]] of $\map r P$ can be expressed as: +{{begin-eqn}} +{{eqn | l = v + | r = \frac 1 3 \paren {\alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3} +}} +{{eqn | l = \omega v + | r = \frac 1 3 \paren {\alpha_3 + \omega \alpha_1 + \omega^2 \alpha_2} + | c = +}} +{{eqn | l = \omega^2 v + | r = \frac 1 3 \paren {\alpha_2 + \omega \alpha_3 + \omega^2 \alpha_1} + | c = +}} +{{eqn | l = u + | r = \frac 1 3 \paren {\alpha_1 + \omega \alpha_3 + \omega^2 \alpha_2} +}} +{{eqn | l = \omega u + | r = \frac 1 3 \paren {\alpha_2 + \omega \alpha_1 + \omega^2 \alpha_3} + | c = +}} +{{eqn | l = \omega^2 u + | r = \frac 1 3 \paren {\alpha_3 + \omega \alpha_2 + \omega^2 \alpha_1} + | c = +}} +{{end-eqn}} +where $\omega = -\dfrac {-1 + \sqrt {-3} } 2$ is one of the [[Primitive Complex Cube Roots of Unity|primitive (complex) cube roots of $1$]]. +\end{theorem}<|endoftext|> +\section{Roots of Complex Number/Examples/Cube Roots} +Tags: Examples of Complex Roots + +\begin{theorem} +Let $z := \polar {r, \theta}$ be a [[Definition:Polar Form of Complex Number|complex number expressed in polar form]], such that $z \ne 0$. +Then the [[Definition:Complex Root|complex cube roots]] of $z$ are given by: +:$z^{1 / 3} = \set {r^{1 / 3} \paren {\map \cos {\dfrac {\theta + 2 \pi k} 3} + i \, \map \sin {\dfrac {\theta + 2 \pi k} 3} }: k \in \set {0, 1, 2} }$ +There are $3$ [[Definition:Distinct Elements|distinct]] such [[Definition:Complex Root|complex cube roots]]. +These can also be expressed as: +:$z^{1 / 3} = \set {r^{1 / 3} e^{i \paren {\theta + 2 \pi k} / 3}: k \in \set {0, 1, 2} }$ +or: +:$z^{1 / 3} = \set {r^{1 / 3} e^{i \theta / 3} \omega^k: k \in \set {0, 1, 2} }$ +where $\omega = e^{2 i \pi / 3} = -\dfrac 1 2 + \dfrac {i \sqrt 3} 2$ is the [[Definition:First Complex Root of Unity|first cube root of unity]]. +\end{theorem} + +\begin{proof} +An example of [[Roots of Complex Number]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Roots of Complex Number/Corollary} +Tags: Complex Roots + +\begin{theorem} +Let $z := \polar {r, \theta}$ be a [[Definition:Polar Form of Complex Number|complex number expressed in polar form]], such that $z \ne 0$. +Let $n \in \Z_{>0}$ be a [[Definition:Strictly Positive Integer|(strictly) positive integer]]. +Let $w$ be one of the [[Definition:Complex Root|complex $n$th roots]] of $z$. +Then the [[Definition:Complex Root|$n$th roots]] of $z$ are given by: +:$z^{1 / n} = \set {w \epsilon^k: k \in \set {1, 2, \ldots, n - 1} }$ +where $\epsilon$ is a [[Definition:Primitive Root of Unity|primitive $n$th root of unity]]. +\end{theorem} + +\begin{proof} +By definition of [[Definition:Primitive Complex Root of Unity|primitive complex $n$th root of unity]]: +:$\omega = e^{2 m i \pi k}$ +for some $m \in \Z: 1 \le m < n$. +Thus: +{{begin-eqn}} +{{eqn | l = \paren {w \omega^k}^n + | r = w^n \paren {e^{2 m i \pi k / n} }^n + | c = +}} +{{eqn | r = z e^{2 m i \pi k} + | c = +}} +{{eqn | r = z \paren {e^{2 i \pi} }^{m k} + | c = +}} +{{eqn | r = z \times 1^{m k} + | c = +}} +{{eqn | r = z + | c = +}} +{{end-eqn}} +This demonstrates that $w \omega^k$ is one of the [[Definition:Complex Root|complex $n$th roots]] of $z$. +All of the [[Definition:Complex Roots of Unity|complex $n$th roots of unity]] are represented by powers of $\omega$. +Thus it follows from [[Roots of Complex Number]] that: +:$z^{1 / n} = \set {w \omega^k: k \in \set {1, 2, \ldots, n - 1} }$ +are the $n$ [[Definition:Complex Root|complex $n$th roots]] of $z$. +{{qed}} +\end{proof}<|endoftext|> +\section{Top is Prime Element} +Tags: Prime Elements + +\begin{theorem} +Let $L = \left({S, \wedge, \preceq}\right)$ be a [[Definition:Bounded Above Set|bounded above]] [[Definition:Meet Semilattice|meet semilattice]]. +Then $\top$ is a [[Definition:Prime Element (Order Theory)|prime element]] +where $\top$ denotes the [[Definition:Greatest Element|greatest element]] of $L$. +\end{theorem} + +\begin{proof} +Let $x, y \in S$ such that +:$x \wedge y \preceq \top$ +Thus by definition of [[Definition:Greatest Element|greatest element]]: +:$x \preceq \top$ or $y \preceq \top$ +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Prime Element in Meet Semilattice} +Tags: Prime Elements + +\begin{theorem} +Let $L = \struct {S, \wedge, \preceq}$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $p \in S$, +Then: +:$p$ is [[Definition:Prime Element (Order Theory)|prime element]] +{{iff}}: +:for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subsets]] $A$ of $S$: +::if $\inf A \preceq p$, then there exists [[Definition:Element|element]] $x$ of $A$ such that $x \preceq p$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $p$ be [[Definition:Prime Element (Order Theory)|prime element]]. +Let $A$ be [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subsets]] of $S$. +Define +:$\map P X : \equiv X \ne \O \land \inf X \preceq p \implies \exists x \in X: x \preceq p$ +where $X \subseteq S$. +We will prove that +:$\forall x \in A, B \subseteq A: \map P B \implies \map P {B \cup \set x}$ +Let $x \in A, B \subseteq A$ such that +:$\map P B$ +and +:$B \cup \set x \ne \O$ and $\map \inf {B \cup \set x} \preceq p$ +Case $B = \O$. +By [[Union with Empty Set]]: +:$B \cup \set x = \set x$ +By [[Infimum of Singleton]]: +:$\inf \set x = x$ +By definition of [[Definition:Singleton|singleton]]: +:$x \in \set x$ +Thus +:$\exists z \in B \cup \set x: z \preceq p$ +{{qed|lemma}} +Case $B \ne \O$. +By [[Subset of Finite Set is Finite]]: +:$B$ is [[Definition:Finite Set|finite]]. +By [[Existence of Non-Empty Finite Infima in Meet Semilattice]]: +:$B, \set x$ admit [[Definition:Infimum of Set|infima]]. +By [[Infimum of Infima]]: +:$\map \inf {B \cup \set x} = \inf B \wedge \inf \set x$ +By definition of [[Definition:Prime Element (Order Theory)|prime element]]: +:$\inf B \preceq p$ or $x \preceq p$ +Case $\inf B \preceq p$. +By assumption: +:$\exists z \in B: z \preceq p$ +By definition of [[Definition:Set Union|union]]: +:$z \in B \cup \set x$ +Thus +:$\exists z \in B \cup \set x: z \preceq p$ +{{qed|lemma}} +Case $x \preceq p$. +By definitions of [[Definition:Set Union|union]] and [[Definition:Singleton|singleton]]: +:$x \in B \cup \set x$ +Thus +:$\exists z \in B \cup \set x: z \preceq p$ +{{qed|lemma}} +By definition of [[Definition:Empty Set|empty set]]: +:$\map P \O$ +By [[Induction of Finite Set]]: +:$\map P A$ +Thus +:if $\inf A \preceq p$, then there exists [[Definition:Element|element]] $x$ of $A$ such that $x \preceq p$. +{{qed|lemma}} +=== Necessary Condition === +Suppose that +:for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subsets]] $A$ of $S$: +::if $\inf A \preceq p$, then there exists [[Definition:Element|element]] $x$ of $A$ such that $x \preceq p$. +Let $x, y \in S$ such that +:$x \wedge y \preceq p$ +Define $A := \set {x, y}$ +By definitions of [[Definition:Non-Empty Set|non-empty set]] and [[Definition:Finite Set|finite set]]: +:$A$ is [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] of $S$. +By definition of [[Definition:Meet (Order Theory)|meet]]: +:$\inf A = x \wedge y$ +By assumption: +:$\exists z \in A: z \preceq p$ +Thus by definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x \preceq p$ or $y \preceq p$ +{{qed}} +\end{proof}<|endoftext|> +\section{Isomorphism between Group Generated by Reciprocal of z and 1 minus z and Symmetric Group on 3 Letters} +Tags: Examples of Group Isomorphisms: Order 6, Symmetric Group on 3 Letters, Group Generated by Reciprocal of z and 1 minus z + +\begin{theorem} +Let $S_3$ denote the [[Symmetric Group on 3 Letters|symmetric group on $3$ letters]]. +Let $G$ be the [[Definition:Group Generated by Reciprocal of z and 1 minus z|group generated by $1 / z$ and $1 - z$]]. +Then $S_3$ and $G$ are [[Definition:Isomorphic Algebraic Structures|isomorphic algebraic structures]]. +\end{theorem} + +\begin{proof} +Establish the [[Definition:Mapping|mapping]] $\phi: S_3 \to G$ as follows: +{{begin-eqn}} +{{eqn | l = \map \phi e + | r = z +}} +{{eqn | l = \map \phi {\paren {123} } + | r = \dfrac 1 {1 - z} +}} +{{eqn | l = \map \phi {\paren {132} } + | r = \dfrac {z - 1} z +}} +{{eqn | l = \map \phi {\paren {23} } + | r = \dfrac 1 z +}} +{{eqn | l = \map \phi {\paren {13} } + | r = 1 - z +}} +{{eqn | l = \map \phi {\paren {12} } + | r = \dfrac z {z - 1} +}} +{{end-eqn}} +From [[Isomorphism by Cayley Table]], the two [[Definition:Cayley Table|Cayley tables]] can be compared by eye to ascertain that $\phi$ is an [[Definition:Isomorphism (Abstract Algebra)|isomorphism]]: +=== [[Symmetric Group on 3 Letters/Cayley Table|Cayley Table of Symmetric Group on $3$ Letters]] === +The [[Definition:Cayley Table|Cayley table]] for $S_3$ is as follows: +{{:Symmetric Group on 3 Letters/Cayley Table}} +=== [[Group Generated by Reciprocal of z and 1 minus z/Cayley Table|Group Generated by $1 / z$ and $1 - z$]] === +The [[Definition:Cayley Table|Cayley table]] for $S$ is as follows: +{{:Group Generated by Reciprocal of z and 1 minus z/Cayley Table}} +\end{proof}<|endoftext|> +\section{Prime Element is Meet Irreducible} +Tags: Prime Elements, Meet Irreducible + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Lattice|lattice]]. +Let $p \in S$. +Let $p$ be a [[Definition:Prime Element (Order Theory)|prime element]] of $L$. +Then $p$ is [[Definition:Meet Irreducible|meet irreducible]] in $L$. +\end{theorem} + +\begin{proof} +Let $p$ be a [[Definition:Prime Element (Order Theory)|prime element]]. +Let $x, y \in S$ such that +:$p = x \wedge y$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$x \wedge y \preceq p$ +By definition of [[Definition:Prime Element (Order Theory)|prime element]]: +:$x \preceq p$ or $y \preceq p$ +By [[Meet Precedes Operands]]: +:$p \preceq x$ and $p \preceq y$ +Thus by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$p = x$ or $p = y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Prime Element iff Meet Irreducible in Distributive Lattice} +Tags: Prime Elements, Meet Irreducible + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Distributive Lattice|distributive lattice]]. +Let $p \in S$. +Then $p$ is a [[Definition:Prime Element (Order Theory)|prime element]] {{iff}} $p$ is [[Definition:Meet Irreducible|meet irreducible]]. +\end{theorem} + +\begin{proof} +By [[Prime Element is Meet Irreducible]]: +:if $p$ is a [[Definition:Prime Element (Order Theory)|prime element]], then $p$ is [[Definition:Meet Irreducible|meet irreducible]]. +Assume that: +:$p$ is [[Definition:Meet Irreducible|meet irreducible]]. +Let $x, y \in S$ such that: +:$x \wedge y \preceq p$ +{{begin-eqn}} +{{eqn | l = p + | r = p \vee \paren {x \wedge y} + | c = [[Preceding iff Join equals Larger Operand]] +}} +{{eqn | r = \paren {p \vee x} \wedge \paren {p \vee y} + | c = {{Defof|Distributive Lattice}} +}} +{{end-eqn}} +By definition of [[Definition:Meet Irreducible|meet irreducible]]: +:$p = p \vee x$ or $p = p \vee y$ +Thus by [[Preceding iff Join equals Larger Operand]]: +:$x \preceq p$ or $y \preceq p$ +{{qed}} +\end{proof}<|endoftext|> +\section{Multiple Equilibrium Points all have Equal Payoffs} +Tags: Game Theory + +\begin{theorem} +Let $G$ be a [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]]. +Let $G$ have more than one [[Definition:Equilibrium Point|equilibrium point]]. +Then every [[Definition:Equilibrium Point|equilibrium point]] of $G$ has the same [[Definition:Payoff|payoff]]. +\end{theorem} + +\begin{proof} +{{proof wanted|Stated without proof, or even an explanatory comment on its scope of applicability, in Davis. This work is too vague to be useful. I am going to have to use a different work.}} +\end{proof}<|endoftext|> +\section{Definition:Information of Game} +Tags: Definitions: Game Theory + +\begin{theorem} +The '''information''' of a [[Definition:Game|game]] is the knowledge each [[Definition:Player|player]] has of the history of all the [[Definition:Move|moves]] of all the [[Definition:Player|players]] of the [[Definition:Game|game]]. +\end{theorem}<|endoftext|> +\section{Non-Zero-Sum Game as Zero-Sum Game} +Tags: Zero-Sum Games + +\begin{theorem} +Let $G$ be a [[Definition:Non-Zero-Sum Game|non-zero-sum game]] for $n$ [[Definition:Player|players]]. +Then $G$ can be modelled as a [[Definition:Zero-Sum Game|zero-sum game]] for $n + 1$ [[Definition:Player|players]]. +\end{theorem} + +\begin{proof} +At each [[Definition:Outcome of Game|outcome]], the total [[Definition:Payoff|payoff]] of $G$ will be an amount which will (for at least one [[Definition:Outcome of Game|outcome]]) not be [[Definition:Zero (Number)|zero]] +Let an $n + 1$th [[Definition:Player|player]] be introduced to $G$ who has one [[Definition:Move|move]]: +:$(1): \quad$ Select any [[Definition:Player|player]] $m$. +:$(2): \quad$ If the total [[Definition:Payoff|payoff]] of $G$ is $+k$, receive in payment $k$ from [[Definition:Player|player]] $m$. +:$(3): \quad$ If the total [[Definition:Payoff|payoff]] of $G$ is $-k$, [[Definition:Pay|pay]] $k$ to [[Definition:Player|player]] $m$. +This new [[Definition:Game|game]] is the same as $G$ but with an extra (dummy) [[Definition:Player|player]], and is now [[Definition:Zero-Sum Game|zero-sum]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Two-Person Zero-Sum Game is Non-Cooperative} +Tags: Two-Person Zero-Sum Games, Cooperative Games + +\begin{theorem} +A [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]] necessarily has to be [[Definition:Non-Cooperative Game|non-cooperative]]. +\end{theorem} + +\begin{proof} +A [[Definition:Cooperative Game|cooperative game]] is one where [[Definition:Player|players]] form [[Definition:Coalition|coalitions]] against the other [[Definition:Player|players]]. +If the [[Definition:Player|players]] in a [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]] were to form a [[Definition:Coalition|coalition]], there would be no other [[Definition:Player|players]] to form it against. +Further, as the total [[Definition:Payoff|payoff]] is [[Definition:Zero (Number)|zero]], there would be no benefit in collaborating on using one [[Definition:Strategy|strategy]] over another, as when they pool their [[Definition:Payoff|payoffs]] they are back where they started. +{{qed}} +\end{proof}<|endoftext|> +\section{Simple Graph with Finite Vertex Set is Finite} +Tags: Graph Theory, Simple Graphs + +\begin{theorem} +Let $G$ be a [[Definition:Simple Graph|simple graph]]. +Suppose that the [[Definition:Vertex Set|vertex set]] of $G$ is [[Definition:Finite Set|finite]]. +Then $G$ is a [[Definition:Finite Graph|finite graph]]. +That is to say, its [[Definition:Edge Set|edge set]] is also [[Definition:Finite Set|finite]]. +\end{theorem} + +\begin{proof} +Since $G$ is [[Definition:Simple Graph|simple]], it can have at most one [[Definition:Edge of Graph|edge]] between each two [[Definition:Vertex of Graph|vertices]]. +Therefore, the [[Definition:Mapping|mapping]]: +:$v: \map E G \to \powerset {\map V G}, \map v e = \set {a_e, b_e}$ +which assigns to each [[Definition:Edge of Graph|edge]] its [[Definition:Endvertex|endvertices]] $a_e, b_e$, is an [[Definition:Injection|injection]]. +From [[Power Set of Finite Set is Finite]] and [[Domain of Injection Not Larger than Codomain]], it follows that $\map E G$ is [[Definition:Finite Set|finite]]. +Hence $G$ is [[Definition:Finite Graph|finite]]. +{{qed}} +[[Category:Graph Theory]] +[[Category:Simple Graphs]] +itanc072i6il71lvytg9hxwb3ysbn34 +\end{proof}<|endoftext|> +\section{Multigraph with Finite Vertex Set may not be Finite} +Tags: Graph Theory, Multigraphs + +\begin{theorem} +Let $G$ be a [[Definition:Multigraph|multigraph]]. +Let the [[Definition:Vertex Set|vertex set]] of $G$ be [[Definition:Finite Set|finite]]. +Then it is not necessarily the case that $G$ is also [[Definition:Finite Graph|finite]]. +\end{theorem} + +\begin{proof} +{{finish|two vertices, $\N$ as edges}} +[[Category:Graph Theory]] +[[Category:Multigraphs]] +4694d4g1dnmmomeps1l1rkeh713gspp +\end{proof}<|endoftext|> +\section{Modulus Larger than Real Part} +Tags: Complex Modulus + +\begin{theorem} +:$\cmod z \ge \size {\map \Re z}$ +\end{theorem} + +\begin{proof} +By the [[Definition:Complex Number|definition of a complex number]], we have: +:$z = \map \Re z + i \map \Im z$ +Then: +{{begin-eqn}} +{{eqn | l = \cmod z + | r = \sqrt {\paren {\map \Re z}^2 + \paren {\map \Im z}^2} + | c = {{Defof|Complex Modulus}} +}} +{{eqn | o = \ge + | r = \sqrt {\paren {\map \Re z}^2 } + | c = [[Square of Real Number is Non-Negative]], as $\map \Im z$ is [[Definition:Real Number|real]] +}} +{{eqn | r = \cmod {\map \Re z} + | c = [[Square of Real Number is Non-Negative]], as $\map \Re z$ is [[Definition:Real Number|real]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Modulus Larger than Imaginary Part} +Tags: Complex Modulus + +\begin{theorem} +:$\cmod z \ge \size {\map \Im z}$ +\end{theorem} + +\begin{proof} +By the [[Definition:Complex Number|definition of a complex number]], we have: +:$z = \map \Re z + i \map \Im z$ +{{begin-eqn}} +{{eqn | l = \cmod z + | r = \sqrt {\paren {\map \Re z}^2 + \paren {\map \Im z}^2} + | c = {{Defof|Complex Modulus}} +}} +{{eqn | o = \ge + | r = \sqrt {\paren {\map \Im z}^2 } + | c = [[Square of Real Number is Non-Negative]], as $\map \Re z$ is [[Definition:Real Number|real]] +}} +{{eqn | r = \size {\map \Im z} + | c = [[Square of Real Number is Non-Negative]], as $\map \Im z$ is [[Definition:Real Number|real]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Product Space is T0 iff Factor Spaces are T0/General Result} +Tags: T0 Spaces, Product Spaces + +\begin{theorem} +Let $\SS = \family {\struct {S_\alpha, \tau_\alpha} }_{\alpha \mathop \in I}$ be an [[Definition:Indexed Family|indexed family]] of [[Definition:Topological Space|topological spaces]] where $I$ is an arbitrary [[Definition:Indexing Set|index set]]. +Let $\displaystyle T = \struct{S, \tau} = \prod \struct {S_\alpha, \tau_\alpha}$ be the [[Definition:Product Space of Topological Spaces|product space]] of $\SS$. +Then $T$ is a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]] {{iff}} each of $\struct{S_\alpha, \tau_\alpha}$ is a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]]. