diff --git "a/wiki/proofwiki/shard_14.txt" "b/wiki/proofwiki/shard_14.txt" new file mode 100644--- /dev/null +++ "b/wiki/proofwiki/shard_14.txt" @@ -0,0 +1,11286 @@ +\section{Rule of Transposition/Variant 1/Formulation 2/Forward Implication} +Tags: Rule of Transposition + +\begin{theorem} +: $\vdash \left({p \implies \neg q}\right) \implies \left({q \implies \neg p}\right)$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 2/Forward Implication/Proof} +Tags: Rule of Transposition + +\begin{theorem} +: $\vdash \left({\neg p \implies q}\right) \implies \left({\neg q \implies p}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({\neg p \implies q}\right) \implies \left({\neg q \implies p}\right)}} +{{Assumption|1|\neg p \implies q}} +{{Assumption|2|\neg q}} +{{ModusTollens|3|1, 2|\neg \neg p|1|2}} +{{DoubleNegElimination|4|1, 2|p|3}} +{{Implication|5|1|\neg q \implies p|2|4}} +{{Implication|6||\left({\neg p \implies q}\right) \implies \left({\neg q \implies p}\right)|1|5}} +{{EndTableau}} +{{Qed}} +{{LEM|Double Negation Elimination|4}} +\end{proof}<|endoftext|> +\section{Boundary of Polygon is Jordan Curve} +Tags: Topology + +\begin{theorem} +Let $P$ be a [[Definition:Polygon|polygon]] embedded in $\R^2$. +Then there exists a [[Definition:Jordan Curve|Jordan curve]] $\gamma: \closedint 0 1 \to \R^2$ such that the [[Definition:Image of Mapping|image]] of $\gamma$ is equal to the [[Definition:Boundary (Geometry)|boundary]] $\partial P$ of $P$. +\end{theorem} + +\begin{proof} +The [[Definition:Polygon|polygon]] $P$ has $n$ [[Definition:Side of Polygon|sides]], where $n \in \N$. +Denote the [[Definition:Vertex of Polygon|vertices]] of $P$ as $A_1, \ldots, A_n$ and its sides as $S_1, \ldots, S_n$, such that each [[Definition:Vertex of Polygon|vertex]] $A_i$ has [[Definition:Adjacent Side to Vertex|adjacent sides]] $S_{i - 1}$ and $S_i$. +We use the conventions that $S_0 = S_n$, and $A_{n + 1} = A_1$. +As each side $S_i$ is a [[Definition:Convex Set (Vector Space)/Line Segment|line segment]] joining $A_i$ and $A_{i + 1}$, when we define the [[Definition:Path (Topology)|path]] $\gamma_i: \closedint 0 1 \to \R^2$ by: +:$\map {\gamma_i} t = \paren {1 - t} A_i + t A_{i + 1}$ +the [[Definition:Image of Mapping|image]] of $\gamma_i$ is equal to the [[Definition:Side of Polygon|side]] $S_i$. +Define $\gamma: \closedint 0 1 \to \R^2$ as the [[Definition:Concatenation (Topology)|concatenation]] $\paren {\cdots \paren {\paren {\gamma_1 * \gamma_2} * \gamma_3} * \ldots * \gamma_{n - 1} } * \gamma_n$. +Then each [[Definition:Point|point]] in the [[Definition:Image of Mapping|image]] of $\gamma$ corresponds to a point in a [[Definition:Side of Polygon|side]] of $P$. +As $\map \gamma 0 = A_1 = \map \gamma 1$ by our definition of $A_{n + 1}$, it follows that $\gamma$ is a [[Definition:Closed Path (Topology)|closed path]]. +It follows from the [[Definition:Polygon|definition of polygon]] that the [[Definition:Side of Polygon|sides]] of $P$ do not [[Definition:Intersection (Geometry)|intersect]], except at the [[Definition:Vertex of Polygon|vertices]]. +For $i \ne 1$, each [[Definition:Vertex of Polygon|vertex]] $A_i$ is the [[Definition:Initial Point of Path|initial point]] of $\gamma_i$ and the [[Definition:Final Point of Path|final point]] of $\gamma_{i - 1}$, and is equal to exactly one [[Definition:Point|point]] $\map \gamma {2^{-n - 1 + i} }$ in the [[Definition:Image of Mapping|image]] of $\gamma$. +Then we have that $\gamma$ [[Definition:Restriction of Mapping|restricted]] to $\hointr 0 1$ is [[Definition:Injection|injective]]. +Hence $\gamma$ is a [[Definition:Jordan Curve|Jordan curve]]. +{{qed}} +[[Category:Topology]] +7lfmlxoo0byynfdg2uvcwlcosct733d +\end{proof}<|endoftext|> +\section{Rule of Explosion/Variant 1} +Tags: Rule of Explosion + +\begin{theorem} +:$\vdash p \implies \paren {\neg p \implies q}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash p \implies \paren {\neg p \implies q} }} +{{Assumption|1|p}} +{{Assumption|2|\neg p}} +{{NonContradiction|3|1, 2|1|2}} +{{Explosion|4|1, 2|q|3}} +{{Implication|5|1|\neg p \implies q|2|4}} +{{Implication|6||p \implies \paren {\neg p \implies q}|1|5}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Negation of Conditional implies Antecedent} +Tags: Implication, Negation + +\begin{theorem} +:$\vdash \neg \paren {p \implies q} \implies p$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \neg \paren {p \implies q} \implies p}} +{{Assumption|1|\neg \paren {p \implies q} }} +{{SequentIntro|2|1|p \land \neg q|1|[[Conjunction with Negative Equivalent to Negation of Implication]]}} +{{Simplification|3|1|p|2|1}} +{{Implication|4||\neg \paren {p \implies q} \implies p|1|3}} +{{EndTableau}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Negation of Conditional implies Negation of Consequent} +Tags: Implication, Negation + +\begin{theorem} +:$\vdash \neg \left({p \implies q}\right) \implies \neg q$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \neg \left({p \implies q}\right) \implies \neg q}} +{{Assumption|1|\neg \left({p \implies q}\right)}} +{{SequentIntro|2|1|p \land \neg q|1|[[Conjunction with Negative Equivalent to Negation of Implication]]}} +{{Simplification|3|1|\neg q|2|2}} +{{Implication|4||\neg \left({p \implies q}\right) \implies \neg q|1|3}} +{{EndTableau}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Matrix Multiplication Interpretation of Relation Composition} +Tags: Relation Theory + +\begin{theorem} +Let $A$, $B$ and $C$ be [[Definition:Finite Set|finite]] [[Definition:Non-Empty Set|non-empty]] [[Definition:Set|sets]] that are [[Definition:Initial Segment|initial segments]] of $\N_{\ne 0}$. +Let $\mathcal R \subseteq B \times A$ and $\mathcal S \subseteq C \times B$ be [[Definition:Relation|relations]]. +Let $\mathbf R$ and $\mathbf S$ be [[Definition:Matrix|matrices]] which we define as follows: +:$\left[{r}\right]_{i j} = \begin{cases} +T & : (i, j) \in \mathcal R \\ +F & : (i, j) \notin \mathcal R\\ +\end{cases}$ +:$\left[{s}\right]_{i j} = \begin{cases} +T & : (i, j) \in \mathcal S \\ +F & : (i, j) \notin \mathcal S\\ +\end{cases}$ +Then we can interpret the [[Definition:Matrix Product (Conventional)|matrix product]] $\mathbf R \mathbf S$ as the [[Definition:Composition of Relations|composition]] $\mathcal S \circ \mathcal R$. +To do so we temporarily consider $\left({\left\{ {T, F}\right\}, \land, \lor}\right)$ to be our "[[Definition:Ring (Abstract Algebra)|ring]]" on which we are basing [[Definition:Matrix Product (Conventional)|matrix multiplication]]. +Then: +:$\left[{r s}\right]_{i j} = T \iff (i, j) \in \mathcal S \circ \mathcal R$ +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Suppose for some $i, j$: +:$\left[{r s}\right]_{i j} = T$ +Then by the definition of $\lor$ there must exist some $k$ for which: +:$\left[{r}\right]_{i k} \land \left[{s}\right]_{k j} = T$ +which by our definition implies: +:$\left({i, k}\right) \in \mathcal R$ +:$\left({k, j}\right) \in \mathcal S$ +Then by the definition of a [[Definition:Composite Relation|composite relation]]: +$(\left({i, j}\right) \in \mathcal R \circ \mathcal S$ +=== Necessary Condition === +Suppose for some $i, j$: +:$\left({i, j}\right) \in \mathcal S \circ \mathcal R$ +Then there exists a $k$ for which: +:$\left({i, k}\right) \in \mathcal R$ +:$\left({k, j}\right) \in \mathcal S$ +Hence: +:$\left[{r}\right]_{i k} = T$ +:$\left[{s}\right]_{k j} = T$ +and there exists some $k$ for which: +:$\left[{r}\right]_{i k} \land \left[{s}\right]_{k j} = T$ +Hence by the definition of $\lor$: +:$\left[{r s}\right]_{i j} = T$ +{{qed}} +[[Category:Relation Theory]] +7uk4uhou0t7d40rr3ek2kiswutnihi1 +\end{proof}<|endoftext|> +\section{Praeclarum Theorema/Formulation 1/Proof 1} +Tags: Praeclarum Theorema + +\begin{theorem} +: $\left({p \implies q}\right) \land \left({r \implies s}\right) \vdash \left({p \land r}\right) \implies \left({q \land s}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({p \implies q}\right) \land \left({r \implies s}\right) \vdash \left({p \land r}\right) \implies \left({q \land s}\right)}} +{{Premise|1|\left({p \implies q}\right) \land \left({r \implies s}\right)}} +{{Simplification|2|1|p \implies q|1|1}} +{{Simplification|3|1|r \implies s|1|2}} +{{Assumption|4|p \land r}} +{{Simplification|5|4|p|4|1}} +{{Simplification|6|4|r|4|2}} +{{ModusPonens|7|1, 4|q|2|5}} +{{ModusPonens|8|1, 4|s|3|6}} +{{Conjunction|9|1, 4|q \land s|7|8|}} +{{Implication|10|1|\left({p \land r}\right) \implies \left({q \land s}\right)|4|9}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Compactness from Basis} +Tags: Compact Spaces + +\begin{theorem} +Let $\struct {X, \tau}$ be a [[Definition:Topological Space|topological space]]. +Let $B$ be a [[Definition:Basis (Topology)|basis]] for $\tau$. +Then the following propositions are equivalent: +{{begin-axiom}} +{{axiom | n = 1 + | t = $\struct {X, \tau}$ is compact. +}} +{{axiom | n = 2 + | t = Every open cover of $X$ by elements of $B$ has a finite subcover. +}} +{{end-axiom}} +\end{theorem} + +\begin{proof} +=== $(1)$ implies $(2)$ === +This follows immediately from the definition of compactness. +{{qed|lemma}} +=== $(2)$ implies $(1)$ === +Suppose that $(2)$ holds. +Let $\AA$ be an open cover of $X$. +Let $f: \AA \to \powerset B$ map each element of $\AA$ to the set of all elements of $B$ it contains. +Since each element of $\AA$ is open, $A = \bigcup f(A)$ for each $A \in \AA$. +Let $\AA' = \bigcup \map f \AA$. +Then $\AA'$ is an open cover of $X$ consisting solely of elements of $B$. +By the premise, $\AA'$ has a finite subset $\FF'$ that covers $X$. +Let $g: \FF' \to \AA$ map each element of $\FF'$ to an element of $\AA$ containing it. +Note that since $\FF'$ is finite, this does not require the [[Axiom:Axiom of Choice|Axiom of Choice]]. +Let $\FF = \map g {\FF'}$. +Then $\FF$ is a finite subcover of $\AA$. +Since every open cover of $X$ has a finite subcover, $X$ is compact. +{{qed}} +[[Category:Compact Spaces]] +a377rwn6vjz6p4kspxbkb0a6naooxx1 +\end{proof}<|endoftext|> +\section{Set of Subsets is Cover iff Set of Complements is Free} +Tags: Set Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\mathcal C$ be a [[Definition:Set of Sets|set of sets]]. +Then $\mathcal C$ is a [[Definition:Cover of Set|cover for $S$]] {{iff}} $\set {\relcomp S X: X \in \mathcal C}$ is [[Definition:Free Set of Sets|free]]. +\end{theorem} + +\begin{proof} +Let $S$ be a [[Definition:Set|set]]. +=== Necessary Condition === +Let $\mathcal C$ be a [[Definition:Cover of Set|cover for $S$]]: +:$S \subseteq \bigcup \mathcal C$ +Suppose: +:$\set {\relcomp S X: X \in \mathcal C}$ +is not [[Definition:Free Set of Sets|free]]. +Then there exists an $x \in S$ such that: +:$\forall X \in \mathcal C: x \in \relcomp S X$ +But by the definition of [[Definition:Relative Complement|(relative) complement]]: +:$\forall X \in \mathcal C: x \notin X$ +That is: +:$x \notin \bigcup \mathcal C$ +which contradicts: +:$S \subseteq \bigcup \mathcal C$ +{{qed|lemma}} +=== Sufficient Condition === +Let: +:$\set {\relcomp S X: X \in \mathcal C}$ +be [[Definition:Free Set of Sets|free]]. +Suppose: +:$\bigcup \mathcal C$ +is not a [[Definition:Cover of Set|cover for $S$]]. +Then there exists some $x \in S$ such that: +:$\forall X \in \mathcal C: x \notin X$ +Hence: +:$\forall \relcomp S X \in \mathcal C: x \in X$ +which contradicts the supposition that: +:$\set {\relcomp S X: X \in \mathcal C}$ +is [[Definition:Free Set of Sets|free]]. +{{qed}} +[[Category:Set Theory]] +j3kwwh8bhy821r0podg8mwieey7rh2c +\end{proof}<|endoftext|> +\section{Implication Equivalent to Negation of Conjunction with Negative/Formulation 2/Reverse Implication} +Tags: Implication Equivalent to Negation of Conjunction with Negative + +\begin{theorem} +:$\vdash \left({\neg \left({p \land \neg q}\right)}\right) \implies \left({p \implies q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({\neg \left({p \land \neg q}\right)}\right) \implies \left({p \implies q}\right)}} +{{Assumption|1|\neg \left({p \land \neg q}\right)}} +{{SequentIntro|2|1|p \implies q|1|[[Implication Equivalent to Negation of Conjunction with Negative/Formulation 1/Reverse Implication|Implication Equivalent to Negation of Conjunction with Negative: Formulation 1]]}} +{{Implication|3||\left({\neg \left({p \land \neg q}\right)}\right) \implies \left({p \implies q}\right)|1|2}} +{{EndTableau}} +{{qed}} +{{LEM|Implication Equivalent to Negation of Conjunction with Negative/Formulation 1/Reverse Implication}} +[[Category:Implication Equivalent to Negation of Conjunction with Negative]] +estsbm4ogmgfblagpg6qq8budnw25nl +\end{proof}<|endoftext|> +\section{Biconditional Elimination} +Tags: Biconditional, Biconditional Elimination, Implication + +\begin{theorem} +The rule of '''biconditional elimination''' is a [[Definition:Valid Argument|valid]] deduction [[Definition:Sequent|sequent]] in [[Definition:Propositional Logic|propositional logic]]. +\end{theorem}<|endoftext|> +\section{Biconditional Introduction/Sequent Form} +Tags: Biconditional Introduction + +\begin{theorem} +:$p \implies q, q \implies p \vdash p \iff q$ +\end{theorem}<|endoftext|> +\section{Biconditional Elimination/Sequent Form} +Tags: Biconditional Elimination + +\begin{theorem} +:$(1): \quad p \iff q \vdash p \implies q$ +:$(2): \quad p \iff q \vdash q \implies p$ +\end{theorem}<|endoftext|> +\section{Biconditional Elimination/Sequent Form/Proof 1/Form 1} +Tags: Biconditional Elimination + +\begin{theorem} +:$p \iff q \vdash p \implies q$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \iff q \vdash p \implies q}} +{{Premise|1|p \iff q}} +{{BiconditionalElimination|2|1|p \implies q|1|1}} +{{EndTableau}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Biconditional Elimination/Sequent Form/Proof 1/Form 2} +Tags: Biconditional Elimination + +\begin{theorem} +:$p \iff q \vdash q \implies p$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \iff q \vdash q \implies p}} +{{Premise|1|p \iff q}} +{{BiconditionalElimination|2|1|q \implies p|1|2}} +{{EndTableau}} +{{Qed}} +\end{proof}<|endoftext|> +\section{Biconditional Elimination/Sequent Form/Proof 1} +Tags: Biconditional Elimination + +\begin{theorem} +:$(1): \quad p \iff q \vdash p \implies q$ +:$(2): \quad p \iff q \vdash q \implies p$ +\end{theorem} + +\begin{proof} +=== [[Biconditional Elimination/Sequent Form/Proof 1/Form 1|Form 1]] === +{{:Biconditional Elimination/Sequent Form/Proof 1/Form 1}} +=== [[Biconditional Elimination/Sequent Form/Proof 1/Form 2|Form 2]] === +{{:Biconditional Elimination/Sequent Form/Proof 1/Form 2}} +\end{proof}<|endoftext|> +\section{Biconditional Elimination/Sequent Form/Proof 2} +Tags: Truth Table Proofs, Biconditional Elimination + +\begin{theorem} +:$(1): \quad p \iff q \vdash p \implies q$ +:$(2): \quad p \iff q \vdash q \implies p$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +$\begin{array}{|ccc||ccc|ccc|} \hline +p & \iff & q & p & \implies & q & q & \implies & p \\ +\hline +F & T & F & F & T & F & F & T & F \\ +F & F & T & F & T & T & T & F & F \\ +T & F & F & T & F & F & F & T & T \\ +T & T & T & T & F & T & T & T & T \\ +\hline +\end{array}$ +As can be seen, when $p \iff q$ is [[Definition:True|true]] so are both $p \implies q$ and $q \implies p$. +{{qed}} +\end{proof}<|endoftext|> +\section{Biconditional is Commutative/Formulation 1/Proof 1} +Tags: Biconditional is Commutative + +\begin{theorem} +: $p \iff q \dashv \vdash q \iff p$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \iff q \vdash q \iff p}} +{{Premise|1|p \iff q}} +{{BiconditionalElimination|2|1|p \implies q|1|1}} +{{BiconditionalElimination|3|1|q \implies p|1|2}} +{{BiconditionalIntro|4|1|q \iff p|3|2}} +{{EndTableau}} +{{qed|lemma}} +{{BeginTableau|q \iff p \vdash p \iff q}} +{{Premise|1|q \iff p}} +{{BiconditionalElimination|2|1|q \implies p|1|1}} +{{BiconditionalElimination|3|1|p \implies q|1|2}} +{{BiconditionalIntro|4|1|p \iff q|3|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Rule of Material Equivalence/Formulation 1} +Tags: Rule of Material Equivalence + +\begin{theorem} +:$p \iff q \dashv \vdash \paren {p \implies q} \land \paren {q \implies p}$ +\end{theorem}<|endoftext|> +\section{Equivalences are Interderivable/Proof 1} +Tags: Equivalences are Interderivable, Truth Table Proofs + +\begin{theorem} +If two [[Definition:Propositional Formula|propositional formulas]] are [[Definition:Interderivable|interderivable]], they are [[Definition:Biconditional|equivalent]]: +: $\left ({p \dashv \vdash q}\right) \dashv \vdash \left ({p \iff q}\right)$ +\end{theorem} + +\begin{proof} +The result follows directly from the [[Definition:Truth Table|truth table]] for the [[Definition:Biconditional|biconditional]]: +$\begin{array}{|cc||ccc|} \hline +p & q & p & \iff & q \\ +\hline +F & F & F & T & F \\ +F & T & F & F & T \\ +T & F & F & F & F \\ +T & T & F & T & T \\ +\hline +\end{array}$ +By inspection, it is seen that $\mathcal M \left({p \iff q}\right) = T$ precisely when $\mathcal M \left({p}\right) = \mathcal M \left({q}\right)$. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalences are Interderivable/Forward Implication} +Tags: Equivalences are Interderivable + +\begin{theorem} +: $\left ({p \dashv \vdash q}\right) \vdash \left ({p \iff q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({p \dashv \vdash q}\right) \vdash p \iff q}} +{{Premise|1|p \dashv \vdash q}} +{{SequentIntro|2|1|\left ({p \vdash q}\right) \land \left ({q \vdash p}\right)|1 + |Definition of [[Definition:Interderivable|Interderivable]]}} +{{Assumption|3|p}} +{{Simplification|4|1, 3|p \vdash q|2|1}} +{{Implication|5|1|p \implies q|3|4}} +{{Assumption|6|q}} +{{Simplification|7|1, 6|q \vdash p|2|2}} +{{Implication|8|1|q \implies p|6|7}} +{{BiconditionalIntro|9|1|p \iff q|5|8}} +{{EndTableau}} +{{Qed}} +[[Category:Equivalences are Interderivable]] +s1qqzy938u5n0099qdwkh50zrgg4tkc +\end{proof}<|endoftext|> +\section{Equivalences are Interderivable/Reverse Implication} +Tags: Equivalences are Interderivable + +\begin{theorem} +: $\left ({p \iff q}\right) \vdash \left ({p \dashv \vdash q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \iff q \vdash \left({p \vdash q}\right)}} +{{Premise|1|p \iff q}} +{{BiconditionalElimination|3|1|p \implies q|1|1}} +{{Assumption|3|p}} +{{ModusPonens|4|1, 3|q|2|3}} +{{EndTableau}} +{{qed|lemma}} +{{BeginTableau|p \iff q \vdash \left({q \vdash p}\right)}} +{{Premise|1|p \iff q}} +{{BiconditionalElimination|3|1|p \implies q|1|2}} +{{Assumption|3|q}} +{{ModusPonens|4|1, 3|p|2|3}} +{{EndTableau}} +{{qed}} +[[Category:Equivalences are Interderivable]] +mdne6teoypnkvrjoq2gr6rw5bg536yu +\end{proof}<|endoftext|> +\section{Compact Subspace of Linearly Ordered Space/Reverse Implication} +Tags: Compact Subspace of Linearly Ordered Space + +\begin{theorem} +Let $\struct {X, \preceq, \tau}$ be a [[Definition:Linearly Ordered Space|linearly ordered space]]. +Let $Y \subseteq X$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $X$. +Let the following hold: +:$(1): \quad$ For every [[Definition:Non-Empty Set|non-empty]] $S \subseteq Y$, $S$ has a [[Definition:Supremum of Set|supremum]] and an [[Definition:Infimum of Set|infimum]] in $X$. +:$(2): \quad$ For every [[Definition:Non-Empty Set|non-empty]] $S \subseteq Y$: $\sup S, \inf S \in Y$. +Then $Y$ is a [[Definition:Compact Subspace|compact subspace]] of $\struct {X, \tau}$. +\end{theorem}<|endoftext|> +\section{Modus Ponendo Tollens/Sequent Form} +Tags: Modus Ponendo Tollens + +\begin{theorem} +==== [[Modus Ponendo Tollens/Sequent Form/Case 1|Case 1]] ==== +{{:Modus Ponendo Tollens/Sequent Form/Case 1}} +==== [[Modus Ponendo Tollens/Sequent Form/Case 2|Case 2]] ==== +{{:Modus Ponendo Tollens/Sequent Form/Case 2}} +\end{theorem}<|endoftext|> +\section{Modus Ponendo Tollens/Sequent Form/Case 1} +Tags: Modus Ponendo Tollens + +\begin{theorem} +:$\neg \paren {p \land q}, p \vdash \neg q$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg \paren {p \land q}, p \vdash \neg q}} +{{Premise|1|\neg \paren {p \land q} }} +{{Premise|2|p}} +{{Assumption|3|q}} +{{Conjunction|4|2, 3|p \land q|2|3}} +{{NonContradiction|5|1, 2, 3|4|1}} +{{Contradiction|6|1, 2|\neg q|3|5}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Modus Ponendo Tollens/Sequent Form/Case 2} +Tags: Modus Ponendo Tollens + +\begin{theorem} +:$\neg \left({p \land q}\right), q \vdash \neg p$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg \left({p \land q}\right), q \vdash \neg p}} +{{Premise|1|\neg \left({p \land q}\right)}} +{{Premise|2|q}} +{{Assumption|3|p}} +{{Conjunction|4|2, 3|p \land q|3|2}} +{{NonContradiction|5|1, 2, 3|4|1}} +{{Contradiction|6|1, 2|\neg p|3|5}} +{{EndTableau}} +{{qed}} +[[Category:Modus Ponendo Tollens]] +mjeey35ngrumpe26ifn1ui05rzz2i9e +\end{proof}<|endoftext|> +\section{Union of Subsets is Subset/Subset of Power Set} +Tags: Set Union, Subsets + +\begin{theorem} +Let $S$ and $T$ be [[Definition:Set|sets]]. +Let $\powerset S$ be the [[Definition:Power Set|power set]] of $S$. +Let $\mathbb S$ be a [[Definition:Subset|subset]] of $\powerset S$. +Then: +:$\displaystyle \paren {\forall X \in \mathbb S: X \subseteq T} \implies \bigcup \mathbb S \subseteq T$ +\end{theorem} + +\begin{proof} +Let $\mathbb S \subseteq \powerset S$. +Suppose that $\forall X \in \mathbb S: X \subseteq T$. +Consider any $\displaystyle x \in \bigcup \mathbb S$. +By definition of [[Definition:Set Union|set union]], it follows that: +:$\exists X \in \mathbb S: x \in X$ +But as $X \subseteq T$ it follows that $x \in T$. +Thus it follows that: +:$\displaystyle \bigcup \mathbb S \subseteq T$ +So: +:$\displaystyle \paren {\forall X \in \mathbb S: X \subseteq T} \implies \bigcup \mathbb S \subseteq T$ +{{qed}} +[[Category:Set Union]] +[[Category:Subsets]] +b4h728rptgi1xeujekujfg47szo7nag +\end{proof}<|endoftext|> +\section{Conjunction with Negative Equivalent to Negation of Implication/Formulation 2/Forward Implication} +Tags: Conjunction with Negative Equivalent to Negation of Implication + +\begin{theorem} +:$\vdash \paren {p \land \neg q} \implies \paren {\neg \paren {p \implies q} }$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \paren {p \land \neg q} \implies \paren {\neg \paren {p \implies q} } }} +{{Assumption|1|p \land \neg q}} +{{SequentIntro|2|1|\neg \paren {p \implies q}|1|[[Conjunction with Negative Equivalent to Negation of Implication/Formulation 1/Forward Implication|Conjunction with Negative Equivalent to Negation of Implication: Formulation 1]]}} +{{Implication|3||\paren {p \land \neg q} \implies \paren {\neg \paren {p \implies q} }|1|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Conjunction with Negative Equivalent to Negation of Implication/Formulation 2/Reverse Implication} +Tags: Conjunction with Negative Equivalent to Negation of Implication + +\begin{theorem} +:$\vdash \left({\neg \left({p \implies q}\right)}\right) \implies \left({p \land \neg q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({\neg \left({p \implies q}\right)}\right) \implies \left({p \land \neg q}\right)}} +{{Assumption|1|\neg \left({p \implies q}\right)}} +{{SequentIntro|2|1|p \land \neg q|1|[[Conjunction with Negative Equivalent to Negation of Implication/Formulation 1/Reverse Implication|Conjunction with Negative Equivalent to Negation of Implication: Formulation 1]]}} +{{Implication|3||\left({\neg \left({p \implies q}\right)}\right) \implies \left({p \land \neg q}\right)|1|2}} +{{EndTableau}} +{{qed}} +{{LEM|Conjunction with Negative Equivalent to Negation of Implication/Formulation 1/Reverse Implication}} +[[Category:Conjunction with Negative Equivalent to Negation of Implication]] +sbryqpjb0wps953pi6kun8dd03dtd07 +\end{proof}<|endoftext|> +\section{Convex Set is Star Convex Set} +Tags: Vector Spaces + +\begin{theorem} +Let $V$ be a [[Definition:Vector Space|vector space]] over $\R$ or $\C$. +Let $A \subseteq V$ be a [[Definition:Empty Set|non-empty]] [[Definition:Convex Set (Vector Space)|convex set]]. +Then $A$ is a [[Definition:Star Convex Set|star convex set]], and every point in $A$ is a [[Definition:Star Convex Set|star center]]. +\end{theorem} + +\begin{proof} +Let $a \in A$. +Note that there is at least one point in $A$, as $A$ is [[Definition:Empty Set|non-empty]]. +If $x \in A$, then there is a [[Definition:Convex Set (Vector Space)/Line Segment|line segment]] joining $a$ and $x$. +By [[Definition:Star Convex Set|definition of star convex set]], it follows that $A$ is star convex, and $a$ is a star center. +{{qed}} +[[Category:Vector Spaces]] +2fqyb2qiefdy7qshallf7xpvdwu1sxh +\end{proof}<|endoftext|> +\section{Negation implies Negation of Conjunction/Case 1} +Tags: Negation implies Negation of Conjunction + +\begin{theorem} +:$\neg p \implies \neg \paren {p \land q}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg p \implies \neg \paren {p \land q} }} +{{Assumption|1|\neg p}} +{{Assumption|2|p \land q}} +{{Simplification|3|2|p|2|1}} +{{NonContradiction|4|1, 2|3|1}} +{{Contradiction|5|1|\neg \paren {p \land q}|2|4}} +{{Implication|6||\neg p \implies \neg \paren {p \land q}|1|5}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Negation implies Negation of Conjunction/Case 2} +Tags: Negation implies Negation of Conjunction + +\begin{theorem} +:$\neg q \implies \neg \left({p \land q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg q \implies \neg \left({p \land q}\right)}} +{{Assumption|1|\neg q}} +{{Assumption|2|p \land q}} +{{Simplification|3|2|q|2|2}} +{{NonContradiction|4|1, 2|3|1}} +{{Contradiction|5|1|\neg \left({p \land q}\right)|2|4}} +{{Implication|6||\neg q \implies \neg \left({p \land q}\right)|1|5}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Neighborhood Sub-Basis Criterion for Filter Convergence} +Tags: Filter Theory, Topological Bases + +\begin{theorem} +Let $\left({X, \tau}\right)$ be a [[Definition:Topological Space|topological space]]. +Let $\mathcal F$ be a [[Definition:Filter on Set|filter]] on $X$. +Let $p \in X$. +Then $\mathcal F$ converges to $p$ [[Definition:Iff|iff]] $\mathcal F$ contains as a subset a [[Definition:Neighborhood Sub-Basis|neighborhood sub-basis]] at $x$. +\end{theorem} + +\begin{proof} +=== Forward implication === +If $\mathcal F$ converges to $p$, then it contains ''every'' neighborhood of $p$, and the set of neighborhoods of $p$ is trivially a [[Definition:Neighborhood Sub-Basis|neighborhood sub-basis]] at $p$. +{{qed|lemma}} +=== Reverse Implication === +Let $S_p$ be a [[Definition:Neighborhood Sub-Basis|neighborhood sub-basis]] at $p$. +Let $S_p \subseteq \mathcal F$. +Let $N$ be a neighborhood of $p$. +Then by the definition of neighborhood sub-basis, there is a finite $T_N \subseteq S_p$ such that: +:$\bigcap T_N \subseteq N$. +Since a filter is closed under finite intersections, $\bigcap T_N \in \mathcal F$. +Then $\bigcap T_N \in \mathcal F$ and $\bigcap T_N \subseteq N$, so by the definition of a filter, $N \in \mathcal F$. +Since $\mathcal F$ contains every neighborhood of $p$, it converges to $p$. +{{qed}} +[[Category:Filter Theory]] +[[Category:Topological Bases]] +50pbzj0ow5lfvxhhnf75aln5p0i6353 +\end{proof}<|endoftext|> +\section{Rule of Material Implication/Formulation 2/Forward Implication} +Tags: Rule of Material Implication + +\begin{theorem} +: $\vdash \left({p \implies q}\right) \implies \left({\neg p \lor q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({p \implies q}\right) \implies \left({\neg p \lor q}\right)}} +{{Assumption|1|p \implies q}} +{{SequentIntro|2|1|\neg p \lor q|1|[[Rule of Material Implication/Formulation 1/Forward Implication|Rule of Material Implication: Formulation 1]]}} +{{Implication|3||\left({p \implies q}\right) \implies \left({\neg p \lor q}\right)|1|2}} +{{EndTableau}} +{{qed}} +{{LEM|Rule of Material Implication/Formulation 1/Forward Implication|3}} +\end{proof}<|endoftext|> +\section{Rule of Material Implication/Formulation 2/Reverse Implication} +Tags: Rule of Material Implication + +\begin{theorem} +: $\vdash \left({\neg p \lor q}\right) \implies \left({p \implies q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({\neg p \lor q}\right) \implies \left({p \implies q}\right)}} +{{Assumption|1|\neg p \lor q}} +{{SequentIntro|2|1|p \implies q|1|[[Rule of Material Implication/Formulation 1/Reverse Implication|Rule of Material Implication: Formulation 1]]}} +{{Implication|3||\left({\neg p \lor q}\right) \implies \left({p \implies q}\right)|1|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Implication is Left Distributive over Conjunction/Formulation 1/Proof 2} +Tags: Implication is Left Distributive over Conjunction, Truth Table Proofs + +\begin{theorem} +:$p \implies \left({q \land r}\right) \dashv \vdash \left({p \implies q}\right) \land \left({p \implies r}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connectives]] match for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccccc||ccccccc|} \hline +p & \implies & (q & \land & r) & (p & \implies & q) & \land & (p & \implies & r) \\ +\hline +F & T & F & F & F & F & T & F & T & F & T & F \\ +F & T & F & F & T & F & T & F & T & F & T & T \\ +F & T & T & F & F & F & T & T & T & F & T & F \\ +F & T & T & T & T & F & T & T & T & F & T & T \\ +T & F & F & F & F & T & F & F & F & T & F & F \\ +T & F & F & F & T & T & F & F & F & T & T & T \\ +T & F & T & F & F & T & T & T & F & T & F & F \\ +T & T & T & T & T & T & T & T & T & T & T & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Compact Subspace of Linearly Ordered Space} +Tags: Linearly Ordered Spaces, Compact Spaces, Compact Subspace of Linearly Ordered Space + +\begin{theorem} +Let $\struct {X, \preceq, \tau}$ be a [[Definition:Linearly Ordered Space|linearly ordered space]]. +Let $Y \subseteq X$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $X$. +Then $Y$ is a [[Definition:Compact Subspace|compact subspace]] of $\struct {X, \tau}$ {{iff}} both of the following hold: +:$(1): \quad$ For every [[Definition:Non-Empty Set|non-empty]] $S \subseteq Y$, $S$ has a [[Definition:Supremum of Set|supremum]] and an [[Definition:Infimum of Set|infimum]] in $X$. +:$(2): \quad$ For every [[Definition:Non-Empty Set|non-empty]] $S \subseteq Y$: $\sup S, \inf S \in Y$. +\end{theorem} + +\begin{proof} +=== Forward Implication === +Let $S$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $Y$. +By [[Compact Subspace of Linearly Ordered Space/Lemma|Compact Subspace of Linearly Ordered Space: Lemma]], $S$ has a [[Definition:Supremum of Set|supremum]] $k$ in $Y$. +{{explain|supremum WRT $\preceq \restriction_Y$}} +{{AimForCont}} that $S$ has an [[Definition:Upper Bound of Set|upper bound]] $b$ in $X$ such that $b \prec k$. +Let: +:$\AA = \set {s^\preceq: s \in S} \cup \set {b^\succeq}$ +where: +:$s^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $s$ in $S$ +:$b^\succeq$ denotes the [[Definition:Upper Closure of Element|upper closure]] of $s$ in $S$. +Then $\AA$ is an [[Definition:Open Cover|open cover]] of $Y$. +But $\AA$ has no [[Definition:Finite Subcover|finite subcover]], contradicting the fact that $Y$ is [[Definition:Compact Subspace|compact]]. +{{finish|above lines need proof}} +{{explain|Pronounce proper incantations about duality.}} +A similar argument proves the corresponding statement for infima, so $(2)$ holds. +{{qed|lemma}} +=== [[Compact Subspace of Linearly Ordered Space/Reverse Implication|Reverse Implication]] === +{{:Compact Subspace of Linearly Ordered Space/Reverse Implication}} +\end{proof}<|endoftext|> +\section{Order Topology is Hausdorff} +Tags: Order Topology + +\begin{theorem} +Let $\struct {X, \preceq, \tau}$ be a [[Definition:Linearly Ordered Space|linearly ordered space]]. +Then $\struct {X, \tau}$ is a [[Definition:Hausdorff Space|Hausdorff space]]. +\end{theorem} + +\begin{proof} +Let $x, y \in X$ with $x \ne y$. +Since $\le$ is a [[Definition:Total Ordering|total ordering]], either $x \prec y$ or $y \prec x$. +{{WLOG}}, assume that $x \prec y$. +If there is a $z \in X$ such that $x \prec z \prec y$, then ${\downarrow}z$ and ${\uparrow}z$ separate $x$ and $y$. +{{explain|We are replacing the ${\downarrow}z$ and ${\uparrow}z$ notation with notation as defined in [[Definition:Upper Closure]] and [[Definition:Lower Closure]] -- make sure the correct one is used here}} +Otherwise, by [[Mind the Gap]], ${\downarrow}y$ and $\uparrow x$ separate $x$ and $y$. +Since any two distinct points can be separated by neighborhoods, $\left({X, \tau}\right)$ is a [[Definition:Hausdorff Space|Hausdorff space]]. +{{qed}} +[[Category:Order Topology]] +e5qhmlhfjbqqdy2rxg2mmxjakz97rs6 +\end{proof}<|endoftext|> +\section{Subset of Linearly Ordered Space which is Order-Complete and Closed but not Compact} +Tags: Order Topology + +\begin{theorem} +Let $X = \left[{0 \,.\,.\, 1}\right) \cup \left({2 \,.\,.\, 3}\right) \cup \left\{{4}\right\}$. +Let $\preceq$ be the [[Definition:Ordering|ordering]] on $X$ induced by the [[Definition:Usual Ordering|usual ordering]] of the [[Definition:Real Number|real numbers]]. +Let $\tau$ be the $\preceq$ [[Definition:Order Topology|order topology]] on $X$. +Let $Y = \left[{0 \,.\,.\, 1}\right) \cup \left\{{4}\right\}$. +Let $\tau'$ be the $\tau$-relative [[Definition:Subspace Topology|subspace topology]] on $Y$. +Then: +:$\left({Y, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]] +:$Y$ is [[Definition:Closed Set (Topology)|closed]] in $X$ +but: +:$\left({Y, \tau'}\right)$ is not [[Definition:Compact Space|compact]]. +\end{theorem} + +\begin{proof} +First it is demonstrated that $\left({Y, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +Let $\phi: Y \to \left[{0 \,.\,.\, 1}\right]$ be defined as: +:$\phi \left({y}\right) = \begin{cases} +y & : y \in \left[{0 \,.\,.\, 1}\right) \\ +1 & : y = 4 \end{cases}$ +Then $\phi$ is a [[Definition:Order Isomorphism|order isomorphism]]. +{{explain|The above needs to be proved.}} +{{qed|lemma}} +We have that $\left[{0 \,.\,.\, 1}\right]$ is a [[Definition:Complete Lattice|complete lattice]]. +{{explain|This is probably around here somewhere.}} +Next is is shown that $\left({Y, \preceq}\right)$ is [[Definition:Closed Set (Topology)|closed]] in $X$. +Let $x \in X \setminus Y$. +Then: +: $x \in \left({2 \,.\,.\, 3}\right)$ +Thus: +:$x \in \left({\dfrac {x+2} 2 \,.\,.\, \dfrac {x+3} 2}\right) \in \tau'$ +Since the [[Definition:Relative Complement|complement]] of $Y$ is [[Definition:Open Set (Topology)|open]], $Y$ is [[Definition:Closed Set (Topology)|closed]]. +Finally it is shown that $\left({Y, \tau'}\right)$ is not [[Definition:Compact Space|compact]]. +Let: +: $\mathcal A = \left\{ {x^\preceq: x \in \left[{{0}\,.\,.\,{1}}\right) }\right\} \cup \left\{ {\left({\dfrac 5 2}\right)^\succeq}\right\}$ +where: +: $x^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $x$ +: $x^\succeq$ denotes the [[Definition:Upper Closure of Element|upper closure]] of $x$ +Then $\mathcal A$ is an [[Definition:Open Cover|open cover]] of $Y$ with no [[Definition:Finite Subcover|finite subcover]]. +{{explain|Prove the above statement.}} +{{qed}} +{{finish|The remaining parts of this proof need to be completed.}} +[[Category:Order Topology]] +i5nrywsoteeccup06eje27v86t8vy83 +\end{proof}<|endoftext|> +\section{Rule of Explosion/Variant 2} +Tags: Rule of Explosion + +\begin{theorem} +:$\vdash \paren {p \land \neg p} \implies q$ +\end{theorem}<|endoftext|> +\section{Jordan Curve Theorem} +Tags: Jordan Curves + +\begin{theorem} +Let $\gamma: \closedint 0 1 \to \R^2$ be a [[Definition:Jordan Curve|Jordan curve]]. +Let $\Img \gamma$ denote the [[Definition:Image of Mapping|image]] of $\gamma$. +Then $\R^2 \setminus \Img \gamma$ is a [[Definition:Set Union|union]] of two [[Definition:Disjoint Sets|disjoint]] [[Definition:Connected (Topology)|connected]] [[Definition:Component (Topology)|components]]. +Both components are [[Definition:Open Set (Metric Space)|open]] in $\R^2$, and both components have $\Img \gamma$ as their [[Definition:Boundary (Topology)|boundary]]. +One component is [[Definition:Bounded Metric Space|bounded]], and is called the [[Definition:Interior of Jordan Curve|interior]] of $\gamma$. +The other component is [[Definition:Unbounded Metric Space|unbounded]], and is called the [[Definition:Exterior of Jordan Curve|exterior]] of $\gamma$. +\end{theorem} + +\begin{proof} +{{proof wanted}} +{{Namedfor|Marie Ennemond Camille Jordan|cat = Jordan}} +\end{proof}<|endoftext|> +\section{Heine-Borel Theorem/Dedekind Complete Space} +Tags: Linearly Ordered Spaces, Dedekind Complete Sets, Heine-Borel Theorem + +\begin{theorem} +Let $T = \left({X, \preceq, \tau}\right)$ be a [[Definition:Dedekind Complete|Dedekind-complete]] [[Definition:Linearly Ordered Space|linearly ordered space]]. +Let $Y$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $X$. +Then $Y$ is [[Definition:Compact Subspace|compact]] {{iff}} $Y$ is [[Definition:Closed Set (Topology)|closed]] and [[Definition:Bounded Ordered Set|bounded]] in $T$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $Y$ be a [[Definition:Compact Subspace|compact subspace]] of $T$. +From: +: [[Order Topology is Hausdorff]] +: [[Compact Subspace of Hausdorff Space is Closed]] +it follows that $Y$ is [[Definition:Closed Set (Topology)|closed]] in $T$. +From [[Compact Subspace of Linearly Ordered Space/Lemma|Compact Subspace of Linearly Ordered Space: Lemma]], $\left({Y, \preceq {\restriction_Y} }\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +{{finish|Not much to do, just need to show that a complete lattice in this context is bounded.}} +Hence $Y$ is [[Definition:Closed Set (Topology)|closed]] and [[Definition:Bounded Ordered Set|bounded]] in $T$. +=== Necessary Condition === +Let $Y$ be a [[Definition:Closed Set (Topology)|closed]] and [[Definition:Bounded Ordered Set|bounded]] [[Definition:Topological Subspace|subspace]] of $T$. +Let $S$ be a non-empty subset of $Y$. +Since $Y$ is bounded and $S \subseteq Y$, $S$ is bounded. +Since $X$ is Dedekind complete, $S$ has a supremum and infimum in $X$. +We will show that $\sup S, \inf S \in Y$. +Suppose for the sake of contradiction that $\sup S \notin Y$. +By [[Closed Set in Linearly Ordered Space]], $b$ is not a supremum of $S$, a contradiction. +Thus $\sup S \in Y$. +A similar argument shows that $\inf S \in Y$. +Thus by [[Compact Subspace of Linearly Ordered Space]], $Y$ is compact. +{{qed}} +[[Category:Linearly Ordered Spaces]] +[[Category:Dedekind Complete Sets]] +[[Category:Heine-Borel Theorem]] +2ezmkf6n61wq6ysih05rnyoss72km89 +\end{proof}<|endoftext|> +\section{Heine-Borel iff Dedekind Complete} +Tags: Order Topology, Compact Spaces + +\begin{theorem} +Let $\struct {X, \preceq, \tau}$ be a [[Definition:Linearly Ordered Space|linearly ordered space]]. +Then $X$ is [[Definition:Dedekind Complete|Dedekind complete]] {{iff}} every closed, bounded subset of $X$ is [[Definition:Compact Subspace|compact]]. +\end{theorem} + +\begin{proof} +The forward implication follows from [[Heine-Borel Theorem/Dedekind-Complete Space|Heine-Borel Theorem: Dedekind-Complete Space]]. +Suppose that $X$ is not Dedekind complete. +Then $X$ has a non-empty subset $S$ with an upper bound $b$ in $X$ but no supremum in $X$. +Let $a \in S$ and let $Y = {\bar \downarrow} S \cap {\bar \uparrow} a$. +$Y$ is nonempty and bounded below by $a$ and above by $b$. +=== $Y$ is closed in $X$ === +Let $x \in X \setminus Y$. +Then $x \prec a$ or $x$ strictly succeeds every element of $S$. +If $x \prec a$, then $x \in {\downarrow} a \subseteq X \setminus Y$. +If $x$ strictly succeeds each element of $S$, then it is an upper bound of $S$. +Since $S$ has no supremum in $X$, it has an upper bound $p \prec x$. +Then $x \in {\uparrow p} \subseteq X \setminus Y$. +{{explain|What does ${\downarrow} a$ and ${\uparrow p}$ mean?}} +=== $Y$ is not compact === +Let $\AA = \set { {\downarrow} s: s \in S}$. +Then $\AA$ is an open cover of $Y$ with no finite subcover. +{{qed}} +[[Category:Order Topology]] +[[Category:Compact Spaces]] +2ze14h1qxh81mb7rrsz45wixi8rqibh +\end{proof}<|endoftext|> +\section{Jordan Polygon Theorem} +Tags: Topology + +\begin{theorem} +Let $P$ be a [[Definition:Polygon|polygon]] embedded in $\R^2$. +Denote the [[Definition:Boundary (Geometry)|boundary]] of $P$ as $\partial P$. +Then, $\R^2 \setminus \partial P$ is a [[Definition:Set Union|union]] of two [[Definition:Connected Set (Topology)|connected]] [[Definition:Component (Topology)|components]]. +Both components are [[Definition:Open Set (Metric Space)|open]] in $\R^2$. +One component is [[Definition:Bounded Metric Space|bounded]], and is called the [[Definition:Interior of Jordan Curve|interior]] of $P$. +The other component is [[Definition:Unbounded Metric Space|unbounded]], and is called the [[Definition:Exterior of Jordan Curve|exterior]] of $P$. +\end{theorem} + +\begin{proof} +=== [[Jordan Polygon Theorem/Lemma 1|Lemma]] === +{{:Jordan Polygon Theorem/Lemma 1}}{{qed|lemma}} +We show that $\R^2 \setminus \partial P$ is not [[Definition:Path-Connected Metric Subspace|path-connected]]. +Find any $q_1 \in R^2 \setminus \partial P$ and $\theta \in \R$ such that the [[Definition:Ray (Geometry)|ray]] $\LL_\theta = \set {q_1 + s \map g \theta: s \in \R_{\ge 0} }$ has exactly one [[Definition:Crossing (Jordan Curve)|crossing]] of $\partial P$. +Find any $q_2 \in \LL_\theta$ that lies on the ray after the crossing, so the ray $\set {q_2 + s \map g \theta: s \in \R_{\ge 0} }$ does not intersect $\partial P$. +Then $\map {\mathrm {par} } {q_1} = 1 \ne 0 = \map {\mathrm {par} } {q_2}$. +From [[Jordan Polygon Parity Lemma]], it follows that $q_1$ and $q_2$ cannot be connected by a [[Definition:Path (Topology)|path]]. +{{qed|lemma}} +As $R^2 \setminus \partial P$ is not [[Definition:Path-Connected Metric Subspace|path-connected]], it follows from the [[Jordan Polygon Theorem/Lemma 1|Lemma]] that $R^2 \setminus \partial P$ is a [[Definition:Set Union|union]] of exactly two [[Definition:Disjoint Sets|disjoint]] [[Definition:Path-Connected Metric Subspace|path-connected]] [[Definition:Set|sets]], which we denote as $U_1$ and $U_2$. +Let $q \in \R^2 \setminus \partial P$, and let $\map d {q, \partial P}$ be the [[Definition:Euclidean Metric on Real Number Plane|Euclidean distance]] between $q$ and $\partial P$. +From [[Distance between Closed Sets in Euclidean Space]], it follows that $\map d {q, \partial P} > 0$. +When we put $\epsilon = \map d {q, \partial P} / 2$, we have $\map {B_\epsilon} q \subseteq \R^2 \setminus \partial P$. +As [[Open Ball is Convex Set]], it follows that $\map {B_\epsilon} q$ is path-connected, so $\map {B_\epsilon} q$ is a [[Definition:Subset|subset]] of either $U_1$ or $U_2$. +Then, both $U_1$ and $U_2$ are [[Definition:Open Set (Metric Space)|open]]. +From [[Path-Connected Space is Connected]], it follows that $U_1$ and $U_2$ are [[Definition:Connected Set (Topology)|connected]]. +Then, $\R^2 \setminus \partial P$ is a union of two [[Definition:Component (Topology)|components]]. +{{qed|lemma}} +From [[Boundary of Polygon is Jordan Curve]], it follows that $\partial P$ is equal to the [[Definition:Image of Mapping|image]] of a [[Definition:Jordan Curve|Jordan curve]] $\gamma: \closedint 0 1 \to \R^2$. +From [[Continuous Image of Compact Space is Compact/Corollary 2]], it follows that $\partial P$ is [[Definition:Bounded Metric Space|bounded]]. +That is, there exist $a \in \R^2$ and $R \in \R_{>0}$ such that $\partial P \subseteq \map {B_R} a$. +If $x_1, x_2 \in \R^2 \setminus \map {B_R} a$, $x_1$ to $x_2$ can be joined by a path in $\R^2 \setminus \map {B_R} a$ following: +:the [[Definition:Circumference of Circle|circumference of the two circles]] with [[Definition:Center of Circle|center]] $a$ and [[Definition:Radius of Circle|radii]] $\map d {a, x_1}$ and $\map d {a, x_2}$ +:a [[Definition:Line Segment|line segment]] joining the two circumferences. +Then $\R^2 \setminus \map {B_R} a$ is path-connected, so $\R^2 \setminus \map {B_R} a$ is a subset of one of the components of $\R^2 \setminus \partial P$, say $U_1$. +As $\R^2 \setminus \map {B_R} a \subseteq U_1$, it follows that $U_1$ is [[Definition:Unbounded Metric Space|unbounded]], so $U_1$ is the [[Definition:Exterior of Jordan Curve|exterior]] of $\gamma$. +Then $U_2 \subseteq \map {B_R} a$, so $U_2$ is [[Definition:Bounded Metric Space|bounded]], which implies that $U_2$ is the [[Definition:Interior of Jordan Curve|interior]] of $\gamma$. +{{qed}} +{{namedfor|Marie Ennemond Camille Jordan|cat = Jordan}} +\end{proof}<|endoftext|> +\section{Jordan Polygon Interior and Exterior Criterion} +Tags: Topology + +\begin{theorem} +Let $P$ be a [[Definition:Polygon|polygon]] embedded in $\R^2$. +Let $q \in \R^2 \setminus \partial P$, where $\partial P$ denotes the [[Definition:Boundary (Geometry)|boundary]] of $P$. +Let $\mathbf v \in \R^2 \setminus \left\{ {\mathbf 0}\right\}$ be a non-[[Definition:Zero Vector|zero]] [[Definition:Vector (Euclidean Space)|vector]], and let $\mathcal L = \left\{ {q + s \mathbf v: s \in \R_{\ge 0} }\right\}$ be a [[Definition:Ray (Geometry)|ray]] with start point $q$. +Let $N \left({q}\right) \in \N$ be the number of [[Definition:Crossing (Jordan Curve)|crossings]] between $\mathcal L$ and $\partial P$. +Then: +:$(1): \quad$ $q \in \operatorname{Int} \left({P}\right)$, [[Definition:Iff|iff]] $N \left({q}\right) \equiv 1 \pmod 2$ +:$(2): \quad$ $q \in \operatorname{Ext} \left({P}\right)$, [[Definition:Iff|iff]] $N \left({q}\right) \equiv 0 \pmod 2$ +Here, $\operatorname{Int} \left({P}\right)$ and $\operatorname{Ext} \left({P}\right)$ denote the [[Definition:Interior of Jordan Curve|interior]] and [[Definition:Exterior of Jordan Curve|exterior]] of $\partial P$, when $\partial P$ is considered as a [[Definition:Jordan Curve|Jordan curve]]. +\end{theorem} + +\begin{proof} +From [[Boundary of Polygon is Jordan Curve]], it follows that $\partial P$ is equal to the [[Definition:Image of Mapping|image]] of a [[Definition:Jordan Curve|Jordan curve]]. +From the [[Jordan Polygon Theorem]], it follows that $\operatorname{Int} \left({P}\right)$ and $\operatorname{Ext} \left({P}\right)$ are [[Definition:Path-Connected Set (Topology)|path-connected]]. +Then, [[Jordan Polygon Parity Lemma]] shows that $N \left({q}\right) = \operatorname{par} \left({q}\right)$, where $\operatorname{par} \left({q}\right)$ denotes the [[Definition:Crossing (Jordan Curve)/Parity|parity]] of $q$. +From [[Jordan Polygon Theorem]], it follows that $\operatorname{Ext} \left({P}\right)$ is [[Definition:Unbounded Metric Space|unbounded]], while $\operatorname{Int} \left({P}\right)$ is [[Definition:Bounded Metric Space|bounded]]. +As $\partial P$ is the [[Definition:Image of Mapping|image]] of a [[Definition:Jordan Curve|Jordan curve]], it follows from [[Continuous Image of Compact Space is Compact/Corollary 2]] that $\partial P$ is also [[Definition:Bounded Metric Space|bounded]]. +Then, there exists $R \in \R_{>0}$ such that $\operatorname{Int} \left({P}\right) \cup \partial P \subseteq B_R \left({\mathbf 