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Suppose $\exists \beta: \struct {S_\beta, \tau_\beta}$ is not a [[Definition:Kolmogorov Space|$T_0$ space]]. +Then $\exists a, b \in S_\beta$ such that $\forall U_\beta \in \tau_\beta$, either $a, b \in U_\beta$ or $a, b \notin U_\beta$. +Consider the elements $y, z \in S$ defined as: +:$y = \family {x_\alpha} : x_\alpha = \begin {cases} +s_\alpha & : \alpha \ne \beta \\ +a & : \alpha = \beta \end {cases}$ +:$z = \family {x_\alpha} : x_\alpha = \begin {cases} +s_\alpha & : \alpha \ne \beta \\ +b & : \alpha = \beta \end {cases}$ +That is, $y$ and $z$ match (arbitrarily) on all ordinates except that for $\beta$. +Let $H \subseteq S: y \in H$. +Then $z \in H$ as $\forall U_\beta \in \map {\pr_\beta} H : b \in U_\beta$ +Similarly, let $K \subseteq S: z \in K$. +Then $y \in K$ as $\forall U_\beta \in \map {\pr_\beta} H : a \in U_\beta$ +So $T$ is not a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]]. +{{qed|lemma}} +=== Necessary Condition === +Suppose $T$ is not a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]]. +Then $\exists a, b \in S, a \ne b$ such that for all $U \in \tau$, either $a, b \in U$ or $a, b \notin U$. +Then $a$ and $b$ are different in at least one ordinate. +Suppose, $a_m = p, b_m = q$ for some ordinate $m$. +Then either $a_m, b_m \in U_m$ or $a_m, b_m \notin U_m$. +It follows that $\struct{S_m, \tau_m}$ is not a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Separation Properties Preserved under Topological Product/Corollary} +Tags: Separation Axioms, Product Spaces + +\begin{theorem} +$T = \struct {S, \tau}$ has one of the following properties {{iff}} each of $\struct {S_i, \tau_i}$ has the same property: +:[[Definition:Regular Space|Regular Property]] +:[[Definition:Tychonoff Space|Tychonoff (Completely Regular) Property]] +If $T = \struct {S, \tau}$ has one of the following properties then each of $\struct {S_i, \tau_i}$ has the same property: +:[[Definition:Normal Space|Normal Property]] +:[[Definition:Completely Normal Space|Completely Normal Property]] +but the [[Definition:Converse Statement|converse]] does not necessarily hold. +\end{theorem} + +\begin{proof} +A [[Definition:Regular Space|regular space]] is a [[Definition:Topological Space|topological space]] which is both a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]] and a [[Definition:T3 Space|$T_3$ space]]. +Hence from: +:[[Product Space is T0 iff Factor Spaces are T0|Product Space is $T_0$ iff Factor Spaces are $T_0$]] +and +:[[Product Space is T3 iff Factor Spaces are T3|Product Space is $T_3$ iff Factor Spaces are $T_3$]] +it follows that $T$ is a [[Definition:Regular Space|regular space]] {{iff}} each of $\struct {S_i, \tau_i}$ is a [[Definition:Regular Space|regular space]]. +{{qed|lemma}} +A [[Definition:Tychonoff Space|Tychonoff (completely regular) space]] is a [[Definition:Topological Space|topological space]] which is both a [[Definition:Kolmogorov Space|$T_0$ (Kolmogorov) space]] and a [[Definition:T3 1/2 Space|$T_{3 \frac 1 2}$ space]]. +Hence from: +:[[Product Space is T0 iff Factor Spaces are T0|Product Space is $T_0$ iff Factor Spaces are $T_0$]] +and +:[[Product Space is T3 1/2 iff Factor Spaces are T3 1/2|Product Space is $T_{3 \frac 1 2}$ iff Factor Spaces are $T_{3 \frac 1 2}$]] +it follows that $T$ is a [[Definition:Tychonoff Space|Tychonoff space]] {{iff}} each of $\struct {S_i, \tau_i}$ is a [[Definition:Tychonoff Space|Tychonoff space]]. +{{qed|lemma}} +A [[Definition:Normal Space|normal space]] is a [[Definition:Topological Space|topological space]] which is both a [[Definition:Fréchet Space (Topology)|$T_1$ (Fréchet) space]] and a [[Definition:T4 Space|$T_4$ space]]. +Hence from: +:[[Product Space is T1 iff Factor Spaces are T1|Product Space is $T_1$ iff Factor Spaces are $T_1$]] +and +:[[Factor Spaces are T4 if Product Space is T4|Factor Spaces are $T_4$ if Product Space is $T_4$]] +it follows that if $T$ is a [[Definition:Normal Space|normal space]] then each of $\struct {S_i, \tau_i}$ is a [[Definition:Normal Space|normal space]]. +{{qed|lemma}} +A [[Definition:Completely Normal Space|completely normal space]] is a [[Definition:Topological Space|topological space]] which is both a [[Definition:Fréchet Space (Topology)|$T_1$ (Fréchet) space]] and a [[Definition:T5 Space|$T_5$ space]]. +Hence from: +:[[Product Space is T1 iff Factor Spaces are T1|Product Space is $T_1$ iff Factor Spaces are $T_1$]] +and +:[[Factor Spaces are T5 if Product Space is T5|Factor Spaces are $T_5$ if Product Space is $T_5$]] +it follows that if $T$ is a [[Definition:Completely Normal Space|completely normal space]] then each of $\struct {S_i, \tau_i}$ is a [[Definition:Completely Normal Space|completely normal space]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Distance to Nearest Integer Function} +Tags: Real Analysis + +\begin{theorem} +The following definitions of the [[Definition:Distance to Nearest Integer Function|distance to nearest integer function]] $\norm \cdot: \R \to \closedint 0 {\dfrac 1 2}$ are [[Definition:Logical Equivalence|equivalent]]: +\end{theorem} + +\begin{proof} +Let $\alpha \in \R$, $n \in \Z$. +From [[Real Number is between Floor Functions]]: +:$\floor \alpha \le \alpha < \floor \alpha + 1$ +For any $n < \floor \alpha \le \alpha$: +{{begin-eqn}} +{{eqn | l = \size {n - \alpha} + | r = \alpha - n + | c = {{Defof|Absolute Value}} +}} +{{eqn | o = > + | r = \alpha - \floor \alpha +}} +{{eqn | r = \size {\alpha - \floor \alpha} + | c = {{Defof|Absolute Value}} +}} +{{end-eqn}} +For any $n > \floor \alpha + 1 > \alpha$: +{{begin-eqn}} +{{eqn | l = \size {n - \alpha} + | r = n - \alpha + | c = {{Defof|Absolute Value}} +}} +{{eqn | o = > + | r = \floor \alpha + 1 - \alpha + | c = +}} +{{eqn | r = \size {\floor \alpha + 1 - \alpha} + | c = {{Defof|Absolute Value}} +}} +{{end-eqn}} +Thus: +{{begin-eqn}} +{{eqn | l = \min \set {\size {n - \alpha}: n \in \Z} + | r = \min \set {\size {\floor \alpha - \alpha}, \size {\floor \alpha + 1 - \alpha} } + | c = Other $n$'s are disregarded by above +}} +{{eqn | r = \min \set {\alpha - \floor \alpha, \floor \alpha + 1 - \alpha} +}} +{{eqn | r = \min \set {\set \alpha, 1 - \set \alpha} + | c = {{Defof|Fractional Part}} +}} +{{end-eqn}} +which shows that the definitions are indeed equivalent. +{{qed}} +[[Category:Real Analysis]] +mc6dwrx70vuuipe3s97te11mdqlyvuo +\end{proof}<|endoftext|> +\section{Quotient and Remainder to Number Base/General Result} +Tags: Number Theory + +\begin{theorem} +:$\left \lfloor {\dfrac n {b^s}} \right \rfloor = \left[{r_m r_{m-1} \ldots r_{s+1} r_s}\right]_b$ +:$\displaystyle n \,\bmod\, {b^s} = \sum_{j \mathop = 0}^{s-1} {r_j b^j} = \left[{r_{s-1} r_{s-2} \ldots r_1 r_0}\right]_b$ +\end{theorem} + +\begin{proof} +{{finish|Induction}} +[[Category:Number Theory]] +bc0ep9i9xz0twlu6e5kb3yv9p430m0e +\end{proof}<|endoftext|> +\section{Remainder is Primitive Recursive} +Tags: Primitive Recursive Functions + +\begin{theorem} +Let $m, n \in \N$ be [[Definition:Natural Numbers|natural numbers]]. +Let us define the [[Definition:Function|function]] $\operatorname{rem}: \N^2 \to \N$: +:$\map \rem {n, m} = \begin{cases} +\text{the remainder when } n \text{ is divided by } m & : m \ne 0 \\ +0 & : m = 0 +\end{cases}$ +where the $\text{remainder}$ is as defined in the [[Division Theorem]]: +:If $n = m q + r$, where $0 \le r < m$, then $r$ is the [[Definition:Remainder|remainder]]. +Then $\rem$ is [[Definition:Primitive Recursive Function|primitive recursive]]. +\end{theorem} + +\begin{proof} +Let $\map \rem {n, m} = r$. +We see that as $n$ increases by $1$, then so does $r$, except when $n = m-1$ in which case increasing $n$ by $1$ makes $r$ go to $0$. +We also take into account the case where $m = 0$: +So we can define $\rem$ by cases: +:$\map \rem {n, m} = \begin{cases} +0 & : \map \rem {n - 1, m} = m - 1 \text { or } m = 0 \text { or } n = 0\\ +\map \rem {n - 1, m} + 1 & : \text {otherwise} \\ +\end{cases}$ +We remind ourselves of the following [[Definition:Primitive Recursive Function|primitive recursive functions]]: +* [[Signum Function is Primitive Recursive|Signum function $\sgn$]] +* [[Equality Relation is Primitive Recursive|Characteristic function of equality relation $\map {\chi_{\operatorname{eq} } } {n, m}$]] +* [[Cut-Off Subtraction is Primitive Recursive|Cut-off subtraction $m \, \dot - \, n$]]. +We have: +* $\map \sgn m = 1 \iff m \ne 0$ +* $\map {\overline \sgn} {\map {\chi_{\operatorname{eq} } } {\map \rem {n, m}, m \, \dot - \, 1} } = 1 \iff \map \rem {n, m} \ne m \, \dot - \, 1$. +So: +:$\map \sgn m \, \map {\overline \sgn} {\map {\chi_{\operatorname{eq} } } {\map \rem {n, m}, m \, \dot - \, 1} } = 1 \iff m > 0 \land \map \rem {n, m} \ne m \, \dot - \, 1$. +So we see that: +:$\map \rem {n + 1, m} = \paren {\map \rem {n, m} + 1} \, \map \sgn m \, \map {\overline \sgn} {\map {\chi_{\operatorname{eq} } } {\map \rem {n, m}, m \, \dot - \, 1} }$ +So $\rem$ is obtained by [[Definition:Primitive Recursion|primitive recursion]] (over the first variable, which is allowed by [[Permutation of Variables of Primitive Recursive Function]]) from the [[Definition:Primitive Recursive Function|primitive recursive functions]]: +* [[Signum Function is Primitive Recursive|Signum function $\sgn$]] +* [[Equality Relation is Primitive Recursive|Characteristic function of equality relation $\map {\chi_{\operatorname{eq} } } {n, m}$]] +* [[Cut-Off Subtraction is Primitive Recursive|Cut-off subtraction $m \, \dot - \, n$]] +* [[Addition is Primitive Recursive|Addition]] +* [[Multiplication is Primitive Recursive|Multiplication]]. +Thus we can use [[Definition by Cases is Primitive Recursive]] and it follows that $\rem$ is [[Definition:Primitive Recursive Function|primitive recursive]]. +{{qed}} +[[Category:Primitive Recursive Functions]] +9zoo0k2s3rxz1h0j34qmq5ur3u5iph3 +\end{proof}<|endoftext|> +\section{Quotient is Primitive Recursive} +Tags: Primitive Recursive Functions + +\begin{theorem} +Let $m, n \in \N$ be [[Definition:Natural Numbers|natural numbers]]. +Let us define the [[Definition:Function|function]] $\operatorname {quot}: \N^2 \to \N$: +:$\map {\operatorname {quot} } {n, m} = \begin{cases} +\text{the quotient when } n \text{ is divided by } m & : m \ne 0 \\ +0 & : m = 0 +\end{cases}$ +where the $\text {quotient}$ and $\text {remainder}$ are as defined in the [[Division Theorem]]: +:If $n = m q + r$, where $0 \le r < m$, then $q$ is the [[Definition:Quotient (Algebra)|quotient]]. +Then $\operatorname {quot}$ is [[Definition:Primitive Recursive Function|primitive recursive]]. +\end{theorem} + +\begin{proof} +We note that if $m \ne 0$ and $n = m q + r$, we have: +:$\dfrac n m = q + \frac r m$ +Also note that $\dfrac n m$ and $\dfrac r m$ are [[Definition:Rational Number|rational numbers]] and not necessarily [[Definition:Natural Numbers|natural numbers]]. +Indeed, we have: +:$0 \le \dfrac r m < 1$ +So if $m > 0$ then $\map {\operatorname {quot} } {n, m}$ is the [[Definition:Floor Function|floor]] $\floor {\dfrac n m}$ of $\dfrac n m$. +So we have: +:$\map {\operatorname {quot} } {n, m} = \begin{cases} +0 & : m = 0 \\ +\floor {\dfrac n m} & : m \ne 0 +\end{cases}$ +Then we see that for $m \ne 0$: +:$\floor {\dfrac {n + 1} m} = \begin {cases} +\floor {\dfrac n m} + 1 & : m \divides \paren {n + 1} \\ +\floor {\dfrac n m} & : \text {otherwise} +\end {cases}$ +So for $m \ne 0$: +:$\map {\operatorname {quot} } {n + 1, m} = \begin{cases} +\map {\operatorname {quot} } {n, m} + 1 & : \map \rem {n + 1, m} = 0 \\ +\map {\operatorname {quot} } {n, m} & : \map \rem {n + 1, m} \ne 0 +\end{cases}$ +Now note that: +:$\map {\overline {\sgn} } {\map \rem {n + 1, m} } = \begin{cases} +1 & : \map \rem {n + 1, m} = 0 \\ +0 & : \map \rem {n + 1, m} \ne 0 +\end{cases}$ +So the $\operatorname {quot}$ is defined as: +:$\map {\operatorname {quot} } {0, m} = 0$ +:$\map {\operatorname {quot} } {n + 1, m} = \map \sgn m \map {\operatorname {quot} } {n, m} + \map {\overline {\sgn} } {\map \rem {n + 1, m} }$ +(note that the factor $\map \sgn m$ is needed to cover the case where $m = 0$). +Thus $\operatorname {quot}$ is obtained by [[Definition:Primitive Recursion|primitive recursion]] (over the first variable, which is allowed by [[Permutation of Variables of Primitive Recursive Function]]) from the [[Definition:Primitive Recursive Function|primitive recursive functions]]: +:[[Signum Function is Primitive Recursive|Signum function $\sgn$]] +:[[Remainder is Primitive Recursive|Remainder $\rem$]] +:[[Addition is Primitive Recursive|Addition]] +:[[Multiplication is Primitive Recursive|Multiplication]]. +So it follows that $\operatorname {quot}$ is [[Definition:Primitive Recursive Function|primitive recursive]]. +{{qed}} +[[Category:Primitive Recursive Functions]] +mtvzwief8480pk2jxmsosxrnawnk465 +\end{proof}<|endoftext|> +\section{Tarski's Geometry is Complete/Corollary} +Tags: Tarski's Geometry + +\begin{theorem} +[[Definition:Tarski's Geometry|Tarski's geometry]] does not contain [[Definition:Minimal Arithmetic|minimal arithmetic]]. +\end{theorem} + +\begin{proof} +Immediate from [[Tarski's Geometry is Complete]] and the [[Gödel's First Incompleteness Theorem/Corollary|corollary to Gödel's First Incompleteness Theorem]]. +{{qed}} +[[Category:Tarski's Geometry]] +ew232a0m24zm6l7im6b8stu8ykwizrx +\end{proof}<|endoftext|> +\section{Symmetric Closure of Symmetric Relation} +Tags: Relation Theory + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Relation|relation]] on a [[Definition:Set|set]] $S$. +Let $\mathcal R^\leftrightarrow$ be the [[Definition:Symmetric Closure|symmetric closure]] of $\mathcal R$. +Then $\mathcal R = \mathcal R^\leftrightarrow$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn|l = \mathcal R^\leftrightarrow + |r = \mathcal R \cup \mathcal R^{-1} + |c = +Definition of [[Definition:Symmetric Closure|Symmetric Closure]] +}} +{{eqn|r = \mathcal R \cup \mathcal R + |c = [[Inverse of Symmetric Relation is Symmetric]] +}} +{{eqn|r = \mathcal R + |c = [[Union is Idempotent]] +}} +{{end-eqn}} +{{qed}} +[[Category:Relation Theory]] +ntp7xd7skcscvnph1k9bn2m9iccb53e +\end{proof}<|endoftext|> +\section{Not Every Two-Person Zero-Sum Game has Saddle Point} +Tags: Two-Person Zero-Sum Games + +\begin{theorem} +Not every [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]] has a [[Definition:Saddle Point (Game Theory)|saddle point]]. +\end{theorem} + +\begin{proof} +Consider the [[Definition:Matching Pennies|game of Matching Pennies]]. +Recall its [[Definition:Matching Pennies/Payoff Table|payoff table]]: +{{:Definition:Matching Pennies/Payoff Table}} +Trivially, by inspection, this has no [[Definition:Entry in Payoff Table|entry]] which is the smallest [[Definition:Entry in Payoff Table|entry]] in its row and the largest [[Definition:Entry in Payoff Table|entry]] in its column. +{{qed}} +\end{proof}<|endoftext|> +\section{Eluding Game has no Saddle Point} +Tags: Two-Person Zero-Sum Games + +\begin{theorem} +The [[Definition:Eluding Game|eluding game]] has no [[Definition:Saddle Point (Game Theory)|saddle point]]. +\end{theorem} + +\begin{proof} +Recall the [[Definition:Eluding Game/Payoff Table|payoff table]]: +{{:Definition:Eluding Game/Payoff Table}} +Trivially, by inspection, this has no [[Definition:Entry in Payoff Table|entry]] which is the smallest [[Definition:Entry in Payoff Table|entry]] in its row and the largest [[Definition:Entry in Payoff Table|entry]] in its column. +\end{proof}<|endoftext|> +\section{Two-Person Zero-Sum Game with Multiple Solutions} +Tags: Examples of Two-Person Zero-Sum Games + +\begin{theorem} +There exists a [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]] with more than one [[Definition:Solution of Game|solution]]. +\end{theorem} + +\begin{proof} +Consider the [[Definition:Game|game]] defined by the following [[Definition:Payoff Table|payoff table]]: +{{PayoffTable|table = $\begin{array} {r {{|}} c {{|}} c {{|}} c {{|}} } +& B_1 & B_2 & B_3 \\ +\hline A_1 & 1 & 2 & 4 \\ +\hline A_2 & 4 & 2 & 1 \\ +\hline \end{array}$}} +This has two [[Definition:Solution of Game|solutions]]: +:$(1): \quad A: \left({1/3, 2/3}\right), B: \left({0, 1, 0}\right)$ +:$(2): \quad A: \left({2/3, 1/3}\right), B: \left({0, 1, 0}\right)$ +{{explain|The reason why the above are solutions is not indicated.}} +It follows that the [[Definition:Strategy|strategies]]: +:$\left({\dfrac t 3, \dfrac {2 \left({1 - t}\right)} 3}\right), B: \left({0, 1, 0}\right)$ +for all $0 \le t \le 1$ are also [[Definition:Solution of Game|solutions]]. +{{explain|Again, the explanation of this needs to wait till more learning has been done.}} +\end{proof}<|endoftext|> +\section{Two-Person Zero-Sum Game with Finite Strategies has Solution} +Tags: Two-Person Zero-Sum Games + +\begin{theorem} +Let $G$ be a [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]]. +Let each [[Definition:Player|player]] of $G$ have a [[Definition:Finite Set|finite set]] of [[Definition:Strategy|strategies]] available. +Then $G$ has at least one [[Definition:Solution of Game|solution]]. +\end{theorem} + +\begin{proof} +{{ProofWanted|Proof given later in book. Chapter III gets technical.}} +\end{proof}<|endoftext|> +\section{Card Game with Bluffing is Completely Mixed Game} +Tags: Examples of Two-Person Zero-Sum Games + +\begin{theorem} +The [[Definition:Game|game]] of [[Definition:Card Game with Bluffing|cards with bluffing]] is a [[Definition:Completely Mixed Game|completely mixed game]]. +\end{theorem} + +\begin{proof} +From [[Solution to Card Game with Bluffing]], the optimum [[Definition:Strategy|strategy]] for the [[Definition:Card Game with Bluffing|card game with bluffing, is: +:For $A$, to use both [[Definition:Pure Strategy|pure strategies]] but favour $A_1$ by $2/3$ to $1/3$. +:For $B$, to use both [[Definition:Pure Strategy|pure strategies]] but favour $B_1$ by $2/3$ to $1/3$. +Hence the result by definition of [[Definition:Completely Mixed Game|completely mixed game]]. +\end{proof}<|endoftext|> +\section{Matching Pennies is Completely Mixed Game} +Tags: Examples of Two-Person Zero-Sum Games + +\begin{theorem} +The [[Definition:Game|game]] of [[Definition:Matching Pennies|matching pennies]] is a [[Definition:Completely Mixed Game|completely mixed game]]. +\end{theorem} + +\begin{proof} +The optimum [[Definition:Strategy|strategy]] for [[Definition:Matching Pennies|matching pennies]], for both [[Definition:Player|players]], is to randomise both their [[Definition:Pure Strategy|pure strategies]]. +Hence the result by definition of [[Definition:Completely Mixed Game|completely mixed game]]. +\end{proof}<|endoftext|> +\section{Dominated Strategy may be Optimal} +Tags: Game Theory + +\begin{theorem} +A [[Definition:Dominating Strategy|dominated strategy]] of a [[Definition:Game|game]] may be the optimal [[Definition:Strategy|strategy]] for a [[Definition:Player|player]] of that [[Definition:Game|game]]. +\end{theorem} + +\begin{proof} +Consider the [[Definition:Game|game]] defined by the following [[Definition:Payoff Table|payoff table]]: +{{PayoffTable|table = $\begin{array} {r {{|}} c {{|}} } +& B_1 & B_2 \\ +\hline A_1 & 1 & 2 \\ +\hline A_2 & 1 & 3 \\ +\hline \end{array}$}} +This has two [[Definition:Solution of Game|solutions]]: +:$(1): \quad A: \left({1, 0}\right), B: \left({1, 0}\right)$ +:$(2): \quad A: \left({0, 1}\right), B: \left({1, 0}\right)$ +{{explain|The reason why the above are solutions is not indicated.}} +Thus both [[Definition:Pure Strategy|pure strategies]] for $A$ are optimal, but $A_1$ is [[Definition:Dominating Strategy|dominated]] by $A_1$. +{{qed}} +\end{proof}<|endoftext|> +\section{Value of Skew-Symmetric Game is Zero} +Tags: Two-Person Zero-Sum Games + +\begin{theorem} +Let $G$ be a [[Definition:Two-Person Zero-Sum Game|two-person zero-sum game]]. +Let $G$ be represented by a [[Definition:Payoff Table|payoff table]] that is [[Definition:Skew-Symmetric|skew-symmetric]]. +Then the [[Definition:Value|value]] of $G$ is zero. +\end{theorem} + +\begin{proof} +{{proof wanted|Once we have a definition for skew-symmetric we can start thinking about how to present this.