0}\right)$. +If $q_0 \in \R^2 \setminus B_R \left({\mathbf 0}\right)$, then $q_0 \in \operatorname{Ext} \left({P}\right)$. +Then, the [[Definition:Ray (Geometry)|ray]] $\left\{ {q_0 + s q_0: s \in \R_{\ge 0} }\right\} \subseteq \R^2 \setminus B_R \left({\mathbf 0}\right)$, so there are zero [[Definition:Crossing (Jordan Curve)|crossings]] between the ray and $\partial P$. +From [[Jordan Polygon Parity Lemma]], it follows that $\operatorname{par} \left({q_0}\right) = 0$. +As $\operatorname{Ext} \left({P}\right)$ is [[Definition:Path-Connected Set (Topology)|path-connected]], it follows from the lemma that for all $q \in \operatorname{Ext} \left({P}\right)$, we have $\operatorname{par} \left({q}\right) = 0$. +If $q_1 \in \R^2 \setminus \partial P$ with $\operatorname{par} \left({q}\right) = 1$, it follows that $q_1 \notin \operatorname{Ext} \left({P}\right)$. +As $\R^2 \setminus \partial P = \operatorname{Int} \left({P}\right) \cup \operatorname{Ext} \left({P}\right)$, it follows that $q_1 \in \operatorname{Int} \left({P}\right)$. +Again, [[Jordan Polygon Parity Lemma]] shows that for all $q \in \operatorname{Int} \left({P}\right)$, we have $\operatorname{par} \left({q}\right) = 1$. +So if instead $q_0 \in \R^2 \setminus \partial P$ with $\operatorname{par} \left({q}\right) = 0$, the only possibility is that $q_0 \in \operatorname{Ext} \left({P}\right)$. +{{qed}} +\end{proof}<|endoftext|> +\section{Closed Set in Linearly Ordered Space} +Tags: Linearly Ordered Spaces + +\begin{theorem} +Let $\struct {X, \preceq, \tau}$ be a [[Definition:Linearly Ordered Space|linearly ordered space]]. +Let $C$ be a [[Definition:Subset|subset]] of $X$. +Then $C$ is [[Definition:Closed Set (Topology)|closed]] in $X$ {{iff}} for all [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subsets]] $S$ of $C$: +:If $s \in X$ is a [[Definition:Supremum of Set|supremum]] or [[Definition:Infimum of Set|infimum]] of $S$ in $X$, then $s \in C$. +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Suppose that $C$ be [[Definition:Closed Set (Topology)|closed]]. +Let $S$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $C$. +Let $b \in X \setminus C$. +We will show that $b$ is not a [[Definition:Supremum of Set|supremum]] of $S$. +If $b$ is not an [[Definition:Upper Bound of Set|upper bound]] of $S$, then by definition $b$ cannot be a [[Definition:Supremum of Set|supremum]] of $S$. +Suppose, then, that $b$ is an [[Definition:Upper Bound of Set|upper bound]] of $S$. +Since $C$ is [[Definition:Closed Set (Topology)|closed]] and $b \notin C$, there must be an open interval or open ray $U$ containing $b$ that is disjoint from $Y$. +Since $b$ is an [[Definition:Upper Bound of Set|upper bound]] for $S$ and $S$ is [[Definition:Non-Empty Set|not empty]], $U$ cannot be a downward-pointing ray. +Thus $U$ is either an open interval $\openint a q$ or an upward-pointing open ray ${\uparrow}a$. +Then $a \prec b$. +Since $b \in U$, and $b$ is an [[Definition:Upper Bound of Set|upper bound]] of $S$, no element strictly succeeding all elements of $U$ can be in $S$. +By the above and the fact that $S \subseteq C$, ${\uparrow}a \cap S = \O$, so $a$ is an upper bound of $S$. +Since $a \prec b$, $b$ is not a [[Definition:Supremum of Set|supremum]] of $S$. +A similar argument shows that $b$ is not an [[Definition:Infimum of Set|infimum]]. +{{qed|lemma}} +=== Sufficient Condition === +Suppose that no nonempty subset of $C$ has a [[Definition:Supremum of Set|supremum]] or [[Definition:Infimum of Set|infimum]] relative to $X$ that lies in $X \setminus C$. +Let $p \in X \setminus C$. +==== Case 1: $p$ is an upper bound of $C$ ==== +Since $C$ is a non-empty subset of $C$, it does not have a [[Definition:Supremum of Set|supremum]] in $X \setminus C$. +Thus $p$ is not a [[Definition:Supremum of Set|supremum]] of $C$. +Therefore, $C$ has an upper bound $a \in X$ such that $a \prec p$. +Thus ${\uparrow_X}a$ contains $p$ and is disjoint from $C$, so $p$ is not an [[Definition:Adherent Point|adherent point]] of $C$. +==== Case 2: $p$ is a lower bound of $C$ ==== +The same approach used for case 1 proves $p$ is not an [[Definition:Adherent Point|adherent point]] of $C$. +==== Case 3: $p$ is neither an upper nor a lower bound of $C$ ==== +In this case, $C \cap {\downarrow_X} p$ and $C \cap {\uparrow_X} p$ are nonempty, and their union is $C$. +Thus $p$ is not a [[Definition:Supremum of Set|supremum]] of $C \cap {\downarrow_X} p$ and is not an infimum of $C \cap {\uparrow_X}p$. +Thus there are $a, b \in X$ such that $a \prec p \prec b$, $a$ is an upper bound of $C \cap {\downarrow_X}p$, and $b$ is a lower bound of $C \cap {\downarrow_X} p$. +Then $\openint a b$ contains $p$ and is disjoint from $C$, so $p$ is not an [[Definition:Adherent Point|adherent point]] of $C$. +Since $C$ contains all of its adherent points, it is [[Definition:Closed Set (Topology)|closed]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Implication is Left Distributive over Disjunction/Formulation 1} +Tags: Implication is Left Distributive over Disjunction + +\begin{theorem} +:$p \implies \left({q \lor r}\right) \dashv \vdash \left({p \implies q}\right) \lor \left({p \implies r}\right)$ +\end{theorem}<|endoftext|> +\section{Implication is Left Distributive over Disjunction/Formulation 1/Forward Implication} +Tags: Implication is Left Distributive over Disjunction + +\begin{theorem} +:$p \implies \paren {q \lor r} \vdash \paren {p \implies q} \lor \paren {p \implies r}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \implies \paren {q \lor r} \vdash \paren {p \implies q} \lor \paren {p \implies r} }} +{{Assumption|1|p \implies \paren {q \lor r} }} +{{Assumption|2|p}} +{{ModusPonens|3|1, 2|q \lor r|1|2}} +{{IdentityLaw|4|2|p|2}} +{{Assumption|5|q}} +{{Implication|6|5|p \implies q|4|5}} +{{Addition|7|5|\paren {p \implies q} \lor \paren {p \implies r}|6|1}} +{{Assumption|8|r}} +{{SequentIntro|9|8|p \implies r|8|[[True Statement is implied by Every Statement]]}} +{{Addition|10|8|\paren {p \implies q} \lor \paren {p \implies r}|9|2}} +{{ProofByCases|11|1|\paren {p \implies q} \lor \paren {p \implies r}|3|2|7|8|10}} +{{EndTableau}} +{{qed}} +[[Category:Implication is Left Distributive over Disjunction]] +iuw2ti0tdligmxfmhge8tid9aanq9iv +\end{proof}<|endoftext|> +\section{Implication is Left Distributive over Disjunction/Formulation 1/Reverse Implication} +Tags: Implication is Left Distributive over Disjunction + +\begin{theorem} +:$\left({p \implies q}\right) \lor \left({p \implies r}\right) \vdash p \implies \left({q \lor r}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({p \implies q}\right) \lor \left({p \implies r}\right) \vdash p \implies \left({q \lor r}\right)}} +{{Assumption|1|\left({p \implies q}\right) \lor \left({p \implies r}\right)}} +{{Assumption|2|p \implies q}} +{{Assumption|3|p}} +{{ModusPonens|4|2, 3|q|2|3}} +{{Addition|5|2, 3|q \lor r|4|1}} +{{Implication|6|2|p \implies \left({q \lor r}\right)|3|5}} +{{Assumption|7|p \implies r}} +{{Assumption|8|p}} +{{ModusPonens|9|7, 8|r|7|8}} +{{Addition|10|7, 8|q \lor r|9|2}} +{{Implication|11|7|p \implies \left({q \lor r}\right)|8|10}} +{{ProofByCases|12|1|p \implies \left({q \lor r}\right)|1|2|6|7|11}} +{{EndTableau}} +{{qed}} +[[Category:Implication is Left Distributive over Disjunction]] +9y3zqxzh2wtz8svinjz0k93zt6o6bxt +\end{proof}<|endoftext|> +\section{Factor Principles/Disjunction on Left/Formulation 2} +Tags: Factor Principles + +\begin{theorem} +: $\vdash \left({p \implies q}\right) \implies \left({\left({r \lor p}\right) \implies \left ({r \lor q}\right)}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({p \implies q}\right) \implies \left({\left({r \lor p}\right) \implies \left ({r \lor q}\right)}\right)}} +{{Assumption|1|p \implies q}} +{{SequentIntro|2|1|\left({\left({r \lor p}\right) \implies \left ({r \lor q}\right)}\right)|1 + |[[Factor Principles/Disjunction on Left/Formulation 1|Factor Principles: Disjunction on Left: Formulation 1]]}} +{{Implication|3|1|\left({p \implies q}\right) \implies \left({\left({r \lor p}\right) \implies \left ({r \lor q}\right)}\right)|1|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Factor Principles/Disjunction on Right/Formulation 2} +Tags: Factor Principles + +\begin{theorem} +: $\vdash \left({p \implies q}\right) \implies \left({\left({p \lor r}\right) \implies \left ({q \lor r}\right)}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({p \implies q}\right) \implies \left({\left({p \lor r}\right) \implies \left ({q \lor r}\right)}\right)}} +{{Assumption|1|p \implies q}} +{{SequentIntro|2|1|\left({p \lor r}\right) \implies \left ({q \lor r}\right)|1 + |[[Factor Principles/Disjunction on Right/Formulation 1|Factor Principles: Disjunction on Right: Formulation 1]]}} +{{Implication|3|1|\left({p \implies q}\right) \implies \left({\left({p \lor r}\right) \implies \left ({q \lor r}\right)}\right)|1|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Factor Principles/Disjunction on Right/Formulation 1} +Tags: Factor Principles + +\begin{theorem} +:$p \implies q \vdash \paren {p \lor r} \implies \paren {q \lor r}$ +\end{theorem}<|endoftext|> +\section{Factor Principles/Disjunction on Left/Formulation 1} +Tags: Factor Principles + +\begin{theorem} +: $p \implies q \vdash \left({r \lor p}\right) \implies \left ({r \lor q}\right)$ +\end{theorem}<|endoftext|> +\section{Disjunction of Implications} +Tags: Disjunction, Implication + +\begin{theorem} +:$\vdash \paren {p \implies q} \lor \paren {q \implies r}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \paren {p \implies q} \lor \paren {q \implies r} }} +{{ExcludedMiddle|1|q \lor \neg q}} +{{Assumption|2|q}} +{{SequentIntro|3|2|p \implies q|2|[[True Statement is implied by Every Statement]]}} +{{Addition|4|2|\paren {p \implies q} \lor \paren {q \implies r}|3|1}} +{{Assumption|5|\neg q}} +{{SequentIntro|6|5|q \implies r|5|[[False Statement implies Every Statement]]}} +{{Addition|7|5|\paren {p \implies q} \lor \paren {q \implies r}|6|2}} +{{ProofByCases|8||\paren {p \implies q} \lor \paren {q \implies r}|1|2|4|5|7}} +{{EndTableau|qed}} +{{LEM}} +\end{proof}<|endoftext|> +\section{Principle of Composition/Formulation 1} +Tags: Principle of Composition + +\begin{theorem} +:$\left({p \implies r}\right) \lor \left({q \implies r}\right) \dashv \vdash \left({p \land q}\right) \implies r$ +\end{theorem}<|endoftext|> +\section{Principle of Composition/Formulation 1/Forward Implication} +Tags: Principle of Composition + +\begin{theorem} +:$\paren {p \implies r} \lor \paren {q \implies r} \vdash \paren {p \land q} \implies r$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\paren {p \implies r} \lor \paren {q \implies r} \vdash \paren {p \land q} \implies r}} +{{Premise | 1 | \paren {p \implies r} \lor \paren {q \implies r} }} +{{Assumption | 2 | p \implies r}} +{{Assumption | 3 | p \land q}} +{{Simplification | 4 | 3 | p | 3 | 1}} +{{ModusPonens | 5 | 2, 3 | r | 2 | 4}} +{{Implication | 6 | 2 | \paren {p \land q} \implies r | 3 | 5}} +{{Assumption | 7 | q \implies r}} +{{Assumption | 8 | p \land q}} +{{Simplification | 9 | 8 | q | 8 | 2}} +{{ModusPonens | 10 | 7, 8 | r | 7 | 9}} +{{Implication | 11 | 7 | \paren {p \land q} \implies r | 8 | 10}} +{{ProofByCases | 12 | 1 | \paren {p \land q} \implies r | 1 | 2 | 6 | 7 | 11}} +{{EndTableau}} +{{qed}} +[[Category:Principle of Composition]] +s0zw4mvifgwuf9geznf0ccfqcepe05p +\end{proof}<|endoftext|> +\section{Principle of Composition/Formulation 1/Reverse Implication} +Tags: Principle of Composition + +\begin{theorem} +:$\paren {p \land q} \implies r \vdash \paren {p \implies r} \lor \paren {q \implies r}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\paren {p \land q} \implies r \vdash \paren {p \implies r} \lor \paren {q \implies r} }} +{{Premise | 1 | \paren {p \land q} \implies r}} +{{SequentIntro | 2 | 1 | \neg \paren {p \lor q} \lor r | 1 | [[Rule of Material Implication/Formulation 1|Rule of Material Implication]]}} +{{SequentIntro | 3 | 1 | \neg p \lor \neg q \lor r | 2 | [[De Morgan's Laws (Logic)/Disjunction of Negations|De Morgan's Laws: Disjunction of Negations]]}} +{{Addition | 4 | 1 | r \lor \neg p \lor \neg q \lor r | 3 | 2}} +{{Commutation | 5 | 1 | \neg p \lor r \lor \neg q \lor r | 4 | Disjunction}} +{{SequentIntro | 6 | 1 | \paren {p \implies r} \lor \neg q \lor r | 5 | [[Rule of Material Implication/Formulation 1|Rule of Material Implication]]}} +{{SequentIntro | 7 | 1 | \paren {p \implies r} \lor \paren {q \implies r} | 6 | [[Rule of Material Implication/Formulation 1|Rule of Material Implication]]}} +{{EndTableau}} +{{qed}} +[[Category:Principle of Composition]] +lrbsgl53wcyrryvmzb11mbkzydx5lg1 +\end{proof}<|endoftext|> +\section{Principle of Composition/Formulation 2} +Tags: Principle of Composition + +\begin{theorem} +:$\left({\left({p \implies r}\right) \lor \left({q \implies r}\right)}\right) \iff \left({\left({p \land q}\right) \implies r}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({\left({p \implies r}\right) \lor \left({q \implies r}\right)}\right) \iff \left({\left({p \land q}\right) \implies r}\right)}} +{{Assumption|1|\left({p \implies r}\right) \lor \left({q \implies r}\right)}} +{{SequentIntro|2|1|\left({p \land q}\right) \implies r|1|[[Principle of Composition/Formulation 1/Forward Implication|Principle of Composition/Formulation 1]]}} +{{Implication|3||\left({\left({p \implies r}\right) \lor \left({q \implies r}\right)}\right) \implies \left({\left({p \land q}\right) \implies r}\right)|1|2}} +{{Assumption|4|\left({p \implies r}\right) \lor \left({q \implies r}\right)}} +{{SequentIntro|5|4|\left({p \land q}\right) \implies r|4|[[Principle of Composition/Formulation 1/Reverse Implication|Principle of Composition/Formulation 1]]}} +{{Implication|6||\left({\left({p \land q}\right) \implies r}\right) \implies \left({\left({p \implies r}\right) \lor \left({q \implies r}\right)}\right)|4|5}} +{{BiconditionalIntro|7||\left({\left({p \implies r}\right) \lor \left({q \implies r}\right)}\right) \iff \left({\left({p \land q}\right) \implies r}\right)|3|6}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Inversion Mapping on Topological Group is Homeomorphism} +Tags: Inversion Mappings, Homeomorphisms, Topological Groups + +\begin{theorem} +Let $T = \struct {G, \circ, \tau}$ be a [[Definition:Topological Group|topological group]]. +Let $\phi: G \to G$ be the [[Definition:Inversion Mapping|inversion mapping]] of $T$. +Then $\phi$ is a [[Definition:Homeomorphism|homeomorphism]]. +\end{theorem} + +\begin{proof} +From the definition of [[Definition:Topological Group|topological group]], $\phi$ is [[Definition:Continuous Mapping (Topology)|continuous]]. +By [[Inversion Mapping is Involution]], $\phi$ is an [[Definition:Involution (Mapping)|involution]]. +By [[Continuous Involution is Homeomorphism]], $\phi$ is a [[Definition:Homeomorphism|homeomorphism]]. +{{qed}} +[[Category:Inversion Mappings]] +[[Category:Homeomorphisms]] +[[Category:Topological Groups]] +rjcmxcmvc5l269f81xlhd2baxldobxe +\end{proof}<|endoftext|> +\section{De Morgan's Laws (Logic)/Conjunction of Negations/Formulation 2/Forward Implication} +Tags: De Morgan's Laws (Logic) + +\begin{theorem} +: $\left({\neg p \land \neg q}\right) \implies \left({\neg \left({p \lor q}\right)}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({\neg p \land \neg q}\right) \implies \left({\neg \left({p \lor q}\right)}\right)}} +{{Assumption|1|\neg p \land \neg q}} +{{SequentIntro|2|1|\neg \left({p \lor q}\right)|1|[[De Morgan's Laws (Logic)/Conjunction of Negations/Formulation 1/Forward Implication|De Morgan's Laws (Logic): Conjunction of Negations: Formulation 1]]}} +{{Implication|3||\left({\neg p \land \neg q}\right) \implies \left({\neg \left({p \lor q}\right)}\right)|1|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{De Morgan's Laws (Logic)/Conjunction of Negations/Formulation 2/Reverse Implication} +Tags: De Morgan's Laws (Logic) + +\begin{theorem} +: $\left({\neg \left({p \lor q}\right)}\right) \implies \left({\neg p \land \neg q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({\neg \left({p \lor q}\right)}\right) \implies \left({\neg p \land \neg q}\right)}} +{{Assumption|1|\neg \left({p \lor q}\right)}} +{{SequentIntro|2|1|\neg p \land \neg q|1|[[De Morgan's Laws (Logic)/Conjunction of Negations/Formulation 1/Reverse Implication|De Morgan's Laws (Logic): Conjunction of Negations: Formulation 1]]}} +{{Implication|3||\left({\neg \left({p \lor q}\right)}\right) \implies \left({\neg p \land \neg q}\right)|1|2}} +{{EndTableau}} +{{qed}} +[[Category:De Morgan's Laws (Logic)]] +lz2c718vtnmt72duwxve8dch6pc4scd +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Generalized Ordered Space} +Tags: Generalized Ordered Spaces, Equivalence of Definitions of Generalized Ordered Space + +\begin{theorem} +Let $\struct {S, \preceq}$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $\tau$ be a [[Definition:Topology|topology]] for $S$. +{{TFAE|def = Generalized Ordered Space}} +\end{theorem} + +\begin{proof} +=== [[Equivalence of Definitions of Generalized Ordered Space/Definition 1 implies Definition 3|Definition $(1)$ implies Definition $(3)$]] === +{{transclude:Equivalence of Definitions of Generalized Ordered Space/Definition 1 implies Definition 3|section=proof}} +=== [[Equivalence of Definitions of Generalized Ordered Space/Definition 3 implies Definition 1|Definition $(3)$ implies Definition $(1)$]] === +{{transclude:Equivalence of Definitions of Generalized Ordered Space/Definition 3 implies Definition 1|section=proof}} +=== [[Equivalence of Definitions of Generalized Ordered Space/Definition 2 implies Definition 1|Definition $(2)$ implies Definition $(1)$]] === +{{:Equivalence of Definitions of Generalized Ordered Space/Definition 2 implies Definition 1}} +=== Definition $(3)$ implies Definition $(2)$ === +This follows from [[GO-Space Embeds Densely into Linearly Ordered Space]]. +{{qed}} +[[Category:Generalized Ordered Spaces]] +[[Category:Equivalence of Definitions of Generalized Ordered Space]] +hazwxe6hpm2z8xwd4rpix6pxci8o2b8 +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Generalized Ordered Space/Definition 2 implies Definition 1} +Tags: Equivalence of Definitions of Generalized Ordered Space + +\begin{theorem} +Let $\struct {S, \preceq, \tau}$ be a [[Definition:Generalized Ordered Space/Definition 2|generalized ordered space by Definition 2]]: +{{:Definition:Generalized Ordered Space/Definition 2}} +Then $\struct {S, \preceq, \tau}$ is a [[Definition:Generalized Ordered Space/Definition 1|generalized ordered space by Definition 1]]: +{{:Definition:Generalized Ordered Space/Definition 1}} +\end{theorem} + +\begin{proof} +Let $x \in U \in \tau$. +Then by the definition of [[Definition:Topological Embedding|topological embedding]]: +:$\map \phi U$ is an [[Definition:Open Neighborhood|open neighborhood]] of $\map \phi x$ in $\map \phi S$ with the [[Definition:Subspace Topology|subspace topology]]. +Thus by [[Basis for Topological Subspace]] and the definition of the [[Definition:Order Topology|order topology]], there is an [[Definition:Open Interval|open interval]] or [[Definition:Open Ray|open ray]] $I' \in \tau'$ such that: +:$\map \phi x \in I' \cap \map \phi S \subseteq \map \phi U$ +Since $I'$ is an [[Definition:Interval of Ordered Set|interval]] or [[Definition:Ray (Order Theory)|ray]], it is [[Definition:Convex Set (Order Theory)|convex]] in $S'$ by [[Interval of Ordered Set is Convex]] or [[Ray is Convex]], respectively. +Then: +{{begin-eqn}} +{{eqn | l = x \in \phi^{-1} \sqbrk {I'} + | r = \phi^{-1} \sqbrk {I' \cap \phi \sqbrk S} + | c = +}} +{{eqn | o = \subseteq + | r = \phi^{-1} \sqbrk {\phi \sqbrk U} + | c = +}} +{{end-eqn}} +Because $\phi$ is a [[Definition:Topological Embedding|topological embedding]], it is [[Definition:Injection|injective]] by definition. +So: +:$\phi^{-1} \sqbrk {\phi \sqbrk U} = U$ +Thus: +:$x \in \phi^{-1} \sqbrk {I'} \subseteq U$ +By [[Inverse Image of Convex Set under Monotone Mapping is Convex]]: +:$\phi^{-1} \sqbrk {I'}$ is [[Definition:Convex Set (Order Theory)|convex]]. +Thus $\tau$ has a [[Definition:Basis (Topology)|basis]] consisting of [[Definition:Convex Set (Order Theory)|convex sets]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Inverse Image of Convex Set under Monotone Mapping is Convex} +Tags: Order Theory + +\begin{theorem} +Let $\left({X, \le}\right)$ and $\left({Y, \preceq}\right)$ be [[Definition:Ordered Set|ordered sets]]. +Let $f: X \to Y$ be a [[Definition:Monotone Mapping|monotone mapping]]. +Let $C$ be a [[Definition:Convex Set (Order Theory)|convex subset]] of $Y$. +Then $f^{-1} \left[{C}\right]$ is [[Definition:Convex Set (Order Theory)|convex]] in $X$. +\end{theorem} + +\begin{proof} +Suppose $f$ is [[Definition:Increasing Mapping|increasing]]. +Let $a, b, c \in X$ such that $a \le b \le c$. +Let $a, c \in f^{-1} \left[{C}\right]$. +By definition of [[Definition:Inverse Image|inverse image]]: +: $f \left({a}\right), f \left({c}\right) \in C$ +By definition of [[Definition:Increasing Mapping|increasing mapping]]: +:$f \left({a}\right) \preceq f \left({b}\right) \preceq f \left({c}\right)$ +Thus by definition of [[Definition:Convex Set (Order Theory)|convex set]]: +:$f \left({b}\right) \in C$ +Then by definition of [[Definition:Inverse Image|inverse image]]: +:$b \in f^{-1} \left[{C}\right]$ +Since this holds for all such triples, $f^{-1} \left[{C}\right]$ is [[Definition:Convex Set (Order Theory)|convex]] in $X$. +A similar argument applies if $f$ is [[Definition:Decreasing Mapping|decreasing]]. +{{qed}} +[[Category:Order Theory]] +fetuvrsxewava1wwlw6q1fh3x889jej +\end{proof}<|endoftext|> +\section{Conjunction with Law of Excluded Middle} +Tags: Conjunction, Law of Excluded Middle + +\begin{theorem} +:$\vdash p \iff \paren {p \land q} \lor \paren {p \land \neg q}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash p \iff \paren {p \land q} \lor \paren {p \land \neg q} }} +{{Assumption|1|p}} +{{ExcludedMiddle|2|q \lor \neg q}} +{{Assumption|3|q}} +{{Conjunction|4|1, 3|p \land q|1|2}} +{{Addition|5|1, 3|\paren {p \land q} \lor \paren {p \land \neg q}|4|1}} +{{Assumption|6|\neg q}} +{{Conjunction|7|1, 6|p \land \neg q|1|6}} +{{Addition|8|1, 6|\paren {p \land q} \lor \paren {p \land \neg q}|7|2}} +{{ProofByCases|9|1|\paren {p \land q} \lor \paren {p \land \neg q}|2|3|5|6|8}} +{{Implication|10||p \implies \paren {p \land q} \lor \paren {p \land \neg q}|1|9}} +{{Assumption|11|\paren {p \land q} \lor \paren {p \land \neg q} }} +{{SequentIntro|12|11|p \land \paren {q \lor \neg q}|11|[[Conjunction Distributes over Disjunction]]}} +{{Simplification|13|11|p|11|2}} +{{Implication|14||\paren {p \land q} \lor \paren {p \land \neg q} \implies p|11|13}} +{{BiconditionalIntro|15||p \iff \paren {p \land q} \lor \paren {p \land \neg q}|12|14}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Proof by Cases with Contradiction} +Tags: Principle of Non-Contradiction, Proof by Cases + +\begin{theorem} +:$\vdash p \iff \left({p \lor q}\right) \land \left({p \lor \neg q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash p \iff \left({p \lor q}\right) \land \left({p \lor \neg q}\right)}} +{{Assumption|1|p}} +{{Addition|2|1|p \lor q|1|1}} +{{Addition|3|1|p \lor \neg q|1|2}} +{{Conjunction|4|1|\left({p \lor q}\right) \land \left({p \lor \neg q}\right)|2|3}} +{{Implication|5||p \implies \left({p \lor q}\right) \land \left({p \lor \neg q}\right)|1|4}} +{{Assumption|6|\left({p \lor q}\right) \land \left({p \lor \neg q}\right)}} +{{SequentIntro|7|6|p \lor \left({q \land \neg q}\right)|6|[[Disjunction Distributes over Conjunction]]}} +{{Assumption|8|p}} +{{TheoremIntro|9|\neg \left({q \land \neg q}\right)|[[Principle of Non-Contradiction/Sequent Form/Formulation 2|Principle of Non-Contradiction: Formulation 2]]}} +{{ModusTollendoPonens|10|6|p|7|9|2}} +{{ProofByCases|11|6|p|6|8|8|9|10}} +{{Implication|12||\left({p \lor q}\right) \land \left({p \lor \neg q}\right) \implies p|6|11}} +{{BiconditionalIntro|13||p \iff \left({p \lor q}\right) \land \left({p \lor \neg q}\right)|5|12}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Ray is Convex} +Tags: Convex Sets, Rays (Order Theory) + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $I$ be a [[Definition:Ray (Order Theory)|ray]], either [[Definition:Open Ray|open]] or [[Definition:Closed Ray|closed]]. +Then $I$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +\end{theorem} + +\begin{proof} +The cases for [[Definition:Upward-Pointing Ray|upward-pointing]] and [[Definition:Downward-Pointing Ray|downward-pointing]] [[Definition:Ray (Order Theory)|rays]] are equivalent. +{{explain|"Dual of convex is convex" and duality, upon which the above statement depends.}} +{{WLOG}}, suppose that $U$ is an [[Definition:Upward-Pointing Ray|upward-pointing ray]]. +By the definition of a [[Definition:Ray (Order Theory)|ray]], there exists an $a \in S$ such that: +:$I = a^\succ$ +or; +:$I = a^\succeq$ +according to whether $U$ is [[Definition:Open Ray|open]] or [[Definition:Closed Ray|closed]]. +Let $x, y, z \in S$ such that $x \prec y \prec z$ and $x, z \in I$. +Then: +:$a \preceq x \prec y$ +so: +:$a \prec y$ +Therefore: +:$y \in a^\succ \subseteq I$ +Thus $I$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Convex Sets is Convex Set (Order Theory)} +Tags: Convex Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $\mathcal C$ be a [[Definition:Set|set]] of [[Definition:Convex Set (Order Theory)|convex sets]] in $S$. +Then $\displaystyle \bigcap \mathcal C$ is [[Definition:Convex Set (Order Theory)|convex]]. +\end{theorem} + +\begin{proof} +Let $a, b, c \in S$. +Let $a, c \in \displaystyle \bigcap \mathcal C$. +Let $a \prec b \prec c$. +By the definition of [[Definition:Set Intersection|intersection]]: +:$\forall C \in \mathcal C$: $a, c \in C$ +Since each $C \in C$ is [[Definition:Convex Set (Order Theory)|convex]]: +:$\forall C \in \mathcal C$: $b \in C$. +Thus by the definition of [[Definition:Set Intersection|intersection]]: +:$b \in \displaystyle \bigcap \mathcal C$ +Thus $\displaystyle \bigcap \mathcal C$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +[[Category:Convex Sets]] +8dmimjz3fi4bkv3mxh4bpiye8k4tqi5 +\end{proof}<|endoftext|> +\section{Interval of Ordered Set is Convex} +Tags: Order Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $I$ be an [[Definition:Interval of Ordered Set|interval]]: be it [[Definition:Open Interval|open]], [[Definition:Closed Interval|closed]], or [[Definition:Half-Open Interval|half-open]] in $S$. +Then $I$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +\end{theorem} + +\begin{proof} +Any [[Definition:Interval of Ordered Set|interval]] can be represented as the [[Definition:Set Intersection|intersection]] of two [[Definition:Ray (Order Theory)|rays]]. +{{explain|Obvious though it is, the above needs to be stated as a theorem in its own right.}} +Thus by [[Ray is Convex]] and [[Intersection of Convex Sets is Convex Set (Order Theory)]], $I$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +[[Category:Order Theory]] +kob8akch5iwfbh8kkzmoembt3sost1s +\end{proof}<|endoftext|> +\section{Upper and Lower Closures are Convex} +Tags: Lower Closures, Upper Closures, Convex Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $a \in S$. +Then $a^\succeq$, $a^\succ$, $a^\preceq$, and $a^\prec$ are [[Definition:Convex Set (Order Theory)|convex]] in $S$. +\end{theorem} + +\begin{proof} +The cases for upper and lower closures are dual, so we need only prove the case for upper closures. +Suppose, then, that $C = a^\succeq$ or $C = a^\succ$. +Suppose that $x, y, z \in S$, $x \prec y \prec z$, and $x, z \in C$. +Then $a \preceq x \prec y$, so $a \prec y$ by [[Extended Transitivity]]. +Therefore $y \in a^\succ \subseteq C$. +Thus $C$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +[[Category:Lower Closures]] +[[Category:Upper Closures]] +[[Category:Convex Sets]] +1ubqkqahcv5dlic8bk0xfbemucj22th +\end{proof}<|endoftext|> +\section{Transitive Closure of Symmetric Relation is Symmetric} +Tags: Symmetric Relations, Transitive Closures + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $\mathcal R$ be a [[Definition:Symmetric Relation|symmetric relation]] on $S$. +Let $\mathcal T$ be the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] of $\mathcal R$. +The $\mathcal T$ is [[Definition:Symmetric Relation|symmetric]]. +\end{theorem} + +\begin{proof} +Let $a, b \in S$ with $a \mathrel{\mathcal T} b$. +By the definition of [[Definition:Transitive Closure (Relation Theory)/Union of Compositions|transitive closure]], there is an $n \in \N$ such that $a \mathrel{\mathcal R^n} b $. +Thus there are $x_0, x_1, \dots x_n \in S$ such that: +: $x_0 = a$ +: $x_n = b$ +: For $k = 0, \dots, n-1$: $x_k \mathrel{\mathcal R} x_{k+1}$ +For $k = 0, \dots, n$, let $y_k = x_{n-k}$. +Then: +: $y_0 = x_n = b$ +: $y_n = x_0 = a$ +For $k = 0, \dots, n-1$: $x_{n-k-1} \mathrel{\mathcal R} x_{n-k}$. +Thus $y_{k+1} \mathrel{\mathcal R} y_k$. +Since $\mathcal R$ is [[Definition:Symmetric Relation|symmetric]]: +: For $k = 0, \dots, n-1$: $y_k \mathrel{\mathcal R} y_{k+1}$ +Thus $b \mathrel{\mathcal R^n} a$, so $b \mathrel{\mathcal T} a$. +{{qed}} +[[Category:Symmetric Relations]] +[[Category:Transitive Closures]] +kw5062bup14w60mar3g1krnuhq44vfa +\end{proof}<|endoftext|> +\section{Transitive Closure of Reflexive Relation is Reflexive} +Tags: Reflexive Relations, Transitive Closures + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $\mathcal R$ be a [[Definition:Reflexive Relation|reflexive relation]] on $S$. +Let $\mathcal T$ be the [[Definition:Transitive Closure of Relation|transitive closure]] of $\mathcal R$. +Then $\mathcal T$ is [[Definition:Reflexive Relation|reflexive]]. +\end{theorem} + +\begin{proof} +Let $a \in S$. +Since $\mathcal R$ is [[Definition:Reflexive Relation|reflexive]]: +:$\left({a, a}\right) \in \mathcal R$ +By the definition of [[Definition:Transitive Closure (Relation Theory)/Smallest Transitive Superset|transitive closure]]: +:$\mathcal R \subseteq \mathcal T$ +Thus by the definition of [[Definition:Subset|subset]]: +:$\left({a, a}\right) \in \mathcal T$ +Since this holds for all $a \in S, \mathcal T$ is [[Definition:Reflexive Relation|reflexive]]. +{{qed}} +[[Category:Reflexive Relations]] +[[Category:Transitive Closures]] +ivk48ffpye1ebp4yjc0cc6v3qja04eb +\end{proof}<|endoftext|> +\section{Transitive Closure of Reflexive Symmetric Relation is Equivalence} +Tags: Transitive Closures, Equivalence Relations + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\mathcal R$ be a [[Definition:Symmetric Relation|symmetric]] and [[Definition:Reflexive Relation|reflexive]] [[Definition:Endorelation|relation]] on $S$. +Then the [[Definition:Transitive Closure of Relation|transitive closure]] of $\mathcal R$ is an [[Definition:Equivalence Relation|equivalence relation]]. +\end{theorem} + +\begin{proof} +Let $\sim$ be the [[Definition:Transitive Closure of Relation|transitive closure]] of $\mathcal R$. +Checking in turn each of the criteria for [[Definition:Equivalence Relation|equivalence]]: +=== Reflexivity === +By [[Transitive Closure of Reflexive Relation is Reflexive]]: +: $\sim$ is [[Definition:Reflexive Relation|reflexive]]. +{{qed|lemma}} +=== Symmetry === +By [[Transitive Closure of Symmetric Relation is Symmetric]]: +: $\sim$ is [[Definition:Symmetric Relation|symmetric]]. +{{qed|lemma}} +=== Transitivity === +By the definition of transitive closure: +: $\sim$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +$\sim$ has been shown to be [[Definition:Reflexive Relation|reflexive]], [[Definition:Symmetric Relation|symmetric]] and [[Definition:Transitive Relation|transitive]]. +Hence by definition it is an [[Definition:Equivalence Relation|equivalence relation]]. +{{qed}} +[[Category:Transitive Closures]] +[[Category:Equivalence Relations]] +o62uk3c5ms86bq9v4zgnbs4mju6yw3n +\end{proof}<|endoftext|> +\section{Union of Overlapping Convex Sets in Toset is Convex} +Tags: Total Orderings + +\begin{theorem} +Let $\left({ S, \preceq }\right)$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $U$ and $V$ be [[Definition:Convex Set (Order Theory)|convex sets]] in $S$. +Let $U \cap V \ne \varnothing$. +Then $U \cup V$ is also [[Definition:Convex Set (Order Theory)|convex]]. +\end{theorem} + +\begin{proof} +Let $a,b,c \in S$ +Let $a,c \in U \cup V$. +Let $a \prec b \prec c$. +If $a,c \in U$ then $b \in U$ because $U$ is [[Definition:Convex Set (Order Theory)|convex]]. +Thus $b \in U \cup V$ by the definition of [[Definition:Set Union|union]]. +Similarly, if $a,c \in V$ then $b \in U \cup V$. +Otherwise, suppose [[Definition:WLOG|WLOG]] that $a \in U$ and $c \in V$. +Since $U \cap V$ is nonempty by the premise, it has an element $p$. +Since $\preceq$ is a [[Definition:Total Ordering|total ordering]]: +:$b \preceq p$ or $p \preceq b$. +If $b \preceq p$, then since $a \prec b$, $a,p \in U$, and $U$ is convex, we can conclude that +:$b \in U$ +so $b \in U \cup V$. +A similar argument shows that it $p \preceq b$ then $b \in V$, so $b \in U \cup V$. +Thus in all cases we can conclude that $b \in U \cup V$, so $U \cup V$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +[[Category:Total Orderings]] +phpaeazpqhrvjvlm7bqfm97jnvw0amk +\end{proof}<|endoftext|> +\section{Rule of Material Equivalence} +Tags: Rule of Material Equivalence, Biconditional, Implication, Conjunction + +\begin{theorem} +==== [[Rule of Material Equivalence/Formulation 1|Formulation 1]] ==== +{{:Rule of Material Equivalence/Formulation 1}} +==== [[Rule of Material Equivalence/Formulation 2|Formulation 2]] ==== +{{:Rule of Material Equivalence/Formulation 2}} +\end{theorem}<|endoftext|> +\section{Union of Overlapping Convex Sets in Toset is Convex/Infinite Union} +Tags: Total Orderings + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $\mathcal A$ be a [[Definition:Set of Sets|set]] of [[Definition:Convex Set (Order Theory)|convex]] subsets of $S$. +For any $P, Q \in \mathcal A$, let there be elements $C_0, \dotsc, C_n \in \mathcal A$ such that: +:$C_0 = P$ +:$C_n = Q$ +:For $k = 0, \dots, n-1: C_k \cap C_{k+1} \ne \varnothing$ +Then $\bigcup \mathcal A$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +\end{theorem} + +\begin{proof} +Let $a, c \in \bigcup \mathcal A$. +Let $b \in S$. +Let $a \prec b \prec c$. +Since $a, c \in \bigcup \mathcal A$, there are $P, Q \in \mathcal A$ such that $a \in P$ and $c \in Q$. +By the premise, there are elements $C_0, \dots, C_n \in \mathcal A$ such that: +:$C_0 = P$ +:$C_n = Q$ +:For $k = 0, \dots, n-1: C_k \cap C_{k+1} \ne \varnothing$ +{{explain|details of induction. Consider putting the finite chain case into a separate lemma.}} +Applying [[Union of Overlapping Intervals is Interval]] inductively: +:$\displaystyle \bigcup_{k \mathop = 0}^n C_k$ is [[Definition:Convex Set (Order Theory)|convex]]. +Since $\displaystyle a, c \in \bigcup_{k \mathop = 0}^n C_k$, by the definition of convexity: +:$\displaystyle b \in \bigcup_{k \mathop = 0}^n C_k$ +Thus: +:$\displaystyle b \in \bigcup \mathcal A$ +Since this holds for all such triples $a, b, c$, it follows that $\mathcal A$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +[[Category:Total Orderings]] +0zqc4uvgtwv16acj56off7wr2zf6zy0 +\end{proof}<|endoftext|> +\section{Rule of Material Equivalence/Formulation 2} +Tags: Rule of Material Equivalence + +\begin{theorem} +:$\vdash \left({p \iff q}\right) \iff \left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)$ +\end{theorem}<|endoftext|> +\section{Non-Equivalence as Disjunction of Conjunctions} +Tags: Negation, Biconditional, Disjunction, Conjunction + +\begin{theorem} +==== [[Non-Equivalence as Disjunction of Conjunctions/Formulation 1|Formulation 1]] ==== +{{:Non-Equivalence as Disjunction of Conjunctions/Formulation 1}} +==== [[Non-Equivalence as Disjunction of Conjunctions/Formulation 2|Formulation 2]] ==== +{{:Non-Equivalence as Disjunction of Conjunctions/Formulation 2}} +\end{theorem}<|endoftext|> +\section{Continuous Involution is Homeomorphism} +Tags: Continuous Mappings, Homeomorphisms, Involutions + +\begin{theorem} +Let $\struct {S, \tau}$ be a [[Definition:Topological Space|topological space]]. +Let $f: S \to S$ be a [[Definition:Continuous Mapping (Topology)|continuous]] [[Definition:Involution (Mapping)|involution]]. +Then $f$ is a [[Definition:Homeomorphism|homeomorphism]]. +\end{theorem} + +\begin{proof} +From [[Involution is Permutation]], $f$ is a [[Definition:Permutation|permutation]] and so a [[Definition:Bijection|bijection]]. +Since $f$ is [[Definition:Continuous Mapping (Topology)|continuous]], it suffices to verify that its [[Definition:Inverse Mapping|inverse]] is also [[Definition:Continuous Mapping (Topology)|continuous]]. +Now recall $f$ is an [[Definition:Involution (Mapping)|involution]], that is, $f^{-1} = f$. +Thus $f^{-1}$ is also [[Definition:Continuous Mapping (Topology)|continuous]]. +Hence $f$ is a [[Definition:Homeomorphism|homeomorphism]]. +{{qed}} +[[Category:Continuous Mappings]] +[[Category:Homeomorphisms]] +[[Category:Involutions]] +2djq8sagezscmf2b3kgfi523p99kpm4 +\end{proof}<|endoftext|> +\section{Involution is Permutation} +Tags: Involutions, Permutation Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $f: S \to S$ be an [[Definition:Involution (Mapping)|involution]]. +Then $f$ is a [[Definition:Permutation|permutation]]. +\end{theorem} + +\begin{proof} +By definition, a [[Definition:Permutation|permutation]] is a [[Definition:Bijection|bijection]] from a [[Definition:Set|set]] to itself. +Thus it is sufficient to show that $f$ is a [[Definition:Bijection|bijection]]. +By definition of [[Definition:Involution (Mapping)|involution]], for each $x \in S$: +:$\map f {\map f x} = x$ +By [[Equality of Mappings]]: +:$f \circ f = I_S$ +where $I_S$ is the [[Definition:Identity Mapping|identity mapping]] on $S$. +Thus $f$ is both a [[Definition:Left Inverse Mapping|left inverse]] and a [[Definition:Right Inverse Mapping|right inverse]] of itself. +The result follows from [[Bijection iff Left and Right Inverse]]. +{{qed}} +[[Category:Involutions]] +[[Category:Permutation Theory]] +kpxtxhpxzu12jovs9dcovzqnrd9bn2g +\end{proof}<|endoftext|> +\section{Non-Equivalence as Disjunction of Conjunctions/Formulation 1/Forward Implication} +Tags: Non-Equivalence as Disjunction of Conjunctions + +\begin{theorem} +: $\neg \left ({p \iff q}\right) \vdash \left({\neg p \land q}\right) \lor \left({p \land \neg q}\right)$ +\end{theorem}<|endoftext|> +\section{Non-Equivalence as Disjunction of Conjunctions/Formulation 1/Forward Implication/Proof} +Tags: Non-Equivalence as Disjunction of Conjunctions + +\begin{theorem} +: $\neg \left ({p \iff q}\right) \vdash \left({\neg p \land q}\right) \lor \left({p \land \neg q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg \left ({p \iff q}\right) \vdash \left({\neg p \land q}\right) \lor \left({p \land \neg q}\right)}} +{{Premise|1|\neg \left ({p \iff q}\right)}} +{{SequentIntro|2|1|\neg \left({\left ({p \implies q}\right) \land \left ({q \implies p}\right)}\right)|1 + |[[Rule of Material Equivalence]]}} +{{SequentIntro|3|1|\neg \left({\left ({\neg p \lor q}\right) \land \left ({\neg q \lor p}\right)}\right)|2 + |[[Rule of Material Implication]] (twice)}} +{{DeMorgan|4|1|\neg \left({\neg p \lor q}\right) \lor \neg \left ({\neg q \lor p}\right)|3|Disjunction of Negations}} +{{DeMorgan|5|1|\left ({\neg \neg p \land \neg q}\right) \lor \left ({\neg \neg q \land \neg p}\right)|4|Conjunction of Negations}} +{{DoubleNegElimination|6|1|\left ({p \land \neg q}\right) \lor \left ({q \land \neg p}\right)|5}} +{{Commutation|7|1|\left ({p \land \neg q}\right) \lor \left ({\neg p \land q}\right)|6|Conjunction}} +{{Commutation|8|1|\left ({\neg p \land q}\right) \lor \left ({p \land \neg q}\right)|7|Disjunction}} +{{EndTableau}} +{{qed}} +{{LEM|Double Negation Elimination}} +\end{proof}<|endoftext|> +\section{Non-Equivalence as Disjunction of Conjunctions/Formulation 1/Reverse Implication/Proof} +Tags: Non-Equivalence as Disjunction of Conjunctions + +\begin{theorem} +: $\left({\neg p \land q}\right) \lor \left({p \land \neg q}\right) \vdash \neg \left ({p \iff q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({\neg p \land q}\right) \lor \left({p \land \neg q}\right) \vdash \neg \left ({p \iff q}\right)}} +{{Premise|1|\left ({\neg p \land q}\right) \lor \left ({p \land \neg q}\right)}} +{{Commutation|2|1|\left ({p \land \neg q}\right) \lor \left ({\neg p \land q}\right)|1|Disjunction}} +{{Commutation|3|1|\left ({p \land \neg q}\right) \lor \left ({q \land \neg p}\right)|2|Conjunction}} +{{DoubleNegIntro|4|1|\left ({\neg \neg p \land \neg q}\right) \lor \left ({\neg \neg q \land \neg p}\right)|3}} +{{DeMorgan|5|1|\neg \left({\neg p \lor q}\right) \lor \neg \left ({\neg q \lor p}\right)|4|Conjunction of Negations}} +{{DeMorgan|6|1|\neg \left({\left ({\neg p \lor q}\right) \land \left ({\neg q \lor p}\right)}\right)|5|Disjunction of Negations}} +{{SequentIntro|7|1 |\neg \left({\left ({p \implies q}\right) \land \left ({q \implies p}\right)}\right)|6 + |[[Rule of Material Implication]] (twice)}} +{{SequentIntro|8|1|\neg \left ({p \iff q}\right)|7|[[Rule of Material Equivalence]]}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Non-Equivalence as Disjunction of Conjunctions/Formulation 1/Reverse Implication} +Tags: Non-Equivalence as Disjunction of Conjunctions + +\begin{theorem} +: $\left({\neg p \land q}\right) \lor \left({p \land \neg q}\right) \vdash \neg \left ({p \iff q}\right)$ +\end{theorem}<|endoftext|> +\section{Non-Equivalence as Disjunction of Conjunctions/Formulation 2} +Tags: Non-Equivalence as Disjunction of Conjunctions + +\begin{theorem} +:$\vdash \paren {\neg \paren {p \iff q} } \iff \paren {\paren {\neg p \land q} \lor \paren {p \land \neg q} }$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \paren {\neg \paren {p \iff q} } \iff \paren {\paren {\neg p \land q} \lor \paren {p \land \neg q} } }} +{{Assumption|1|\neg \paren {p \iff q} }} +{{SequentIntro|2|1|\paren {\neg p \land q} \lor \paren {p \land \neg q}|1|[[Non-Equivalence as Disjunction of Conjunctions/Formulation 1|Non-Equivalence as Disjunction of Conjunctions: Formulation 1]]}} +{{Implication|3||\paren {\neg \paren {p \iff q} } \implies \paren {\paren {\neg p \land q} \lor \paren {p \land \neg q} }|1|2}} +{{Assumption|4|\paren {\neg p \land q} \lor \paren {p \land \neg q} }} +{{SequentIntro|5|4|\neg \paren {p \iff q}|4|[[Non-Equivalence as Disjunction of Conjunctions/Formulation 1|Non-Equivalence as Disjunction of Conjunctions: Formulation 1]]}} +{{Implication|6||\paren {\paren {\neg p \land q} \lor \paren {p \land \neg q} } \implies \paren {\neg \paren {p \iff q} }|4|5}} +{{BiconditionalIntro|7||\paren {\neg \paren {p \iff q} } \iff \paren {\paren {\neg p \land q} \lor \paren {p \land \neg q} }|3|6}} +{{EndTableau|qed}} +\end{proof}<|endoftext|> +\section{Non-Equivalence as Equivalence with Negation/Formulation 1/Forward Implication} +Tags: Non-Equivalence as Equivalence with Negation + +\begin{theorem} +:$\neg \paren {p \iff q} \vdash \paren {p \iff \neg q}$ +\end{theorem}<|endoftext|> +\section{Non-Equivalence as Equivalence with Negation/Formulation 1} +Tags: Non-Equivalence as Equivalence with Negation + +\begin{theorem} +:$\neg \paren {p \iff q} \dashv \vdash \paren {p \iff \neg q}$ +\end{theorem}<|endoftext|> +\section{Non-Equivalence as Equivalence with Negation/Formulation 1/Reverse Implication} +Tags: Non-Equivalence as Equivalence with Negation + +\begin{theorem} +:$\paren {p \iff \neg q} \vdash \neg \paren {p \iff q}$ +\end{theorem}<|endoftext|> +\section{Sign of Function Matches Sign of Definite Integral} +Tags: Integral Calculus + +\begin{theorem} +Let $f$ be a [[Definition:Real Function|real function]] [[Definition:Continuous Real Function on Interval|continuous]] on some [[Definition:Closed Real Interval|closed interval]] $\closedint a b$, where $a < b$. +Then: +:If $\forall x \in \closedint a b: \map f x \ge 0$ then $\displaystyle \int_a^b \map f x \rd x \ge 0$ +:If $\forall x \in \closedint a b: \map f x > 0$ then $\displaystyle \int_a^b \map f x \rd x > 0$ +:If $\forall x \in \closedint a b: \map f x \le 0$ then $\displaystyle \int_a^b \map f x \rd x \le 0$ +:If $\forall x \in \closedint a b: \map f x < 0$ then $\displaystyle \int_a^b \map f x \rd x < 0$ +\end{theorem} + +\begin{proof} +From [[Continuous Real Function is Darboux Integrable]], the [[Definition:Definite Integral|definite integrals]] under discussion are guaranteed to exist. +Consider the case where $\forall x \in \closedint a b: \map f x \ge 0$. +Define a [[Definition:Constant Mapping|constant mapping]]: +:$f_0: \closedint a b \to \R$: +:$\map {f_0} x = 0$ +Then: +{{begin-eqn}} +{{eqn | l = \map {f_0} x + | o = \le + | r = \map f x + | c = for any $x \in \closedint a b$: recall $\map f x \ge 0$ +}} +{{eqn | ll= \leadsto + | l = \int_a^b \map {f_0} x \rd x + | o = \le + | r = \int_a^b \map f x \rd x + | c = [[Relative Sizes of Definite Integrals]] +}} +{{eqn | ll= \leadsto + | l = 0 \paren {b - a} + | o = \le + | r = \int_a^b \map f x \rd x + | c = [[Integral of Constant/Definite|Integral of Constant]] +}} +{{eqn | ll= \leadsto + | l = \int_a^b \map f x \rd x + | o = \ge + | r = 0 +}} +{{end-eqn}} +The proofs of the other cases are similar. +{{qed}} +[[Category:Integral Calculus]] +2b6zbio87ls85qmqge23xxn4rety4a6 +\end{proof}<|endoftext|> +\section{Non-Equivalence as Equivalence with Negation/Formulation 2} +Tags: Non-Equivalence as Equivalence with Negation + +\begin{theorem} +: $\vdash \neg \left ({p \iff q}\right) \iff \left({p \iff \neg q}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \neg \left ({p \iff q}\right) \iff \left({p \iff \neg q}\right)}} +{{Assumption|1|\neg \left ({p \iff q}\right)}} +{{SequentIntro|2|1|p \iff \neg q|1|[[Non-Equivalence as Equivalence with Negation/Formulation 1|Non-Equivalence as Equivalence with Negation: Formulation 1]]}} +{{Implication|3||\left({\neg \left ({p \iff q}\right)}\right) \implies \left({p \iff \neg q}\right)|1|2}} +{{Assumption|4|p \iff \neg q}} +{{SequentIntro|5|4|\neg \left ({p \iff q}\right)|4|[[Non-Equivalence as Equivalence with Negation/Formulation 1|Non-Equivalence as Equivalence with Negation: Formulation 1]]}} +{{Implication|6||\left({p \iff \neg q}\right) \implies \left({\neg \left ({p \iff q}\right)}\right)|4|5}} +{{BiconditionalIntro|7||\left({\neg \left ({p \iff q}\right)}\right) \iff \left({p \iff \neg q}\right)|3|6}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Transitive Relation whose Symmetric Closure is not Transitive} +Tags: Transitive Relations + +\begin{theorem} +Let $S = \set {p, q}$, where $p$ and $q$ are distinct elements. +Let $\RR = \set {\tuple {p, q} }$. +Then $\RR$ is [[Definition:Transitive Relation|transitive]] but its [[Definition:Symmetric Closure|symmetric closure]] is not. +\end{theorem} + +\begin{proof} +$\RR$ is vacuously [[Definition:Transitive Relation|transitive]] because there are no elements $a, b, c \in S$ such that $a \mathrel \RR b$ and $b \mathrel \RR c$. +Let $\RR^\leftrightarrow$ be the [[Definition:Symmetric Closure|symmetric closure]] of $\RR$. +Then $\RR^\leftrightarrow = \RR \cup \RR^{-1} = \set {\tuple {p, q}, \tuple {q, p} }$. +Then: +:$p \mathrel {\RR^\leftrightarrow} q$ and $q \mathrel {\RR^\leftrightarrow} p$ +but: +:$p \not \mathrel {\RR^\leftrightarrow} p$ +Therefore $\RR^\leftrightarrow$ is not [[Definition:Transitive Relation|transitive]]. +{{qed}} +[[Category:Transitive Relations]] +qqk8rl27ob84fq93bz3e62s112gjkzt +\end{proof}<|endoftext|> +\section{Symmetric Closure of Relation Compatible with Operation is Compatible} +Tags: Compatible Relations + +\begin{theorem} +Let $\struct {S, \circ}$ be a [[Definition:Magma|magma]]. +Let $\RR$ be a [[Definition:Endorelation|relation]] [[Definition:Relation Compatible with Operation|compatible]] with $\circ$. +Let $\RR^\leftrightarrow$ be the [[Definition:Symmetric Closure|symmetric closure]] of $\RR$. +Then $\RR^\leftrightarrow$ is compatible with $\circ$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Symmetric Closure|symmetric closure]]: +:$\RR^\leftrightarrow = \RR \cup \RR^{-1}$. +Here $\RR^{-1}$ is the [[Definition:Inverse Relation|inverse]] of $\RR$. +By [[Inverse of Relation Compatible with Operation is Compatible]], $\RR^{-1}$ is [[Definition:Relation Compatible with Operation|compatible]] with $\circ$. +Thus by [[Union of Relations Compatible with Operation is Compatible]]: +:$\RR^\leftrightarrow = \RR \cup \RR^{-1}$ is compatible with $\circ$. +{{qed}} +[[Category:Compatible Relations]] +b6pdw9g2zqye1clef2ior1iq7fzjwqb +\end{proof}<|endoftext|> +\section{Singleton is Convex Set (Order Theory)} +Tags: Convex Sets, Singletons + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $x \in S$. +Then the [[Definition:singleton|singleton]] $\left\{{x}\right\}$ is [[Definition:Convex Set (Order Theory)|convex]]. +\end{theorem} + +\begin{proof} +Let: +:$a, c \in \left\{{x}\right\}$ +:$b \in S$ +:$a \preceq b \preceq c$ +Then $a = c = x$. +Thus $x \preceq b \preceq x$. +Since $\preceq$ is a [[Definition:ordering|ordering]], it is [[Definition:Antisymmetric Relation|antisymmetric]]. +Thus $b = x$, so $b \in \left\{{x}\right\}$. +Since this holds for the only such triple, $\left\{{x}\right\}$ is [[Definition:Convex Set (Order Theory)|convex]]. +{{qed}} +[[Category:Convex Sets]] +[[Category:Singletons]] +8yo4pko9er4prextiv9qlaxo5auvz4g +\end{proof}<|endoftext|> +\section{Rule of Transposition/Variant 1/Formulation 2} +Tags: Rule of Transposition + +\begin{theorem} +:$\vdash \paren {p \implies \neg q} \iff \paren {q \implies \neg p}$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 1} +Tags: Rule of Transposition + +\begin{theorem} +==== [[Rule of Transposition/Variant 1/Formulation 1|Formulation 1]] ==== +{{:Rule of Transposition/Variant 1/Formulation 1}} +==== [[Rule of Transposition/Variant 1/Formulation 2|Formulation 2]] ==== +{{:Rule of Transposition/Variant 1/Formulation 2}} +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 1/Formulation 2/Reverse Implication} +Tags: Rule of Transposition + +\begin{theorem} +: $\vdash \left({q \implies \neg p}\right) \implies \left({p \implies \neg q}\right)$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 1/Formulation 1} +Tags: Rule of Transposition + +\begin{theorem} +:$p \implies \neg q \dashv \vdash q \implies \neg p$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 1/Formulation 1/Forward Implication} +Tags: Rule of Transposition + +\begin{theorem} +:$p \implies \neg q \vdash q \implies \neg p$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 1/Formulation 1/Reverse Implication} +Tags: Rule of Transposition + +\begin{theorem} +:$q \implies \neg p \vdash \neg p \implies q$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2} +Tags: Rule of Transposition + +\begin{theorem} +==== [[Rule of Transposition/Variant 2/Formulation 1|Formulation 1]] ==== +{{:Rule of Transposition/Variant 2/Formulation 1}} +==== [[Rule of Transposition/Variant 2/Formulation 2|Formulation 2]] ==== +{{:Rule of Transposition/Variant 2/Formulation 2}} +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 1} +Tags: Rule of Transposition + +\begin{theorem} +: $\neg p \implies q \dashv \vdash \neg q \implies p$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 1/Forward Implication} +Tags: Rule of Transposition + +\begin{theorem} +:$\neg p \implies q \vdash \neg q \implies p$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 1/Forward Implication/Proof} +Tags: Rule of Transposition + +\begin{theorem} +: $\neg p \implies q \vdash \neg q \implies p$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg p \implies q \vdash \neg q \implies p}} +{{Premise|1|\neg p \implies q}} +{{Assumption|2|\neg q}} +{{ModusTollens|3|1, 2|\neg \neg p|1|2}} +{{DoubleNegElimination|4|1, 2|p|3}} +{{Implication|5|1|\neg q \implies p|2|4}} +{{EndTableau}} +{{Qed}} +{{LEM|Double Negation Elimination|3}} +\end{proof}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 1/Reverse Implication} +Tags: Rule of Transposition + +\begin{theorem} +: $q \implies \neg p \vdash p \implies \neg q$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 1/Reverse Implication/Proof} +Tags: Rule of Transposition + +\begin{theorem} +: $\neg q \implies p \vdash \neg p \implies q$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\neg q \implies p \vdash \neg p \implies q}} +{{Premise|1|\neg q \implies p}} +{{Assumption|2|\neg p}} +{{ModusTollens|3|1, 2|\neg \neg q|1|2}} +{{DoubleNegElimination|4|1, 2|q|3}} +{{Implication|5|1|\neg p \implies q|2|4}} +{{EndTableau}} +{{Qed}} +{{LEM|Double Negation Elimination|3}} +\end{proof}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 1/Proof 2} +Tags: Truth Table Proofs, Rule of Transposition + +\begin{theorem} +:$\neg p \implies q \dashv \vdash \neg q \implies p$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]] to the proposition. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connectives]] match for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|cccc||cccc|} \hline +\neg & p & \implies & q & \neg & q & \implies & p \\ +\hline +T & F & T & F & T & F & T & F \\ +T & F & T & T & F & T & T & F \\ +F & T & F & F & T & F & F & T \\ +F & T & T & T & F & T & T & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 2/Forward Implication} +Tags: Rule of Transposition + +\begin{theorem} +: $\vdash \left({\neg p \implies q}\right) \iff \left({\neg q \implies p}\right)$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 2/Reverse Implication} +Tags: Rule of Transposition + +\begin{theorem} +: $\vdash \left({\neg q \implies p}\right) \implies \left({\neg p \implies q}\right)$ +\end{theorem}<|endoftext|> +\section{Rule of Transposition/Variant 2/Formulation 2} +Tags: Rule of Transposition + +\begin{theorem} +: $\vdash \left({\neg p \implies q}\right) \iff \left({\neg q \implies p}\right)$ +\end{theorem}<|endoftext|> +\section{Boundary of Polygon is Topological Boundary} +Tags: Plane Geometry, Topology + +\begin{theorem} +Let $P$ be a [[Definition:Polygon|polygon]] embedded in $\R^2$. +Denote the [[Definition:Boundary (Geometry)|boundary]] of $P$ as $\partial P$. +Let $\Int P$ and $\Ext P$ denote the [[Definition:Interior of Jordan Curve|interior]] and [[Definition:Exterior of Jordan Curve|exterior]] of $\partial P$, where $\partial P$ is considered as a [[Definition:Jordan Curve|Jordan curve]]. +Then the [[Definition:Boundary (Topology)|topological boundary]] of $\Int P$ is equal to $\partial P$, and the [[Definition:Boundary (Topology)|topological boundary]] of $\Ext P$ is equal to $\partial P$. +\end{theorem} + +\begin{proof} +Denote the [[Definition:Boundary (Topology)|topological boundary]] of $\Int P$ as $\partial \Int P$, and denote the [[Definition:Boundary (Topology)|topological boundary]] of $\Ext P$ as $\partial \Ext P$. +=== Topological Boundary is Subset of Boundary === +From [[Boundary of Polygon is Jordan Curve]], it follows that the [[Definition:Boundary (Geometry)|boundary]] $\partial P$ is equal to the [[Definition:Image of Mapping|image]] of a [[Definition:Jordan Curve|Jordan curve]]. +From [[Jordan Polygon Theorem]], it follows that $\Int P$ and $\Ext P$ are [[Definition:Disjoint Sets|disjoint]], [[Definition:Open Set (Metric Space)|open]] and [[Definition:Path-Connected Metric Subspace|path-connected]]. +From [[Set is Open iff Disjoint from Boundary]], it follows that $\Int P$ and $\partial \Int P$ are disjoint. +From [[Disjoint Open Sets remain Disjoint with one Closure]], it follows that $\Ext P$ and the [[Definition:Closure (Topology)|closure]] of $\Int P$ are disjoint. +As $\partial \Int P$ is a [[Definition:Subset|subset]] of the closure of $\Int P$, it follows that $\Ext P$ and $\partial \Int P$ are disjoint. +As $\R^2 = \Int P \cup \Ext P \cup \partial P$ by the [[Jordan Polygon Theorem]], it follows that $\partial \Int P \subseteq \partial P$. +Similarly, it follows that $\partial \Ext P \subseteq \partial P$. +{{qed|lemma}} +=== Boundary is Subset of Topological Boundary === +Let $p \in \partial P$ such that $p$ is not a [[Definition:Vertex of Polygon|vertex]], and let $S$ be the [[Definition:Side of Polygon|side]] of $P$ that $p$ is a part of. +Denote the $j$th side of $P$ as $S_j$, and let $n \in \N$ be the total number of sides. +Let $\displaystyle \delta = \map d {S, \bigcup_{j \mathop = 1, \ldots, n: S_j \mathop \ne S} S_j}$ be the [[Definition:Euclidean Metric on Real Number Plane|Euclidean]] [[Definition:Distance between Element and Subset of Metric Space|distance]] between $S$ and all other sides of $P$. +From [[Distance between Closed Sets in Euclidean Space]], it follows that $\delta > 0$. +Let $\epsilon \in \openint 0 \delta$, and denote the [[Definition:Open Ball|open ball]] of $p$ with radius $\epsilon$ as $\map {B_\epsilon} p$. +Choose $x_1 \in \map {B_\epsilon} p$, and put $\mathbf v = p - x_1$. +Let $\LL_1 = \set {x_1 + s \mathbf v: s \in \R_{\ge 0} }$ be a [[Definition:Ray (Geometry)|ray]] with start point $x_1$. +Then $\LL_1$ and $S$ has one [[Definition:Crossing (Jordan Curve)|crossing]] at $p$. +Put $x_2 = x_1 + 2 \mathbf v$, and put $\LL_2 = \set {x_2 + s \mathbf v: s \in \R_{\ge 0} }$, so $\LL_1 \cap \LL_2 = \LL_2$. +Then $\LL_2$ and $S$ do not cross. +As $x_2 \in \map {B_\epsilon} p$ with $\epsilon < \delta$, it follows from the definition of $\delta$ that if $\LL_1$ and some side $S'$ has a crossing, then $\LL_2$ and $S'$ also has a crossing. +If $\map N {x_i}$ denotes the number of crossings between $\LL_i$ and $\partial P$, it follows that $\map N {x_1} + 1 = \map N {x_2}$. +Then $\map {\mathrm {par} } {x_1} \ne \map {\mathrm {par} } {x_2}$, where $\map {\mathrm {par} } {x_i}$ denotes the [[Definition:Crossing (Jordan Curve)/Parity|parity]] of $x_i$. +From [[Jordan Polygon Interior and Exterior Criterion]], it follows that one of the points $x_1, x_2$ belongs to $\Int P$, and the other point belongs to $\Ext P$. +As $\epsilon$ was arbitrary small, it follows that $p$ is a [[Definition:Limit Point (Metric Space)|limit point]] of both $\Int P$ and $\Ext P$. +By [[Definition:Closure (Topology)|definition of closure]], it follows that $p$ lies in the closure of $\Int P$ and $\Ext P$. +Then $p \in \partial \Int P$ and $p \in \partial \Ext P$, as the [[Jordan Polygon Theorem]] shows that $\partial P$ and $\Int P$, $\Ext P$ are [[Definition:Disjoint Sets|disjoint]]. +Now, suppose that $p$ is a [[Definition:Vertex of Polygon|vertex]] of $S$. +Then we can find a [[Definition:Sequence|sequence]] $\sequence {p_k}$ of points that lies on the [[Definition:Adjacent Sides|adjacent sides]] of $p$ such that the sequence [[Definition:Convergent Sequence (Metric Space)|converges]] to $p$. +As none of the point in $\sequence {x_k}$ are [[Definition:Vertex of Polygon|vertices]], all $x_k$ lie in $\partial \Int P$ and $\partial \Ext P$. +As [[Boundary of Set is Closed]], it follows that $p \in \partial \Int P$, and $p \in \partial \Ext P$. +Hence, $\partial P \subseteq \partial \Int P$, and $\partial P \subseteq \partial \Ext P$. +{{qed|lemma}} +The result now follows by definition of [[Definition:Set Equality/Definition 2|set equality]]. +{{qed}} +[[Category:Plane Geometry]] +[[Category:Topology]] +4hswurvo6sann59hm8mbeq871pdgakx +\end{proof}<|endoftext|> +\section{Jordan Curve and Jordan Arc form Two Jordan Curves} +Tags: Jordan Curves, Jordan Arcs + +\begin{theorem} +Let $\closedint a b$ denote the [[Definition:Closed Real Interval|closed real interval]] between $a \in \R, b \in \R: a \le b$. +Let $\gamma: \closedint a b \to \R^2$ be a [[Definition:Jordan Curve|Jordan curve]]. +Let the [[Definition:Interior of Jordan Curve|interior]] of $\gamma$ be denoted $\Int \gamma$. +Let the [[Definition:Image of Mapping|image]] of $\gamma$ be denoted $\Img \gamma$. +Let $\sigma: \closedint c d \to \R^2$ be a [[Definition:Jordan Arc|Jordan arc]] such that: +:$\map \sigma c \ne \map \sigma d$ +:$\map \sigma c, \map \sigma d \in \Img \gamma$ +and: +:$\forall t \in \openint c d: \map \sigma t \in \Int \gamma$ +Let $t_1 = \map {\gamma^{-1} } {\map \sigma c}$. +Let $t_2 = \map {\gamma^{-1} } {\map \sigma d}$. +Let $t_1 < t_2$. +Define: +:$-\sigma: \closedint c d \to \Img \sigma$ by $-\map \sigma t = \map \sigma {c + d - t}$ +Let $*$ denote [[Definition:Concatenation (Topology)|concatenation of paths]]. +Let $\gamma \restriction_{\closedint a {t_1} }$ denote the [[Definition:Restriction of Mapping|restriction]] of $\gamma$ to $\closedint a {t_1}$. +Define: +:$\gamma_1 = \gamma {\closedint a {t_1} } * \sigma * \gamma {\restriction_{\closedint {t_2} b} }$ +Define: +:$\gamma_2 = \gamma {\closedint a {t_1} } * \paren {-\sigma}$ +Then $\gamma_1$ and $\gamma_2$ are [[Definition:Jordan Curve|Jordan curves]] such that: +:$\Int {\gamma_1} \subseteq \Int \gamma$ +and: +:$\Int {\gamma_2} \subseteq \Int \gamma$ +\end{theorem} + +\begin{proof} +As: +:$\Int \gamma$ and $\Img \gamma$ are [[Definition:Disjoint Sets|disjoint]] by the [[Jordan Curve Theorem]] +and: +:$\map \sigma {\openint c d} \subseteq \Int \gamma$ +it follows that: +:$\Img \gamma \cap \Img \sigma = \set {\map \sigma c, \map \sigma d}$. +As $\gamma$ is a [[Definition:Jordan Curve|Jordan curve]], it follows that $\gamma {\restriction_{\closedint a {t_1} } }$ and $\gamma {\restriction_{\closedint {t_2} b} }$ [[Definition:Set Intersection|intersect]] only in $\map \gamma a$. +It follows that $\gamma_1$ is a [[Definition:Jordan Arc|Jordan arc]]. +As the [[Definition:Initial Point of Path|initial point]] of $\gamma_1$ is $\map \gamma a$, and the [[Definition:Final Point of Path|final point]] of $\gamma_1$ is $\map \gamma b = \map \gamma a$, it follows that $\gamma_1$ is a [[Definition:Jordan Curve|Jordan curve]]. +As $\Img {-\sigma} = \Img \sigma$, it follows that $\gamma_2$ is a [[Definition:Jordan Arc|Jordan arc]]. +As $\map \gamma {t_1} = \map \sigma c = -\map \sigma d$, it follows that $\gamma_2$ is a [[Definition:Jordan Curve|Jordan curve]]. +{{qed|lemma}} +Denote the [[Definition:Exterior of Jordan Curve|exterior]] of $\gamma$ as $\Ext \gamma$. +Let $q_0 \in \Ext \gamma$ be determined. +Let $q \in \Ext \gamma$. +By the [[Jordan Curve Theorem]], $\Ext \gamma$ is [[Definition:Unbounded Metric Space|unbounded]]. +Hence for all $N \in \N$ we can choose $q \in \Ext \gamma$ such that: +:$\map d {\mathbf 0, q} > N$ +where $d$ denotes the [[Definition:Euclidean Metric on Real Number Plane|Euclidean metric]] on $\R^2$. +{{explain|The word "chooses" suggests that some choice function may be involved here, possibly [[Axiom:Axiom of Countable Choice]]? Someone knowledgeable may need to be consulted.}} +The [[Jordan Curve Theorem]] also shows that $\Ext \gamma$ is [[Definition:Open Set (Metric Space)|open]] and [[Definition:Connected (Topology)|connected]]. +From [[Connected Open Subset of Euclidean Space is Path-Connected]], there exists a [[Definition:Path (Topology)|path]]: +:$\rho: \closedint 0 1 \to \Ext \gamma$ +joining $q$ and $q_0$. +We have: +:$\Img {\gamma_1} \subseteq \Int \gamma \cup \Img \gamma$ +This is [[Definition:Disjoint Sets|disjoint]] with $\Ext \gamma$ +Thus it follows that $\rho$ is a [[Definition:Path (Topology)|path]] in either $\Ext {\gamma_1}$ or $\Int {\gamma_1}$. +We have that $\map d {\mathbf 0, q}$ can be arbitrary large. +Also, $\Int {\gamma_1}$ is [[Definition:Bounded Metric Space|bounded]]. +So follows that $\rho$ is a [[Definition:Path (Topology)|path]] in $\Ext {\gamma_1}$. +In particularly: +:$q \in \Ext {\gamma_1}$ +Therefore: +:$\Ext \gamma \subseteq \Ext {\gamma_1}$ +Let $q_1 \in \Int {\gamma_1}$. +Then: +:$q_1 \notin \Ext \gamma$ +as $\Int {\gamma_1}$ and $\Ext {\gamma_1}$ are [[Definition:Disjoint Sets|disjoint]]. +It follows that: +:$q_1 \in \Int {\gamma_1}$ +Therefore: +:$\Int {\gamma_1} \subseteq \Int \gamma$ +Similarly, it follows that: +:$\Int {\gamma_2} \subseteq \Int \gamma$ +{{qed}} +[[Category:Jordan Curves]] +[[Category:Jordan Arcs]] +tca9jwpxhq4l9f8frelckm12c0k0px3 +\end{proof}<|endoftext|> +\section{Restriction of Total Ordering is Total Ordering} +Tags: Total Orderings + +\begin{theorem} +Let $\struct {S, \preceq}$ be a [[Definition:Total Ordering|total ordering]]. +Let $T \subseteq S$. +Let $\preceq \restriction_T$ be the [[Definition:Restriction of Ordering|restriction]] of $\preceq$ to $T$. +Then $\preceq \restriction_T$ is a [[Definition:Total Ordering|total ordering]] of $T$. +\end{theorem} + +\begin{proof} +By [[Restriction of Ordering is Ordering]], $\preceq \restriction_T$ is an [[Definition:Ordering|ordering]]. +Let $x, y \in T$. +As $T \subseteq S$ it follows by definition of [[Definition:Subset|subset]] that: +:$x, y \in S$ +As $\preceq$ is a [[Definition:Total Ordering|total ordering]]: +:$\tuple {x, y} \in {\preceq}$ +or: +:$\tuple {y, x} \in {\preceq}$ +Suppose $\tuple {x, y} \in {\preceq}$. +As $x, y \in T$, it follows by definition of [[Definition:Cartesian Product|cartesian product]] that: +:$\tuple {x, y} \in T \times T$ +Thus: +:$\tuple {x, y} \in \paren {T \times T} \cap {\preceq}$ +By definition of the [[Definition:Restriction of Ordering|restriction]] of $\preceq$ to $T$: +:$\paren {T \times T} \cap {\preceq} = {\preceq \restriction_T}$ +That is: +:$\tuple {x, y} \in {\preceq \restriction_T}$ +A similar argument shows that: +:$\tuple {y, x} \in {\preceq} \implies \tuple {y, x} \in {\preceq \restriction_T}$ +Thus $\preceq \restriction_T$ is a [[Definition:Total Ordering|total ordering]] of $T$. +{{qed}} +\end{proof}<|endoftext|> +\section{Ordering Cycle implies Equality/General Case} +Tags: Order Theory + +\begin{theorem} +Let $\left({S,\preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $x_0, x_1, \dots, x_n \in S$. +Suppose that for $k = 0, 1, \dots, n - 1: x_k \preceq x_{k+1}$. +Suppose also that $x_n \preceq x_0$. +Then $x_0 = x_1 = \dots = x_n$. +\end{theorem} + +\begin{proof} +Since $\preceq$ is an [[Definition:Ordering|ordering]] it is [[Definition:Transitive Relation|transitive]] and [[Definition:Antisymmetric Relation|antisymmetric]]. +By [[Transitive Chaining]], it follows from the first premise that for all $k$ with $0 \le k \le n$: +:$x_0 \preceq x_k$ +and also: +:$x_k \preceq x_n$ +The other premise states that $x_n \preceq x_0$. +By [[Definition:Transitive Relation|transitivity]] of $\preceq$, this combines with the above to: +:$x_k \preceq x_0$ +Since $\preceq$ is [[Definition:Antisymmetric Relation|antisymmetric]], this means that $x_0 = x_k$ for $0 \le k \le n$. +That is, $x_0 = x_1 = \dots = x_n$. +{{qed}} +\end{proof}<|endoftext|> +\section{Finite Non-Empty Subset of Ordered Set has Maximal and Minimal Elements} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T \subseteq S$ be a [[Definition:Finite Set|finite]], [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $S$. +Then $T$ has a [[Definition:Maximal Element|maximal element]] and a [[Definition:Minimal Element|minimal element]]. +\end{theorem} + +\begin{proof} +We will show that each finite subset of $S$ has a [[Definition:Minimal Element|minimal element]]. +The existence of a [[Definition:Maximal Element|maximal element]] then follows from duality. +Proof by [[Principle of Mathematical Induction|induction]]: +For all $n \in \Z_{\ge 1}$, let $P \left({n}\right)$ be the [[Definition:Proposition|proposition]]: +:Every set with $n$ elements has a [[Definition:Minimal Element|minimal element]]. +=== Basis for the Induction === +Let $T$ have exactly one [[Definition:Element|element]] $x$. +Since $x \not \prec x$ it follows that $x$ is [[Definition:Minimal Element|minimal]]. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 1$, then it logically follows that $P \left({k + 1}\right)$ is true. +So this is the [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]: +:Every set with $k$ elements has a [[Definition:Minimal Element|minimal element]]. +from which it is to be shown that: +:Every set with $k + 1$ elements has a [[Definition:Minimal Element|minimal element]]. +=== Induction Step === +Suppose that every [[Definition:Subset|subset]] of $S$ with $k$ elements has a [[Definition:Minimal Element|minimal element]]. +Let $T$ have $k + 1$ elements. +Then: +: $T = T_0 \cup \left\{{x}\right\}$ +where $T_0$ has $k$ elements and $x \in T \setminus T_0$. +Then $T_0$ has a [[Definition:Minimal Element|minimal element]] $m_0$. +If $m_0$ is not a [[Definition:Minimal Element|minimal element]] of $T$, then: +: $x \prec m_0$ +Thus $x$ is a [[Definition:Minimal Element|minimal element]] of $T$. +Thus either $m_0$ or $x$ is a [[Definition:Minimal Element|minimal element]] of $T$. +So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the [[Principle of Mathematical Induction]]. +Therefore: +:For every [[Definition:Finite Set|finite]], [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] $T$ of $S$, $T$ has a [[Definition:Maximal Element|maximal element]] and a [[Definition:Minimal Element|minimal element]] +The result follows by the [[Principle of Mathematical Induction]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Star Convex Set is Path-Connected} +Tags: Vector Spaces, Path-Connected Sets + +\begin{theorem} +Let $A$ be a [[Definition:Star Convex Set|star convex]] [[Definition:Subset|subset]] of a [[Definition:Vector Space|vector space]] $V$ over $\R$ or $\C$. +Then $A$ is [[Definition:Path-Connected Set (Topology)|path-connected]]. +\end{theorem} + +\begin{proof} +Let $x_1, x_2 \in A$. +Let $a \in A$ be a [[Definition:Star Convex Set/Star Center|star center]] of $A$. +By [[Definition:Star Convex Set|definition of star convex set]], it follows that for all $t \in \left[{0 \,.\,.\, 1}\right]$, we have $t x_1 + \left({1 - t}\right) a, t x_2 + \left({1 - t}\right) a \in A$. +Define two [[Definition:Path (Topology)|paths]] $\gamma_1, \gamma_2: t \in \left[{0 \,.\,.\, 1}\right] \to A$ by $\gamma_1 \left({t}\right) = t x_1 + \left({1 - t}\right) a$, and $\gamma_2 \left({t}\right) = t a + \left({1 - t}\right) x_2$. +As $\gamma_2 \left({t}\right) = \left({1 - t}\right) x_2 + \left({1 - \left({1 - t}\right) }\right) a$, and $\left({1 - t}\right) \in \left[{0 \,.\,.\, 1}\right]$, it follows that $\gamma_2 \left({t}\right) \in A$. +Note that $\gamma_1 \left({0}\right) = x_1$, $\gamma_1 \left({1}\right) = \gamma_2 \left({0}\right) = a$, and $\gamma_2 \left({1}\right) = x_2$. +Define $\gamma: \left[{0 \,.\,.