}} +\end{proof}<|endoftext|> +\section{Prime Element iff Complement of Lower Closure is Filter} +Tags: Prime Elements + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Bounded Above Set|bounded above]] [[Definition:Lattice|lattice]]. +Let $p \in S$ such that +:$p \ne \top$ +where $\top$ denotes the [[Definition:Top (Lattice Theory)|top]] of $L$. +Then: +:$p$ is a [[Definition:Prime Element (Order Theory)|prime element]] +{{iff}} +:$\relcomp S {p^\preceq}$ is [[Definition:Filter in Ordered Set|filter]] in $L$ +where +:$p^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $p$ +:$\relcomp S {p^\preceq}$ denotes the [[Definition:Relative Complement|relative complement]] of $p^\preceq$ relative to $S$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Assume that $p$ is a [[Definition:Prime Element (Order Theory)|prime element]]. +By definition of the [[Definition:Greatest Element|greatest element]]: +:$p \preceq \top$ +By definition of $\prec$: +:$p \prec \top$ +By definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$\top \npreceq p$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$\top \notin p^\preceq$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$\top \in \relcomp S {p^\preceq}$ +By definition +:$X := \relcomp S {p^\preceq}$ is a [[Definition:Non-Empty Set|non-empty set]] +We will prove that +:$X$ is [[Definition:Filtered Subset|filtered]]. +Let $x, y \in X$. +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \notin p^\preceq$ and $y \notin p^\preceq$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$x \npreceq p$ and $y \npreceq p$ +Then by definition of [[Definition:Prime Element (Order Theory)|prime element]]: +:$x \wedge y \npreceq p$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$x \wedge y \notin p^\preceq$ +Thus by definition of [[Definition:Relative Complement|relative complement]]: +:$x \wedge y \in X$ +Thus by [[Meet Precedes Operands]]: +:$x \wedge y \preceq x$ and $x \wedge y \preceq y$ +Thus +:$\exists z \in X: z \preceq x \land z \preceq y$ +{{qed|lemma}} +We will prove that $X$ is an [[Definition:Upper Set|upper set]]. +Let $x \in X, y \in S$ such that: +:$x \preceq y$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \notin p^\preceq$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$x \npreceq p$ +By definition of [[Definition:Transitivity|transitivity]]: +:$y \npreceq p$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$y \notin p^\preceq$ +Thud by definition of [[Definition:Relative Complement|relative complement]]: +:$y \in X$ +{{qed|lemma}} +Hence, by definition, $X$ is [[Definition:Filter in Ordered Set|filter]] in $L$. +{{qed|lemma}} +=== Necessary Condition === +Assume that $\relcomp S {p^\preceq}$ is [[Definition:Filter in Ordered Set|filter]] in $L$. +Let $x, y \in S$ such that: +:$x \wedge y \preceq p$ +{{AimForCont}} that: +:$x \npreceq p$ and $y \npreceq p$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +$x \notin p^\preceq$ and $y \notin p^\preceq$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \in \relcomp S {p^\preceq}$ and $y \in \relcomp S {p^\preceq}$ +By definition of [[Definition:Filtered Subset|filtered]]: +:$\exists z \in \relcomp S {p^\preceq}: z \preceq x \text { and } z \preceq y$ +Then: +$z \preceq x \wedge y$ +By definition of [[Definition:Transitivity|transitivity]]: +:$z \preceq p$ +By definition of [[Definition:Upper Set|upper set]]: +:$p \in \relcomp S {p^\preceq}$ +By definition of [[Definition:Reflexivity|reflexivity]]: +:$p \preceq p$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$p \in p^\preceq$ +This [[Definition:Contradiction|contradicts]] $p \in \relcomp S {p^\preceq}$. +Hence it is not the case that $x \npreceq p$ and $y \npreceq p$. +That is: +:$x \preceq p$ or $y \preceq p$ +and so, by definition, $p$ is a [[Definition:Prime Element (Order Theory)|prime element]] of $\struct {S, \vee, \wedge, \preceq}$. +{{qed}} +\end{proof}<|endoftext|> +\section{Oscillation at Point (Infimum) equals Oscillation at Point (Epsilon-Neighborhood)} +Tags: Real Analysis + +\begin{theorem} +Let $f: D \to \R$ be a [[Definition:Real Function|real function]] where $D \subseteq \R$. +Let $x$ be a [[Definition:Element|point]] in $D$. +Let $N_x$ be the [[Definition:Set|set]] of [[Definition:Neighborhood (Real Analysis)/Open Subset|open subset neighborhoods]] of $x$. +Let $E_x$ be the [[Definition:Set|set]] of [[Definition:Epsilon-Neighborhood (Real Number Line)|$\epsilon$-neighborhoods]] of $x$. +Let $\map {\omega_f} x$ be the [[Definition:Oscillation/Real Space/Oscillation at Point/Infimum|oscillation]] of $f$ at $x$ based on $N_x$: +:$\map {\omega_f} x = \inf \set {\map {\omega_f} I: I \in N_x}$ +where $\map {\omega_f} I$ is the [[Definition:Oscillation/Real Space/Oscillation on Set|oscillation]] of $f$ on $I$: +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +Let $\map {\omega^E_f} x$ be the [[Definition:Oscillation/Real Space/Oscillation at Point/Infimum|oscillation]] of $f$ at $x$ based on $E_x$: +:$\map {\omega^E_f} x = \inf \set {\map {\omega_f} I: I \in E_x}$ +Then: +:$\map {\omega_f} x \in \R$ {{iff}} $\map {\omega^E_f} x \in \R$ +and, if $\map {\omega_f} x$ and $\map {\omega^E_f} x$ exist as [[Definition:Real Number|real numbers]]: +:$\map {\omega_f} x = \map {\omega^E_f} x$ +\end{theorem} + +\begin{proof} +=== Lemma 1 === +Let $f: D \to \R$ be a [[Definition:Real Function|real function]] where $D \subseteq \R$. +Let $x$ be a [[Definition:Element|point]] in $D$. +Let $N_x$ be the [[Definition:Set|set]] of [[Definition:Neighborhood (Real Analysis)/Open Subset|open subset neighborhoods]] of $x$. +Let $E_x$ be the [[Definition:Set|set]] of [[Definition:Epsilon-Neighborhood (Real Number Line)|$\epsilon$-neighborhoods]] of $x$. +Let $\map {\omega_f} x$ be the [[Definition:Oscillation/Real Space/Oscillation at Point/Infimum|oscillation]] of $f$ at $x$ based on $N_x$: +:$\map {\omega_f} x = \inf \set {\map {\omega_f} I: I \in N_x}$ +where $\map {\omega_f} I$ is the [[Definition:Oscillation/Real Space/Oscillation on Set|oscillation]] of $f$ on $I$: +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +Let $\map {\omega^E_f} x$ be the [[Definition:Oscillation/Real Space/Oscillation at Point/Infimum|oscillation]] of $f$ at $x$ based on $E_x$: +:$\map {\omega^E_f} x = \inf \set {\map {\omega_f} I: I \in E_x}$ +Let $\map {\omega_f} x \in \R$. +Let $\map {\omega^E_f} x \in \R$. +Then $\map {\omega_f} x = \map {\omega^E_f} x$. +=== Proof === +We have: +:$\map {\omega_f} x \in \R$ +:$\map {\omega^E_f} x \in \R$ +We need to prove that: +:$\map {\omega_f} x = \map {\omega^E_f} x$ +Let: +:$N = \set {\map {\omega_f} I: I \in N_x}$ +:$E = \set {\map {\omega_f} I: I \in E_x}$ +:$\map {\omega_f} x = \inf N$ +:$\map {\omega^E_f} x = \inf E$ +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +We have: +:$\inf N \in \R$ as $\map {\omega_f} x \in \R$ +:$\inf E \in \R$ as $\map {\omega^E_f} x \in \R$ +Let: +:$NR = N \cap \R$ +Let $I \in N_x$. +Therefore, $x \in I$. +[[Oscillation on Set is an Extended Real Number]] gives that $\map {\omega_f} I$ is an [[Definition:Extended Real Number Line|extended real number]]. +Therefore: +:$N$ is a [[Definition:Set|set]] of [[Definition:Extended Real Number Line|extended real numbers]] as $N = \set {\map {\omega_f} I: I \in N_x}$. +Also, we have that $N$ is [[Definition:Bounded Below Subset of Real Numbers|bounded below]] (in $\R$) as $\inf N \in \R$. +This gives by [[Infimum of Real Subset]]: +:$\inf NR \in \R$ as $\inf N \in \R$ +:$\inf NR = \inf N$ as $\inf NR \in \R$ and $\inf N \in \R$ +Let: +:$ER = E \cap \R$ +We observe by the definitions of $E_x$ and $N_x$ that every $I$ in $E_x$ is also an [[Definition:Element|element]] of $N_x$. +Therefore, $E_x$ is a [[Definition:Subset|subset]] of $N_x$. +Accordingly: +:$E$ is a [[Definition:Subset|subset]] of $N$ by the definitions of $E$ and $N$ +Therefore: +:$ER$ is a [[Definition:Subset|subset]] of $NR$ by [[Set Intersection Preserves Subsets/Corollary]] +We have that $N$ is a [[Definition:Set|set]] of [[Definition:Extended Real Number Line|extended real numbers]]. +Also, we have that $E$ is a [[Definition:Subset|subset]] of $N$. +Therefore, $E$ is a [[Definition:Set|set]] of [[Definition:Extended Real Number Line|extended real numbers]]. +Also, we have that $E$ is [[Definition:Bounded Below Subset of Real Numbers|bounded below]] (in $\R$) as $\inf E \in \R$. +This gives by [[Infimum of Real Subset]]: +:$\inf ER \in \R$ as $\inf E \in \R$ +:$\inf ER = \inf E$ as $\inf ER \in \R$ and $\inf E \in \R$ +Assume that: +:$s$ is a [[Definition:Real Number|real number]] in $N$ +Then an $I \in N_x$ exists such that: +:$\map {\omega_f} I = s$ as $N = \set {\map {\omega_f} {I'}: I' \in N_x}$ +We have that $\map {\omega_f} I \in \R$ as $s \in \R$. +The real set $I$ is an [[Definition:Neighborhood (Real Analysis)/Open Subset|open subset neighborhood]] of $x$ as $I \in N_x$. +This means that $I$ contains an [[Definition:Open Set/Real Analysis|open]] [[Definition:Subset|subset]] that contains (as an [[Definition:Element|element]]) $x$. +Therefore, an $h \in \R_{>0}$ exists such that $\openint {x - h} {x + h}$ is a [[Definition:Subset|subset]] of $I$. +Observe that $\openint {x - h} {x + h} \in N_x$. +We have: +:$I \in N_x$ +:$\map {\omega_f} I \in \R$ +:$\openint {x - h} {x + h} \in N_x$ +:$\openint {x - h} {x + h} \subset I$ +This gives by [[Oscillation on Subset]]: +:$\map {\omega_f} {\openint {x - h} {x + h} } \in \R$ +:$\map {\omega_f} {\openint {x - h} {x + h} } \le \map {\omega_f} I$ +We have that $\openint {x - h} {x + h} \in E_x$ as $\openint {x - h} {x + h}$ is an [[Definition:Epsilon-Neighborhood (Real Number Line)|$\epsilon$-neighborhood]] of $x$. +Therefore: +:$\map {\omega_f} {\openint {x - h} {x + h} } \in E$ as $E = \set {\map {\omega_f} {I'}: I' \in E_x}$ +Let: +:$t = \map {\omega_f} {\openint {x - h} {x + h} }$ +We have $t \in E$ as $\map {\omega_f} {\openint {x - h} {x + h} } \in E$. +Also, $t \in \R$ as $\map {\omega_f} {\openint {x - h} {x + h} } \in \R$. +Accordingly: +:$t \in ER$ as $ER = E \cap \R$ +We have $t = \map {\omega_f} {\openint {x - h} {x + h} }$ and $s = \map {\omega_f} I$. +Therefore: +:$t \le s$ as $\map {\omega_f} {\openint {x - h} {x + h} } \le \map {\omega_f} I$ +We have assumed that $s$ is a [[Definition:Real Number|real number]] in $N$. +Therefore: +:$s \in NR$ as $NR = N \cap \R$ +We have: +{{begin-eqn}} +{{eqn | l = \forall s \in NR: \exists t \in ER: s + | o = \ge + | r = t +}} +{{eqn | ll= \leadsto + | l = \forall \epsilon \in \R_{>0}: \forall s \in NR: \exists t \in ER: s + | o = \ge + | r = t \land \epsilon > 0 + | c = as $\epsilon > 0$ is true since $\epsilon \in \R_{>0}$ +}} +{{eqn | ll= \leadsto + | l = \forall \epsilon \in \R_{>0}: \forall s \in NR: \exists t \in ER: s + | o = \ge + | r = t \land s + \epsilon > s +}} +{{eqn | ll= \leadsto + | l = \forall \epsilon \in \R_{>0}: \forall s \in NR: \exists t \in ER: s + \epsilon + | o = > + | r = s \ge t +}} +{{eqn | ll= \leadsto + | l = \forall \epsilon \in \R_{>0}: \forall s \in NR: \exists t \in ER: s + \epsilon + | o = > + | r = t +}} +{{eqn | ll= \leadsto + | l = \inf NR + | r = \inf ER + | c = by [[Condition for Infimum of Subset to equal Infimum of Set]] as $ER$ is a [[Definition:Subset|subset]] of $NR$, $\inf NR \in \R$, and $\inf ER \in \R$ +}} +{{eqn | ll= \leadsto + | l = \inf N + | r = \inf ER + | c = as $\inf N = \inf NR$ +}} +{{eqn | ll= \leadsto + | l = \inf N + | r = \inf E + | c = as $\inf E = \inf ER$ +}} +{{eqn | ll= \leadsto + | l = \map {\omega_f} x + | r = \map {\omega^E_f} x + | c = definitions +}} +{{end-eqn}} +{{qed|lemma}} +=== Necessary Condition === +Let: +:$\map {\omega_f} x = \inf \set {\map {\omega_f} I: I \in N_x}$ +:$\map {\omega^E_f} x = \inf \set {\map {\omega_f} I: I \in E_x}$ +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +Let $\map {\omega_f} x \in \R$. +We need to prove: +:$\map {\omega^E_f} x \in \R$ +:$\map {\omega^E_f} x = \map {\omega_f} x$ +First, we intend to prove that $\map {\omega^E_f} x \in \R$. +We have $\map {\omega_f} x \in \R$. +Therefore, $\set {\map {\omega_f} I: I \in N_x}$ contains a [[Definition:Real Number|real number]] by [[Infimum of Set of Oscillations on Set]]. +Accordingly, an $I \in N_x$ exists such that $\map {\omega_f} I$ is a [[Definition:Real Number|real number]]. +$I$ is an [[Definition:Neighborhood (Real Analysis)/Open Subset|open subset neighborhood]] of $x$ as $I \in N_x$. +This means that $I$ contains an [[Definition:Open Set/Real Analysis|open]] [[Definition:Subset|subset]] that contains (as an [[Definition:Element|element]]) $x$. +Therefore, an $h \in \R_{>0}$ exists such that $\openint {x - h} {x + h}$ is a [[Definition:Subset|subset]] of $I$. +Observe that $\openint {x - h} {x + h} \in N_x$. +We have: +:$I \in N_x$ +:$\map {\omega_f} I \in \R$ +:$\openint {x - h} {x + h} \in N_x$ +:$\openint {x - h} {x + h} \subset I$ +This gives by [[Oscillation on Subset]]: +:$\map {\omega_f} {\openint {x - h} {x + h} } \in \R$ +We observe that $\openint {x - h} {x + h}$ is an [[Definition:Epsilon-Neighborhood (Real Number Line)|$\epsilon$-neighborhood]] of $x$. +Therefore, $\openint {x - h} {x + h} \in E_x$. +Accordingly, $\map {\omega_f} {\openint {x - h} {x + h} } \in \set {\map {\omega_f} I: I \in E_x}$. +Therefore, $\set {\map {\omega_f} I: I \in E_x}$ contains a [[Definition:Real Number|real number]] as $\map {\omega_f} {\openint {x - h} {x + h} } \in \R$. +From this follows that $\map {\omega^E_f} x \in \R$ by [[Infimum of Set of Oscillations on Set]]. +This is the first statement that we intended to prove. +Next, we need to prove that $\map {\omega^E_f} x = \map {\omega_f} x$. +This result follows by [[#Lemma 1|Lemma 1]] as $\map {\omega_f} x$ and $\map {\omega^E_f} x$ exist as [[Definition:Real Number|real numbers]]. +{{qed|lemma}} +=== Sufficient Condition === +Let: +:$N = \set {\map {\omega_f} I: I \in N_x}$ +:$E = \set {\map {\omega_f} I: I \in E_x}$ +:$\map {\omega_f} x = \inf N$ +:$\map {\omega^E_f} x = \inf E$ +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +Let $\map {\omega^E_f} x \in \R$. +We need to prove: +:$\map {\omega_f} x \in \R$ +:$\map {\omega_f} x = \map {\omega^E_f} x$ +First, we intend to prove that $\map {\omega_f} x \in \R$. +We have $\map {\omega^E_f} x \in \R$. +Therefore, $E$ contains a [[Definition:Real Number|real number]] by [[Infimum of Set of Oscillations on Set]]. +We observe by the definitions of $E_x$ and $N_x$ that every $I$ in $E_x$ is also an [[Definition:Element|element]] of $N_x$. +Therefore, $E_x$ is a [[Definition:Subset|subset]] of $N_x$. +Accordingly: +:$E$ is a [[Definition:Subset|subset]] of $N$ by the definitions of $E$ and $N$ +We have: +{{begin-eqn}} +{{eqn | o = + | r = E \text { contains a real number} +}} +{{eqn | o = \leadsto + | r = N \text { contains a real number} + | c = as $E$ is a [[Definition:Subset|subset]] of $N$ +}} +{{eqn | o = \leadsto + | r = \map {\omega_f} x \in \R + | c = [[Infimum of Set of Oscillations on Set]] +}} +{{end-eqn}} +This is the first statement that we intended to prove. +Next, we need to prove that $\map {\omega_f} x = \map {\omega^E_f} x$. +This result follows by [[#Lemma 1|Lemma 1]] as $\map {\omega^E_f} x$ and $\map {\omega_f} x$ exist as [[Definition:Real Number|real numbers]]. +{{qed}} +[[Category:Real Analysis]] +n8wxkt68gjl4mpocw12jqmyoddgztw7 +\end{proof}<|endoftext|> +\section{Prime Element iff Element Greater is Top} +Tags: Prime Elements + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Boolean Lattice|Boolean lattice]]. +Let $p \in S$ such that +:$p \ne \top$ +Then +:$p$ is [[Definition:Prime Element (Order Theory)|prime element]] +{{iff}} +:$\forall x \in S: \left({ p \prec x \implies x = \top }\right)$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Suppose that +:$p$ is [[Definition:Prime Element (Order Theory)|prime element]] +Let $x \in S$ such that +:$p \prec x$ +By definition of [[Definition:Boolean Lattice|Boolean lattice]]: +:$L$ is [[Definition:Complemented Lattice|complemented]] [[Definition:Distributive Lattice|distributive lattice]]. +By definition of [[Definition:Complemented Lattice|complemented]]: +:$\exists y \in S: y$ is [[Definition:Complement (Lattice Theory)|complement]] of $x$. +By definition of [[Definition:Complement (Lattice Theory)|complement]] +:$x \wedge y = \bot$ +By definition of [[Definition:Smallest Element|smallest element]]: +:$x \wedge y \preceq p$ +By definition of [[Definition:Prime Element (Order Theory)|prime element]]: +:$x \preceq p$ or $y \preceq p$ +Then by definition of [[Definition:Antisymmetric Relation|antisymmetry]]: +:$y \prec x$ +By definition of $\prec$: +:$y \preceq x$ +By definition of [[Definition:Complement (Lattice Theory)|complement]]: +:$x \vee y = \top$ +Thus by [[Preceding iff Join equals Larger Operand]]: +:$x = \top$ +{{qed|lemma}} +=== Necessary Condition === +Suppose that +:$\forall x \in S: \left({ p \prec x \implies x = \top }\right)$ +Let $x, y \in S$ such that +:$x \wedge y \preceq p$ +{{begin-eqn}} +{{eqn | l = p +| r = p \vee \left({x \wedge y}\right) +| c = [[Preceding iff Join equals Larger Operand]] +}} +{{eqn | r = \left({p \vee x}\right) \wedge \left({p \vee y}\right) +| c = definition of [[Definition:Distributive Lattice|distributive lattice]] +}} +{{end-eqn}} +Aiming for a [[Definition:Contradiction|contradiction]] suppose that +:$x \npreceq p$ and $y \npreceq p$ +By [[Preceding iff Join equals Larger Operand]]: +:$p \ne p \vee y$ and $p \ne p \vee x$ +By [[Join Succeeds Operands]]: +:$p \preceq p \vee y$ and $p \preceq p \vee x$ +By definition of $\prec$: +:$p \prec p \vee y$ and $p \prec p \vee x$ +By assumption: +:$p \vee y = \top$ and $p \vee x = \top$ +By [[Meet is Idempotent]]: +:$p = \top$ +This contradicts $p \ne \top$ +{{qed}} +\end{proof}<|endoftext|> +\section{Prime Element iff There Exists Way Below Open Filter which Complement has Maximum} +Tags: Prime Elements + +\begin{theorem} +Let $L = \left({S, \vee, \wedge, \preceq}\right)$ be a [[Definition:Bounded Below Set|bounded below]] [[Definition:Continuous Ordered Set|continuous]] +[[Definition:Distributive Lattice|distributive lattice]]. +Let $p \in S$ such that +:$p \ne \top$ +where $\top$ denotes the [[Definition:Top (Lattice Theory)|top]] of $L$. +Then +:$p$ is a [[Definition:Prime Element (Order Theory)|prime element]] +{{iff}} +:there exists a [[Definition:Way Below Open|way below open]] [[Definition:Filter in Ordered Set|filter]] $F$ in $L$: $p = \max \left({ \complement_S\left({F}\right) }\right)$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $p$ be a [[Definition:Prime Element (Order Theory)|prime element]]. +By definition of [[Definition:Continuous Ordered Set|continuous]]: +:$\forall x \in S: x^\ll$ is [[Definition:Directed Subset|directed]] +We will prove that +:$\forall x \in S: \left({ x \in \complement_S\left({p^\preceq}\right) \implies \exists y \in S: y \in \complement_S\left({p^\preceq}\right) \land y \ll x }\right)$ +Let $x \in S$ such that +:$x \in \complement_S\left({p^\preceq}\right)$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \notin p^\preceq$ +By definition of [[Definition:Lower Closure/Element|lower closure of element]]: +:$x \npreceq p$ +By [[Axiom of Approximation in Up-Complete Semilattice]]: +:$\exists y \in S: y \ll x \land y \npreceq p$ +By definition of [[Definition:Lower Closure/Element|lower closure of element]]: +:$y \notin p^\preceq$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$y \in \complement_S\left({p^\preceq}\right)$ +Thus +:$\exists y \in S: y \in \complement_S\left({p^\preceq}\right) \land y \ll x$ +{{qed|lemma}} +By [[Prime Element iff Complement of Lower Closure is Filter]]: +:$F := \complement_S\left({p^\preceq}\right)$ is [[Definition:Way Below Open|way below open]] [[Definition:Filter in Ordered Set|filter]] in $L$. +By definitions of [[Definition:Antisymmetric Relation|antisymmetry]] and [[Definition:Lower Closure/Element|lower closure of element]]: +:$\lnot \exists y \in S: y \in F \land y \prec p$ +By [[Relative Complement of Relative Complement]]:: +:$\complement_S\left({F}\right) = p^\preceq$ +By definitions of [[Definition:Reflexivity|reflexivity]] and [[Definition:Lower Closure/Element|lower closure of element]]: +:$p \in \complement_S\left({F}\right)$ +Thus by definition of [[Definition:Greatest Element|greatest element]]: +:$p = \max \left({\complement_S\left({F}\right)}\right)$ +{{qed|lemma}} +=== Necessary Condition === +Let +:there exists a [[Definition:Way Below Open|way below open]] [[Definition:Filter in Ordered Set|filter]] $F$ in $L$: $p = \max \left({ \complement_S\left({F}\right) }\right)$ +By [[Maximal Element of Complement of Filter is Meet Irreducible]]: +:$p$ is [[Definition:Meet Irreducible|meet irreducible]]. +Thus by [[Prime Element iff Meet Irreducible in Distributive Lattice]]: +:$p$ is a [[Definition:Prime Element (Order Theory)|prime element]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Vector Space has Unique Additive Identity} +Tags: Linear Algebra, Vector Spaces, Vector Space has Unique Additive Identity + +\begin{theorem} +A vector space has unique additive identity. +\end{theorem}<|endoftext|> +\section{Characterization of Prime Ideal} +Tags: Prime Ideals (Order Theory) + +\begin{theorem} +Let $L = \struct {S, \wedge, \preceq}$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $I$ be an [[Definition:Proper Subset|proper]] [[Definition:Ideal (Order Theory)|ideal]] in $L$. +Then +:$I$ is a [[Definition:Prime Ideal (Order Theory)|prime ideal]] +{{iff}} +:$\forall x, y \in S: \paren {x \wedge y \in I \implies x \in I \lor y \in I}$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Assume that +:$I$ is a [[Definition:Prime Ideal (Order Theory)|prime ideal]]. +Let $x, y \in S$ such that +:$x \wedge y \in I$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \wedge y \notin \relcomp S I$ +By definition of [[Definition:Prime Ideal (Order Theory)|prime ideal]]: +:$\relcomp S I$ is [[Definition:Filter|filter]] in $L$. +By [[Filtered in Meet Semilattice]]: +:$x \notin \relcomp S I$ or $y \notin \relcomp S I$ +Thus by definition of [[Definition:Relative Complement|relative complement]]: +:$x \in I$ or $y \in I$ +{{qed|lemma}} +=== Necessary Condition === +Assume that +:$\forall x, y \in S: \paren {x \wedge y \in I \implies x \in I \lor y \in I}$ +Define $F := \relcomp S I$. +By definition of [[Definition:Proper Subset|proper subset]]: +:$\exists x_0 \in S: x_0 \notin I$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x_0 \in F$ +Thus by definition +:$F$ is a [[Definition:Non-Empty Set|non-empty set]]. +We will prove that +:$F$ is [[Definition:Filtered Subset|filtered]]. +Let $x, y \in F$. +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \notin I$ and $y \notin I$ +By assumption: +:$x \wedge y \notin I$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \wedge y \in F$ +By [[Meet Precedes Operands]]: +:$x \wedge y \preceq x$ and $x \wedge y \preceq y$ +Thus +:$\exists z \in F: z \preceq x \land z \preceq y$ +{{qed|lemma}} +We will prove that: +:$F$ is an [[Definition:Upper Set|upper set]]. +Let $x \in F, y \in S$ such that +:$x \preceq y$ +By definition of [[Definition:Lower Set|lower set]]: +:$y \in I \implies x \in I$ +By definition of [[Definition:Relative Complement|relative complement]]: +:$x \notin I$ +Then +:$y \notin I$ +Thus by definition