\, 1}\right] \to A$ as the [[Definition:Concatenation (Topology)|concatenation]] $\gamma_1 * \gamma_2$. +Then $\gamma$ is a path in $A$ joining $x_1$ and $x_2$, so $A$ is [[Definition:Path-Connected Set (Topology)|path-connected]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Minimal Element of Chain is Smallest Element} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $C$ be a [[Definition:Chain (Set Theory)|chain]] in $S$. +Let $m$ be a [[Definition:Minimal Element|minimal element]] of $C$. +Then $m$ is the [[Definition:Smallest Element|smallest element]] of $C$. +\end{theorem} + +\begin{proof} +Let $x \in C$. +Since $m$ is [[Definition:Minimal Element|minimal]] in $C$, $x \not\prec m$. +Since $C$ is a [[Definition:Chain (Set Theory)|chain]], $x = m$ or $m \prec x$. +Thus for each $x \in C$, $m \preceq x$. +Therefore $m$ is the [[Definition:Smallest Element|smallest element]] of $C$. +{{qed}} +\end{proof}<|endoftext|> +\section{Maximal Element of Chain is Greatest Element} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $C$ be a [[Definition:Chain (Set Theory)|chain]] in $S$. +Let $m$ be a [[Definition:Maximal Element|maximal element]] of $C$. +Then $m$ is the [[Definition:Greatest Element|greatest element]] of $C$. +\end{theorem} + +\begin{proof} +Let $x \in C$. +Since $m$ is [[Definition:Maximal Element|maximal]] in $C$, $m \not\prec x$. +Since $C$ is a [[Definition:Chain (Set Theory)|chain]], $x = m$ or $x \prec m$. +Thus for each $x \in C$, $x \preceq m$. +Therefore $m$ is the [[Definition:Greatest Element|greatest element]] of $C$. +{{qed}} +\end{proof}<|endoftext|> +\section{Modus Ponendo Ponens/Variant 3} +Tags: Modus Ponendo Ponens + +\begin{theorem} +:$\vdash \paren {\paren {p \implies q} \land p} \implies q$ +\end{theorem}<|endoftext|> +\section{Rule of Material Equivalence/Formulation 1/Proof 1} +Tags: Rule of Material Equivalence + +\begin{theorem} +:$p \iff q \dashv \vdash \left({p \implies q}\right) \land \left({q \implies p}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \iff q \vdash \left({p \implies q}\right) \land \left({q \implies p}\right)}} +{{Premise|1|p \iff q}} +{{BiconditionalElimination|2|1|p \implies q|1|1}} +{{BiconditionalElimination|3|1|q \implies p|1|2}} +{{Conjunction|4|1|\left({p \implies q}\right) \land \left({q \implies p}\right)|2|3}} +{{EndTableau}} +{{BeginTableau|\left({p \implies q}\right) \land \left({q \implies p}\right) \vdash p \iff q}} +{{Premise|1|\left({p \implies q}\right) \land \left({q \implies p}\right)}} +{{Simplification|2|1|p \implies q|1|1}} +{{Simplification|3|1|q \implies p|1|2}} +{{BiconditionalIntro|4|1|p \iff q|2|3}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Rule of Material Equivalence/Formulation 1/Proof 2} +Tags: Rule of Material Equivalence + +\begin{theorem} +:$p \iff q \dashv \vdash \left({p \implies q}\right) \land \left({q \implies p}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connectives]] match for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccc|ccccccc|} \hline +p & \iff & q & (p & \implies & q) & \land & (q & \implies & p) \\ +\hline +F & T & F & F & T & F & T & F & T & F \\ +F & F & T & F & T & T & F & T & F & F \\ +T & F & F & T & F & F & F & F & T & T \\ +T & T & T & T & T & T & T & T & T & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Rule of Material Equivalence/Formulation 2/Proof 1} +Tags: Rule of Material Equivalence + +\begin{theorem} +:$\vdash \left({p \iff q}\right) \iff \left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({p \iff q}\right) \iff \left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)}} +{{Assumption|1|p \iff q}} +{{SequentIntro|2|1|\left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)|1|[[Rule of Material Equivalence/Formulation 1|Rule of Material Equivalence: Formulation 1]]}} +{{Implication|3||\left({p \iff q}\right) \implies \left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)|1|2}} +{{Assumption|4|\left({p \implies q}\right) \land \left({q \implies p}\right)}} +{{SequentIntro|5|4|p \iff q|4|[[Rule of Material Equivalence/Formulation 1|Rule of Material Equivalence: Formulation 1]]}} +{{Implication|6||\left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right) \implies \left({p \iff q}\right)|4|5}} +{{BiconditionalIntro|7||\left({p \iff q}\right) \iff \left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)|3|6}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Rule of Material Equivalence/Formulation 2/Proof 2} +Tags: Rule of Material Equivalence, Truth Table Proofs + +\begin{theorem} +:$\vdash \left({p \iff q}\right) \iff \left({\left({p \implies q}\right) \land \left({q \implies p}\right)}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] are [[Definition:True|true]] for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccc|c|ccccccc|} \hline +(p & \iff & q) & \iff & (p & \implies & q) & \land & (q & \implies & p) \\ +\hline +F & T & F & T & F & T & F & T & F & T & F \\ +F & F & T & T & F & T & T & F & T & F & F \\ +T & F & F & T & T & F & F & F & F & T & T \\ +T & T & T & T & T & T & T & T & T & T & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{De Morgan's Laws (Logic)/Conjunction/Formulation 2/Proof 2} +Tags: De Morgan's Laws (Logic), Truth Table Proofs + +\begin{theorem} +: $\vdash \left({p \land q}\right) \iff \left({\neg \left({\neg p \lor \neg q}\right)}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] are [[Definition:True|true]] for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccc|c|cccccc|} \hline +(p & \land & q) & \iff & (\neg & (\neg & p & \lor & \neg & q)) \\ +\hline +F & F & F & T & F & T & F & T & T & F \\ +F & F & T & T & F & T & F & T & F & T \\ +T & F & F & T & F & F & T & T & T & F \\ +T & T & T & T & T & F & T & F & F & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Modus Tollendo Ponens/Variant/Formulation 2/Proof 2} +Tags: Modus Tollendo Ponens, Truth Table Proofs + +\begin{theorem} +: $\vdash \left({p \lor q}\right) \iff \left({\neg p \implies q}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] are [[Definition:True|true]] for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccc|c|cccc|} \hline +p & \lor & q & \iff & \neg & p & \implies & q \\ +\hline +F & F & F & T & T & F & F & F \\ +F & T & T & T & T & F & T & T \\ +T & T & F & T & F & T & T & F \\ +T & T & T & T & F & T & T & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Rule of Transposition/Formulation 2/Proof 2} +Tags: Rule of Transposition, Truth Table Proofs + +\begin{theorem} +: $\vdash \left({p \implies q}\right) \iff \left({\neg q \implies \neg p}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]] to the proposition. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connectives]] match for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccc|c|ccccc|} \hline +p & \implies & q) & \iff & (\neg & q & \implies & \neg & p) \\ +\hline +F & T & F & T & T & F & T & T & F \\ +F & T & T & T & F & T & T & T & F \\ +T & F & F & T & T & F & F & F & T \\ +T & T & T & T & F & T & T & F & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Biconditional as Disjunction of Conjunctions/Formulation 2/Proof 2} +Tags: Biconditional as Disjunction of Conjunctions, Truth Table Proofs + +\begin{theorem} +: $\vdash \left({p \iff q}\right) \iff \left({\left({p \land q}\right) \lor \left({\neg p \land \neg q}\right)}\right)$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, in all cases the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] is [[Definition:True|true]] for all [[Definition:Boolean Interpretation|boolean interpretations]]. +$\begin{array}{|ccc|c|ccccccccc|} \hline +(p & \iff & q) & \iff & ((p & \land & q) & \lor & (\neg & p & \land & \neg & q)) \\ +\hline +F & T & F & T & F & F & F & T & T & F & T & T & F \\ +F & F & T & T & F & F & T & F & T & F & F & F & T \\ +T & F & F & T & T & F & F & F & F & T & F & T & F \\ +T & T & T & T & T & T & T & T & F & T & F & F & T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Convex Set Characterization (Order Theory)} +Tags: Convex Sets + +\begin{theorem} +Let $\left({S, \preceq, \tau}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $C \subseteq S$. +{{TFAE}} +{{begin-axiom}} +{{axiom | n = 1 + | t = $C$ is [[Definition:Convex Set (Order Theory)|convex]]. +}} +{{axiom | n = 2 + | t = $C$ is the intersection of an [[Definition:Upper Set|upper set]] with a [[Definition:Lower Set|lower set]]. +}} +{{axiom | n = 3 + | t = $C$ is the intersection of its upper closure with its lower closure. +}} +{{end-axiom}} +\end{theorem} + +\begin{proof} +=== $(2)$ implies $(1)$ === +Follows from [[Upper Set is Convex]], [[Lower Set is Convex]], and [[Intersection of Convex Sets is Convex Set (Order Theory)]]. +{{qed|lemma}} +=== $(1)$ implies $(3)$ === +{{MissingLinks}} +Let $C$ be a convex set in $S$. +Let $U$ and $L$ be the upper and lower closures of $C$, respectively. +Since $C \subseteq U$ and $C \subseteq L$: +:$C \subseteq U \cap L$. +Let $p \in U \cap L$. +Then $a \preceq p \preceq b$ for some $a, b \in C$. +Since $C$ is convex, $p \in C$. +Since this holds for all $p \in U \cap L$: +:$U \cap L \subseteq C$. +Since we know that $C \subseteq U \cap L$, $C = U \cap L$. +{{qed|lemma}} +=== $(3)$ implies $(2)$ === +Follows from [[Upper Closure is Upper Set]] and [[Lower Closure is Lower Set]]. +{{qed}} +[[Category:Convex Sets]] +2rudyxkfvqqz8vkpr8bjamysr5o11lu +\end{proof}<|endoftext|> +\section{Constructive Dilemma/Formulation 3} +Tags: Constructive Dilemma + +\begin{theorem} +:$\paren {p \implies q} \land \paren {r \implies s}, p \lor r \vdash q \lor s$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\paren {p \implies q} \land \paren {r \implies s}, p \lor r \vdash q \lor s}} +{{Premise|1|\paren {p \implies q} \land \paren {r \implies s} }} +{{Premise|2|p \lor r}} +{{Conjunction|3|1, 2|\paren {p \lor r} \land \paren {p \implies q} \land \paren {r \implies s}|2|1|[[Conjunction is Associative|Associativity is implicit]]}} +{{TheoremIntro|4|\paren {\paren {p \lor r} \land \paren {p \implies q} \land \paren {r \implies s} } \implies \paren {q \lor s}|[[Constructive Dilemma/Formulation 2|Constructive Dilemma: Formulation 2]]}} +{{ModusPonens|5|1, 2|q \lor s|4|3}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Upper Closure is Upper Set} +Tags: Upper Sets, Upper Closures + +\begin{theorem} +Let $(S, \preceq, \tau)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T$ be a [[Definition:subset|subset]] of $S$. +Let $U$ be the [[Definition:Upper Closure|upper closure]] of $T$. +Then $U$ is an [[Definition:Upper Set|upper set]]. +\end{theorem} + +\begin{proof} +Let $a \in U$. +Let $b \in S$ with $a \preceq b$. +By the definition of [[Definition:Upper Closure|upper closure]], there is a $t \in T$ such that $t \preceq a$. +By [[Definition:Transitive Relation|transitivity]], $t \preceq b$. +Thus, agin by the definition of upper closure, $b \in U$. +Since this holds for all such $a$ and $b$, $U$ is an [[Definition:Upper Set|upper set]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Destructive Dilemma/Formulation 1/Proof 3} +Tags: Destructive Dilemma + +\begin{theorem} +:$p \implies q, r \implies s \vdash \neg q \lor \neg s \implies \neg p \lor \neg r$ +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]] to the proposition. +As can be seen for all [[Definition:Boolean Interpretation|boolean interpretations]] by inspection, where the [[Definition:Truth Value|truth value]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] on the {{LHS}} is $T$, that under the one on the {{RHS}} is also $T$: +: $\begin{array}{|ccccccc||ccccccccccc|} \hline +(p & \implies & q) & \land & (r & \implies & s) & (\neg & q & \lor & \neg & s) & \implies & (\neg & p & \lor & \neg & r) \\ +\hline +F & T & F & T & F & T & F & T & F & T & T & F & T & T & F & T & T & F \\ +F & T & F & T & F & T & T & T & F & T & F & T & T & T & F & T & T & F \\ +F & T & F & F & T & F & F & T & F & T & T & F & T & T & F & T & F & T \\ +F & T & F & T & T & T & T & T & F & T & F & T & T & T & F & T & F & T \\ +F & T & T & T & F & T & F & F & T & T & T & F & T & T & F & T & T & F \\ +F & T & T & T & F & T & T & F & T & F & F & T & T & T & F & T & T & F \\ +F & T & T & F & T & F & F & F & T & T & T & F & T & T & F & T & F & T \\ +F & T & T & T & T & T & T & F & T & F & F & T & T & T & F & T & F & T \\ +T & F & F & F & F & T & F & T & F & T & T & F & T & F & T & T & T & F \\ +T & F & F & F & F & T & T & T & F & T & F & T & T & F & T & T & T & F \\ +T & F & F & F & T & F & F & T & F & T & T & F & F & F & T & F & F & T \\ +T & F & F & F & T & T & T & T & F & T & F & T & F & F & T & F & F & T \\ +T & T & T & T & F & T & F & F & T & T & T & F & T & F & T & T & T & F \\ +T & T & T & T & F & T & T & F & T & F & F & T & T & F & T & T & T & F \\ +T & T & T & F & T & F & F & F & T & T & T & F & F & F & T & F & F & T \\ +T & T & T & T & T & T & T & F & T & F & F & T & T & F & T & F & F & T \\ +\hline +\end{array}$ +Hence the result. +{{qed}} +Note that the two [[Definition:Propositional Formula|formulas]] are not [[Definition:Logical Equivalence|equivalent]], as the relevant columns do not match exactly. +\end{proof}<|endoftext|> +\section{Destructive Dilemma/Formulation 2} +Tags: Destructive Dilemma + +\begin{theorem} +:$\paren {p \implies q} \land \paren {r \implies s}, \neg q \lor \neg s \vdash \neg p \lor \neg r$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\paren {p \implies q} \land \paren {r \implies s}, \neg q \lor \neg s \vdash \neg p \lor \neg r}} +{{Premise|1|\paren {p \implies q} \land \paren {r \implies s} }} +{{Premise|2|\neg q \lor \neg s}} +{{Simplification|3|1|p \implies q|1|1}} +{{Simplification|4|1|r \implies s|1|2}} +{{Assumption|5|\neg q}} +{{ModusTollens|6|1, 5|\neg p|3|5}} +{{Addition|7|1, 5|\neg p \lor \neg r|6|1}} +{{Assumption|8|\neg s}} +{{ModusTollens|9|1, 8|\neg r|4|8}} +{{Addition|10|1, 8|\neg p \lor \neg r|9|2}} +{{ProofByCases|11|1, 2|\neg p \lor \neg r|2|5|7|8|10}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Open Ray is Open in GO-Space/Definition 1} +Tags: Generalized Ordered Spaces + +\begin{theorem} +Let $\struct {S, \preceq, \tau}$ be a [[Definition:Generalized Ordered Space|generalized ordered space]]. +Let $p \in S$. +Then: +:$p^\prec$ and $p^\succ$ are [[Definition:Open Set (Topology)|$\tau$-open]] +where: +:$p^\prec$ is the [[Definition:Strict Lower Closure of Element|strict lower closure]] of $p$ +:$p^\succ$ is the [[Definition:Strict Upper Closure of Element|strict upper closure]] of $p$. +\end{theorem} + +\begin{proof} +We will prove that $U = p^\succ$ is [[Definition:Open Set (Topology)|$\tau$-open]]. +That $p^\prec$ is [[Definition:Open Set (Topology)|$\tau$-open]] will follow by duality. +Let $u \in U$. +Since $p \notin U$, $p \ne u$. +By the definition of GO-space, $\tau$ is Hausdorff, and therefore $T_1$. +Thus by the definition of GO-space, there is an open, convex set $M$ such that $u \in M$ and $p \notin M$. +Next we will show that $M \subseteq U$: +Let $x \in S \setminus U$. +Then $x \preceq p \preceq u$. +Suppose for the sake of contradiction that $x \in M$. +Since $x, u \in M$, $p \in M$ because $M$ is convex, contradicting the choice of $M$. +Thus $x \notin M$. +Since this hold for all $x \in S \setminus U$, $M \subseteq U$. +Thus $U$ contains a neighborhood of each of its points, so it is open. +{{qed}} +\end{proof}<|endoftext|> +\section{Upper and Lower Closures of Open Set in GO-Space are Open} +Tags: Topology, Total Orderings + +\begin{theorem} +Let $\left({X, \preceq, \tau}\right)$ be a [[Definition:Generalized Ordered Space/Definition 1|Generalized Ordered Space/Definition 1]]. +Let $A$ be open in $X$. +Then the upper and lower closures of $A$ are open. +\end{theorem} + +\begin{proof} +We will show that the upper closure $U$ of $A$ is open. +The lower closure can be proven open by the same method. +By the definition of upper closure: +:$U = \left\{ {u \in X: \exists a \in A: a \preceq u}\right\}$ +But then: +{{begin-eqn}} +{{eqn | l = U + | r = \left\{ {u \in X: \left({u \in A}\right) \lor \left({\exists a \in A: a \prec u}\right) }\right\} +}} +{{eqn | r = A \cup \bigcup \left\{ {a^\succeq: a \in A }\right\} +}} +{{end-eqn}} +where $a^\preceq$ denotes the [[Definition:Upper Closure of Element|upper closure]] of $a$. +By [[Open Ray is Open in GO-Space/Definition 1]], each $a^\succeq$ is open. +Thus $U$ is a union of open sets. +Thus $U$ is open by the definition of a topology. +{{qed}} +[[Category:Topology]] +[[Category:Total Orderings]] +39ofm2hzen1z5lbb1anoktvpftjwa7g +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Generalized Ordered Space/Definition 1 implies Definition 3} +Tags: Equivalence of Definitions of Generalized Ordered Space + +\begin{theorem} +Let $\struct {S, \preceq, \tau}$ be a [[Definition:Generalized Ordered Space/Definition 1|generalized ordered space by Definition 1]]: +{{:Definition:Generalized Ordered Space/Definition 1}} +Then $\struct {S, \preceq, \tau}$ is a [[Definition:Generalized Ordered Space/Definition 3|generalized ordered space by Definition 3]]: +{{:Definition:Generalized Ordered Space/Definition 3}} +\end{theorem} + +\begin{proof} +
+Let $\BB$ be a [[Definition:Basis (Topology)|basis]] for $\tau$ consisting of [[Definition:Convex Set (Order Theory)|convex sets]]. +Let: +:$\SS = \set {U^\succeq: U \in \BB} \cup \set {U^\preceq: U \in \BB}$ +where $U^\succeq$ and $U^\preceq$ denote the [[Definition:Upper Closure|upper closure]] and [[Definition:Lower Closure|lower closure]] respectively of $U$. +By [[Upper Closure is Upper Set]] and [[Lower Closure is Lower Set]], the [[Definition:Element|elements]] of $\SS$ are [[Definition:Upper Set|upper]] and [[Definition:Lower Set|lower sets]]. +It is to be shown that $\SS$ is a [[Definition:Sub-Basis|sub-basis]] for $\tau$. +By [[Upper and Lower Closures of Open Set in GO-Space are Open]]: +:$\SS \subseteq \tau$ +By [[Convex Set Characterization (Order Theory)]], each [[Definition:Element|element]] of $\BB$ is the [[Definition:Set Intersection|intersection]] of its [[Definition:Upper Closure|upper closure]] with its [[Definition:Lower Closure|lower closure]]. +Thus each [[Definition:Element|element]] of $\BB$ is generated by $\SS$. +{{Disambiguate|Definition:Generated}} +Thus $\SS$ is a [[Definition:Sub-Basis|sub-basis]] for $\tau$. +{{qed}} +
+[[Category:Equivalence of Definitions of Generalized Ordered Space]] +bctoewd1tp2ms06qszp7bg85bfvzjyv +\end{proof}<|endoftext|> +\section{Upper Set is Convex} +Tags: Upper Sets, Convex Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T \subseteq S$ be an [[Definition:Upper Set|upper set]]. +Then $T$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +\end{theorem} + +\begin{proof} +Let $a, c \in T$. +Let $b \in S$. +Let $a \preceq b \preceq c$. +Since: +:$a \in T$ +:$a \preceq b$ +:$T$ is an [[Definition:Upper Set|upper set]] +it follows that: +:$b \in T$ +This holds for all such $a$, $b$, and $c$. +Therefore, by definition, $T$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +{{qed}} +\end{proof}<|endoftext|> +\section{Lower Set is Convex} +Tags: Lower Sets, Convex Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T \subseteq S$ be a [[Definition:Lower Set|lower set]]. +Then $T$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +\end{theorem} + +\begin{proof} +Let $a, c \in T$. +Let $b \in S$. +Let $a \preceq b \preceq c$. +Since: +:$c \in T$ +:$b \preceq c$ +:$T$ is a [[Definition:Lower Set|lower set]] +it follows that: +:$b \in T$ +This holds for all such $a$, $b$, and $c$. +Hence, by definition, $T$ is [[Definition:Convex Set (Order Theory)|convex]] in $S$. +{{qed}} +\end{proof}<|endoftext|> +\section{GO-Space Embeds Densely into Linearly Ordered Space} +Tags: Generalized Ordered Spaces, Linearly Ordered Spaces + +\begin{theorem} +Let $\left({Y, \preceq, \tau}\right)$ be a [[Definition:Generalized Ordered Space/Definition 3|generalized ordered space (GO-space) by Definition 3]]. +That is: +: let $\left({Y, \tau}\right)$ be a [[Definition:Hausdorff Space|Hausdorff space]] +and: +: let $\tau$ have a [[Definition:Sub-Basis|sub-basis]] consisting of [[Definition:Upper Set|upper sets]] and [[Definition:Lower Set|lower sets]] relative to $\preceq$. +Then $\left({Y, \preceq, \tau}\right)$ is a [[Definition:Generalized Ordered Space/Definition 2|GO-space by Definition 2]]. +That is, there is a [[Definition:Linearly Ordered Space|linearly ordered space]] $\left({X, \preceq', \tau'}\right)$ and a [[Definition:Mapping|mapping]] from $Y$ to $X$ which is a [[Definition:Order Embedding|order embedding]] and a [[Definition:Topological Embedding|topological embedding]]. +\end{theorem} + +\begin{proof} +
+Let $X$ be the disjoint union of $Y$ with the set of all lower sets $L$ in $Y$ such that $L$ and $Y \setminus L$ are open and nonempty and either: +:$L$ has a maximum, and $Y\setminus L$ does not have a minimum, or +:$Y \setminus L$ has a minimum, and $L$ does not have a maximum. +Let $\phi:Y \to X$ be the inclusion mapping. +In the following, let $y$, $y_1$, $y_2$, and $y_3$ represent elements of $Y$, and let $L$, $L_1$, $L_2$, and $L_3$ represent lower sets of $Y$ that are members of $X$. +Define a relation $\preceq'$ extending $\preceq$ by letting: +:$y_1 \preceq' y_2 \iff y_1 \preceq y_2$ +:$y \preceq' L \iff y \in L$ +:$L_1 \preceq' L_2 \iff L_1 \subseteq L_2$ +:$L \preceq' y \iff y \in Y \setminus L$ +By [[Union of Total Ordering with Lower Sets is Total Ordering]] and [[Restriction of Total Ordering is Total Ordering]], $\preceq'$ is a [[Definition:Total Ordering|total ordering]]. +Because $y_1 \preceq' y_2$ iff $y_1 \preceq y_2$, $\phi$ is an [[Definition:Order Embedding|order embedding]]. +Let $\tau'$ be the $\preceq'$ [[Definition:Order Topology|order topology]] on $X$. +=== $\phi$ is a topological embedding of $\left({Y, \tau}\right)$ into $\left({X, \tau'}\right)$ === +Let $L^\succeq$ and $L^\succ$ represent the [[Definition:Upper Closure of Subset|upper closure]] and [[Definition:Strict Upper Closure of Subset|strict upper closure]] of $L$ with respect to $\preceq$. +Let $L^{\succeq'}$ and $L^{\succ'}$ represent the [[Definition:Upper Closure of Subset|upper closure]] and [[Definition:Strict Upper Closure of Subset|strict upper closure]] with respect to $\preceq'$. +Let $L^\preceq$ and $L^\prec$ represent the [[Definition:Lower Closure of Subset|lower closure]] and [[Definition:Strict Lower Closure of Subset|strict lower closure]] of $L$ with respect to $\preceq$. +Let $L^{\preceq'}$ and $L^{\prec'}$ represent the [[Definition:Lower Closure of Subset|lower closure]] and [[Definition:Strict Lower Closure of Subset|strict lower closure]] with respect to $\preceq'$. +Open rays from elements of $Y$ are $\tau$-open by [[Open Ray is Open in GO-Space]]. +$L^{\preceq'} \cap Y = L$, which is open. +$L^{\succeq'} \cap Y = Y \setminus L$, which is open. +Thus the subspace topology is coarser than $\tau$. +Let $U$ be an open upper set in $Y$ with $\varnothing \subsetneqq U \subsetneqq Y$. +Let $U$ have no minimum. +Then by [[Upper Set with no Smallest Element is Open in GO-Space]], $U$ is open in the [[Definition:Subspace Topology|subspace topology]]. +Let $Y \setminus U$ has a maximum $p$. +Then $U = p^\succ = Y \cap p^{\succ'}$, which is open in the [[Definition:Subspace Topology|subspace topology]]. +Otherwise, by [[Lower Set with no Greatest Element is Open in GO-Space]], $Y \setminus U$ is open. +Therefore $Y \setminus U \in X$. +Then: +:$U = Y \cap \left({Y \setminus U}\right)^{\succ'}$ +A similar argument works for open lower sets. +Thus it follows that the [[Definition:Subspace Topology|subspace topology]] is finer than $\tau$. +Thus they are equal by definition of [[Definition:Set Equality/Definition 2|set equality]]. +{{qed|lemma}} +=== $Y$ is dense in $X$ === +Let $L \in X \setminus Y$. +By the definition of $X$, $L$ and $Y \setminus L$ are non-empty. +So: +: $L$ is $\preceq'$-preceded by at least one element of $Y$ +: $L$ is $\preceq'$-succeeded by at least one element of $Y$. +Thus every open ray in $X$ containing $L$ contains an element of $Y$. +Let $x_1, x_2 \in X$ such that $x_1 \prec' L \prec' x_2$. +By the definition of $X$, either: +:$L$ has a $\preceq$-greatest element and $Y \setminus L$ has no $\preceq$-smallest element +or: +:$L$ has no $\preceq$-greatest element and $Y \setminus L$ has a $\preceq$-smallest element. +Suppose that $L$ has a $\preceq$-greatest element and $Y \setminus L$ has no $\preceq$-smallest element. +Let $x_2 \in Y$. +Then $x_2 \in Y \setminus L$. +Since $Y \setminus L$ has no $\preceq$-smallest element, there is an element $q\in Y \setminus L$ such that $q \prec x_2$. +Then $x_1 \prec L \prec' q \prec' x_2$. +Therefore: +:$q \in Y \cap \left({x_1 \,.\,.\, x_2}\right)$ +On the other hand, let $x_2 \notin Y$. +Then $L \subsetneqq x_2$. +Then there is some $q \in x_2 \setminus L$. +Therefore: +:$x_1 \prec' L \prec' q \prec' x_2$ +In particular: +:$q \in Y \cap \left({x_1 \,.\,.\, x_2}\right)$ +If on the other hand we had supposed that $L$ has no $\preceq$-greatest element and $Y \setminus L$ has a $\preceq$-smallest element, we could obtain similar results, with $x_1$ taking on the role we have given $x_2$. +Thus in any case, $L$ is an adherent point of $Y$. +Since every element of $X \setminus Y$ is an adherent point of $Y$, $Y$ is dense in $X$. +Thus the inclusion map from $Y$ to $X$ is a [[Definition:Topological Embedding|topological embedding]] and an [[Definition:Order Embedding|order embedding]] of $\left({Y, \preceq, \tau}\right)$ as a dense subspace of $\left({X, \preceq', \tau'}\right)$. +{{qed}} +