of [[Definition:Relative Complement|relative complement]]: +:$y \in F$ +{{qed|lemma}} +Thus by definition: +:$F$ is a [[Definition:Filter in Ordered Set|filter]] in $L$. +{{qed}} +\end{proof}<|endoftext|> +\section{Matching Pennies is Strictly Competitive} +Tags: Examples of Two-Person Games + +\begin{theorem} +The [[Definition:Game|game]] of [[Definition:Matching Pennies|Matching Pennies]] is [[Definition:Strictly Competitive Game|strictly competitive]]. +\end{theorem} + +\begin{proof} +By definition, a [[Definition:Strictly Competitive Game|strictly competitive game]] is a [[Definition:Game|game]] in which the interests of each [[Definition:Player|player]] are diametrically opposed. +Recall the [[Definition:Matching Pennies/Payoff Table|payoff table]] of [[Definition:Matching Pennies|Matching Pennies]]: +{{:Definition:Matching Pennies/Payoff Table}} +It can be seen by inspection that exchanging $\text A$ and $\text B$ results in exactly the same [[Definition:Entry in Payoff Table|entries]] in the [[Definition:Matching Pennies/Payoff Table|payoff table]]. +From the nature of a [[Definition:Matching Pennies/Payoff Table|payoff table]] it follows that the fortunes of each [[Definition:Player|player]] are opposite and equal. +Hence the result. +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection Condition for Direct Sum of Subspaces} +Tags: Linear Algebra + +\begin{theorem} +Let $U$ and $W$ be subspaces of a vector space $V$. +Then $U+W$ is a direct sum if and only if $U\cap W = 0$. +\end{theorem} + +\begin{proof} +We must first prove that if $U+W$ is a direct sum, then $U\cap W = 0$ +Suppose $U+W$ is a direct sum. If a vector $v \in U\cap W$, then $0 = v + (-v)$, where $v \in U$ and $-v \in W$. +{{ProofWanted}} +\end{proof}<|endoftext|> +\section{Second Price Auction has Inefficient Equilibria} +Tags: Auctions + +\begin{theorem} +A [[Definition:Second Price Auction|second price auction]] has [[Definition:Nash Equilibrium|Nash equilibria]] which are [[Definition:Inefficient Nash Equilibrium|inefficient]]. +\end{theorem} + +\begin{proof} +{{ProofWanted|Awaiting a reliable definition of inefficient Nash equilibrium}} +\end{proof}<|endoftext|> +\section{Expected-Utility Maximization Theorem} +Tags: Game Theory, Named Theorems + +\begin{theorem} +Let $P$ be a [[Definition:Rational Decision-Maker|rational decision-maker]]. +Let $A$ be a [[Definition:Set|set]] of possible [[Definition:Move|moves]] available to $P$. +Then there exists a way of assigning values to a [[Definition:Payoff Function|payoff function]] $u: A \to \R$ +so that $P$ will always choose the [[Definition:Move|move]] such that $u$ is a maximum. +\end{theorem}<|endoftext|> +\section{Epic Equalizer is Isomorphism} +Tags: Category Theory + +\begin{theorem} +Let $\mathbf C$ be a [[Definition:Metacategory|metacategory]]. +Let $e: E \to C$ be the [[Definition:Equalizer|equalizer]] of two [[Definition:Morphism|morphisms]] $f, g: C \to D$. +Let $e$ be an [[Definition:Epimorphism (Category Theory)|epimorphism]]. +Then $e$ is an [[Definition:Isomorphism (Category Theory)|isomorphism]]. +\end{theorem} + +\begin{proof} +As $e$ [[Definition:Equalizer|equalises]] $f$ and $g$, $f \circ e = g \circ e$. +Since $e$ is [[Definition:Epimorphism (Category Theory)|epic]], it follows that $f = g$. +Then in the equaliser diagram: +:::$\begin{xy}\xymatrix{ + E + \ar[r]^*{e} +& + A + \ar[r]<2pt>^*{f} + \ar[r]<-2pt>_*{g} +& + B +\\ + A + \ar@{.>}[u]^*{k} + \ar[ur]_*{\operatorname{id}_A} +}\end{xy}$ +We have that: +:$f \circ 1_A = g \circ 1_A$ +so there is a unique $k$ with $e \circ k = \operatorname{id}_A$. +Then: +{{begin-eqn}} +{{eqn | l = e \circ k \circ e + | r = \operatorname {id}_A \circ e + | c = +}} +{{eqn | r = e + | c = +}} +{{eqn | r = e + | c = e \circ \operatorname{id}_E +}} +{{end-eqn}} +By [[Equalizer is Monomorphism]], it follows that $k \circ e = \operatorname{id}_E$. +This gives $k$ as an [[Definition:Inverse Morphism|inverse]] to $e$. +Thus $e$ is an [[Definition:Isomorphism (Category Theory)|isomorphism]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Infimum of Subset of Extended Real Numbers is Arbitrarily Close} +Tags: Extended Real Numbers + +\begin{theorem} +Let $A \subseteq \overline \R$ be a [[Definition:Subset|subset]] of the [[Definition:Extended Real Number Line|extended real numbers]]. +Let $b$ be an [[Definition:Infimum of Subset of Real Numbers|infimum]] (in $\R$) of $A$. +Let $\epsilon \in \R_{>0}$. +Then: +:$\exists x \in \paren {A \cap \R}: x - b < \epsilon$ +\end{theorem} + +\begin{proof} +We have that: +:$A$ is a a [[Definition:Set|set]] of [[Definition:Extended Real Number Line|extended real numbers]] +:$A$ is [[Definition:Bounded Below Subset of Real Numbers|bounded below]] (in $\R$) as the [[Definition:Real Number|real number]] $b$ is a [[Definition:Lower Bound of Subset of Real Numbers|lower bound]] for $A$. +From this follows by [[Infimum of Real Subset]]: +:$\map \inf {A \cap \R} \in \R$ as $\inf A \in \R$ +Let $\epsilon \in \R_{>0}$. +Then: +{{begin-eqn}} +{{eqn | l = \map \inf {A \cap \R} + | o = \in + | r = \R +}} +{{eqn | ll= \leadsto + | l = \exists x + | o = \in + | r = \paren {A \cap \R}: x - b < \epsilon + | c = [[Infimum of Subset of Real Numbers is Arbitrarily Close]] +}} +{{end-eqn}} +{{qed}} +[[Category:Extended Real Numbers]] +35yrzle13fpml1vc5r1lhrs1egxujts +\end{proof}<|endoftext|> +\section{Oscillation on Set is an Extended Real Number} +Tags: Real Analysis + +\begin{theorem} +Let $f: D \to \R$ be a [[Definition:Real Function|real function]] where $D \subseteq \R$. +Let $x$ be a [[Definition:Element|point]] in $D$. +Let $I$ be a [[Definition:Real Number|real set]] that contains (as an [[Definition:Element|element]]) $x$. +Let $\omega_f \left({I}\right)$ be the [[Definition:Oscillation/Real Space/Oscillation on Set|oscillation]] of $f$ on $I$: +:$\omega_f \left({I}\right) = \sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ +Then: +:$\omega_f \left({I}\right) \in \overline \R_{\ge 0}$ +and: +:$\omega_f \left({I}\right) = \begin{cases} +\text{a positive real number} & \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\} \text{is bounded above} \\ +\infty & \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\} \text{is not bounded above} +\end{cases}$ +\end{theorem} + +\begin{proof} +We observe that $\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert = 0$ for $y = z = x$. +Therefore: +:$0 \in \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ as $x \in I \cap D$ +Accordingly: +:$\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Non-Empty Set|non-empty]] +We have that $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is a [[Definition:Real Number|real set]] as $\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert \in \R$ for every $y, z \in D$. +Every [[Definition:Real Number|real number]] is less than $\infty$. +Therefore: +:$\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] in $\overline \R$ +There are two cases: either $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] (in $\R$), or it is not. +First, assume that: +:$\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] (in $\R$) +We have that $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] and [[Definition:Non-Empty Set|non-empty]]. +Therefore: +:$\sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ exists as a [[Definition:Real Number|real number]] by the [[Continuum Property]] +We know that $\sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is greater than or equal to every [[Definition:Element|element]] of $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$. +Also $0 \in \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$. +Therefore, $\sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\} \ge 0$. +We also have that $\sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ exists as a [[Definition:Real Number|real number]]. +Therefore, $\sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is a [[Definition:Positive/Real Number|positive real number]]. +In other words: +:$\omega_f \left({I}\right)$ is a [[Definition:Positive/Real Number|positive real number]] as $\omega_f \left({I}\right) = \sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ +Next, assume that: +:$\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is not [[Definition:Bounded Above Subset of Real Numbers|bounded above]] (in $\R$) +We have that $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] in $\overline \R$. +Therefore, $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ has $\infty$ as an [[Definition:Upper Bound of Subset of Real Numbers|upper bound]]. +A number that is less than $\infty$ is a [[Definition:Real Number|real number]] or equal to $-\infty$. +No [[Definition:Real Number|real number]] is an [[Definition:Upper Bound of Subset of Real Numbers|upper bound]] for $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ as $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is not [[Definition:Bounded Above Subset of Real Numbers|bounded above]] in $\R$. +$-\infty$ is not an [[Definition:Upper Bound of Subset of Real Numbers|upper bound]] for $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ because then every [[Definition:Real Number|real number]] would be an upper bound for $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$. +Therefore, $\infty$ is the only [[Definition:Upper Bound of Subset of Real Numbers|upper bound]] for $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$. +Accordingly, $\infty$ is the [[Definition:Infimum of Subset of Real Numbers|least upper bound]] of $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$. +In other words: +:$\omega_f \left({I}\right) = \infty$ as $\omega_f \left({I}\right) = \sup \left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ +In either case, whether $\left\{{\left\vert{f \left({y}\right) - f \left({z}\right)}\right\vert: y, z \in I \cap D}\right\}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] or not: +:$\omega_f \left({I}\right) \in \overline \R_{\ge 0}$. +{{qed}} +[[Category:Real Analysis]] +6239qfs8yo8h8ss0iwvicjq6s56z8l2 +\end{proof}<|endoftext|> +\section{Oscillation on Subset} +Tags: Real Analysis + +\begin{theorem} +Let $f: D \to \R$ be a [[Definition:Real Function|real function]] where $D \subseteq \R$. +Let $x$ be a [[Definition:Element|point]] in $D$. +Let $S_x$ be a [[Definition:Set|set]] of [[Definition:Real Number|real sets]] that contain (as an [[Definition:Element|element]]) $x$. +Let $\map {\omega_f} I$ be the [[Definition:Oscillation on Real Subset|oscillation]] of $f$ on a [[Definition:Set|set]] $I$ in $S_x$: +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +Let $I \in S_x$. +Let $\map {\omega_f} I \in \R$. +Let $J \in S_x$ be a [[Definition:Subset|subset]] of $I$. +Then: +:$\map {\omega_f} J \in \R$ +:$\map {\omega_f} J \le \map {\omega_f} I$ +\end{theorem} + +\begin{proof} +Let: +:$I, J \in S_x$ +:$J \subset I$ +:$\map {\omega_f} I \in \R$ +where: +:$\map {\omega_f} I = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +We need to prove: +:$\map {\omega_f} J \in \R$ +:$\map {\omega_f} J \le \map {\omega_f} I$ +We intend to prove that $\map {\omega_f} J \in \R$. +We start by proving that $\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] and [[Definition:Non-Empty Set|non-empty]]. +We have that $J$ is a [[Definition:Subset|subset]] of $I$. +Therefore: +:$\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is a [[Definition:Subset|subset]] of $\set {\size {\map f y - \map f z}: y, z \in I \cap D}$. +The statement $\map {\omega_f} I \in \R$ means that $\set {\size {\map f y - \map f z}: y, z \in I \cap D}$ admits a [[Definition:Supremum of Subset of Real Numbers|supremum]]. +Therefore, $\set {\size {\map f y - \map f z}: y, z \in I \cap D}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]]. +Accordingly: +:$\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is [[Definition:Bounded Above Subset of Real Numbers|bounded above]] as $\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is a [[Definition:Subset|subset]] of $\set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +We observe that $\size {\map f y - \map f z} = 0$ for $y = z = x$. +Therefore, $0 \in \set {\size {\map f y - \map f z}: y, z \in J \cap D}$ as $x \in J \cap D$. +Accordingly: +:$\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is [[Definition:Non-Empty Set|non-empty]] +We have that $\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is a [[Definition:Real Number|real set]] as $\size {\map f y - \map f z} \in \R$ for every $y, z \in D$. +We have shown that $\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is [[Definition:Non-Empty Set|non-empty]] and [[Definition:Bounded Above Subset of Real Numbers|bounded above]]. +Therefore, $\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ admits a [[Definition:Supremum of Subset of Real Numbers|supremum]] by the [[Continuum Property]]. +In other words: +{{begin-eqn}} +{{eqn | l = \sup \set {\size {\map f y - \map f z}: y, z \in J \cap D} + | o = \in + | r = \R +}} +{{eqn | ll= \leadstoandfrom + | l = \map {\omega_f} J + | o = \in + | r = \R + | c = definition +}} +{{end-eqn}} +We finished proving that $\map {\omega_f} J \in \R$. +It remains to prove that $\map {\omega_f} J \le \map {\omega_f} I$. +We have: +:$\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ is a [[Definition:Subset|subset]] of $\set {\size {\map f y - \map f z}: y, z \in I \cap D}$ +:$\set {\size {\map f y - \map f z}: y, z \in I \cap D}$ admits a [[Definition:Supremum of Subset of Real Numbers|supremum]] +:$\set {\size {\map f y - \map f z}: y, z \in J \cap D}$ admits a [[Definition:Supremum of Subset of Real Numbers|supremum]] +Then: +{{begin-eqn}} +{{eqn | l = \sup \set {\size {\map f y - \map f z}: y, z \in J \cap D} + | o = \le + | r = \sup \set {\size {\map f y - \map f z}: y, z \in I \cap D} + | c = [[Supremum of Subset]] +}} +{{eqn | ll= \leadstoandfrom + | l = \map {\omega_f} J + | o = \le + | r = \map {\omega_f} I + | c = definitions +}} +{{end-eqn}} +{{qed}} +[[Category:Real Analysis]] +gnz0ox5scu4o4yjgcwbre4uui50klar +\end{proof}<|endoftext|> +\section{Generating Fraction for Lucas Numbers} +Tags: Lucas Numbers + +\begin{theorem} +The [[Definition:Fraction|fraction]]: +:$\dfrac {199} {9899}$ +has a [[Definition:Decimal Expansion|decimal expansion]] which contains within it the start of the [[Definition:Lucas Number|Lucas sequence]]: +:$0 \cdotp 02010 \, 30407 \, 11 \ldots$ +\end{theorem} + +\begin{proof} +By [[Definition:Long Division|long division]]: +
+         0.0201030407111829
+     ----------------------
+9899 ) 199.0000000000000000
+       197 98
+       --- --
+         1 0200
+           9899
+         - ----
+            30100
+            29697
+            -----
+              40300
+              39596
+              -----
+                70400
+                69293
+                -----
+                 11070
+                  9899
+                 -----
+                  11710
+                   9899
+                  -----
+                   18110
+                    9899
+                   -----
+                    82110
+                    79192
+                    -----
+                     29180
+                     19798
+                     -----
+                      93820
+                      89091
+                      -----
+                       4729
+
+By [[Generating Function for Lucas Numbers]]: +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop \ge 0} L_k 10^{-2 k - 2} + | r = \frac {2 - 10^{-2} } {1 - 10^{-2} - 10^{-4} } \times 10^{-2} +}} +{{eqn | r = \frac {2 \times 10^2 - 1} {10^4 - 10^2 - 1} +}} +{{eqn | r = \frac {199} {9899} +}} +{{end-eqn}} +The first few terms are contained in the decimal expansion, as long as $L_{k + 1} < 100$, where there is no carry. +{{qed}} +\end{proof}<|endoftext|> +\section{Transcendental Numbers are Uncountable} +Tags: Transcendental Numbers + +\begin{theorem} +The [[Definition:Set|set]] of [[Definition:Transcendental Number|transcendental]] [[Definition:Real Number|real numbers]] is [[Definition:Uncountable Set|uncountable]]. +\end{theorem} + +\begin{proof} +By definition, a [[Definition:Transcendental Number|transcendental number]] (in this context) is a [[Definition:Real Number|real number]] which is not an [[Definition:Algebraic Number|algebraic number]]. +Recall that the [[Real Numbers are Uncountable]]. +Also recall that the [[Algebraic Numbers are Countable]]. +The result follows from [[Uncountable Set less Countable Set is Uncountable]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Almost All Real Numbers are Transcendental} +Tags: Transcendental Numbers + +\begin{theorem} +[[Definition:Almost All/Set Theory/Uncountable|Almost all]] [[Definition:Real Number|real numbers]] are [[Definition:Transcendental Number|transcendental]]. +\end{theorem} + +\begin{proof} +By definition, a [[Definition:Transcendental Number|transcendental number]] (in this context) is a [[Definition:Real Number|real number]] which is not an [[Definition:Algebraic Number|algebraic number]]. +Recall that the [[Real Numbers are Uncountable]]. +Also recall that the [[Algebraic Numbers are Countable]]. +Thus the [[Definition:Subset|subset]] of all [[Definition:Real Number|real numbers]] which are not [[Definition:Transcendental Number|transcendental]] is [[Definition:Countable Set|countable]]. +The result follows by the definition of '''[[Definition:Almost All/Set Theory/Uncountable|almost all]]'''. +{{qed}} +\end{proof}<|endoftext|> +\section{Champernowne Constant is Transcendental} +Tags: Transcendental Numbers + +\begin{theorem} +The [[Definition:Champernowne Constant|Champernowne constant]]: +:$0 \cdotp 12345 \, 67891 \, 01112 \, 13141 \, 51617 \, 18192 \, 02122 \ldots$ +is [[Definition:Transcendental|transcendental]]. +\end{theorem}<|endoftext|> +\section{Champernowne Constant is Normal} +Tags: Normal Numbers + +\begin{theorem} +The [[Definition:Champernowne Constant|Champernowne constant]]: +:$0 \cdotp 12345 \, 67891 \, 01112 \, 13141 \, 51617 \, 18192 \, 02122 \ldots$ +is [[Definition:Normal Real Number|normal]] with respect to [[Definition:Number Base|base $10$]]. +\end{theorem}<|endoftext|> +\section{Anomalous Cancellation on 2-Digit Numbers} +Tags: Anomalous Cancellation + +\begin{theorem} +There are exactly four [[Definition:Anomalous Cancellation|anomalously cancelling]] [[Definition:Vulgar Fraction|vulgar fractions]] having two-digit [[Definition:Numerator|numerator]] and [[Definition:Denominator|denominator]] when expressed in [[Definition:Decimal Notation|base $10$ notation]]: +{{:Anomalous Cancellation on 2-Digit Numbers/Examples}} +\end{theorem} + +\begin{proof} +Let $\dfrac {\sqbrk {a x} } {\sqbrk {x b} }$ be an [[Definition:Anomalous Cancellation|anomalously cancelling]] [[Definition:Vulgar Fraction|vulgar fraction]]. +Then we have: +{{begin-eqn}} +{{eqn | n = 1 + | l = a, b, x \le 9 + | o = + | c = as they are digits in [[Definition:Decimal Notation|base $10$]] +}} +{{eqn | n = 2 + | l = a < b + | o = + | c = this fraction is a [[Definition:Vulgar Fraction|vulgar fraction]] +}} +{{eqn | n = 3 + | l = \dfrac a b = \dfrac {\sqbrk {a x} } {\sqbrk {x b} } + | o = + | c = this fraction is [[Definition:Anomalous Cancellation|anomalously cancelling]] +}} +{{end-eqn}} +From $(3)$: +{{begin-eqn}} +{{eqn | l = \dfrac a b + | r = \dfrac {10 a + x} {10 x + b} + | c = +}} +{{eqn | ll = \leadsto + | l = a \paren {10 x + b} + | r = b \paren {10 a + x} + | c = +}} +{{eqn | ll = \leadsto + | l = 10 a x + a b + | r = 10 a b + b x + | c = +}} +{{eqn | ll = \leadsto + | l = 10 a x - b x + | r = 9 a b + | c = +}} +{{eqn | ll = \leadsto + | l = x + | r = \dfrac {9 a b} {10 a - b} + | c = +}} +{{end-eqn}} +Therefore $\dfrac {9 a b} {10 a - b}$ must be an [[Definition:Integer|integer]]. +{{AimForCont}} $10 a - b$ is [[Definition:Divisor of Integer|divisible]] by a [[Definition:Prime Number|prime]] $p$ such that $p > 9$. +We have that: +:$\paren {10 a - b} \divides 9 a b$ +and so: +:$p \divides 9 a b$ +where $\divides$ denotes [[Definition:Divisor of Integer|divisibility]]. +By [[Euclid's Lemma for Prime Divisors]], that means one of the [[Definition:Element|elements]] of $\set {9, a, b}$ must be [[Definition:Divisor of Integer|divisible]] by $p$. +Hence from [[Absolute Value of Integer is not less than Divisors]], either $a$ or $b$ must be greater than $9$. +This [[Definition:Contradiction|contradicts]] $(1)$ above. +Hence by [[Proof by Contradiction]] it cannot be the case that $10 a - b$ is [[Definition:Divisor of Integer|divisible]] by a [[Definition:Prime Number|prime]] greater than $9$. +We continue: +{{begin-eqn}} +{{eqn | l = \dfrac {9 a b} {10 a - b} + | o = \le + | r = 9 + | c = from $(1)$: $x \le 9$ +}} +{{eqn | ll = \leadsto + | l = \dfrac {a b} {10 a - b} + | o = \le + | r = 1 + | c = +}} +{{eqn | ll = \leadsto + | l = a b + | o = \le + | r = 10 a - b + | c = as $10 a - b \ge 10 - b > 0$ +}} +{{eqn | ll = \leadsto + | l = b + | o = \le + | r = 10 a - a b + | c = adding $b - a b$ to both sides +}} +{{eqn | ll = \leadsto + | l = a + | o = \ge + | r = \dfrac b {10 - b} + | c = as $10 - b > 0$ +}} +{{end-eqn}} +It remains for us to check whether $x = \dfrac {9 a b} {10 a - b}$ is an [[Definition:Integer|integer]] for $\dfrac b {10 - b} \le a < b$, when $b$ ranges from $2$ to $9$. +We note first that the following [[Definition:Ordered Pair|pairs]] $\tuple {a, b}$ are such that $\dfrac b {10 - b} > a$: +{{begin-eqn}} +{{eqn | lo= b = 6: + | l = \dfrac b {10 - b} + | r = \dfrac 3 2 > 1 + | c = which eliminates $\tuple {1, 6}$ +}} +{{eqn | lo= b = 7: + | l = \dfrac b {10 - b} + | r = \dfrac 7 3 > 2 + | c = which eliminates $\tuple {1, 7}$ and $\tuple {2, 7}$ +}} +{{eqn | lo= b = 8: + | l = \dfrac b {10 - b} + | r = 4 > 3 + | c = which eliminates $\tuple {1, 8}$, $\tuple {2, 8}$ and $\tuple {3, 8}$ +}} +{{eqn | lo= b = 9: + | l = \dfrac b {10 - b} + | r = 9 + | c = which eliminates all possible such solutions such that $b = 9$ +}} +{{end-eqn}} +Then we eliminate the [[Definition:Ordered Pair|pairs]] $\tuple {a, b}$ where $10 a - b$ has a [[Definition:Prime Factor|prime factor]] greater than $9$: +{{begin-eqn}} +{{eqn | lo= \tuple {3, 4}: + | l = 10 a - b + | r = 26 = 13 \times 2 + | c = +}} +{{eqn | lo= \tuple {4, 6}: + | l = 10 a - b + | r = 34 = 17 \times 2 + | c = +}} +{{eqn | lo= \tuple {5, 6}: + | l = 10 a - b + | r = 44 = 11 \times 4 + | c = +}} +{{eqn | lo= \tuple {3, 7}: + | l = 10 a - b + | r = 23 + | c = +}} +{{eqn | lo= \tuple {4, 7}: + | l = 10 a - b + | r = 33 = 11 \times 3 + | c = +}} +{{eqn | lo= \tuple {5, 7}: + | l = 10 a - b + | r = 43 + | c = +}} +{{eqn | lo= \tuple {6, 7}: + | l = 10 a - b + | r = 53 + | c = +}} +{{eqn | lo= \tuple {6, 8}: + | l = 10 a - b + | r = 52 = 13 \times 4 + | c = +}} +{{eqn | lo= \tuple {7, 8}: + | l = 10 a - b + | r = 62 = 31 \times 2 + | c = +}} +{{end-eqn}} +Thus it remains to check whether $\dfrac {9 a b} {10 a - b}$ is an [[Definition:Integer|integer]] for the following [[Definition:Ordered Pair|pairs]] $\tuple {a, b}$: +:$\tuple {1, 2}$, $\tuple {1, 3}$, $\tuple {2, 3}$, $\tuple {1, 4}$, $\tuple {2, 4}$, $\tuple {1, 5}$, $\tuple {2, 5}$, $\tuple {3, 5}$, $\tuple {4, 5}$, $\tuple {2, 6}$, $\tuple {3, 6}$, $\tuple {4, 8}$, $\tuple {5, 8}$ +{{begin-eqn}} +{{eqn | lo= \tuple {1, 2}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {18} 8 + | c = not an integer +}} +{{eqn | lo= \tuple {1, 3}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {27} 7 + | c = not an integer +}} +{{eqn | lo= \tuple {2, 3}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {54} {16} + | c = not an integer +}} +{{eqn | lo= \tuple {1, 4}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {36} 6 = 6 + | c = which leads to the solution $\dfrac {16} {64}$ +}} +{{eqn | lo= \tuple {2, 4}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {72} {16} + | c = not an integer +}} +{{eqn | lo= \tuple {1, 5}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {45} 5 = 9 + | c = which leads to the solution $\dfrac {19} {95}$ +}} +{{eqn | lo= \tuple {2, 5}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {90} {15} = 6 + | c = which leads to the solution $\dfrac {26} {65}$ +}} +{{eqn | lo= \tuple {3, 5}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {135} {25} + | c = not an integer +}} +{{eqn | lo= \tuple {4, 5}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {180} {35} + | c = not an integer +}} +{{eqn | lo= \tuple {2, 6}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {108} {14} + | c = not an integer +}} +{{eqn | lo= \tuple {3, 6}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {108} {14} + | c = not an integer +}} +{{eqn | lo= \tuple {4, 8}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {288} {32} = 9 + | c = which leads to the solution $\dfrac {49} {98}$ +}} +{{eqn | lo= \tuple {5, 8}: + | l = \dfrac {9 a b} {10 a - b} + | r = \dfrac {360} {42} + | c = not an integer +}} +{{end-eqn}} +So the only solutions for $\tuple {a, x, b}$ are: +:$\tuple {1, 6, 4}$, $\tuple {1, 9, 5}$, $\tuple {2, 6, 5}$ and $\tuple {4, 9, 8}$ +These correspond to the [[Definition:Fraction|fractions]]: +:$\dfrac {16} {64}$, $\dfrac {19} {95}$, $\dfrac {26} {65}$ and $\dfrac {49} {98}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Anomalous Cancellation/Variants/37 + 13 over 37 + 24} +Tags: Anomalous Cancellation + +\begin{theorem} +:$\dfrac {37 + 13} {37 + 24} = \dfrac {37^3 + 13^3} {37^3 + 24^3}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = 37^3 + 13^3 + | r = \paren {37 + 13}^3 - \paren {3 \times 37^2 \times 13 + 3 \times 37 \times 13^2} + | c = +}} +{{eqn | r = \paren {37 + 13}^3 - 3 \times 13 \times 37 \paren {37 + 13} + | c = +}} +{{eqn | r = \paren {37 + 13} \paren {\paren {37 + 13}^2 - 3 \times 13 \times 37} + | c = +}} +{{eqn | r = \paren {37 + 13} \paren {2500 - 1443} + | c = +}} +{{eqn | r = \paren {37 + 13} \times 1057 + | c = +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = 37^3 + 24^3 + | r = \paren {37 + 24}^3 - \paren {3 \times 37^2 \times 24 + 3 \times 37 \times 24^2} + | c = +}} +{{eqn | r = \paren {37 + 24}^3 - 3 \times 24 \times 37 \paren {37 + 24} + | c = +}} +{{eqn | r = \paren {37 + 24} \paren {\paren {37 + 24}^2 - 3 \times 24 \times 37} + | c = +}} +{{eqn | r = \paren {37 + 24} \paren {3721 - 2664} + | c = +}} +{{eqn | r = \paren {37 + 24} \times 1057 + | c = +}} +{{end-eqn}} +Hence: +:$\dfrac {37^3 + 13^3} {37^3 + 24^3} = \dfrac {1057 \paren {37 + 13} } {1057 \paren {37 + 24} } = \dfrac {37 + 13} {37 + 24}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Anomalous Cancellation/Variants/3 + 25 + 38 over 7 + 20 + 39} +Tags: Anomalous Cancellation + +\begin{theorem} +:$\dfrac {3 + 25 + 38} {7 + 20 + 39} = \dfrac {3^4 + 25^4 + 38^4} {7^4 + 20^4 + 39^4}$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \dfrac {3^4 + 25^4 + 38^4} {7^4 + 20^4 + 39^4} + | r = \dfrac {81 + 390625 + 2085136} {2401 + 160000 + 2313441} + | c = +}} +{{eqn | r = \dfrac {2475842} {2475842} + | c = +}} +{{end-eqn}} +{{begin-eqn}} +{{eqn | l = \dfrac {3 + 25 + 38} {7 + 20 + 39} + | r = \dfrac {66} {66} + | c = +}} +{{eqn | r = \dfrac {2475842} {2475842} + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Anomalous Cancellation/Examples/3544 over 7531} +Tags: Anomalous Cancellation + +\begin{theorem} +:$\dfrac {344} {731} = \dfrac {3544} {7531} = \dfrac {35544} {75531} = \cdots$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \frac {355 \cdots 544} {755 \cdots 531} + | r = \paren {3 \times 10^n + \paren {\sum_{i \mathop = 2}^{n - 1} 5 \times 10^i} + 44} \Big / \paren {7 \times 10^n + \paren {\sum_{i \mathop = 2}^{n - 1} 5 \times 10^i} + 31} + | c = +}} +{{eqn | r = \paren {3 \times 10^n + \paren {500 \times \sum_{i \mathop = 0}^{n - 3} \times 10^i} + 44} \Big / \paren {7 \times 10^n + \paren {500 \times \sum_{i \mathop = 0}^{n - 3} \times 10^i} + 31} + | c = +}} +{{eqn | r = \paren {3 \times 10^n + \paren {500 \times \frac {10^{n - 2} - 1} {10 - 1} } + 44} \Big / \paren {7 \times 10^n + \paren {500 \times \frac {10^{n - 2} - 1} {10 - 1} } + 31} + | c = [[Sum of Geometric Sequence]] +}} +{{eqn | r = \dfrac {3 \times 10^n \times \paren {10 - 1} + 500 \times \paren {10^{n - 2} - 1} + 44 \times \paren {10 - 1} } {7 \times 10^n \times \paren {10 - 1} + 500 \times \paren {10^{n - 2} - 1} + 31 \times \paren {10 - 1} } + | c = simplifying +}} +{{eqn | r = \dfrac {27 \times 10^n + 500 \times 10^{n - 2} - 104} {63 \times 10^n + 500 \times 10^{n - 2} - 221} + | c = simplifying +}} +{{eqn | r = \dfrac {2700 \times 10^{n - 2} + 500 \times 10^{n - 2} - 104} {6300 \times 10^{n - 2} + 500 \times 10^{n - 2} - 221} + | c = simplifying +}} +{{eqn | r = \dfrac {3200 \times 10^{n - 2} - 104} {6800 \times 10^{n - 2} - 221} + | c = simplifying +}} +{{eqn | r = \dfrac {8 \times \paren {400 \times 10^{n - 2} - 13} } {17 \times \paren {400 \times 10^{n - 2} - 13} } + | c = factoring +}} +{{eqn | r = \dfrac 8 {17} + | c = factoring +}} +{{eqn | r = \dfrac {8 \times 43} {17 \times 43} + | c = +}} +{{eqn | r = \dfrac {344} {731} + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Anomalous Cancellation/Examples/143 185 over 17 018 560} +Tags: Anomalous Cancellation + +\begin{theorem} +:$\dfrac {1435} {170 \, 560} = \dfrac {143 \, 185} {17 \, 018 \, 560} = \dfrac {14 \, 318 \, 185} {1 \, 701 \, 818 \, 560} = \cdots$ +\end{theorem} + +\begin{proof} +Let $q = \dfrac r s = \dfrac {1431818 \cdots 185} {1701818 \cdots 18560}$. +Let the number of [[Definition:Digit|digits]] in $r$ be $n + 2$. +Then the number of [[Definition:Digit|digits]] in $s$ is $n + 4$. +By inspection, it is seen that $n$ is [[Definition:Even Integer|even]]. +Then it is seen that: +{{begin-eqn}} +{{eqn | l = r + | r = 5 + 18 \times 10 + 18 \times 1000 + \cdots + 18 \times 10^{n - 5} + 18 \times 10^{n - 3} + 143 \times 10^{n - 1} + | c = +}} +{{eqn | r = 5 + 10 \times \paren {18 + 18 \times 10^2 + \cdots + 18 \times 10^{n - 6} + 18 \times 10^{n - 4} } + 143 \times 10^{n - 1} + | c = +}} +{{eqn | r = 5 + 10 \times \paren {18 \times \paren{10^2}^0 + 18 \times \paren{10^2}^1 + \cdots + 18 \times \paren{10^2}^{n / 2 - 3} + 18 \times \paren{10^2}^{n / 2 - 2} } + 143 \times 10^{n - 1} + | c = +}} +{{eqn | r = 5 + 10 \paren {\sum_{i \mathop = 0}^{n / 2 - 2} 18 \times 10^{2 i} } + 143 \times 10^{n - 1} + | c = +}} +{{eqn | r = 5 + 10 \times 18 \paren {\frac {10^{n - 2} - 1} {10^2 - 1} } + 143 \times 10^{n - 1} + | c = [[Sum of Geometric Sequence]] +}} +{{eqn | r = 5 \times \paren {10^2 - 1} + 10 \times 18 \paren {10^{n - 2} - 1} + 143 \times \paren {10^2 - 1} \times 10^{n - 1} + | c = +}} +{{eqn | r = 5 \times 99 + 180 \times 10^{n - 2} - 180 + 143 \times 99 \times 10^{n - 1} + | c = +}} +{{eqn | r = 5 \times 99 + 180 \times 10^{n - 2} - 180 + 143 \times 99 \times 10 \times 10^{n - 2} + | c = +}} +{{eqn | r = 315 + 141750 \times 10^{n - 2} + | c = +}} +{{eqn | r = 35 \times \paren {9 + 4050 \times 10^{n - 2} } + | c = +}} +{{end-eqn}} +and similarly: +{{begin-eqn}} +{{eqn | l = s + | r = 560 + 18 \times 1000 + 18 \times 100 \, 000 + \cdots + 18 \times 10^{3 + \paren {n - 3} } + 18 \times 10^{3 + \paren {n - 1} } + 170 \times 10^{n + 1} + | c = +}} +{{eqn | r = 560 + 1000 \times \paren {18 + 18 \times 10^2 + \cdots + 18 \times 10^{n - 6} + 18 \times 10^{n - 4} } + 170 \times 10^{n + 1} + | c = +}} +{{eqn | r = 560 + 1000 \times \paren {18 \times \paren {10^2}^0 + 18 \times \paren {10^2}^1 + \cdots + 18 \times \paren {10^2}^{n / 2 - 3} + 18 \times \paren {10^2}^{n / 2 - 2} } + 170 \times 10^{n + 1} + | c = +}} +{{eqn | r = 560 + 1000 \paren {\sum_{i \mathop = 0}^{n / 2 - 2} 18 \times 10^{2 i} } + 170 \times 10^{n + 1} + | c = +}} +{{eqn | r = 560 + 1000 \times 18 \paren {\frac {10^{n - 2} - 1} {10^2 - 1} } + 170 \times 10^{n + 1} + | c = +}} +{{eqn | r = 560 \times \paren {10^2 - 1} + 1000 \times 18 \paren {10^{n - 2} - 1} + 170 \times \paren {10^2 - 1} \times 10^{n + 1} + | c = +}} +{{eqn | r = 560 \times 99 + 18000 \times 10^{n - 2} - 18000 + 170 \times 99 \times 10^{n + 1} + | c = +}} +{{eqn | r = 55440 + 18000 \times 10^{n - 2} - 18000 + 16830 \times 1000 \times 10^{n - 2} + | c = +}} +{{eqn | r = 37440 + 16848000 \times 10^{n - 2} + | c = +}} +{{eqn | r = 4160 \times \paren {9 + 4050 \times 10^{n - 2} } + | c = +}} +{{end-eqn}} +Hence: +{{begin-eqn}} +{{eqn | l = q = \dfrac r s + | r = \dfrac {35 \times \paren {9 + 4050 \times 10^{n - 2} } } {4160 \times \paren {9 + 4050 \times 10^{n - 2} } } + | c = +}} +{{eqn | r = \dfrac {35 \times 41} {4160 \times 41} + | c = +}} +{{eqn | r = \dfrac {1435} {170 \, 560} + | c = +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Number of Digits in Power of 2} +Tags: Logarithms, Powers of 2, Number of Digits in Power of 2 + +\begin{theorem} +Let $n$ be a [[Definition:Positive Integer|positive integer]]. +Expressed in conventional [[Definition:Decimal Notation|decimal notation]], the number of [[Definition:Digit|digits]] in the [[Definition:Integer Power|$n$th power]] of $2$: +:$2^n$ +is equal to: +:$\ceiling {n \log_{10} 2}$ +where $\ceiling x$ denotes the [[Definition:Ceiling Function|ceiling]] of $x$. +\end{theorem} + +\begin{proof} +Let $2^n$ have $m$ [[Definition:Digit|digits]] when expressed in [[Definition:Decimal Notation|decimal notation]]. +By the [[Basis Representation Theorem]] and its implications, a [[Definition:Positive Integer|positive integer]] $x$ has $m$ [[Definition:Digit|digits]] {{iff}}: +:$10^{m - 1} \le x < 10^m$ +Thus: +{{begin-eqn}} +{{eqn | l = 10^{m - 1} + | o = \le + | m = 2^n + | mo= < + | r = 10^m + | c = +}} +{{eqn | ll= \leadsto + | l = m - 1 + | o = \le + | m = \log_{10} \paren {2^n} + | mo= < + | r = m + | c = +}} +{{eqn | ll= \leadsto + | l = m - 1 + | o = \le + | m = n \log_{10} 2 + | mo= < + | r = m + | c = +}} +{{end-eqn}} +Because a [[Definition:Integer Power|power]] of $2$ cannot equal a [[Definition:Integer Power|power]] of $10$, it will always be the case that: +:$m - 1 < n \log_{10} 2 < m$ +and so: +:$m - 1 < n \log_{10} 2 \le m$ +Hence from [[Integer equals Ceiling iff Number between Integer and One Less]]: +:$m = \ceiling {n \log_{10} 2}$ +{{qed}} +\end{proof}<|endoftext|> +\section{One Third as Quotient of Sequences of Odd Numbers} +Tags: One Third + +\begin{theorem} +:$\dfrac 1 3 = \dfrac {1 + 3} {5 + 7} = \dfrac {1 + 3 + 5} {7 + 9 + 11} = \dfrac {1 + 3 + 5 + 7} {9 + 11 + 13 + 15} = \cdots$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \sum_{k \mathop = n + 1}^{2 n} \paren {2 k - 1} + | r = \sum_{k \mathop = 1}^{2 n} \paren {2 k - 1} - \sum_{k \mathop = 1}^n \paren {2 k - 1} + | c = +}} +{{eqn | r = \paren {2 n}^2 - n^2 + | c = [[Odd Number Theorem]] +}} +{{eqn | r = 3 n^2 + | c = +}} +{{eqn | r = 3 \sum_{k \mathop = 1}^n \paren {2 k - 1} + | c = [[Odd Number Theorem]] +}} +{{end-eqn}} +The result follows. +{{qed}} +\end{proof}<|endoftext|> +\section{Euler's Number as Sum of Egyptian Fractions} +Tags: Euler's Number + +\begin{theorem} +The [[Reciprocal/Examples/Euler's Number|reciprocal of Euler's number $e$]] can be approximated by the following sequence of [[Definition:Egyptian Fraction|Egyptian fractions]]: +:$\dfrac 1 e = \dfrac 1 3 + \dfrac 1 {29} + \dfrac 1 {15 \, 786} + \dfrac 1 {513 \, 429 \, 610} + \cdots$ +{{OEIS|A006526}} +\end{theorem} + +\begin{proof} +We have by definition of the [[Reciprocal/Examples/Euler's Number|reciprocal of $e$]] that: +:$\dfrac 1 e \approx 0 \cdotp 36787 \, 94411 \, 71442 \, 32159 \, 55237 \, 70161 \, 46086 \, 74458 \, 11131 \, 031 \ldots$ +By inspection: +:$\dfrac 1 3 < \dfrac 1 e < \dfrac 1 2$ +Thus: +:$\dfrac 1 e - \dfrac 1 3 \approx 0 \cdotp 03454 \, 61078 \, 38109 \, 08826 \, 21904 \, 36828 \, 12753 \, 41124 \, 77797 \, 70 \ldots$ +Then: +:$\dfrac 1 {29} = 0 \cdotp 03448 \, 27586 \, 20689 \, 65517 \, 24137 \, 931 \ldots$ repeating +and: +:$\dfrac 1 {28} = 0 \cdotp 03571 \, 42857 \, 14285 \ldots$ repeating +and so: +:$\dfrac 1 e - \dfrac 1 3 - \dfrac 1 {29} \approx 0 \cdotp 00006 \, 33482 \, 17499 \, 43308 \, 97766 \, 33724 \, 67925 \, 82504 \, 08832 \, 19 \cdots$ + +Thus one can generate this [[Definition:Integer Sequence|sequence]] of [[Definition:Denominator|denominators]] $\sequence {D_n}$ by: +:$D_n = \ceiling {\paren {\dfrac 1 e - \displaystyle \sum_{i \mathop = 0}^{n - 1} \frac 1 {D_i}}^{-1}}$ +\end{proof}<|endoftext|> +\section{One Half as Pandigital Fraction} +Tags: One Half, Pandigital Fractions + +\begin{theorem} +There are $12$ ways $\dfrac 1 2$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 2 = \dfrac {6729} {13 \, 458}$ +:$\dfrac 1 2 = \dfrac {6792} {13 \, 584}$ +:$\dfrac 1 2 = \dfrac {6927} {13 \, 854}$ +:$\dfrac 1 2 = \dfrac {7269} {14 \, 538}$ +:$\dfrac 1 2 = \dfrac {7293} {14 \, 586}$ +:$\dfrac 1 2 = \dfrac {7329} {14 \, 658}$ +:$\dfrac 1 2 = \dfrac {7692} {15 \, 384}$ +:$\dfrac 1 2 = \dfrac {7923} {15 \, 846}$ +:$\dfrac 1 2 = \dfrac {7932} {15 \, 864}$ +:$\dfrac 1 2 = \dfrac {9267} {18 \, 534}$ +:$\dfrac 1 2 = \dfrac {9273} {18 \, 546}$ +:$\dfrac 1 2 = \dfrac {9327} {18 \, 654}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Seventh as Pandigital Fraction} +Tags: One Seventh, Pandigital Fractions + +\begin{theorem} +There are $7$ ways $\dfrac 1 7$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 2 = \dfrac {2394} {16 \, 758}$ +:$\dfrac 1 2 = \dfrac {2637} {18 \, 459}$ +:$\dfrac 1 2 = \dfrac {4527} {31 \, 689}$ +:$\dfrac 1 2 = \dfrac {5274} {36 \, 918}$ +:$\dfrac 1 2 = \dfrac {5418} {37 \, 926}$ +:$\dfrac 1 2 = \dfrac {5976} {41 \, 832}$ +:$\dfrac 1 2 = \dfrac {7614} {53 \, 298}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Third as Pandigital Fraction} +Tags: One Third, Pandigital Fractions + +\begin{theorem} +There are $2$ ways $\dfrac 1 3$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 3 = \dfrac {5823} {17469}$ +:$\dfrac 1 3 = \dfrac {5832} {17496}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Quarter as Pandigital Fraction} +Tags: One Quarter, Pandigital Fractions + +\begin{theorem} +There are $4$ ways $\dfrac 1 4$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 4 = \dfrac {3942} {15768}$ +:$\dfrac 1 4 = \dfrac {4392} {17568}$ +:$\dfrac 1 4 = \dfrac {5796} {23184}$ +:$\dfrac 1 4 = \dfrac {7956} {31824}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Fifth as Pandigital Fraction} +Tags: One Fifth, Pandigital Fractions + +\begin{theorem} +There are $12$ ways $\dfrac 1 5$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 5 = \dfrac {2697} {13485}$ +:$\dfrac 1 5 = \dfrac {2769} {13845}$ +:$\dfrac 1 5 = \dfrac {2937} {14685}$ +:$\dfrac 1 5 = \dfrac {2967} {14835}$ +:$\dfrac 1 5 = \dfrac {2973} {14865}$ +:$\dfrac 1 5 = \dfrac {3297} {16485}$ +:$\dfrac 1 5 = \dfrac {3729} {18645}$ +:$\dfrac 1 5 = \dfrac {6297} {31485}$ +:$\dfrac 1 5 = \dfrac {7629} {38145}$ +:$\dfrac 1 5 = \dfrac {9237} {46185}$ +:$\dfrac 1 5 = \dfrac {9627} {48135}$ +:$\dfrac 1 5 = \dfrac {9723} {48615}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Sixth as Pandigital Fraction} +Tags: One Sixth, Pandigital Fractions + +\begin{theorem} +There are $3$ ways $\dfrac 1 6$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 6 = \dfrac {2943} {17658}$ +:$\dfrac 1 6 = \dfrac {4653} {27918}$ +:$\dfrac 1 6 = \dfrac {5697} {34182}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Eighth as Pandigital Fraction} +Tags: One Eighth, Pandigital Fractions + +\begin{theorem} +There are $46$ ways $\dfrac 1 8$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 8 = \dfrac {3187} {25496}$ +:$\dfrac 1 8 = \dfrac {4589} {36712}$ +:$\dfrac 1 8 = \dfrac {4591} {36728}$ +:$\dfrac 1 8 = \dfrac {4689} {37512}$ +:$\dfrac 1 8 = \dfrac {4691} {37528}$ +:$\dfrac 1 8 = \dfrac {4769} {38152}$ +:$\dfrac 1 8 = \dfrac {5237} {41896}$ +:$\dfrac 1 8 = \dfrac {5371} {42968}$ +:$\dfrac 1 8 = \dfrac {5789} {46312}$ +:$\dfrac 1 8 = \dfrac {5791} {46328}$ +:$\dfrac 1 8 = \dfrac {5839} {46712}$ +:$\dfrac 1 8 = \dfrac {5892} {47136}$ +:$\dfrac 1 8 = \dfrac {5916} {47328}$ +:$\dfrac 1 8 = \dfrac {5921} {47368}$ +:$\dfrac 1 8 = \dfrac {6479} {51832}$ +:$\dfrac 1 8 = \dfrac {6741} {53928}$ +:$\dfrac 1 8 = \dfrac {6789} {54312}$ +:$\dfrac 1 8 = \dfrac {6791} {54328}$ +:$\dfrac 1 8 = \dfrac {6839} {54712}$ +:$\dfrac 1 8 = \dfrac {7123} {56984}$ +:$\dfrac 1 8 = \dfrac {7312} {58496}$ +:$\dfrac 1 8 = \dfrac {7364} {58912}$ +:$\dfrac 1 8 = \dfrac {7416} {59328}$ +:$\dfrac 1 8 = \dfrac {7421} {59368}$ +:$\dfrac 1 8 = \dfrac {7894} {63152}$ +:$\dfrac 1 8 = \dfrac {7941} {63528}$ +:$\dfrac 1 8 = \dfrac {8174} {65392}$ +:$\dfrac 1 8 = \dfrac {8179} {65432}$ +:$\dfrac 1 8 = \dfrac {8394} {67152}$ +:$\dfrac 1 8 = \dfrac {8419} {67352}$ +:$\dfrac 1 8 = \dfrac {8439} {67512}$ +:$\dfrac 1 8 = \dfrac {8932} {71456}$ +:$\dfrac 1 8 = \dfrac {8942} {71536}$ +:$\dfrac 1 8 = \dfrac {8953} {71624}$ +:$\dfrac 1 8 = \dfrac {8954} {71632}$ +:$\dfrac 1 8 = \dfrac {9156} {73248}$ +:$\dfrac 1 8 = \dfrac {9158} {73264}$ +:$\dfrac 1 8 = \dfrac {9182} {73456}$ +:$\dfrac 1 8 = \dfrac {9316} {74528}$ +:$\dfrac 1 8 = \dfrac {9321} {74568}$ +:$\dfrac 1 8 = \dfrac {9352} {74816}$ +:$\dfrac 1 8 = \dfrac {9416} {75328}$ +:$\dfrac 1 8 = \dfrac {9421} {75368}$ +:$\dfrac 1 8 = \dfrac {9523} {76184}$ +:$\dfrac 1 8 = \dfrac {9531} {76248}$ +:$\dfrac 1 8 = \dfrac {9541} {76328}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{One Ninth as Pandigital Fraction} +Tags: One Ninth, Pandigital Fractions + +\begin{theorem} +There are $3$ ways $\dfrac 1 9$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]]: +:$\dfrac 1 9 = \dfrac {6381} {57429}$ +:$\dfrac 1 9 = \dfrac {6471} {58239}$ +:$\dfrac 1 9 = \dfrac {8361} {75249}$ +\end{theorem} + +\begin{proof} +Can be verified by brute force. +\end{proof}<|endoftext|> +\section{Four Fifths as Pandigital Fraction} +Tags: One Fifth, Pandigital Fractions + +\begin{theorem} +The [[Definition:Fraction|fraction]] $\dfrac 4 5$ can be expressed as a [[Definition:Pandigital Fraction|pandigital fraction]] in the following interesting way: +:$\dfrac 4 5 = \dfrac {9876} {12 \, 345}$ +\end{theorem} + +\begin{proof} +Can be found by brute force. +\end{proof}<|endoftext|> +\section{Probability of Two Random Integers having no Common Divisor} +Tags: Riemann Zeta Function, Coprime Integers + +\begin{theorem} +Let $a$ and $b$ be [[Definition:Integer|integers]] chosen at random. +The [[Definition:Probability|probability]] that $a$ and $b$ are [[Definition:Coprime Integers|coprime]] is given by: +:$\map \Pr {a \perp b} = \dfrac 1 {\map \zeta 2} = \dfrac 6 {\pi^2}$ +where $\zeta$ denotes the [[Definition:Riemann Zeta Function|zeta function]]. +The [[Definition:Decimal Expansion|decimal expansion]] of $\dfrac 1 {\map \zeta 2}$ starts: +:$\dfrac 1 {\map \zeta 2} = 0 \cdotp 60792 \, 71018 \, 54026 \, 6 \ldots$ +{{OEIS|A059956}} +\end{theorem} + +\begin{proof} +Let $a$ and $b$ be two [[Definition:Integer|integers]] chosen at random. +For $a$ and $b$ to be [[Definition:Coprime Integers|coprime]], it is [[Definition:Necessary and Sufficient|necessary and sufficient]] that no [[Definition:Prime Number|prime number]] divides both of them. +The probability that any particular [[Definition:Integer|integer]] is [[Definition:Divisor of Integer|divisible]] by a [[Definition:Prime Number|prime number]] $p$ is $\dfrac 1 p$. +Hence the probability that both $a$ and $b$ are [[Definition:Divisor of Integer|divisible]] by $p$ is $\dfrac 1 {p^2}$. +The probability that either $a$ or $b$ or both is not [[Definition:Divisor of Integer|divisible]] by $p$ is therefore $1 - \dfrac 1 {p^2}$. +Whether or not $a$ is [[Definition:Divisor of Integer|divisible]] by $p$ or [[Definition:Divisor of Integer|divisible]] by another [[Definition:Prime Number|prime number]] $q$ is independent of both $p$ and $q$. +Thus by the [[Product Rule for Probabilities]], the probability that $a$ and $b$ are not both [[Definition:Divisor of Integer|divisible]] by either $p$ or $q$ is $\paren {1 - \dfrac 1 {p^2} } \paren {1 - \dfrac 1 {q^2} }$. +This independence extends to all [[Definition:Prime Number|prime numbers]]. +That is, the probability that $a$ and $b$ are not both [[Definition:Divisor of Integer|divisible]] by any [[Definition:Prime Number|prime number]] is equal to the [[Definition:Multiplication|product]] of $1 - \dfrac 1 {p^2}$ over all [[Definition:Prime Number|prime numbers]]: +:$\map \Pr {a \perp b} = \displaystyle \prod_{\text {$p$ prime} } \paren {1 - \dfrac 1 {p^2} }$ +From [[Sum of Reciprocals of Powers as Euler Product]]: +:$\displaystyle \map \zeta s = \prod_p \frac 1 {1 - p^{-s} }$ +from which: +:$\displaystyle \dfrac 1 {\map \zeta 2} = \prod_{\text {$p$ prime} } \paren {1 - \dfrac 1 {p^2} }$ +where $\map \zeta 2$ is the [[Definition:Riemann Zeta Function|Riemann $\zeta$ (zeta) function]] evaluated at $2$. +The result follows from [[Riemann Zeta Function of 2]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Probability of Random Integer being Square-Free} +Tags: Riemann Zeta Function, Square-Free Integers + +\begin{theorem} +Let $a$ be an [[Definition:Integer|integer]] chosen at random. +The [[Definition:Probability|probability]] that $a$ is [[Definition:Square-Free Integer|square-free]] is given by: +:$\map \Pr {\neg \exists b \in \Z: b^2 \divides a} = \dfrac 1 {\map \zeta 2} = \dfrac 6 {\pi^2}$ +where $\zeta$ denotes the [[Definition:Riemann Zeta Function|zeta function]]. +The [[Definition:Decimal Expansion|decimal expansion]] of $\dfrac 1 {\map \zeta 2}$ starts: +:$\dfrac 1 {\map \zeta 2} = 0 \cdotp 60792 \, 71018 \, 54026 \, 6 \ldots$ +{{OEIS|A059956}} +\end{theorem} + +\begin{proof} +Let $a$ be an [[Definition:Integer|integer]] chosen at random. +For $a$ to be [[Definition:Square-Free Integer|square-free]], it is [[Definition:Necessary and Sufficient|necessary and sufficient]] that for all [[Definition:Prime Number|prime numbers]] $p$, it is not the case that $p^2$ is a [[Definition:Divisor of Integer|divisor]] of $a$. +The probability that any particular [[Definition:Integer|integer]] is [[Definition:Divisor of Integer|divisible]] by $p^2$ is $\dfrac 1 {p^2}$. +The probability that $a$ is not [[Definition:Divisor of Integer|divisible]] by $p^2$ is therefore $1 - \dfrac 1 {p^2}$. +Whether or not $a$ is [[Definition:Divisor of Integer|divisible]] by $p^2$ or [[Definition:Divisor of Integer|divisible]] by $q^2$ for another [[Definition:Prime Number|prime number]] $q$ is independent of both $p$ and $q$. +Thus by the [[Product Rule for Probabilities]], the probability that $a$ is not [[Definition:Divisor of Integer|divisible]] by either $p^2$ or $q^2$ is $\paren {1 - \dfrac 1 {p^2} } \paren {1 - \dfrac 1 {q^2} }$. +This independence extends to all [[Definition:Prime Number|prime numbers]]. +That is, the probability that $a$ is not [[Definition:Divisor of Integer|divisible]] by the [[Definition:Square (Algebra)|square]] of any [[Definition:Prime Number|prime number]] is equal to the [[Definition:Multiplication|product]] of $1 - \dfrac 1 {p^2}$ over all [[Definition:Prime Number|prime numbers]]: +:$\map \Pr {\neg \exists b \in \Z: b^2 \divides a} = \displaystyle \prod_{\text {$p$ prime} } \paren {1 - \dfrac 1 {p^2} }$ +From [[Sum of Reciprocals of Powers as Euler Product]]: +:$\displaystyle \map \zeta s = \prod_p \frac 1 {1 - p^{-s} }$ +from which: +:$\displaystyle \dfrac 1 {\map \zeta 2} = \prod_{\text {$p$ prime} } \paren {1 - \dfrac 1 {p^2} }$ +where $\map \zeta 2$ is the [[Definition:Riemann Zeta Function|Riemann $\zeta$ (zeta) function]] evaluated at $2$. +The result follows from [[Riemann Zeta Function of 2]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Kepler's Conjecture} +Tags: Hilbert 23, Spheres + +\begin{theorem} +The densest packing of identical [[Definition:Sphere (Geometry)|spheres]] in [[Definition:Ordinary Space|space]] is obtained when the [[Definition:Sphere (Geometry)|spheres]] are arranged with their [[Definition:Center of Sphere|centers]] at the points of a [[Definition:Face-Centered Cubic Lattice|face-centered cubic lattice]]. +This obtains a density of $\dfrac \pi {3 \sqrt 2} = \dfrac \pi {\sqrt {18} }$: +:$\dfrac \pi {\sqrt {18} } = 0 \cdotp 74048 \ldots$ +\end{theorem} + +\begin{proof} +{{ProofWanted}} +{{Namedfor|Johannes Kepler|cat = Kepler}} +\end{proof}<|endoftext|> +\section{Prime Ideal is Prime Element} +Tags: Prime Ideals (Order Theory), Prime Elements + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Lattice|lattice]]. +Let $I$ be an [[Definition:Ideal (Order Theory)|ideal]] in $L$. +Then: +:$I$ is a [[Definition:Prime Ideal (Order Theory)|prime ideal]] +{{iff}}: +:$I$ is a [[Definition:Prime Element (Order Theory)|prime element]] in $\struct {\map {\mathit {Ids} } L, \precsim}$ +where: +:$\map {\mathit {Ids} } L$ denotes the [[Definition:Set of Sets|set]] of all [[Definition:Ideal (Order Theory)|ideals]] in $L$ +:$\mathord \precsim := \mathord \subseteq \restriction_{\map {\mathit {Ids} } L \times \map {\mathit {Ids} } L}$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $I$ be a [[Definition:Prime Ideal (Order Theory)|prime ideal]]. +Let $x, y \in \map {\mathit {Ids} } L$ such that +:$x \wedge y \precsim I$ +By definition of $\precsim$: +:$x \wedge y \subseteq I$ +By [[Meet is Intersection in Set of Ideals]]: +:$x \cap y \subseteq I$ +{{AimForCont}}: +:$x \not \precsim I$ and $y \not \precsim I$ +By definition of $\precsim$: +$x \nsubseteq I$ and $y \nsubseteq I$ +By definition of [[Definition:Subset|subset]]: +:$\exists a \in x: a \notin I$ +and +:$\exists b \in y: b \notin I$ +By [[Meet Precedes Operands]]: +:$a \wedge b \preceq a$ and $a \wedge b \preceq b$ +By definition [[Definition:Lower Set|lower set]]: +:$a \wedge b \in x$ and $a \wedge b \in y$ +By definitions [[Definition:Subset|subset]] and [[Definition:Set Intersection|intersection]]: +:$a \wedge b \in I$ +By [[Characterization of Prime Ideal]]: +:$a \in I$ or $b \in I$ +This [[Definition:Contradiction|contradicts]] $a \notin I$ and $b \notin I$ +Hence the assumption: +:$x \not \precsim I$ and $y \not \precsim I$ +was false. +{{qed|lemma}} +=== Necessary Condition === +Let $I$ be [[Definition:Prime Element (Order Theory)|prime element]] in $\struct {\map {\mathit {Ids} } L, \precsim}$ +Let $x, y \in S$ such that: +:$x \wedge y \in I$ +By [[Lower Closure of Element is Ideal]]: +:$X := x^\preceq$ and $Y := y^\preceq$ are [[Definition:Ideal (Order Theory)|ideals]] in $L$ +By [[Meet is Intersection in Set of Ideals]]: +:$X \cap Y = X \wedge Y$ +We will prove that: +:$X \wedge Y \subseteq I$ +Let $a \in X \wedge Y$. +By definition of [[Definition:Set Intersection|intersection]]: +:$a \in X$ and $a \in Y$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$a \preceq x$ and $a \preceq y$ +By definition of [[Definition:Infimum of Set|infimum]]: +:$a \preceq x \wedge y$ +Thus by definition of [[Definition:Lower Set|lower set]]: +:$a \in I$ +{{qed|lemma}} +By definition of $\precsim$: +:$X \wedge Y \precsim I$ +By definition of [[Definition:Prime Element (Order Theory)|prime element]]: +:$X \precsim I$ or $Y \precsim I$ +By definition of $\precsim$: +:$X \subseteq I$ or $Y \subseteq I$ +By definition of [[Definition:Reflexive Relation|reflexivity]]: +:$x \preceq x$ and $y \preceq y$ +By definition of [[Definition:Lower Closure of Element|lower closure of element]]: +:$x \in X$ and $y \in Y$ +Thus by definition of [[Definition:Subset|subset]]: +:$x \in I$ or $y \in I$ +Hence by [[Characterization of Prime Ideal]]: +:$I$ is [[Definition:Prime Ideal (Order Theory)|prime ideal]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Probability of Three Random Integers having no Common Divisor} +Tags: Riemann Zeta Function, Coprime Integers + +\begin{theorem} +Let $a, b$ and $c$ be [[Definition:Integer|integers]] chosen at random. +The [[Definition:Probability|probability]] that $a, b$ and $c$ have no [[Definition:Common Divisor of Integers|common divisor]]: +:$\map \Pr {\map \perp {a, b, c} } = \dfrac 1 {\map \zeta 3}$ +where $\zeta$ denotes the [[Definition:Riemann Zeta Function|zeta function]]: +:$\map \zeta 3 = \dfrac 1 {1^3} + \dfrac 1 {2^3} + \dfrac 1 {3^3} + \dfrac 1 {4^3} + \cdots$ +The [[Definition:Decimal Expansion|decimal expansion]] of $\dfrac 1 {\map \zeta 3}$ starts: +:$\dfrac 1 {\map \zeta 3} = 0 \cdotp 83190 \, 73725 \, 80707 \ldots$ +{{OEIS|A088453}} +\end{theorem} + +\begin{proof} +Let $a$, $b$ and $c$ be three [[Definition:Integer|integers]] chosen at random. +For $a$, $b$ and $c$ to be [[Definition:Coprime Integers|coprime]], it is [[Definition:Necessary and Sufficient|necessary and sufficient]] that no [[Definition:Prime Number|prime number]] divides all of them. +The probability that any particular [[Definition:Integer|integer]] is [[Definition:Divisor of Integer|divisible]] by a [[Definition:Prime Number|prime number]] $p$ is $\dfrac 1 p$. +Hence the probability that $a$, $b$ and $c$ are [[Definition:Divisor of Integer|divisible]] by $p$ is $\dfrac 1 {p^3}$. +The probability that at least one of $a$, $b$ and $c$ is not [[Definition:Divisor of Integer|divisible]] by $p$ is therefore $1 - \dfrac 1 {p^3}$. +Whether or not $a$ is [[Definition:Divisor of Integer|divisible]] by $p$ or [[Definition:Divisor of Integer|divisible]] by another [[Definition:Prime Number|prime number]] $q$ is independent of both $p$ and $q$. +Thus by the [[Product Rule for Probabilities]], the probability that $a$, $b$ and $c$ are not all [[Definition:Divisor of Integer|divisible]] by either $p$ or $q$ is $\paren {1 - \dfrac 1 {p^3} } \paren {1 - \dfrac 1 {q^3} }$. +This independence extends to all [[Definition:Prime Number|prime numbers]]. +That is, the probability that $a$, $b$ and $c$ are not all [[Definition:Divisor of Integer|divisible]] by any [[Definition:Prime Number|prime number]] is equal to the [[Definition:Multiplication|product]] of $1 - \dfrac 1 {p^3}$ over all [[Definition:Prime Number|prime numbers]]: +:$\map \Pr {\map \perp {a, b, c} } = \displaystyle \prod_{\text {$p$ prime} } \paren {1 - \dfrac 1 {p^3} }$ +From [[Sum of Reciprocals of Powers as Euler Product]]: +:$\displaystyle \map \zeta s = \prod_p \frac 1 {1 - p^{-s} }$ +from which: +:$\displaystyle \dfrac 1 {\map \zeta 3} = \prod_{\text {$p$ prime} } \paren {1 - \dfrac 1 {p^3} }$ +where $\map \zeta 3$ is the [[Definition:Riemann Zeta Function|Riemann $\zeta$ (zeta) function]] evaluated at $3$. +The result follows. +{{qed}} +\end{proof}<|endoftext|> +\section{Densest Packing of Identical Circles} +Tags: Geometry + +\begin{theorem} +The densest packing of identical [[Definition:Circle|circles]] in [[Definition:The Plane|the plane]] obtains a density of $\dfrac \pi {2 \sqrt 3} = \dfrac \pi {\sqrt {12} }$: +:$\dfrac \pi {2 \sqrt 3} = 0 \cdotp 90689 \, 96821 \ldots$ +{{OEIS|A093766}} +This happens when they are packed together in a [[Definition:Regular Hexagon|hexagonal]] array, with each [[Definition:Circle|circle]] touching $6$ others. +\end{theorem} + +\begin{proof} +{{ProofWanted|It remains to be proved that the hexagonal packing is in fact the densest that can be achieved.}} +Consider the [[Definition:Rectangle|rectangular area]] $ABCD$ of the densest packing of [[Definition:Circle|circles]]. +:[[File:Close-Packed-Circles.png|300px]] +Let the [[Definition:Radius|radius]] of one [[Definition:Circle|circle]] be $1$. +The [[Definition:Length of Line|length]] $AB$ is $2$. +The [[Definition:Length of Line|length]] $AC$ is $2 \sqrt 3$. +Thus, from [[Area of Rectangle]], the [[Definition:Area|area]] of $\Box ABCD$ is $4 \sqrt 3$. +Within $ABCD$ there is one complete [[Definition:Circle|circle]] and one [[Definition:Quarter|quarter]] of each of $4$ other [[Definition:Circle|circles]]. +That makes a total of $2$ [[Definition:Circle|circles]]. +Thus, from [[Area of Circle]], the area of $ABCD$ which is inside a [[Definition:Circle|circle]] is $2 \pi$. +So the density is: +{{begin-eqn}} +{{eqn | l = \dfrac {\text {Area of Circles} } {\text {Area of Rectangle} } + | r = \dfrac {2 \pi} {4 \sqrt 3} + | c = +}} +{{eqn | r = \dfrac {\pi} {2 \sqrt 3} + | c = +}} +{{eqn | r = \dfrac {\pi} {12} + | c = +}} +{{end-eqn}} +as required. +\end{proof}<|endoftext|> +\section{Anning's Theorem} +Tags: Number Theory + +\begin{theorem} +In any [[Definition:Number Base|base]] greater than $1$, the [[Definition:Fraction|fraction]]: +:$\dfrac {101 \, 010 \, 101} {110 \, 010 \, 011}$ +has the property that if the two $1$'s in the center of the [[Definition:Numerator|numerator]] and the [[Definition:Denominator|denominator]] are replaced by the same [[Definition:Odd Integer|odd number]] of $1$'s, the value of the [[Definition:Fraction|fraction]] remains the same. +For example: +:$\dfrac {101 \, 010 \, 101} {110 \, 010 \, 011} = \dfrac {1 \, 010 \, 111 \, 110 \, 101} {1 \, 100 \, 111 \, 110 \, 011} = \dfrac {9091} {9901}$ (in [[Definition:Decimal Notation|base $10$)]]. +\end{theorem} + +\begin{proof} +Let $b$ be the [[Definition:Number Base|base]] in question. +Let $F = \dfrac {101 \, 010 \, 101} {110 \, 010 \, 011}$. +Then: +:$F = \dfrac {1 + b^2 + b^4 + b^6 + b^8} {1 + b + b^4 + b^7 + b^8}$ +It is necessary to prove that for all $k \in \Z_{>0}$: +:$F = \dfrac {1 + b^2 + b^4 + b^5 + \cdots + b^{2 k + 2} + b^{2 k + 4} + b^{2 k + 6} } {1 + b + b^4 + b^5 + \cdots + b^{2 k + 2} + b^{2 k + 5} + b^{2 k + 6} }$ +This is done by: +: multiplying the [[Definition:Numerator|numerator]] of one by the [[Definition:Denominator|denominator]] of the other +and then: +: multiplying the [[Definition:Denominator|denominator]] of one by the [[Definition:Numerator|numerator]] of the other +and checking that they are equal. +Thus we proceed: +{{begin-eqn}} +{{eqn | o = + | r = 1 + b^2 + b^4 + b^6 + b^8 + | c = +}} +{{eqn | o = + | ro= \times + | r = 1 + b + b^4 + b^5 + \cdots + b^{2 k + 2} + b^{2 k + 5} + b^{2 k + 6} + | c = +}} +{{eqn | o = = + | r = 1 + b + b^4 + b^5 + \cdots + b^{2 k + 2} + b^{2 k + 5} + b^{2 k + 6} + | c = +}} +{{eqn | o = + | ro= + + | r = b^2 + b^3 + b^6 + b^7 + \cdots + b^{2 k + 4} + b^{2 k + 7} + b^{2 k + 8} + | c = +}} +{{eqn | o = + | ro= + + | r = b^4 + b^5 + b^8 + b^9 + \cdots + b^{2 k + 6} + b^{2 k + 9} + b^{2 k + 10} + | c = +}} +{{eqn | o = + | ro= + + | r = b^6 + b^7 + b^{10} + b^{11} + \cdots + b^{2 k + 8} + b^{2 k + 11} + b^{2 k + 12} + | c = +}} +{{eqn | o = + | ro= + + | r = b^8 + b^9 + b^{12} + b^{13} + \cdots + b^{2 k + 10} + b^{2 k + 13} + b^{2 k + 14} + | c = +}} +{{end-eqn}} +and: +{{begin-eqn}} +{{eqn | o = + | r = 1 + b + b^4 + b^7 + b^8 + | c = +}} +{{eqn | o = + | ro= \times + | r = 1 + b^2 + b^4 + b^5 + \cdots + b^{2 k + 2} + b^{2 k + 4} + b^{2 k + 6} + | c = +}} +{{eqn | o = = + | r = 1 + b^2 + b^4 + b^5 + \cdots + b^{2 k + 2} + b^{2 k + 4} + b^{2 k + 6} + | c = +}} +{{eqn | o = + | ro= + + | r = b + b^3 + b^5 + b^6 + \cdots + b^{2 k + 3} + b^{2 k + 5} + b^{2 k + 7} + | c = +}} +{{eqn | o = + | ro= + + | r = b^4 + b^6 + b^8 + b^9 + \cdots + b^{2 k + 6} + b^{2 k + 8} + b^{2 k + 10} + | c = +}} +{{eqn | o = + | ro= + + | r = b^7 + b^9 + b^{11} + b^{12} + \cdots + b^{2 k + 9} + b^{2 k + 11} + b^{2 k + 13} + | c = +}} +{{eqn | o = + | ro= + + | r = b^8 + b^{10} + b^{12} + b^{13} + \cdots + b^{2 k + 10} + b^{2 k + 12} + b^{2 k + 14} + | c = +}} +{{end-eqn}} +Equality can be demonstrated. +{{qed}} +{{Namedfor|Norman Herbert Anning|cat = Anning}} +\end{proof}<|endoftext|> +\section{Meet is Intersection in Set of Ideals} +Tags: Join and Meet + +\begin{theorem} +Let $\mathscr S = \struct {S, \wedge, \preceq}$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $\map {\mathit {Ids} } {\mathscr S}$ be the [[Definition:Set of Sets|set]] of all [[Definition:Ideal in Ordered Set|ideals]] in $\mathscr S$. +Let $P = \struct {\map {\mathit {Ids} } {\mathscr S}, \precsim}$ be an [[Definition:Ordered Set|ordered set]] where $\mathord \precsim = \mathord \subseteq \restriction_{\map {\mathit {Ids} } {\mathscr S} \times \map {\mathit {Ids} } {\mathscr S} }$ +Let $I_1, I_2$ be [[Definition:Ideal in Ordered Set|ideals]] in $\mathscr S$. +Then +:$I_1 \wedge_P I_2 = I_1 \cap I_2$ +\end{theorem} + +\begin{proof} +By [[Intersection of Semilattice Ideals is Ideal]]: +:$I_1 \cap I_2 \in \map {\mathit {Ids} } {\mathscr S}$ +We will prove that +:$I_1 \cap I_2$ is [[Definition:Lower Bound of Set|lower bound]] for $\set {I_1, I_2}$ +Let $x \in \set {I_1, I_2}$. +Then by definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x = I_1$ or $x = I_2$ +By [[Intersection is Subset]] +:$I_1 \cap I_2 \subseteq x$ +Thus by definition of $\precsim$: +:$I_1 \cap I_2 \precsim x$ +{{qed|lemma}} +We will prove that +:$\forall I \in \map {\mathit {Ids} } {\mathscr S}: I$ is [[Definition:Lower Bound of Set|lower bound]] for $\set {I_1, I_2} \implies I \precsim I_1 \cap I_2$ +Let $I \in \map {\mathit {Ids} } {\mathscr S}$ such that +:$I$ is [[Definition:Lower Bound of Set|lower bound]] for $\set {I_1, I_2}$ +By definition of [[Definition:Lower Bound of Set|lower bound]]: +:$I \precsim I_1$ and $I \precsim I_2$ +By definition of $\precsim$: +:$I \subseteq I_1$ and $I \subseteq I_2$ +By [[Intersection is Largest Subset]]: +:$I \subseteq I_1 \cap I_2$ +Thus by definition of $\precsim$ +:$I \precsim I_1 \cap I_2$ +{{qed|lemma}} +By definition of [[Definition:Infimum of Set|infimum]]: +:$\inf \set {I_1, I_2} = I_1 \cap I_2$ +Hence by definition of [[Definition:Meet (Order Theory)|meet]]: +:$I_1 \wedge I_2 = I_1 \cap I_2$ +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Prime Ideal by Finite Infima} +Tags: Prime Ideals (Order Theory) + +\begin{theorem} +Let $L = \left({S, \wedge, \preceq}\right)$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $I$ be an [[Definition:Ideal (Order Theory)|ideal]] in $L$. +Then +:$I$ is a [[Definition:Prime Ideal (Order Theory)|prime ideal]] +{{iff}} +:for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] $A$ of $S: \left({ \inf A \in I \implies \exists a \in A: a \in I}\right)$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $I$ be a [[Definition:Prime Ideal (Order Theory)|prime ideal]]. +Define $\mathcal P\left({X}\right) :\equiv X \ne \varnothing \land \inf X \in I \implies \exists x \in X: x \in I$ +where $X$ is [[Definition:Subset|subset]] of $S$. +Let $A$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] of $S$. +By definition of [[Definition:Empty Set|empty set]]: +:$\mathcal P\left({\varnothing}\right)$ +We will prove that +:$\forall x \in A, B \subseteq A: \mathcal P\left({B}\right) \implies \mathcal P\left({B \cup \left\{ {x}\right\} }\right)$ +Let $x \in A, B \subseteq A$ such that +:$\mathcal P\left({B}\right)$ (Induction Hypothesis) +Assume that +:$B \cup \left\{ {x}\right\} \ne \varnothing$ and $\inf \left({B \cup \left\{ {x}\right\} }\right) \in I$ +Case $B = \varnothing$: +By [[Union with Empty Set]]: +:$B \cup \left\{ {x}\right\} = \left\{ {x}\right\}$ +By [[Infimum of Singleton]]: +:$\inf \left\{ {x}\right\} = x$ +By definition of [[Definition:Singleton|singleton]]: +:$x \in \left\{ {x}\right\}$ +Thus +:$\exists a \in B \cup \left\{ {x}\right\}: a \in I$ +{{qed|lemma}} +Case $B \ne \varnothing$: +By [[Subset of Finite Set is Finite]]: +:$B$ is [[Definition:Finite Set|finite]]. +By [[Existence of Non-Empty Finite Infima in Meet Semilattice]]: +:$B$ admits an [[Definition:Infimum of Set|infimum]]. +By [[Infimum of Singleton]]: +:$\left\{ {x}\right\}$ admits an [[Definition:Infimum of Set|infimum]]. +{{begin-eqn}} +{{eqn | l = \inf\left({B \cup \left\{ {x}\right\} }\right) +| r = \inf\left({\bigcup\left\{ {B, \left\{ {x}\right\} }\right\} }\right) +| c = definition of [[Definition:Set Union|union]] +}} +{{eqn | r = \inf \left\{ {\inf B, x}\right\} +| c = [[Infimum of Infima]]: +}} +{{eqn | r = \left({\inf B}\right) \wedge x +| c = definition of [[Definition:Meet (Order Theory)|meet]] +}} +{{end-eqn}} +By [[Characterization of Prime Ideal]]: +:$\inf B \in I$ or $x \in I$ +Case $\inf B \in I$: +By Induction Hypothesis: +:$\exists a \in B: a \in I$ +By definition of [[Definition:Set Union|union]]: +:$a \in B \cup \left\{ {x}\right\}$ +Thus +:$\exists a \in B \cup \left\{ {x}\right\}: a \in I$ +{{qed|lemma}} +Case $x \in I$: +By definition of [[Definition:Set Union|union]]: +:$x \in B \cup \left\{ {x}\right\}$ +Thus +:$\exists a \in B \cup \left\{ {x}\right\}: a \in I$ +{{qed|lemma}} +By [[Induction of Finite Set]]: +:$\mathcal P\left({A}\right)$ +Thus the result. +{{qed|lemma}} +=== Necessary Condition === +Suppose that +:for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] $A$ of $S: \left({ \inf A \in I \implies \exists a \in A: a \in I}\right)$ +Let $x, y \in S$ such that +:$x \wedge y \in I$ +By [[Unordered Pair is Finite]]: +:$\left\{ {x, y}\right\}$ is a [[Definition:Finite Set|finite set]]. +By definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x \in \left\{ {x, y}\right\}$ +By definition of [[Definition:Non-Empty Set|non-empty set]]: +:$\left\{ {x, y}\right\}$ is a [[Definition:Non-Empty Set|non-empty set]]. +By definition of [[Definition:Meet (Order Theory)|meet]]: +:$\inf \left\{ {x, y}\right\} = x \wedge y$ +By assumption: +:$\exists a \in \left\{ {x, y}\right\}: a \in I$ +Thus by definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x \in I$ or $y \in I$ +Hence by [[Characterization of Prime Ideal]]: +:$I$ is [[Definition:Prime Ideal (Order Theory)|prime ideal]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Doubling the Cube/Archytas Curve} +Tags: Doubling the Cube + +\begin{theorem} +The [[Definition:Archytas Curve|Archytas curve]] can be used for [[Doubling the Cube]]. +\end{theorem}<|endoftext|> +\section{Doubling the Cube/Intersection of Parabolas} +Tags: Doubling the Cube + +\begin{theorem} +The problem of [[Doubling the Cube]] can be solved by finding the [[Definition:Intersection (Geometry)|intersection]] of two [[Definition:Parabola|parabolas]]. +\end{theorem}<|endoftext|> +\section{Doubling the Cube/Intersection of Parabola and Hyperbola} +Tags: Doubling the Cube + +\begin{theorem} +The problem of [[Doubling the Cube]] can be solved by finding the [[Definition:Intersection (Geometry)|intersection]] of a [[Definition:Parabola|parabola]] and a [[Definition:Hyperbola|hyperbola]]. +\end{theorem}<|endoftext|> +\section{Unordered Pair is Finite} +Tags: Set Theory + +\begin{theorem} +Let $x, y$ be arbitrary. +Then $\left\{ {x, y}\right\}$ is [[Definition:Finite Set|finite]]. +\end{theorem} + +\begin{proof} +By [[Pair is Union of Singletons]]: +:$\left\{ {x, y}\right\} = \left\{ {x}\right\} \cup \left\{ {y}\right\}$ +By [[Singleton is Finite]]: +:$\left\{ {x}\right\}$ and $\left\{ {y}\right\}$ are [[Definition:Finite Set|finite]]. +Thus by [[Union of Finite Sets is Finite]]: +:$\left\{ {x, y}\right\}$ is [[Definition:Finite Set|finite]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Pair is Union of Singletons} +Tags: Set Theory, Singletons + +\begin{theorem} +Let $x, y$ be arbitrary. +{{questionable|Need to state that $x \ne y$.}} +Then $\left\{ {x, y}\right\} = \left\{ {x}\right\} \cup \left\{ {y}\right\}$ +\end{theorem} + +\begin{proof} +Straightforward from [[Union of Unordered Tuples]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Doubling the Cube/Conchoid of Nicomedes} +Tags: Doubling the Cube + +\begin{theorem} +The problem of [[Doubling the Cube]] can be solved by using a [[Definition:Conchoid of Nicomedes|conchoid of Nicomedes]]. +\end{theorem}<|endoftext|> +\section{Doubling the Cube/Cissoid of Diocles} +Tags: Doubling the Cube + +\begin{theorem} +The problem of [[Doubling the Cube]] can be solved by using a [[Definition:Cissoid of Diocles|cissoid of Diocles]]. +\end{theorem}<|endoftext|> +\section{Length of Diagonal of Unit Square} +Tags: Squares + +\begin{theorem} +The [[Definition:Length (Linear Measure)|length]] of a [[Definition:Diagonal of Quadrilateral|diagonal]] of a [[Definition:Square (Geometry)|square]] of [[Definition:Side of Polygon|side]] [[Definition:Length (Linear Measure)|length]] $1$ is $\sqrt 2$) (the [[Definition:Square Root|square root]] of $2$). +\end{theorem} + +\begin{proof} +:[[File:DiagonalOfSquare.png|300px]] +Two adjacent [[Definition:Side of Polygon|sides]] $AB$, $BC$ and the [[Definition:Diagonal of Quadrilateral|diagonal]] $AC$ of [[Definition:Square (Geometry)|square]] $ABCD$ form a [[Definition:Right Triangle|right triangle]]. +The [[Definition:Hypotenuse|hypotenuse]] of [[Definition:Triangle (Geometry)|triangle]] $\triangle ABC$ can be found by using [[Pythagoras's Theorem]]: +:$AC^2 = AB^2 + BC^2$ +from which: +:$AC^2 = 2$ +and so: +:$AC = \sqrt 2$ +{{qed}} +\end{proof}<|endoftext|> +\section{Sequence of Best Rational Approximations to Square Root of 2} +Tags: Square Root of 2 + +\begin{theorem} +A [[Definition:Sequence|sequence]] of [[Definition:Best Rational Approximation|best rational approximations]] to the [[Definition:Square Root|square root]] of $2$ starts: +:$\dfrac 1 1, \dfrac 3 2, \dfrac 7 5, \dfrac {17} {12}, \dfrac {41} {29}, \dfrac {99} {70}, \dfrac {239} {169}, \dfrac {577} {408}, \ldots$ +where: +:the [[Definition:Numerator|numerators]] are half of the [[Definition:Pell-Lucas Numbers|Pell-Lucas numbers]], $\dfrac 1 2 Q_n$ +:the [[Definition:Denominator|denominators]] are the [[Definition:Pell Numbers|Pell numbers]] $P_n$ +starting from $\dfrac {\tfrac12 Q_1} {P_1}$. +{{OEIS-Numerators|A001333}} +{{OEIS-Denominators|A000129}} +\end{theorem} + +\begin{proof} +Let $\tuple {a_0, a_1, \ldots}$ be the [[Definition:Continued Fraction Expansion of Real Number|continued fraction expansion]] of $\sqrt 2$. +By [[Continued Fraction Expansion of Root 2]]: +:$\sqrt 2 = \sqbrk {1, \sequence 2} = \sqbrk {1, 2, 2, 2, \ldots}$ +From [[Convergents are Best Approximations]], the [[Definition:Convergent of Continued Fraction|convergents]] of $\sqbrk {1, \sequence 2}$ are the [[Definition:Best Rational Approximation|best rational approximations]] of $\sqrt 2$. +Let $\sequence {p_n}_{n \mathop \ge 0}$ and $\sequence {q_n}_{n \mathop \ge 0}$ be the [[Definition:Numerators and Denominators of Continued Fraction|numerators and denominators]] of the continued fraction expansion of $\sqrt 2$. +Then $\dfrac {p_n} {q_n}$ is the $n$th [[Definition:Convergent of Continued Fraction|convergent]] of $\sqbrk {1, \sequence 2}$. +By [[Convergents of Simple Continued Fraction are Rationals in Canonical Form]], $p_n$ and $q_n$ are [[Definition:Coprime Integers|coprime]] for all $n \ge 0$. +It remains to show that for all $n \ge 1$: +:$Q_n = 2 p_{n - 1}$ +:$P_n = q_{n - 1}$ +It is sufficient to prove that they satisfy the same [[Definition:Recurrence Relation|recurrence relation]]. +By definition: +{{begin-eqn}} +{{eqn | l = p_0 + | r = a_0 +}} +{{eqn | r = 1 +}} +{{eqn | l = q_0 + | r = 1 +}} +{{end-eqn}} +so that: +:$\tuple {Q_1, P_1} = \tuple {2, 1} = \tuple {2 p_0, q_0}$ +{{begin-eqn}} +{{eqn | l = p_1 + | r = a_0 a_1 + 1 +}} +{{eqn | r = 1 \times 2 + 1 +}} +{{eqn | r = 3 +}} +{{eqn | l = q_1 + | r = a_1 +}} +{{eqn | r = 2 +}} +{{end-eqn}} +so that: +:$\tuple {Q_2, P_2} = \tuple {6, 2} = \tuple {2 p_1, q_1}$ +{{begin-eqn}} +{{eqn | l = p_k + | r = a_k p_{k - 1} + p_{k - 2} +}} +{{eqn | r = 2 p_{k - 1} + p_{k - 2} +}} +{{eqn | l = q_k + | r = a_k q_{k - 1} + q_{k - 2} +}} +{{eqn | r = 2 q_{k - 1} + q_{k - 2} +}} +{{end-eqn}} +The result follows by definition of [[Definition:Pell Numbers|Pell numbers]] and [[Definition:Pell-Lucas Numbers|Pell-Lucas numbers]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Difference between Adjacent Convergents of Simple Continued Fraction} +Tags: Continued Fractions + +\begin{theorem} +Then for $k \ge 1$: +:$p_k q_{k - 1} - p_{k - 1} q_k = \paren {-1}^{k + 1}$ +That is: +:$C_k - C_{k - 1} = \dfrac {p_k} {q_k} - \dfrac {p_{k - 1} } {q_{k - 1} } = \dfrac {\paren {-1}^{k + 1} } {q_k q_{k - 1} }$ +\end{theorem} + +\begin{proof} +Proof by [[Principle of Mathematical Induction|induction]]: +For all $n \in \Z: n \ge 2$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$p_n q_{n - 1} - p_{n - 1} q_n = \paren {-1}^{n + 1}$ +=== Basis for the Induction === +$\map P 1$ is the case: +:$p_0 = a_0, p_1 = a_0 a_1 + 1, q_0 = 1, q_1 = a_1$ +So: +:$p_1 q_0 - p_0 q_1 = \paren {a_0 a_1 + 1} \times 1 - a_0 a_1 = 1 = \paren {-1}^2$ +So $P(2)$ is seen to hold. +This is our [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now we need to show that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true. +So this is our [[Definition:Induction Hypothesis|induction hypothesis]]: +:$p_k q_{k - 1} - p_{k - 1} q_k = \paren {-1}^{k + 1}$ +Then we need to show: +:$p_{k + 1} q_k - p_k q_{k + 1} = \paren {-1}^{k + 2}$ +=== Induction Step === +This is our [[Definition:Induction Step|induction step]]: +Consider $\sqbrk {a_0, a_1, a_2, \ldots, a_k, a_{k + 1} }$. +Its final [[Definition:Numerators and Denominators of Continued Fraction|numerator and denominator]] are by definition: +:$p_{k + 1} = a_{k + 1} p_k + p_{k - 1}, q_{k + 1} = a_{k + 1} q_k + q_{k - 1}$ +Therefore: +{{begin-eqn}} +{{eqn | l = p_{k + 1} q_k - p_k q_{k + 1} + | r = \paren {a_{k + 1} p_k + p_{k - 1} } q_k - p_k \paren {a_{k + 1} q_k + q_{k - 1} } + | c = +}} +{{eqn | r = p_{k - 1} q_k - p_k q_{k - 1} + | c = +}} +{{eqn | r = \paren {-1} \paren {p_k q_{k - 1} - p_{k - 1} q_k} + | c = +}} +{{eqn | r = \paren {-1} \paren {-1}^{k + 1} + | c = [[Difference between Adjacent Convergents of Simple Continued Fraction#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \paren {-1}^{k + 2} + | c = +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\forall n \ge 1: p_n q_{n-1} - p_{n-1} q_n = \paren {-1}^{n + 1}$ +{{qed}} +[[Category:Continued Fractions]] +adgeudgpif0gfqi87f5hkm6uavpfct8 +\end{proof}<|endoftext|> +\section{Difference between Adjacent Convergents But One of Simple Continued Fraction} +Tags: Continued Fractions + +\begin{theorem} +For $k \ge 2$: +:$p_k q_{k - 2} - p_{k - 2} q_k = \paren {-1}^k a_k$ +That is: +:$C_k - C_{k-2} = \dfrac {p_k} {q_k} - \dfrac {p_{k - 2} } {q_{k - 2} } = \dfrac {\paren {-1}^k a_k} {q_k q_{k - 2} }$ +\end{theorem} + +\begin{proof} +Let $k \ge 2$. +{{begin-eqn}} +{{eqn | l = p_k q_{k - 2} - p_{k - 2} q_k + | r = \paren {a_k p_{k - 1} + p_{k - 2} } q_{k - 2} - p_{k - 2} \paren {a_k q_{k - 1} + q_{k - 2} } + | c = +}} +{{eqn | r = a_k \paren {p_{k - 1} q_{k - 2} - p_{k - 2} q_{k - 1} } + | c = +}} +{{eqn | r = a_k \paren {-1}^k + | c = [[Difference between Adjacent Convergents of Simple Continued Fraction]] +}} +{{end-eqn}} +{{qed}} +[[Category:Continued Fractions]] +cr2z76m7r823waql0ap13l9jameiac2 +\end{proof}<|endoftext|> +\section{Convergents of Simple Continued Fraction are Rationals in Canonical Form} +Tags: Continued Fractions + +\begin{theorem} +For all $k \ge 1$, $\dfrac {p_k} {q_k}$ is in [[Definition:Canonical Form of Rational Number|canonical form]]: +:$p_k$ and $q_k$ are [[Definition:Coprime Integers|coprime]] +:$q_k > 0$. +\end{theorem} + +\begin{proof} +Let $k \ge 1$. +Let $d = \gcd \set {p_k, q_k}$. +From [[Common Divisor Divides Integer Combination]]: +:$p_k q_{k - 1} - p_{k - 1} q_k$ is a [[Definition:Divisor of Integer|multiple]] of $d$. +From [[Difference between Adjacent Convergents of Simple Continued Fraction]]: +:$d \divides \paren {-1}^{k + 1}$ +where $\divides$ denotes [[Definition:Divisor of Integer|divisibility]]. +It follows that: +:$d = 1$ +By: +:$q_0 = 1$ +:[[Denominators of Simple Continued Fraction are Strictly Increasing]] +It follows that $q_k > 0$ for all $k \ge 0$. +{{qed}} +[[Category:Continued Fractions]] +kpjquz66bpv06cdtbedgi40mne9f7t2 +\end{proof}<|endoftext|> +\section{Characterization of Prime Filter by Finite Suprema} +Tags: Prime Ideals (Order Theory) + +\begin{theorem} +Let $L = \struct {S, \vee, \preceq}$ be a [[Definition:Join Semilattice|join semilattice]]. +Let $F$ be a [[Definition:Filter|filter]] in $L$. +Then +:$F$ is a [[Definition:Prime Filter (Order Theory)|prime filter]] +{{iff}}: +:for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] $A$ of $S: \paren {\sup A \in F \implies \exists a \in A: a \in F}$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $F$ be a [[Definition:Prime Filter (Order Theory)|prime ideal]]. +Define $\map \PP X: \equiv X \ne \O \land \sup X \in F \implies \exists x \in X: x \in F$ +where $X$ is [[Definition:Subset|subset]] of $S$. +Let $A$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] of $S$. +By definition of [[Definition:Empty Set|empty set]]: +:$\map \PP \O$ +We will prove that: +:$\forall x \in A, B \subseteq A: \map \PP B \implies \map \PP {B \cup \set x}$ +Let $x \in A, B \subseteq A$ such that: +:$\map \PP B$ (Induction Hypothesis) +Assume that: +:$B \cup \set x \ne \O$ and $\map \sup {B \cup \set x} \in F$ +Case $B = \O$: +By [[Union with Empty Set]]: +:$B \cup \set x = \set x$ +By [[Supremum of Singleton]]: +:$\sup \set x = x$ +By definition of [[Definition:Singleton|singleton]]: +:$x \in \set x$ +Thus +:$\exists a \in B \cup \set x: a \in F$ +{{qed|lemma}} +Case $B \ne \O$: +By [[Subset of Finite Set is Finite]]: +:$B$ is [[Definition:Finite Set|finite]]. +By [[Existence of Non-Empty Finite Suprema in Join Semilattice]]: +:$B$ admits a [[Definition:Supremum of Set|supremum]]. +By [[Supremum of Singleton]]: +:$\set x$ admits a [[Definition:Supremum of Set|supremum]]. +{{begin-eqn}} +{{eqn | l = \map \sup {B \cup \set x} + | r = \map \sup {\bigcup \set {B, \set x} } + | c = {{Defof|Set Union}} +}} +{{eqn | r = \sup \set {\sup B, x} + | c = [[Supremum of Suprema]]: +}} +{{eqn | r = \paren {\sup B} \vee x + | c = {{Defof|Join (Order Theory)}} +}} +{{end-eqn}} +By definition of [[Definition:Prime Filter (Order Theory)|prime filter]]: +:$\sup B \in F$ or $x \in F$ +Case $\sup B \in F$: +By Induction Hypothesis: +:$\exists a \in B: a \in F$ +By definition of [[Definition:Set Union|union]]: +:$a \in B \cup \set x$ +Thus: +:$\exists a \in B \cup \set x: a \in F$ +{{qed|lemma}} +Case $x \in F$: +By definition of [[Definition:Set Union|union]]: +:$x \in B \cup \set x$ +Thus: +:$\exists a \in B \cup \set x: a \in F$ +{{qed|lemma}} +By [[Induction of Finite Set]]: +:$\map \PP A$ +Thus the result. +{{qed|lemma}} +=== Necessary Condition === +Suppose that +:for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Finite Set|finite]] [[Definition:Subset|subset]] $A$ of $S: \paren {\sup A \in F \implies \exists a \in A: a \in F}$ +Let $x, y \in S$ such that +:$x \vee y \in F$ +By [[Unordered Pair is Finite]]: +:$\set {x, y}$ is a [[Definition:Finite Set|finite set]]. +By definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x \in \set {x, y}$ +By definition of [[Definition:Non-Empty Set|non-empty set]]: +:$\set {x, y}$ is a [[Definition:Non-Empty Set|non-empty set]]. +By definition of [[Definition:Join (Order Theory)|join]]: +:$\sup \set {x, y} = x \vee y$ +By assumption: +:$\exists a \in \set {x, y}: a \in F$ +Thus by definition of [[Definition:Unordered Tuple|unordered tuple]]: +:$x \in F$ or $y \in F$ +Hence $I$ is [[Definition:Prime Filter (Order Theory)|prime filter]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Dual of Preordered Set is Preordered Set} +Tags: Dual Ordered Sets + +\begin{theorem} +Let $P = \left({S, \preceq}\right)$ be a [[Definition:Preordered Set|preordered set]]. +Then [[Definition:Dual Ordered Set|dual]] of $P$, $P^{-1} = \left({S, \succeq}\right)$ is also a [[Definition:Preordered Set|preordered set]]. +{{finish|Dual Ordered Set $\ne$ Dual Preordered Set}} +\end{theorem} + +\begin{proof} +By [[Inverse of Reflexive Relation is Reflexive]]: +:$\succeq$ is [[Definition:Reflexive Relation|reflexive]]. +By [[Inverse of Transitive Relation is Transitive]]: +:$\succeq$ is [[Definition:Transitive Relation|transitive]]. +Hence $\succeq$ is a [[Definition:Preordering|preordering]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Dual Ordered Set is Ordered Set} +Tags: Dual Ordered Sets + +\begin{theorem} +Let $P = \left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Then its [[Definition:Dual Ordered Set|dual]], $P^{-1} = \left({S, \succeq}\right)$, is also an [[Definition:Ordered Set|ordered set]]. +\end{theorem} + +\begin{proof} +Immediate from [[Dual Ordering is Ordering]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Value of Finite Continued Fraction equals Numerator Divided by Denominator} +Tags: Continued Fractions, Proofs by Induction + +\begin{theorem} +Let $F$ be a [[Definition:Field (Abstract Algebra)|field]]. +Let $\tuple {a_0, a_1, \ldots, a_n}$ be a [[Definition:Finite Continued Fraction|finite continued fraction]] of [[Definition:Length of Continued Fraction|length]] $n \ge 0$. +Let $p_n$ and $q_n$ be its $n$th [[Definition:Numerator and Denominator of Continued Fraction|numerator and denominator]]. +Then the [[Definition:Value of Continued Fraction|value]] $\sqbrk {a_0, a_1, \ldots, a_n}$ equals $\dfrac {p_n} {q_n}$. +\end{theorem} + +\begin{proof} +We will use a proof by [[Principle of Mathematical Induction|induction]] on the [[Definition:Length of Continued Fraction|length]] $n$. +For all $n \in \Z_{>0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\sqbrk {a_0, a_1, \ldots, a_n} = \dfrac {p_n} {q_n}$ +=== Basis for the Induction === +$\map P 0$ is the case: +:$\sqbrk {a_0} = \dfrac {a_0} 1 = \dfrac {p_0} {q_0}$ +This holds for any [[Definition:Continued Fraction|continued fraction]]. +$\map P 1$ is the case: +{{begin-eqn}} +{{eqn | l = \sqbrk {a_0, a_1} + | r = a_0 + \frac 1 {a_1} +}} +{{eqn | r = \frac {a_0 a_1 + 1} {a_1} +}} +{{eqn | r = \frac {p_1} {q_1} +}} +{{end-eqn}} +This is our [[Definition:Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true. +So this is our [[Definition:Induction Hypothesis|induction hypothesis]]: +:$\sqbrk {a_0, a_1, \ldots, a_k} = \dfrac {p_k} {q_k}$ +Then we need to show: +:$\sqbrk {a_0, a_1, \ldots, a_k, a_{k + 1} } = \dfrac {p_{k + 1} } {q_{k + 1} }$ +=== Induction Step === +This is our [[Definition:Induction Step|induction step]]: +Consider the [[Definition:Continued Fraction|continued fraction]]: +:$\sqbrk {a_0, a_1, \ldots, a_k, a_{k + 1} }$ +The [[Definition:Numerator|numerators]] are: +:$p_0, p_1, \ldots, p_k, p_{k + 1}$ +and the [[Definition:Denominator|denominators]] are: +:$q_0, q_1, \ldots, q_k, q_{k + 1}$ +By definition of [[Definition:Value of Finite Continued Fraction|value of a finite continued fraction]]: +:$\sqbrk {a_0, a_1, \ldots, a_k, a_{k + 1} } = \sqbrk {a_0, a_1, \ldots, a_{k - 1}, a_k'}$ +where $a_k' = a_k + \dfrac 1 {a_{k + 1} }$ +Consider the {{RHS}}. +Take the [[Definition:Continued Fraction|continued fraction]]: +:$\sqbrk {a_0, a_1, \ldots, a_{k - 1}, a_k'}$ +Its [[Definition:Numerator|numerators]] are: +:$p_0, p_1, \ldots, p_{k-1}$ and $p_k'$ +where $p_k' = \paren {a_k + \dfrac 1 {a_{k + 1} } } p_{k - 1} + p_{k - 2}$ by definition. +Its [[Definition:Denominator|denominators]] are: +:$q_0, q_1, \ldots, p_{k - 1}$ and $q_k'$ +where $q_k' = \paren {a_k + \dfrac 1 {a_{k + 1} } } q_{k - 1} + q_{k - 2}$ by definition. +As it has just $k$ [[Definition:Partial Quotient|partial quotients]], the [[Value of Finite Continued Fraction equals Numerator Divided by Denominator#Induction Hypothesis|induction hypothesis]] tells us that its value is: +:$\dfrac {p_k'} {q_k'}$ +So: +{{begin-eqn}} +{{eqn | l = \sqbrk {a_0, a_1, \ldots, a_k, a_{k + 1} } + | r = \frac {p_k'} {q_k'} + | c = +}} +{{eqn | r = \frac {\paren {a_k + \frac 1 {a_{k + 1} } } p_{k - 1} + p_{k - 2} } {\paren {a_k + \frac 1 {a_{k + 1} } } q_{k - 1} + q_{k - 2} } + | c = +}} +{{eqn | r = \frac {a_{k + 1} \paren {a_k p_{k - 1} + p_{k - 2} } + p_{k - 1} } {a_{k + 1} \paren {a_k q_{k - 1} + q_{k - 2} } + q_{k - 1} } + | c = +}} +{{eqn | r = \frac {a_{k + 1} p_k + p_{k - 1} } {a_{k + 1} q_k + q_{k - 1} } + | c = +}} +{{eqn | r = \frac {p_{k + 1} } {q_{k + 1} } + | c = +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\sqbrk {a_0, a_1, \ldots, a_k, a_{k + 1} } = \dfrac {p_{k + 1} } {q_{k + 1} }$ +{{qed}} +[[Category:Continued Fractions]] +[[Category:Proofs by Induction]] +koba2avyl8b5h1kyqcgccqhkffnryi2 +\end{proof}<|endoftext|> +\section{Simple Infinite Continued Fraction Converges} +Tags: Continued Fractions + +\begin{theorem} +Let $C = (a_0, a_1, \ldots)$ be a [[Definition:Simple Infinite Continued Fraction|simple infinite continued fraction]] in $\R$. +Then $C$ [[Definition:Convergent Continued Fraction|converges]]. +\end{theorem} + +\begin{proof} +We need to show that for any [[Definition:Simple Infinite Continued Fraction|SICF]] its [[Definition:Sequence|sequence]] of [[Definition:Convergent of Continued Fraction|convergents]] $\sequence {C_n}$ always tends to a [[Definition:Limit of Sequence (Number Field)|limit]]. +Several techniques can be used here, but a quick and easy one is to show that $\sequence {C_n}$ is a [[Definition:Cauchy Sequence|Cauchy sequence]]. +Let $\epsilon > 0$. +For $m > n \ge \max \set {5, \dfrac 1 \epsilon}$: +{{begin-eqn}} +{{eqn | l = \size {C_m - C_n} + | o = \le + | r = \size {C_m - C_{m - 1} } + \cdots + \size {C_{n + 1} - C_n} + | c = [[Triangle Inequality]] +}} +{{eqn | r = \frac 1 {q_m q_{m - 1} } + \cdots + \frac 1 {q_{n + 1} q_n} + | c = [[Difference between Adjacent Convergents of Simple Continued Fraction]] +}} +{{eqn | o = < + | r = \frac 1 {m \paren {m - 1} } + \cdots + \frac 1 {\paren {n + 1} n} + | c = [[Lower Bounds for Denominators of Simple Continued Fraction]] +}} +{{eqn | r = \sum_{k \mathop = n}^{m - 1} \frac 1 {k \paren {k + 1} } +}} +{{eqn | r = \sum_{k \mathop = n}^{m - 1} \paren {\frac 1 k - \frac 1 {k + 1} } +}} +{{eqn | r = \frac 1 n - \frac 1 m + | c = [[Telescoping Series/Example 1]] +}} +{{eqn | o = < + | r = \frac 1 n +}} +{{eqn | o = \le + | r = \epsilon +}} +{{end-eqn}} +So $\sequence {C_n}$ is indeed a [[Definition:Cauchy Sequence|Cauchy sequence]]. +Hence the result. +{{qed}} +[[Category:Continued Fractions]] +rv4r4kw0uqzbis22s4urrf4nk1jzvbp +\end{proof}<|endoftext|> +\section{Bound for Difference of Irrational Number with Convergent} +Tags: Continued Fractions + +\begin{theorem} +Let $x$ be an [[Definition:Irrational Number|irrational number]]. +Let $\sequence {C_n}$ be the [[Definition:Sequence|sequence]] of [[Definition:Convergent of Continued Fraction|convergents]] of the [[Definition:Continued Fraction Expansion of Irrational Number|continued fraction expansion]] of $x$. +Then $\forall n \ge 1$: +:$C_n < x < C_{n + 1}$ or $C_{n + 1} < x < C_n$ +:$\size {x - C_n} < \dfrac 1 {q_n q_{n + 1} }$ +\end{theorem} + +\begin{proof} +{{questionable|this needs [[Correspondence between Irrational Numbers and Simple Infinite Continued Fractions]]}} +Immediate. +Note that: +:$\size {x - C_n} < \size {C_{n + 1} - C_n} = \dfrac 1 {q_n q_{n + 1} }$ +{{qed}} +[[Category:Continued Fractions]] +3uolekaum9vp63qh9xj7w2yks1jnw2a +\end{proof}<|endoftext|> +\section{Continued Fraction Identities/First/Infinite} +Tags: Continued Fractions + +\begin{theorem} +Let $\left[{a_0, a_1, a_2, \ldots}\right]$ be a [[Definition:Simple Infinite Continued Fraction|simple infinite continued fraction]]. +Then: +:$\left[{a_1, a_2, a_3, \ldots}\right] = a_1 + \dfrac 1 {\left[{a_2, a_3, \ldots}\right]}$ +\end{theorem} + +\begin{proof} +{{proof wanted|use continuity}} +{{Qed}} +[[Category:Continued Fractions]] +dp9ldks9dr7mcpnf5dtn1nk3q23f457 +\end{proof}<|endoftext|> +\section{Relation between Adjacent Best Rational Approximations to Root 2} +Tags: Square Root of 2 + +\begin{theorem} +Consider the [[Sequence of Best Rational Approximations to Square Root of 2]]: +:$\sequence S := \dfrac 1 1, \dfrac 3 2, \dfrac 7 5, \dfrac {17} {12}, \dfrac {41} {29}, \dfrac {99} {70}, \dfrac {239} {169}, \dfrac {577} {408}, \ldots$ +Let $\dfrac {p_n} {q_n}$ and $\dfrac {p_{n + 1} } {q_{n + 1} }$ be adjacent [[Definition:Term of Sequence|terms]] of $\sequence S$. +Then: +:$\dfrac {p_{n + 1} } {q_{n + 1} } = \dfrac {p_n + 2 q_n} {p_n + q_n}$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{> 0}$, let $\map P n$ be the [[Definition:Proposition|proposition]]: +:$\dfrac {p_{n + 1} } {q_{n + 1} } = \dfrac {p_n + 2 q_n} {p_n + q_n}$ +=== Basis for the Induction === +$\map P 1$ is the case: +{{begin-eqn}} +{{eqn | l = \dfrac {p_2} {q_2} + | r = \dfrac 3 2 + | c = +}} +{{eqn | r = \dfrac {1 + 2 \times 1} {1 + 1} + | c = +}} +{{eqn | r = \dfrac {p_1 + 2 \times q_1} {p_1 + q_1} + | c = +}} +{{end-eqn}} +Thus $\map P 1$ is seen to hold. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\dfrac {p_{k + 1} } {q_{k + 1} } = \dfrac {p_k + 2 q_k} {p_k + q_k}$ +from which it is to be shown that: +:$\dfrac {p_{k + 2} } {q_{k + 2} } = \dfrac {p_{k + 1} + 2 q_{k + 1} } {p_{k + 1} + q_{k + 1} }$ +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +{{begin-eqn}} +{{eqn | l = \dfrac {p_{k + 2} } {q_{k + 2} } + | r = \dfrac {2 p_{k + 1} + p_k} {2 q_{k + 1} + q_k} + | c = {{Defof|Numerators and Denominators of Continued Fraction}} +}} +{{eqn | r = \dfrac {2 \paren {p_k + 2 q_k} + p_k} {2 \paren {p_k + q_k} + q_k} + | c = [[Relation between Adjacent Best Rational Approximations to Root 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{eqn | r = \dfrac {3 p_k + 4 q_k} {2 p_k + 3 q_k} + | c = +}} +{{eqn | r = \dfrac {\paren {p_k + 2 q_k} + 2 \paren {p_k + q_k} } {\paren {p_k + q_k} + \paren {p_k + 2 q_k} } + | c = +}} +{{eqn | r = \dfrac {p_{k + 1} + 2 q_{k + 1} } {p_{k + 1} + q_{k + 1} } + | c = [[Relation between Adjacent Best Rational Approximations to Root 2#Induction Hypothesis|Induction Hypothesis]] +}} +{{end-eqn}} +So $\map P k \implies \map P {k + 1}$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\forall n \in \Z_{>0}: \dfrac {p_{n + 1} } {q_{n + 1} } = \dfrac {p_n + 2 q_n} {p_n + q_n}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Parity of Pell Numbers} +Tags: Pell Numbers + +\begin{theorem} +Consider the [[Definition:Pell Numbers|Pell numbers]] $P_0, P_1, P_2, \ldots$ +:$0, 1, 2, 5, 12, 29, \ldots$ +$P_n$ has the same [[Definition:Parity of Integer|parity]] as $n$. +That is: +:if $n$ is [[Definition:Odd Integer|odd]] then $P_n$ is [[Definition:Odd Integer|odd]] +:if $n$ is [[Definition:Even Integer|even]] then $P_n$ is [[Definition:Even Integer|even]]. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]]. +For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:$P_n$ has the same [[Definition:Parity of Integer|parity]] as $n$. +=== Basis for the Induction === +$P \left({0}\right)$ is the case: +:$P_0 = 0$ +which is [[Definition:Even Integer|even]]. +$P \left({1}\right)$ is the case: +:$P_1 = 1$ +which is [[Definition:Odd Integer|odd]]. +Thus $P \left({n}\right)$ holds for $n = 0$ and $n = 1$. +These comprise the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({j}\right)$ is true for all $j \le k$, then it logically follows that $P \left({k + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:$\forall j \le k: P_j$ has the same [[Definition:Parity of Integer|parity]] as $j$ +from which it is to be shown that: +:$P_{k + 1}$ has the same [[Definition:Parity of Integer|parity]] as $k + 1$. +=== Induction Step === +This is the [[Principle of Mathematical Induction#Induction Step|induction step]]: +By definition of [[Definition:Pell Numbers|Pell numbers]]: +:$P_{k + 1} = 2 P_k + P_{k - 1}$ +$2 P_k$ is [[Definition:Even Integer|even]] by definition. +By [[Sum of Even Integers is Even]], if $P_{k - 1}$ is [[Definition:Even Integer|even]] then so is $P_{k + 1}$. +Similarly, if $P_{k - 1}$ is [[Definition:Odd Integer|odd]] then so is $P_{k + 1}$. +Thus the [[Definition:Parity of Integer|parity]] of $P_{k + 1}$ matches the [[Definition:Parity of Integer|parity]] of $P_{k - 1}$. +But by the [[Parity of Pell Numbers#Induction Hypothesis|induction hypothesis]], the [[Definition:Parity of Integer|parity]] of $P_{k - 1}$ matches $k - 1$. +We have that: +:$k + 1 = 2 + k - 1$ +and so the [[Definition:Parity of Integer|parity]] of $k + 1$ matches the [[Definition:Parity of Integer|parity]] of $k - 1$. +Thus the [[Definition:Parity of Integer|parity]] of $P_{k + 1}$ matches $k + 1$. +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:$\forall n \in \Z_{\ge 0}: P_n$ has the same [[Definition:Parity of Integer|parity]] as $n$. +{{qed}} +[[Category:Pell Numbers]] +t7sq0mgq4zfifnhkla1415qrce7jefg +\end{proof}<|endoftext|> +\section{Parity of Best Rational Approximations to Root 2} +Tags: Square Root of 2 + +\begin{theorem} +Consider the [[Sequence of Best Rational Approximations to Square Root of 2]]: +:$\sequence S := \dfrac 1 1, \dfrac 3 2, \dfrac 7 5, \dfrac {17} {12}, \dfrac {41} {29}, \dfrac {99} {70}, \dfrac {239} {169}, \dfrac {577} {408}, \ldots$ +where $S_1 := \dfrac 1 1$. +The [[Definition:Numerator|numerators]] of the [[Definition:Term of Sequence|terms]] of $\sequence S$ are all [[Definition:Odd Integer|odd]]. +For all $n$, the [[Definition:Parity of Integer|parity]] of the [[Definition:Denominator|denominator]] of [[Definition:Term of Sequence|term]] $S_n$ is the same as the [[Definition:Parity of Integer|parity]] of $n$. +\end{theorem} + +\begin{proof} +First the [[Definition:Parity of Integer|parity]] of the [[Definition:Numerator|numerators]] of the [[Definition:Term of Sequence|terms]] of $\sequence S$ is established. +Let $\dfrac {p_n} {q_n}$ be a general [[Definition:Term of Sequence|term]] of $\sequence S$. +By [[Relation between Adjacent Best Rational Approximations to Root 2]]: +:$p_{n + 1} = p_n + 2 q_n$ +Thus if $p_n$ is [[Definition:Odd Integer|odd]] then so is $p_{n + 1}$. +But $p_1 = 1$ is [[Definition:Odd Integer|odd]]. +So $p_n$ is [[Definition:Odd Integer|odd]] for all $n$, by [[Principle of Mathematical Induction]]. +The [[Definition:Denominator|denominators]] are the [[Definition:Pell Numbers|Pell numbers]]. +The result follows from [[Parity of Pell Numbers]]. +{{qed}} +[[Category:Square Root of 2]] +i9dhdw5j9ztimw3f2vzovtljpv3jeui +\end{proof}<|endoftext|> +\section{Best Rational Approximations to Root 2 generate Pythagorean Triples} +Tags: Square Root of 2, Pythagorean Triples + +\begin{theorem} +Consider the [[Sequence of Best Rational Approximations to Square Root of 2]]: +:$\sequence S := \dfrac 1 1, \dfrac 3 2, \dfrac 7 5, \dfrac {17} {12}, \dfrac {41} {29}, \dfrac {99} {70}, \dfrac {239} {169}, \dfrac {577} {408}, \ldots$ +Every other [[Definition:Term of Sequence|term]] of $\sequence S$ can be expressed as: +:$\dfrac {2 a + 1} b$ +such that: +:$a^2 + \left({a + 1}\right)^2 = b^2$ +:$b$ is [[Definition:Odd Integer|odd]]. +\end{theorem} + +\begin{proof} +From [[Parity of Best Rational Approximations to Root 2]]: +:The [[Definition:Numerator|numerators]] of the [[Definition:Term of Sequence|terms]] of $\sequence S$ are all [[Definition:Odd Integer|odd]]. +:For all $n$, the [[Definition:Parity of Integer|parity]] of the [[Definition:Denominator|denominator]] of [[Definition:Term of Sequence|term]] $S_n$ is the same as the [[Definition:Parity of Integer|parity]] of $n$. +Thus it follows that every other [[Definition:Term of Sequence|term]] of $\sequence S$ has a [[Definition:Numerator|numerator]] and a [[Definition:Denominator|denominator]] which are both [[Definition:Odd Integer|odd]]. +{{ProofWanted|To be completed once several other results about Pell numbers established. Proof by {{AuthorRef|Artemas Martin}} establishes the triple $2 P_n P_{n + 1}, P_{n + 1}^2 - P_n^2, P_{n + 1}^2 + P_n^2 + P_{2 n + 1}$.}} +\end{proof}<|endoftext|> +\section{Prime Ideal is Prime Filter in Dual Lattice} +Tags: Prime Ideals (Order Theory), Dual Ordered Sets + +\begin{theorem} +Let $L = \struct {S, \vee, \wedge, \preceq}$ be a [[Definition:Lattice|lattice]]. +Let $X$ be a [[Definition:Subset|subset]] of $S$. +Then +:$X$ is a [[Definition:Prime Ideal (Order Theory)|prime ideal]] in $L$ +{{iff}}: +:$X$ is a [[Definition:Prime Filter (Order Theory)|prime filter]] in $L^{-1}$ +where $L^{-1} = \struct {S, \succeq}$ denotes the [[Definition:Dual Ordered Set|dual]] of $L$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $X$ be a [[Definition:Prime Ideal (Order Theory)|prime ideal]] in $L$. +Then +:$X$ is an [[Definition:Ideal (Order Theory)|ideal]] in $L$. +By [[Ideal is Filter in Dual Ordered Set]]: +:$X$ is a [[Definition:Filter|filter]] in $L^{-1}$. +Let $x, y \in S$ such that +:$x \vee' y \in X$ +where $\vee'$ denotes the [[Definition:Join (Order Theory)|join]] in $L^{-1}$. +By [[Join is Dual to Meet]]: +:$x \wedge y \in X$ +Thus by [[Characterization of Prime Ideal]]: +:$x \in X$ or $y \in X$ +Hence $X$ is a [[Definition:Prime Filter (Order Theory)|prime filter]] +{{qed|lemma}} +=== Necessary Condition === +This follows by [[Definition:Mutatis Mutandis|mutatis mutandis]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Ideal is Filter in Dual Ordered Set} +Tags: Order Theory, Dual Ordered Sets + +\begin{theorem} +Let $P = \left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $X$ be a [[Definition:Subset|subset]] of $S$. +Then +:$X$ is [[Definition:Ideal (Order Theory)|ideal]] in $P$ +{{iff}} +:$X$ is [[Definition:Filter|filter]] in $P^{-1}$ +where $P^{-1} = \left({S, \succeq}\right)$ denotes the [[Definition:Dual Ordered Set|dual]] of $P$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $X$ be [[Definition:Ideal (Order Theory)|ideal]] in $P$. +By definition of [[Definition:Ideal in Ordered Set|ideal in ordered set]]: +:$X$ is [[Definition:Non-Empty Set|non-empty]] [[Definition:Directed Subset|directed]] [[Definition:Lower Set|lower]]. +By definition of [[Definition:Directed Subset|directed]]: +:$\forall x, y \in X: \exists z \in X: x \preceq z \land y \preceq z$ +Then +:$\forall x, y \in X: \exists z \in X: z \succeq x \land z \succeq y$ +By definition +:$X$ is [[Definition:Filtered Subset|filtered]] in $P^{-1}$ +By definition of [[Definition:Lower Set|lower set]]: +:$\forall x \in X, y \in S: y \preceq x \implies y \in X$ +Then +:$\forall x \in X, y \in S: x \succeq y \implies y \in X$ +By definition +:$X$ is an [[Definition:Upper Set|upper set]] in $P^{-1}$. +Thus by definition of [[Definition:Filter in Ordered Set|filter in ordered set]] +:$X$ is a [[Definition:Filter|filter]] in $P^{-1}$. +{{qed|lemma}} +=== Necessary Condition === +Let $X$ be a [[Definition:Filter|filter]] in $P^{-1}$. +By definition of [[Definition:Filter in Ordered Set|filter in ordered set]] +:$X$ is [[Definition:Non-Empty Set|non-empty]], [[Definition:Filtered Subset|filtered]] in $P^{-1}$, and [[Definition:Upper Set|upper]] in $P^{-1}$. +By definition of [[Definition:Filtered Subset|filtered]] in $P^{-1}$: +:$\forall x, y \in X: \exists z \in X: z \succeq x \land z \succeq y$ +Then +:$\forall x, y \in X: \exists z \in X: x \preceq z \land y \preceq z$ +By definition +:$X$ is [[Definition:Directed Subset|directed]]. +By definition of [[Definition:Upper Set|upper set]] in $P^{-1}$: +:$\forall x \in X, y \in S: x \succeq y \implies y \in X$ +Then +:$\forall x \in X, y \in S: y \preceq x \implies y \in X$ +By definition +:$X$ is a [[Definition:Lower Set|lower set]]. +Thus by definition of [[Definition:Ideal in Ordered Set|ideal in ordered set]]: +:$X$ is an [[Definition:Ideal (Order Theory)|ideal]] in $P$. +{{qed}} +\end{proof}<|endoftext|> +\section{Square Root of 2 as Sum of Egyptian Fractions} +Tags: Square Root of 2 + +\begin{theorem} +The [[Definition:Square Root|square root]] of $2$ can be approximated by the following sequence of [[Definition:Egyptian Fraction|Egyptian fractions]]: +:$\sqrt 2 = 1 + \dfrac 1 3 + \dfrac 1 {253} + \dfrac 1 {218 \, 201} + \dfrac 1 {61 \, 323 \, 543 \, 802} + \cdots$ +{{OEIS|A006487}} +\end{theorem} + +\begin{proof} +{{ProofWanted|If anyone wants to do the arithmetic they are welcome to complete this.}} +\end{proof}<|endoftext|> +\section{Sprague's Property of Root 2} +Tags: Square Root of 2, Beatty Sequences + +\begin{theorem} +Let $S = \sequence {s_n}$ be the [[Definition:Sequence|sequence]] of [[Definition:Fraction|fractions]] defined as follows: +Let the [[Definition:Numerator|numerator]] of $s_n$ be: +:$\floor {n \sqrt 2}$ +where $\floor x$ denotes the [[Definition:Floor Function|floor]] of $x$. +Let the [[Definition:Denominator|denominators]] of the [[Definition:Term of Sequence|terms]] of $S$ be the [[Definition:Strictly Positive Integer|(strictly) positive integers]] missing from the [[Definition:Numerator|numerators]] of $S$: +:$S := \dfrac 1 3, \dfrac 2 6, \dfrac 4 {10}, \dfrac 5 {13}, \dfrac 7 {17}, \dfrac 8 {20}, \ldots$ +Then the difference between the [[Definition:Numerator|numerator]] and [[Definition:Denominator|denominator]] of $s_n$ is equal to $2 n$. +\end{theorem} + +\begin{proof} +Denote the [[Definition:Numerator|numerators]] of the [[Definition:Term of Sequence|terms]] of $S$ as $\sequence {N_n}$. +Denote the [[Definition:Denominator|denominators]] of the [[Definition:Term of Sequence|terms]] of $S$ as $\sequence {D_n}$. +From the definition: +:$\sequence {N_n}$ is a [[Definition:Beatty Sequence|Beatty sequence]], where $\sequence {N_n} = \BB_{\sqrt 2} = \sequence{\floor{n \sqrt 2} }_{n \mathop \in \Z_{> 0} }$ +:$\sequence {N_n}$ and $\sequence {D_n}$ are [[Definition:Beatty Sequence/Complementary|complementary Beatty sequences]]. +Then by [[Beatty's Theorem]], $\sequence {D_n}$ is a [[Definition:Beatty Sequence|Beatty sequence]]. +Define $\sequence {D_n} = \BB_y = \sequence{\floor{n y} }_{n \mathop \in \Z_{> 0} }$. +Then we have: +{{begin-eqn}} +{{eqn | l = \dfrac 1 {\sqrt 2} + \dfrac 1 y + | r = 1 + | c = [[Beatty's Theorem]] +}} +{{eqn | ll = \leadsto + | l = \dfrac 1 y + | r = 1 - \dfrac 1 {\sqrt 2} +}} +{{eqn | r = \dfrac {\sqrt 2 - 1} {\sqrt 2} +}} +{{eqn | ll = \leadsto + | l = y + | r = \dfrac {\sqrt 2} {\sqrt 2 - 1} +}} +{{eqn | r = \dfrac {\sqrt 2 \paren {\sqrt 2 + 1} } {\paren {\sqrt 2 - 1} \paren {\sqrt 2 + 1} } +}} +{{eqn | r = 2 + \sqrt 2 +}} +{{end-eqn}} +So we have $s_n = \dfrac {N_n} {D_n} = \dfrac {\floor {n \sqrt 2} } {\floor {n \paren {2 + \sqrt 2} } }$. +The difference between the [[Definition:Numerator|numerator]] and [[Definition:Denominator|denominator]] of $s_n$ is $\floor {n \paren {2 + \sqrt 2} } - \floor {n \sqrt 2}$. +From [[Integer equals Floor iff Number between Integer and One More]]: +{{begin-eqn}} +{{eqn | l = n \paren {2 + \sqrt 2} + | o = < + | m = \floor {n \paren {2 + \sqrt 2} } + | mo = < + | r = n \paren {2 + \sqrt 2} + 1 +}} +{{eqn | l = n \sqrt 2 + | o = < + | m = \floor {n \sqrt 2} + | mo = < + | r = n \sqrt 2 + 1 +}} +{{eqn | ll = \leadsto + | l = n \paren {2 + \sqrt 2} - \paren {n \sqrt 2 + 1} + | o = < + | m = \floor {n \paren {2 + \sqrt 2} } - \floor {n \sqrt 2} + | mo = < + | r = n \paren {2 + \sqrt 2} + 1 - n \sqrt 2 +}} +{{eqn | ll = \leadsto + | l = 2 n - 1 + | o = < + | m = \floor {n \paren {2 + \sqrt 2} } - \floor {n \sqrt 2} + | mo = < + | r = 2 n + 1 +}} +{{end-eqn}} +The only [[Definition:Integer|integer]] [[Definition:Strictly Between|strictly between]] $2 n - 1$ and $2 n + 1$ is $2 n$, and $\floor {n \paren {2 + \sqrt 2} } - \floor {n \sqrt 2}$ is an [[Definition:Integer|integer]]. +Therefore $\floor {n \paren {2 + \sqrt 2} } - \floor {n \sqrt 2} = 2 n$. +{{qed}} +{{Namedfor|Roland Percival Sprague|cat = Sprague, Roland}} +\end{proof} \ No newline at end of file