+[[Category:Generalized Ordered Spaces]] +[[Category:Linearly Ordered Spaces]] +hn4l61n82lai0amm0ngzstkocscdrn5 +\end{proof}<|endoftext|> +\section{Upper Set with no Minimal Element} +Tags: Upper Sets + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $U \subseteq S$. +Then: +:$U$ is an [[Definition:Upper Set|upper set]] in $S$ with no [[Definition:Minimal Element|minimal element]] +{{iff}}: +:$\displaystyle U = \bigcup \set {u^\succ: u \in U}$ +where $u^\succ$ is the [[Definition:Strict Upper Closure|strict upper closure]] of $u$. +\end{theorem} + +\begin{proof} +=== Forward implication === +Let $U$ be an [[Definition:Upper Set|upper set]] in $S$ with no [[Definition:Minimal Element|minimal element]]. +Then by the definition of [[Definition:Upper Set|upper set]]: +:$\displaystyle \bigcup \set {u^\succ: u \in U} \subseteq U$ +Let $x \in U$. +Since $U$ has no [[Definition:Minimal Element|minimal element]], $x$ is not [[Definition:Minimal Element|minimal]]. +Thus there is a $u \in U$ such that $u \prec x$. +Then $x \in u^\succ$, so: +:$\displaystyle x \in \bigcup \set {u^\succ: u \in U }$ +Since this holds for all $x \in U$: +:$\displaystyle U \subseteq \bigcup \set {u^\succ: u \in U}$ +Thus the theorem holds by definition of [[Definition:Set Equality/Definition 2|set equality]]. +{{qed|lemma}} +=== Reverse implication === +Let: +: $\displaystyle U = \bigcup \set {u^\succ: u \in U}$ +Then: +:$\forall u \in U: u^\succ \subseteq U$ +so $U$ is an [[Definition:Upper Set|upper set]]. +Furthermore: +:$\forall x \in U: \exists u \in U: x \in u^\succ$ +But then: +:$u \prec x$ +so $x$ is not [[Definition:Minimal Element|minimal]]. +Since this holds for all $x \in U$, $U$ has no [[Definition:Minimal Element|minimal element]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Lower Sets in Totally Ordered Set form Nest} +Tags: Lower Sets, Total Orderings, Nests + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $\mathcal L$ be a [[Definition:set|set]] of [[Definition:Lower Set|lower sets]] in $S$. +Then $\mathcal L$ is a [[Definition:Nest|nest]]. +That is, $\mathcal L$ is [[Definition:Totally Ordered Set|totally ordered]] by $\subseteq$. +\end{theorem} + +\begin{proof} +Let $L, M \in \mathcal L$. +Suppose that $M \not\subseteq L$. +Then for some $x \in M$: $x \notin L$. +Let $y \in L$. +Then since $\preceq$ is a [[Definition:Total Ordering|total ordering]], $x \preceq y$ or $y \preceq x$. +If $x \preceq y$, then since $L$ is a [[Definition:Lower Set|lower set]]: $x \in L$, a contradiction. +Thus $y \preceq x$. +Since $M$ is a lower set, $y \in M$. +Since this holds for all $y \in L$, $L \subseteq M$. +Hence, for all $L, M \in \mathcal L$: +:$M \subseteq L$ or $L \subseteq M$ +That is, $\mathcal L$ is a [[Definition:Nest|nest]]. +{{qed}} +[[Category:Lower Sets]] +[[Category:Total Orderings]] +[[Category:Nests]] +sxailfjx37zyldndgzq5xmy6y0j176n +\end{proof}<|endoftext|> +\section{Exclusive Or is Self-Inverse} +Tags: Exclusive Or + +\begin{theorem} +:$\paren {p \oplus q} \oplus q \dashv \vdash p$ +where $\oplus$ denotes the [[Definition:Exclusive Or|exclusive or operator]]. +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] on the {{LHS}} match those for $p$ on the {{RHS}} for all [[Definition:Boolean Interpretation|boolean interpretations]]: +$\begin{array}{|ccccc||c|} \hline +(p & \oplus & q) & \oplus & q & p \\ +\hline +\F & \F & \F & \F & \F & \F \\ +\F & \T & \T & \F & \T & \F \\ +\T & \T & \F & \T & \F & \T \\ +\T & \F & \T & \T & \T & \T \\ +\hline +\end{array}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Conjunction has no Inverse} +Tags: Conjunction + +\begin{theorem} +Let $\land$ denote the [[Definition:Conjunction|conjunction operation]] of [[Definition:Propositional Logic|propositional logic]]. +Then there exists no [[Definition:Binary Logical Connective|binary logical connective]] $\circ$ such that: +:$(1): \quad \forall p, q \in \left\{{T, F}\right\}: \left({p \land q}\right) \circ q = p$ +\end{theorem} + +\begin{proof} +This will be [[Proof by Contradiction|proven by contradiction]]. +Let such an operation $\circ$ exist. +Let $f^\circ: \mathbb B^2 \to \mathbb B$ be the associated [[Definition:Truth Function|truth function]]. +Suppose now that $q = F$, while $p$ remains unspecified. +Then: +:$p \land q = f^\land \left({p, F}\right) = F$ +where $f^\land$ is the [[Definition:Truth Function|truth function]] of [[Definition:Conjunction|conjunction]]. +It does not matter what $p$ is, for: +:$f^\land \left({T, F}\right) = f^\land \left({F, F}\right) = F$ +Hence, for $\left({p \land q}\right) \circ q = p$ to hold, $f^\circ$ must satisfy: +:$f^\circ \left({F, F}\right) = p$ +However, because $p$ could still be either $T$ or $F$, this identity cannot always hold. +Therefore, $\circ$ cannot exist. +{{qed}} +[[Category:Conjunction]] +iz8xrrjo16at5wz9wiqbjhnuzh6k4nl +\end{proof}<|endoftext|> +\section{Disjunction has no Inverse} +Tags: Disjunction + +\begin{theorem} +Let $\lor$ denote the [[Definition:Disjunction|disjunction operation]] of [[Definition:Propositional Logic|propositional logic]]. +Then there exists no [[Definition:Binary Logical Connective|binary logical connective]] $\circ$ such that: +:$(1): \quad \forall p, q \in \left\{{T, F}\right\}: \left({p \lor q}\right) \circ q = p$ +\end{theorem} + +\begin{proof} +Let $q$ be [[Definition:True|true]]. +Then $p \lor q = T$, whatever [[Definition:Truth Value|truth value]] $p$ holds. +Either $T \circ T = T$ or $T \circ T = F$, but not both. +So if $q = T$ either: +:$\left({p \land q}\right) \circ q = T$ +or: +:$\left({p \land q}\right) \circ q = F$ +If the first, then $(1)$ does not hold when $p = F$. +If the second, then $(1)$ does not hold when $p = T$. +Hence there can be no such $\circ$. +{{qed}} +{{improve|I'm not proud of this - it needs to be couched in more rigorous language. Also possible to prove it by truth table.}} +[[Category:Disjunction]] +dnjqp2uu46fx7uxt68yrblp9sbhwmor +\end{proof}<|endoftext|> +\section{Binary Logical Connectives with Inverse} +Tags: Exclusive Or, Biconditional, Propositional Logic + +\begin{theorem} +Let $\circ$ be a [[Definition:Binary Logical Connective|binary logical connective]]. +Then there exists another [[Definition:Binary Logical Connective|binary logical connective]] $*$ such that: +:$\forall p, q \in \set {\F, \T}: \paren {p \circ q} * q \dashv \vdash p \dashv \vdash q * \paren {p \circ q}$ +{{iff}} $\circ$ is either: +:$(1): \quad$ the [[Definition:Exclusive Or|exclusive or operator]] +or: +:$(2): \quad$ the [[Definition:Biconditional|biconditional operator]]. +That is, the only [[Definition:Truth Function|truth functions]] that have an [[Definition:Inverse Operation|inverse operation]] are the [[Definition:Exclusive Or|exclusive or]] and the [[Definition:Biconditional|biconditional]]. +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $\circ$ be a [[Definition:Binary Logical Connective|binary logical connective]] such that there exists $*$ such that: +:$\paren {p \circ q} * q \dashv \vdash p$ +That is, by definition (and minor abuse of notation): +:$\forall p, q \in \set {\F, \T}: \paren {p \circ q} * q = p$ +For reference purposes, let us list from [[Binary Truth Functions]] the complete truth table containing all of the [[Definition:Binary Logical Connective|binary logical connectives]]: +$\begin{array}{|r|cccc|} \hline +p & \T & \T & \F & \F \\ +q & \T & \F & \T & \F \\ +\hline +\map {f_\T} {p, q} & \T & \T & \T & \T \\ +p \lor q & \T & \T & \T & \F \\ +p \impliedby q & \T & \T & \F & \T \\ +\map {\pr_1} {p, q} & \T & \T & \F & \F \\ +p \implies q & \T & \F & \T & \T \\ +\map {\pr_2} {p, q} & \T & \F & \T & \F \\ +p \iff q & \T & \F & \F & \T \\ +p \land q & \T & \F & \F & \F \\ +p \uparrow q & \F & \T & \T & \T \\ +\map \neg {p \iff q} & \F & \T & \T & \F \\ +\map {\overline {\pr_2} } {p, q} & \F & \T & \F & \T \\ +\map \neg {p \implies q} & \F & \T & \F & \F \\ +\map {\overline {\pr_1} } {p, q} & \F & \F & \T & \T \\ +\map \neg {p \impliedby q} & \F & \F & \T & \F \\ +p \downarrow q & \F & \F & \F & \T \\ +\map {f_\F} {p, q} & \F & \F & \F & \F \\ +\hline +\end{array}$ +Suppose that for some $q \in \set {\F, \T}$: +:$\paren {p \circ q}_{p = \F} = \paren {p \circ q}_{p = \T}$ +Then: +:$\paren {\paren {p \circ q} * q}_{p = \F} = \paren {\paren {p \circ q} * q}_{p = \T}$ +and so either: +:$\paren {\paren {p \circ q} * q}_{p = \F} \ne p$ +or: +:$\paren {\paren {p \circ q} * q}_{p = \T} \ne p$ +Thus for $\circ$ to have an [[Definition:Inverse Operation|inverse operation]] it is necessary for $\F \circ q \ne \T \circ q$. +This eliminates: +{{begin-eqn}} +{{eqn | o = + | r = \map {f_\T} {p, q} + | c = as $p \circ q = \T$ for all values of $p$ and $q$ +}} +{{eqn | o = + | r = p \lor q + | c = as $p \circ q = \T$ for $q = \T$ +}} +{{eqn | o = + | r = p \impliedby q + | c = as $p \circ q = \T$ for $q = \F$ +}} +{{eqn | o = + | r = p \implies q + | c = as $p \circ q = \T$ for $q = \T$ +}} +{{eqn | o = + | r = \map {\pr_2} {p, q} + | c = as $p \circ q = \T$ for $q = \T$ and also $p \circ q = \F$ for $q = \F$ +}} +{{eqn | o = + | r = p \land q + | c = as $p \circ q = \F$ for $q = \F$ +}} +{{eqn | o = + | r = p \uparrow q + | c = as $p \circ q = \T$ for $q = \F$ +}} +{{eqn | o = + | r = \map {\overline {\pr_2} } {p, q} + | c = as $p \circ q = \T$ for $q = \F$ and also $p \circ q = \F$ for $q = \T$ +}} +{{eqn | o = + | r = \map \neg {p \implies q} + | c = as $p \circ q = \F$ for $q = \T$ +}} +{{eqn | o = + | r = \map \neg {p \impliedby q} + | c = as $p \circ q = \F$ for $q = \F$ +}} +{{eqn | o = + | r = p \downarrow q + | c = as $p \circ q = \F$ for $q = \T$ +}} +{{eqn | o = + | r = \map {f_\F} {p, q} + | c = as $p \circ q = \T$ for all values of $p$ and $q$ +}} +{{end-eqn}} +The remaining [[Definition:Binary Logical Connective|connectives]] which may have [[Definition:Inverse Operation|inverses]] are: +$\begin{array}{|r|cccc|} \hline +p & \T & \T & \F & \F \\ +q & \T & \F & \T & \F \\ +\hline +\map {\pr_1} {p, q} & \T & \T & \F & \F \\ +p \iff q & \T & \F & \F & \T \\ +\map \neg {p \iff q} & \F & \T & \T & \F \\ +\map {\overline {\pr_1} } {p, q} & \F & \F & \T & \T \\ +\hline +\end{array}$ +Suppose that for some $p \in \set {\F, \T}$: +:$\paren {p \circ q}_{q = \F} = \paren {p \circ q}_{q = \T}$ +Then: +:$\paren {q * \paren {p \circ q} }_{q = \F} = \paren {q * \paren {p \circ q} }_{q = \T}$ +and so either: +:$\paren {q * \paren {p \circ q} }_{q = \F} \ne p$ +or: +:$\paren {q * \paren {p \circ q} }_{q = \T} \ne p$ +This eliminates: +{{begin-eqn}} +{{eqn | o = + | r = \map {\pr_1} {p, q} + | c = as $p \circ q = \T$ for $p = \T$ and also $p \circ q = \F$ for $p = \F$ +}} +{{eqn | o = + | r = \map {\overline {\pr_1} } {p, q} + | c = as $p \circ q = \T$ for $p = \F$ and also $p \circ q = \F$ for $p = \T$ +}} +{{end-eqn}} +We are left with [[Definition:Exclusive Or|exclusive or]] and the [[Definition:Biconditional|biconditional]]. +The result follows from [[Exclusive Or is Self-Inverse]] and [[Biconditional is Self-Inverse]]. +{{qed}} +=== Sufficient Condition === +Let $\circ$ be the [[Definition:Exclusive Or|exclusive or operator]]. +Then by [[Exclusive Or is Self-Inverse]] it follows that: +:$\paren {p \circ q} \circ q \dashv \vdash p$ +Thus $*$ is the [[Definition:Inverse Operation|inverse operation]] of the [[Definition:Exclusive Or|exclusive or operation]]. +Similarly, let $\circ$ be the [[Definition:Biconditional|biconditional operator]]. +Then by [[Biconditional is Self-Inverse]] it follows that: +:$\paren {p \circ q} \circ q \dashv \vdash p$ +{{qed}} +[[Category:Exclusive Or]] +[[Category:Biconditional]] +[[Category:Propositional Logic]] +kbykk6g9uanajr5qrrir9gyc2juer2k +\end{proof}<|endoftext|> +\section{Biconditional is Self-Inverse} +Tags: Biconditional + +\begin{theorem} +:$\paren {p \iff q} \iff q \dashv \vdash p$ +where $\iff$ denotes the [[Definition:Biconditional|biconditional operator]]. +\end{theorem} + +\begin{proof} +We apply the [[Method of Truth Tables]]. +As can be seen by inspection, the [[Definition:Truth Value|truth values]] under the [[Definition:Main Connective (Propositional Logic)|main connective]] on the {{LHS}} match those for $p$ on the {{RHS}} for all [[Definition:Boolean Interpretation|boolean interpretations]]: +$\begin{array}{|ccccc||c|} \hline +(p & \iff & q) & \iff & q & p \\ +\hline +F & T & F & F & F & F \\ +F & F & T & F & T & F \\ +T & F & F & T & F & T \\ +T & T & T & T & T & T \\ +\hline +\end{array}$ +{{qed}} +[[Category:Biconditional]] +5ybdy25cskm1eyv6h2mol5sojt7fmiv +\end{proof}<|endoftext|> +\section{Finite Chain is Order-Isomorphic to Finite Ordinal} +Tags: Total Orderings, Ordinals + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $C$ be a [[Definition:Finite Set|finite]] [[Definition:Chain (Set Theory)|chain]] in $S$. +Then for some finite [[Definition:Ordinal|ordinal]] $\mathbf n$: +:$\left({C, {\preceq \restriction_C} }\right)$ is [[Definition:Order Isomorphism|order-isomorphic]] to $\mathbf n$. +That is: +:$\left({C, {\preceq \restriction_C} }\right)$ is [[Definition:Order Isomorphism|order-isomorphic]] to $\N_n$ +where $\N_n$ is the [[Definition:Initial Segment of Zero-Based Natural Numbers|initial segment of $\N$ determined by $n$]]: +:$\N_n = \left\{ {k \in \N: k < n}\right\} = \left\{ {0, 1, \ldots, n - 1}\right\}$ +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Finite Set|finite set]]: +:there exists an $n \in \N$ such that there exists a [[Definition:Bijection|bijection]] $f: C \to \N_n$. +This $n$ is [[Definition:Unique|unique]] by [[Equality of Natural Numbers]] and [[Set Equivalence is Equivalence Relation]]. +Define a [[Definition:Mapping|mapping]] $g: \N_n \to C$ [[Principle of Recursive Definition|recursively]] as: +:$g \left({0}\right) = \min C$ +:$g \left({k + 1}\right) = \min \left({ C \setminus g \left({N_k}\right) }\right)$ +{{explain|How is $\min C$ is defined?}} +{{finish}} +\end{proof}<|endoftext|> +\section{Complete Linearly Ordered Space is Compact} +Tags: Order Topology + +\begin{theorem} +Let $\left({X, \preceq, \tau}\right)$ be a [[Definition:Linearly Ordered Space|linearly ordered space]]. +Let $\left({X, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Then $\left({X, \tau}\right)$ is [[Definition:Compact Space|compact]]. +\end{theorem} + +\begin{proof} +By [[Compactness from Basis]], it is sufficient to prove that an open cover of $X$ consisting of open intervals and rays has a finite subcover. +Let $\mathcal A$ be an open cover of $X$ consisting of open rays and open intervals. +Let $m = \inf X$. This infimum exists because $\left({X, \preceq}\right)$ is complete. +Let $C$ be the set of all $x \in X$ such that a finite subset of $\mathcal A$ covers $\left[{m \,.\,.\, x}\right]$. +$C$ is non-empty because $m \in C$. +Let $s = \sup C$. +Since $\mathcal A$ covers $X$, there is a $U \in \mathcal A$ such that $s \in U$. +Then we must have $U = \left({a \,.\,.\, b}\right)$, $U = {\dot\uparrow} a$, or $U = {\dot\downarrow} b$. +Suppose that $U = \left({a \,.\,.\, b}\right)$. +Let $V \in \mathcal U$ contain $b$. +Then by the definition of supremum, there is an $x \succ a$ such that there is a finite $\mathcal F \subseteq \mathcal A$ that covers $\left[{m \,.\,.\, x}\right]$. +Then $\mathcal F \cup \left\{{U, V}\right\}$ covers $\left[{m \,.\,.\, b}\right]$, contradicting the fact that $s$ is an upper bound of $C$. +Suppose next that $U = \dot\downarrow b$. +Then for some $V \in \mathcal A$, $b \in V$. +Then $\left[{m \,.\,.\, b}\right]$ is covered by $\left\{{U, V}\right\}$, contradicting the fact that $s$ is the supremum of $C$. +Thus $U = \dot\uparrow a$. +By the definition of supremum, $a$ is not an upper bound of $C$. +So there is an $x \succ a$ such that there is a finite subset $\mathcal F$ of $\mathcal A$ that covers $\left[{m \,.\,.\, x}\right]$. +Thus $\mathcal F \cup \left\{{U}\right\}$ is a finite subcover of $A$. +{{qed}} +\end{proof}<|endoftext|> +\section{Condition for Well-Foundedness/Reverse Implication} +Tags: Condition for Well-Foundedness + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Suppose that there is no [[Definition:Infinite Sequence|infinite sequence]] $\left \langle {a_n}\right \rangle$ of [[Definition:Element|elements]] of $S$ such that $\forall n \in \N: a_{n+1} \prec a_n$. +Then $\left({S, \preceq}\right)$ is [[Definition:Well-Founded|well-founded]]. +\end{theorem}<|endoftext|> +\section{Condition for Well-Foundedness/Reverse Implication/Proof 1} +Tags: Condition for Well-Foundedness + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Suppose that there is no [[Definition:Infinite Sequence|infinite sequence]] $\sequence {a_n}$ of [[Definition:Element|elements]] of $S$ such that $\forall n \in \N: a_{n + 1} \prec a_n$. +Then $\struct {S, \preceq}$ is [[Definition:Well-Founded|well-founded]]. +\end{theorem} + +\begin{proof} +Suppose $\struct {S, \preceq}$ is not [[Definition:Well-Founded|well-founded]]. +So by definition there exists a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] $T$ of $S$ which has no [[Definition:Minimal Element|minimal element]]. +Let $a \in T$. +Since $a$ is not minimal in $T$, we can find $b \in T: b \prec a$. +Since this holds for all $a \in T$, $\prec \restriction_{T \times T}$, the [[Definition:Restriction of Relation|restriction]] of $\prec$ to $T \times T$, is a [[Definition:Right-Total Relation|right-total]] [[Definition:Endorelation|endorelation]] on $T$. +So, by the [[Axiom:Axiom of Dependent Choice/Right-Total|Axiom of Dependent Choice]], it follows that there is an [[Definition:Sequence|infinite sequence]] $\sequence {a_n}$ in $T$ such that $\forall n \in \N: a_{n + 1} \prec a_n$. +{{qed|lemma}} +\end{proof}<|endoftext|> +\section{Condition for Well-Foundedness/Reverse Implication/Proof 2} +Tags: Condition for Well-Foundedness + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Suppose that there is no [[Definition:Infinite Sequence|infinite sequence]] $\sequence {a_n}$ of [[Definition:Element|elements]] of $S$ such that: +:$\forall n \in \N: a_{n + 1} \prec a_n$ +Then $\struct {S, \preceq}$ is [[Definition:Well-Founded|well-founded]]. +\end{theorem} + +\begin{proof} +Suppose $\struct {S, \preceq}$ is not [[Definition:Well-Founded|well-founded]]. +Let $T \subseteq S$ have no [[Definition:Minimal Element|minimal element]]. +Let $a_0 \in T$. +We have that $a_0$ is not [[Definition:Minimal Element|minimal]] in $T$. +So: +:$\exists a_1 \in T: a_1 \prec a_0$ +Similarly, $a_1$ is not [[Definition:Minimal Element|minimal]] in $T$. +So: +:$\exists a_2 \in T: a_2 \prec a_1$ +Let $a_{k + 1}$ be an arbitrary element for which $a_{k + 1} \prec a_k$. +In order to allow this to be possible in the infinite case, it is necessary to invoke the [[Axiom:Axiom of Dependent Choice/Right-Total|Axiom of Dependent Choice]] as follows: +Let $a_k \in T$. +Then as $a_k$ is not [[Definition:Minimal Element|minimal]] in $T$: +:$\exists a_{k + 1} \in T: a_{k + 1} \prec a_k$ +Hence by definition $\prec$ is a [[Definition:Right-Total Relation|right-total relation]]. +So, by the [[Axiom:Axiom of Dependent Choice/Right-Total|Axiom of Dependent Choice]], it follows that: +:$\forall n \in \N: \exists a_n \in T: a_{n + 1} \prec a_n$ +Thus we have been able to construct an [[Definition:Sequence|infinite sequence]] $\sequence {a_n}$ in $T$ such that: +:$\forall n \in \N: a_{n + 1} \prec a_n$. +It follows by the [[Rule of Transposition]] that if there is no [[Definition:Infinite Sequence|infinite sequence]] $\sequence {a_n}$ of [[Definition:Element|elements]] of $S$ such that: +:$\forall n \in \N: a_{n + 1} \prec a_n$ +then $\struct {S, \preceq}$ is [[Definition:Well-Founded|well-founded]]. +{{qed|lemma}} +\end{proof}<|endoftext|> +\section{Inversion Mapping on Ordered Group is Dual Order-Isomorphism} +Tags: Ordered Groups, Inversion Mappings + +\begin{theorem} +Let $\struct {G, \circ, \preceq}$ be an [[Definition:Ordered Group|ordered group]]. +Let $\iota: G \to G$ be the [[Definition:Inversion Mapping|inversion mapping]], defined by $\map \phi x = x^{-1}$. +Then $\iota$ is a [[Definition:Dual Isomorphism (Order Theory)|dual order-isomorphism]]. +\end{theorem} + +\begin{proof} +By [[Inversion Mapping is Involution]] and [[Involution is Permutation]], $\iota$ is a [[Definition:Permutation|permutation]] and so by definition [[Definition:Bijection|bijective]]. +Let $x, y \in G$ such that $x \prec y$. +Then $y^{-1} \prec x^{-1}$ by [[Inversion Mapping Reverses Ordering in Ordered Group]]. +Thus $\map \iota y \prec \map \iota x$. +Since this holds for all $x$ and $y$ with $x \prec y$, $\iota$ is [[Definition:Strictly Decreasing Mapping|strictly decreasing]]. +If $\map \iota x \prec \map \iota y$, then $\map \iota {\map \iota y} \prec \map \iota {\map \iota x}$ by the above. +Thus by [[Inverse of Group Inverse]]: $y \prec x$. +Therefore, $\iota$ reverses ordering in both directions, and is thus a [[Definition:Dual Isomorphism (Order Theory)|dual isomorphism]]. +{{qed}} +[[Category:Ordered Groups]] +[[Category:Inversion Mappings]] +r4yxtzyk6j10d5wzp88nv29h4wf9ga9 +\end{proof}<|endoftext|> +\section{Properties of Ordered Group/OG2/Proof 1} +Tags: Ordered Groups + +\begin{theorem} +Let $\left({G, \circ, \preceq}\right)$ be an [[Definition:Ordered Group|ordered group]] with [[Definition:Identity Element|identity]] $e$. +Let $\prec$ be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\preceq$. +Let $x, y \in G$. +Then the following equivalences hold: +:$(\operatorname{OG}2.1):\quad x \preceq y \iff e \preceq y \circ x^{-1}$ +:$(\operatorname{OG}2.2):\quad x \preceq y \iff e \preceq x^{-1} \circ y$ +:$(\operatorname{OG}2.3):\quad x \preceq y \iff x \circ y^{-1} \preceq e$ +:$(\operatorname{OG}2.4):\quad x \preceq y \iff y^{-1} \circ x \preceq e$ +:$(\operatorname{OG}2.1'):\quad x \prec y \iff e \prec y \circ x^{-1}$ +:$(\operatorname{OG}2.2'):\quad x \prec y \iff e \prec x^{-1} \circ y$ +:$(\operatorname{OG}2.3'):\quad x \prec y \iff x \circ y^{-1} \prec e$ +:$(\operatorname{OG}2.4'):\quad x \prec y \iff y^{-1} \circ x \prec e$ +\end{theorem} + +\begin{proof} +By the definition of an [[Definition:Ordered Group|ordered group]], $\preceq$ is a relation [[Definition:Relation Compatible with Operation|compatible]] with $\circ$. +Thus by [[Properties of Relation Compatible with Group Operation/CRG2]] , we obtain the first four results. +By [[Reflexive Reduction of Relation Compatible with Group Operation is Compatible]], $\prec$ is compatible with $\circ$. +Again by [[Properties of Relation Compatible with Group Operation/CRG2]], we obtain the remaining results. +{{qed}} +\end{proof}<|endoftext|> +\section{Properties of Ordered Group/OG2/Proof 2} +Tags: Ordered Groups + +\begin{theorem} +Let $\left({G, \circ, \preceq}\right)$ be an [[Definition:Ordered Group|ordered group]] with [[Definition:Identity Element|identity]] $e$. +Let $\prec$ be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\preceq$. +Let $x, y \in G$. +Then the following equivalences hold: +:$(\operatorname{OG}2.1):\quad x \preceq y \iff e \preceq y \circ x^{-1}$ +:$(\operatorname{OG}2.2):\quad x \preceq y \iff e \preceq x^{-1} \circ y$ +:$(\operatorname{OG}2.3):\quad x \preceq y \iff x \circ y^{-1} \preceq e$ +:$(\operatorname{OG}2.4):\quad x \preceq y \iff y^{-1} \circ x \preceq e$ +:$(\operatorname{OG}2.1'):\quad x \prec y \iff e \prec y \circ x^{-1}$ +:$(\operatorname{OG}2.2'):\quad x \prec y \iff e \prec x^{-1} \circ y$ +:$(\operatorname{OG}2.3'):\quad x \prec y \iff x \circ y^{-1} \prec e$ +:$(\operatorname{OG}2.4'):\quad x \prec y \iff y^{-1} \circ x \prec e$ +\end{theorem} + +\begin{proof} +Each result follows from [[Properties of Ordered Group/OG1]]. For example, by [[Properties of Ordered Group/OG1]], +:$x \preceq y \iff x \circ x^{-1} \preceq y \circ x^{-1}$ +Since $x \circ x^{-1} = e$: +:$(\operatorname{OG}2.1):\quad x \preceq y \iff e \preceq y \circ x^{-1}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Properties of Ordered Group/OG4/Proof 1} +Tags: Ordered Groups + +\begin{theorem} +Let $\struct {G, \circ, \preceq}$ be an [[Definition:Ordered Group|ordered group]] with [[Definition:Identity Element|identity]] $e$. +Let $x \in G$. +Then the following equivalences hold: +{{begin-axiom}} +{{axiom | n = \operatorname {OG} 4.1 + | m = x \preceq e \iff e \preceq x^{-1} +}} +{{axiom | n = \operatorname {OG} 4.2 + | m = e \preceq x \iff x^{-1} \preceq e +}} +{{axiom | n = \operatorname {OG} 4.1' + | m = x \prec e \iff e \prec x^{-1} +}} +{{axiom | n = \operatorname {OG} 4.2' + | m = e \prec x \iff x^{-1} \prec e +}} +{{end-axiom}} +\end{theorem} + +\begin{proof} +By [[Inversion Mapping Reverses Ordering in Ordered Group]]: +{{begin-axiom}} +{{axiom | m = x \preceq e \iff e^{-1} \preceq x^{-1} +}} +{{axiom | m = e \preceq x \iff x^{-1} \preceq e^{-1} +}} +{{axiom | m = x \prec e \iff e^{-1} \prec x^{-1} +}} +{{axiom | m = e \prec x \iff x^{-1} \prec e^{-1} +}} +{{end-axiom}} +Since $e^{-1} = e$, the theorem holds. +{{qed}} +\end{proof}<|endoftext|> +\section{Properties of Ordered Group/OG4/Proof 2} +Tags: Ordered Groups + +\begin{theorem} +Let $\left({G, \circ, \preceq}\right)$ be an [[Definition:Ordered Group|ordered group]] with [[Definition:Identity Element|identity]] $e$. +Let $x \in G$. +Then the following equivalences hold: +{{begin-axiom}} +{{axiom|n = \operatorname{OG}4.1 + |m = x \preceq e \iff e \preceq x^{-1} +}} +{{axiom|n = \operatorname{OG}4.2 + |m = e \preceq x \iff x^{-1} \preceq e +}} +{{axiom|n = \operatorname{OG}4.1' + |m = x \prec e \iff e \prec x^{-1} +}} +{{axiom|n = \operatorname{OG}4.2' + |m = e \prec x \iff x^{-1} \prec e +}} +{{end-axiom}} +\end{theorem} + +\begin{proof} +By the definition of an [[Definition:Ordered Group|ordered group]], $\preceq$ is a relation [[Definition:Relation Compatible with Operation|compatible]] with $\circ$. +Thus by [[Properties of Relation Compatible with Group Operation/CRG4]], we obtain the first two results: +:$(\operatorname{OG}4.1):\quad x \preceq e \iff e \preceq x^{-1}$ +:$(\operatorname{OG}4.2):\quad e \preceq x \iff x^{-1} \preceq e$ +By [[Reflexive Reduction of Relation Compatible with Group Operation is Compatible]], $\prec$ is also compatible with $\circ$. +Thus by again [[Properties of Relation Compatible with Group Operation/CRG4]], we obtain the remaining results: +:$(\operatorname{OG}4.1'):\quad x \prec e \iff e \prec x^{-1}$ +:$(\operatorname{OG}4.2'):\quad e \prec x \iff x^{-1} \prec e$ +{{qed}} +\end{proof}<|endoftext|> +\section{Properties of Ordered Group/OG5/Proof 1} +Tags: Ordered Groups + +\begin{theorem} +Let $\left({G, \circ, \preceq}\right)$ be an [[Definition:Ordered Group|ordered group]] with [[Definition:Identity Element|identity]] $e$. +Let $\prec$ be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\preceq$. +Let $x \in G$. +Let $n \in \N_{>0}$ be a [[Definition:Strictly Positive Integer|strictly positive integer]]. +Then the following hold: +:$x \preceq e \implies x^n \preceq e$ +:$e \preceq x \implies e \preceq x^n$ +:$x \prec e \implies x^n \prec e$ +:$e \prec x \implies e \prec x^n$ +\end{theorem} + +\begin{proof} +By [[Power Function Strictly Preserves Ordering in Ordered Group]]: +:$x \preceq e \implies x^n \preceq e^n$ +:$e \preceq x \implies e^n \preceq x^n$ +:$x \prec e \implies x^n \prec e^n$ +:$e \prec x \implies e^n \prec x^n$ +By [[Identity Element is Idempotent]], $e$ is [[Definition:Idempotent Element|idempotent]] with respect to $\circ$. +Therefore by the definition of an [[Definition:Idempotent Element|idempotent element]], $e^n = e$. +Thus the theorem holds. +{{qed}} +\end{proof}<|endoftext|> +\section{Properties of Ordered Group/OG5/Proof 2} +Tags: Ordered Groups + +\begin{theorem} +Let $\left({G, \circ, \preceq}\right)$ be an [[Definition:Ordered Group|ordered group]] with [[Definition:Identity Element|identity]] $e$. +Let $\prec$ be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\preceq$. +Let $x \in G$. +Let $n \in \N_{>0}$ be a [[Definition:Strictly Positive Integer|strictly positive integer]]. +Then the following hold: +:$x \preceq e \implies x^n \preceq e$ +:$e \preceq x \implies e \preceq x^n$ +:$x \prec e \implies x^n \prec e$ +:$e \prec x \implies e \prec x^n$ +\end{theorem} + +\begin{proof} +By the definition of an [[Definition:Ordered Group|ordered group]], $\preceq$ is a [[Definition:Transitive Relation|transitive relation]] [[Definition:Relation Compatible with Operation|compatible]] with $\circ$. +By [[Transitive Relation Compatible with Semigroup Operation Relates Powers of Related Elements]]: +:$x \preceq e \implies x^n \preceq e^n$ +:$e \preceq x \implies e^n \preceq x^n$ +By [[Identity Element is Idempotent]], $e$ is [[Definition:Idempotent Element|idempotent]] with respect to $\circ$. +Thus we obtain the first two results: +:$x \preceq e \implies x^n \preceq e$ +:$e \preceq x \implies e \preceq x^n$ +By [[Reflexive Reduction of Relation Compatible with Group Operation is Compatible]], $\prec$ is [[Definition:Relation Compatible with Operation|compatible]] with $\circ$. +By [[Reflexive Reduction of Transitive Antisymmetric Relation is Strict Ordering]], $\prec$ is [[Definition:Transitive Relation|transitive]]. +Thus by the same method as above, we obtain the remaining results: +:$x \prec e \implies x^n \prec e$ +:$e \prec x \implies e \prec x^n$ +{{qed}} +\end{proof}<|endoftext|> +\section{Mapping from Totally Ordered Set is Dual Order Embedding iff Strictly Decreasing} +Tags: Total Orderings, Order Embeddings + +\begin{theorem} +Let $\left({S, \preceq_1}\right)$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $\left({T, \preceq_2}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $\phi: S \to T$ be a [[Definition:Mapping|mapping]]. +Then $\phi$ is a [[Definition:Dual Order Embedding|dual order embedding]] {{iff}} $\phi$ is [[Definition:Strictly Decreasing Mapping|strictly decreasing]]. +That is: +:$\forall x, y \in S: x \preceq_1 y \iff \phi \left({y}\right) \preceq_2 \phi \left({x}\right)$ +{{iff}} +:$\forall x, y \in S: x \prec_1 y \implies \phi \left({y}\right) \prec_2 \phi \left({x}\right)$ +\end{theorem} + +\begin{proof} +=== Forward Implication === +Let $\phi$ be a [[Definition:Dual Order Embedding|dual order embedding]]. +Then $\phi$ is an [[Definition:Order Embedding|order embedding]] of $\left({S, \preceq_1}\right)$ into $\left({T, \succeq_2}\right)$, where $\succeq_2$ is the [[Definition:Dual Ordering|dual]] of $\preceq_2$. +Thus by [[Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing]]: +:$\phi: \left({S, \preceq_1}\right) \to \left({T, \succeq_2}\right)$ is [[Definition:Strictly Increasing Mapping|strictly increasing]]. +Thus: +:$\forall x, y \in S: x \prec_1 y \implies \phi \left({x}\right) \succ_2 \phi \left({y}\right)$ +so: +:$\forall x, y \in S: x \prec_1 y \implies \phi \left({y}\right) \prec_2 \phi \left({x}\right)$ +Thus $\phi: \left({S, \preceq_1}\right) \to \left({T, \preceq_2}\right)$ is [[Definition:Strictly Decreasing Mapping|strictly decreasing]]. +{{qed|lemma}} +=== Reverse Implication === +Suppose that $\phi: \left({S, \preceq_1}\right) \to \left({T, \preceq_2}\right)$ is [[Definition:Strictly Decreasing Mapping|strictly decreasing]]. +Then by the same argument as above: +:$\phi: \left({S, \preceq_1}\right) \to \left({T, \preceq_2}\right)$ is [[Definition:Strictly Increasing Mapping|strictly increasing]]. +Thus by [[Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing]], $\phi$ is an [[Definition:Order Embedding|order embedding]] of $\left({S, \preceq_1}\right)$ into $\left({T, \succeq_2}\right)$. +So $\phi$ is a [[Definition:Dual Order Embedding|dual order embedding]] of $\left({S, \preceq_1}\right)$ into $\left({T, \preceq_2}\right)$. +{{qed}} +[[Category:Total Orderings]] +[[Category:Order Embeddings]] +cvbcsnw2k9bzz4617102zbbql23f35t +\end{proof}<|endoftext|> +\section{Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication} +Tags: Order Embeddings, Total Orderings + +\begin{theorem} +Let $\struct {S, \preceq_1}$ be a [[Definition:Totally Ordered Set|totally ordered set]] and let $\struct {T, \preceq_2}$ be an [[Definition:Ordered Set|ordered set]]. +Let $\phi: S \to T$ be a [[Definition:Strictly Increasing/Mapping|strictly increasing mapping]]. +Then $\phi$ is an [[Definition:Order Embedding|order embedding]]. +
+== [[Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication/Proof 1|Proof 1]] == +{{:Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication/Proof 1}} +== [[Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication/Proof 2|Proof 2]] == +{{:Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication/Proof 2}} +
+[[Category:Order Embeddings]] +[[Category:Total Orderings]] +ip0v3n07lm6pfuiq8dh8hmlp58or3cs +\end{theorem}<|endoftext|> +\section{Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication/Proof 2} +Tags: Order Embeddings, Total Orderings + +\begin{theorem} +Let $\struct {S, \preceq_1}$ be a [[Definition:Totally Ordered Set|totally ordered set]] and let $\struct {T, \preceq_2}$ be an [[Definition:Ordered Set|ordered set]]. +Let $\phi: S \to T$ be a [[Definition:Strictly Increasing Mapping|strictly increasing mapping]]. +Then $\phi$ is an [[Definition:Order Embedding|order embedding]]. +\end{theorem} + +\begin{proof} +Let $\phi$ be [[Definition:Strictly Increasing Mapping|strictly increasing]]. +Let $\map \phi x \preceq_2 \map \phi y$. +As $\struct {S, \prec_1}$ is a [[Definition:Strictly Totally Ordered Set|strictly totally ordered set]]: +:Either $y \prec_1 x$, $y = x$, or $x \prec_1 y$. +{{AimForCont}} that $y \prec_1 x$. +By the definition of a strictly increasing mapping: +:$\map \phi y \prec_2 \map \phi x$ +which [[Definition:Contradiction|contradicts]] the fact that $\map \phi x \preceq_2 \map \phi y$. +Therefore $y \nprec_1 x$. +Thus $y = x$, or $x \prec_1 y$, so $x \preceq_1 y$. +Hence: +:$\map \phi x \preceq_2 \map \phi y \iff x \preceq_1 y$ +and $\phi$ has been proved to be an [[Definition:Order Embedding|order embedding]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing/Reverse Implication/Proof 1} +Tags: Order Embeddings, Total Orderings + +\begin{theorem} +Let $\struct {S, \preceq_1}$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $\struct {T, \preceq_2}$ be an [[Definition:Ordered Set|ordered set]]. +Let $\phi: S \to T$ be a [[Definition:Strictly Increasing Mapping|strictly increasing mapping]]. +Then $\phi$ is an [[Definition:Order Embedding|order embedding]] . +\end{theorem} + +\begin{proof} +Let $x \preceq_1 y$. +Then $x = y$ or $x \prec_1 y$. +Let $x = y$. +Then +:$\map \phi x = \map \phi y$ +so: +:$\map \phi x \preceq_2 \map \phi y$ +Let $x \prec_1 y$. +Then by the definition of [[Definition:Strictly Increasing Mapping|strictly increasing mapping]]: +:$\map \phi x \prec_2 \map \phi y$ +so by the definition of $\prec_2$: +:$\map \phi x \preceq_2 \map \phi y$ +Thus: +:$x \preceq_1 y \implies \map \phi x \preceq_2 \map \phi y$ +It remains to be shown that: +:$\map \phi x \preceq_2 \map \phi y \implies x \preceq_1 y$ +Suppose that $x \npreceq_1 y$. +Since $\preceq_1$ is a [[Definition:Total Ordering|total ordering]]: +:$y \prec_1 x$ +Thus since $\phi$ is [[Definition:Strictly Increasing Mapping|strictly increasing]]: +:$\map \phi y \prec_1 \map \phi x$ +Thus: +:$\map \phi x \npreceq_1 \map \phi y$ +Therefore: +:$x \npreceq_1 y \implies \map \phi x \npreceq_2 \map \phi y$ +By the [[Rule of Transposition]]: +:$\map \phi x \preceq_2 \map \phi y \implies x \preceq y$ +{{qed}} +\end{proof}<|endoftext|> +\section{Foundational Relation is Antireflexive} +Tags: Foundational Relations, Reflexive Relations + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Foundational Relation|foundational relation]] on a [[Definition:Set|set]] or class $A$. +Then $\mathcal R$ is [[Definition:Antireflexive Relation|antireflexive]]. +\end{theorem} + +\begin{proof} +Let $p \in A$. +Then $\left\{{p}\right\} \ne \varnothing$ and $\left\{{p}\right\} \subseteq A$. +Thus, by the definition of [[Definition:Foundational Relation|foundational relation]]: +:$\exists x \in \left\{{p}\right\}: \forall y \in \left\{{p}\right\}: \neg \left({y \mathrel{\mathcal R} x}\right)$ +Since $x \in \left\{{p}\right\}$, it must be that $x = p$. +It follows that $p \not\mathrel{\mathcal R} p$. +Since this holds for all $p \in A$, $\mathcal R$ is [[Definition:Antireflexive Relation|antireflexive]]. +{{qed}} +[[Category:Foundational Relations]] +[[Category:Reflexive Relations]] +5un4m8mr37k753e9fnq83rdai1bc2zb +\end{proof}<|endoftext|> +\section{Foundational Relation is Asymmetric} +Tags: Foundational Relations, Symmetric Relations + +\begin{theorem} +Let $\struct {S, \RR}$ be a [[Definition:Relational Structure|relational structure]], where $S$ is a [[Definition:Set|set]] or a [[Definition:Proper Class|proper class]]. +Let $\RR$ be a [[Definition:Foundational Relation|foundational relation]]. +Then $\RR$ is [[Definition:Asymmetric Relation|asymmetric]]. +\end{theorem} + +\begin{proof} +Let $p, q \in S$ and suppose that $p \mathrel \RR q$. +Then $\set {p, q} \ne \O$ and $\set {p, q} \subseteq S$. +By the definition of [[Definition:Foundational Relation|foundational relation]], $\set {p, q}$ has an [[Definition:Minimal Element under Relation|$\RR$-minimal element]]. +Since $p \mathrel \RR q$, $q$ is not an $\RR$-minimal element of $\set {p, q}$. +Thus $p$ is an [[Definition:Minimal Element under Relation|$\RR$-minimal element]] of $\set {p, q}$. +Thus $q \not \mathrel \RR p$. +Since for all $p, q \in S$, $p \mathrel \RR q \implies q \not \mathrel \RR p$, $\RR$ is [[Definition:Asymmetric Relation|asymmetric]]. +{{qed}} +[[Category:Foundational Relations]] +[[Category:Symmetric Relations]] +dxlx9qoocb3xu2h7wv4ce074awnbyzr +\end{proof}<|endoftext|> +\section{Upper Set with no Smallest Element is Open in GO-Space} +Tags: Generalized Ordered Spaces + +\begin{theorem} +Let $\struct {S, \preceq, \tau}$ be a [[Definition:Generalized Ordered Space|generalized ordered space]]. +Let $U$ be an [[Definition:Upper Set|upper set]] in $S$ with no [[Definition:Smallest Element|smallest element]]. +Then $U$ is [[Definition:Open Set (Topology)|open]] in $\struct {S, \preceq, \tau}$. +\end{theorem} + +\begin{proof} +By [[Minimal Element in Toset is Unique and Smallest]], $U$ has no [[Definition:Minimal Element|minimal element]]. +By [[Upper Set with no Minimal Element]]: +:$U = \bigcup \set {u^\succ: u \in U}$ +where $u^\succ$ is the [[Definition:Strict Upper Closure of Element|strict upper closure]] of $u$. +By [[Open Ray is Open in GO-Space]] and the fact that a union of [[Definition:Open Set (Topology)|open sets]] is open, $U$ is open. +{{qed}} +\end{proof}<|endoftext|> +\section{Lower Set with no Maximal Element} +Tags: Lower Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $L \subseteq S$. +Then: +: $L$ is a [[Definition:Lower Set|lower set]] in $S$ with no [[Definition:Maximal Element|maximal element]] +{{iff}}: +: $\displaystyle L = \bigcup \left\{{l^\prec: l \in L }\right\}$ +where $l^\prec$ is the [[Definition:Strict Lower Closure of Element|strict lower closure]] of $l$. +\end{theorem} + +\begin{proof} +By [[Dual Pairs (Order Theory)]]: +* [[Definition:Lower Set|Lower set]] is dual to [[Definition:Upper Set|upper set]]. +* [[Definition:Maximal Element|Maximal element]] is dual to [[Definition:Minimal Element|minimal element]]. +* [[Definition:Strict Lower Closure of Element|Strict lower closure]] is dual to [[Definition:Strict Upper Closure of Element|strict upper closure]]. +Thus the theorem holds by the [[Duality Principle (Order Theory)/Global Duality|duality principle]] applied to [[Upper Set with no Minimal Element]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Lower Set with no Greatest Element is Open in GO-Space} +Tags: Generalized Ordered Spaces + +\begin{theorem} +Let $\struct {S, \preceq, \tau}$ be a [[Definition:Generalized Ordered Space|generalized ordered space]]. +Let $L$ be a [[Definition:Lower Set|lower set]] in $S$ with no [[Definition:Greatest Element|greatest element]]. +Then $L$ is [[Definition:Open Set (Topology)|open]] in $\struct {S, \preceq, \tau}$. +\end{theorem} + +\begin{proof} +By [[Maximal Element in Toset is Unique and Greatest]], $L$ has no [[Definition:Maximal Element|maximal element]]. +By [[Lower Set with no Maximal Element]]: +:$\displaystyle L = \bigcup \set {l^\prec: l \in L}$ +where $l^\prec$ is the [[Definition:Strict Lower Closure of Element|strict lower closure]] of $l$. +By [[Open Ray is Open in GO-Space]] and the fact that a union of [[Definition:Open Set (Topology)|open sets]] is open, $L$ is open. +{{qed}} +\end{proof}<|endoftext|> +\section{Lower Set is Dual to Upper Set} +Tags: Upper Sets, Lower Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T \subseteq S$. +The following are [[Definition:Dual Statement (Order Theory)|dual statements]]: +:$T$ is a [[Definition:Lower Set|lower set]] in $S$ +:$T$ is an [[Definition:Upper Set|upper set]] in $S$ +\end{theorem} + +\begin{proof} +By definition, $T$ is a [[Definition:Lower Set|lower set]] in $S$ [[Definition:Iff|iff]]: +:$\forall t \in T: \forall s \in S: s \preceq t \implies s \in T$ +The [[Definition:Dual Statement (Order Theory)|dual]] of this statement is: +:$\forall t \in T: \forall s \in S: t \preceq s \implies s \in T$ +by [[Dual Pairs (Order Theory)]]. + +By definition, this means $T$ is an [[Definition:Upper Set|upper set]] in $S$. +The converse follows from [[Dual of Dual Statement (Order Theory)]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Order Topology equals Dual Order Topology} +Tags: Order Topology + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $\tau$ be the $\preceq$-[[Definition:Order Topology|order topology]] on $S$. +Let $\tau'$ be the $\succeq$-order topology on $S$, where $\succeq$ is the [[Definition:Dual Ordering|dual ordering]] of $\preceq$. +Then $\tau' = \tau$. +\end{theorem} + +\begin{proof} +{{improve|recast in terms of dual statements}} +Let $U$ be an [[Definition:Open Ray|open ray]] in $\left({S, \preceq}\right)$. +By [[Open Ray is Dual to Open Ray]], $U$ is an [[Definition:Open Ray|open ray]] in $\left({S, \preceq}\right)$. +Since the [[Definition:Open Ray|open rays]] in a [[Definition:Totally Ordered Set|totally ordered set]] form a [[Definition:Sub-Basis|sub-basis for the topology]] on that set, $\tau'$ is [[Definition:Finer Topology|finer]] than $\tau$. +{{explain|Invoke some other duality principle?}} +By the same argument, $\tau$ is [[Definition:Finer Topology|finer]] than $\tau'$. +Thus by definition of [[Definition:Set Equality/Definition 2|set equality]]: +: $\tau' = \tau$ +{{qed}} +[[Category:Order Topology]] +4o99v8qf2um7xjidwbxm35zjftnjqcc +\end{proof}<|endoftext|> +\section{Open Ray is Dual to Open Ray} +Tags: Total Orderings + +\begin{theorem} +Let $\struct {S, \preceq}$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $R$ be an [[Definition:Open Ray|open ray]] in $\struct {S, \preceq}$. +Then $R$ is an [[Definition:Open Ray|open ray]] in $\struct {S, \succeq}$, where $\succeq$ is the [[Definition:Dual Ordering|dual ordering]] of $\preceq$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Open Ray|open ray]], there is some $p \in S$ such that: +:$R$ is the [[Definition:Strict Upper Closure|strict upper]] or [[Definition:Strict Lower Closure|strict lower closure]] of $p$ with respect to $\preceq$. +By [[Strict Lower Closure is Dual to Strict Upper Closure]], the [[Definition:Dual Statement (Order Theory)|dual statement]] is: +:$R$ is the [[Definition:Strict Upper Closure|strict upper]] or [[Definition:Strict Lower Closure|strict lower closure]] of $p$ with respect to $\succeq$. +Thus $R$ is an [[Definition:Open Ray|open ray]] in $\struct {S, \succeq}$. +{{qed}} +[[Category:Total Orderings]] +gvmyntzwkf86e0y22eoizxb1pgju6ic +\end{proof}<|endoftext|> +\section{Topologies on Set form Complete Lattice} +Tags: Topology, Complete Lattices + +\begin{theorem} +Let $X$ be a [[Definition:Non-Empty Set|non-empty set]]. +Let $\mathcal L$ be the [[Definition:Set|set]] of [[Definition:Topology|topologies]] on $X$. +Then $\left({\mathcal L, \subseteq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +\end{theorem} + +\begin{proof} +Let $\mathcal K \subseteq \mathcal L$. +Then by [[Intersection of Topologies is Topology]]: +:$\bigcap \mathcal K \in \mathcal L$ +By [[Intersection is Largest Subset]], $\bigcap \mathcal L$ is the [[Definition:Infimum of Set|infimum]] of $\mathcal K$. +{{explain}} +Let $\tau$ be the topology generated by the sub-basis $\bigcup \mathcal K$. +Then $\tau \in \mathcal L$ and $\tau$ is the [[Definition:Supremum of Set|supremum]] of $\mathcal K$. +We have that each subset of $\mathcal L$ has a supremum and an infimum in $\mathcal L$. +Thus it follows that $\left({\mathcal L, \subseteq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +{{qed}} +[[Category:Topology]] +[[Category:Complete Lattices]] +6s1khlyr62d80t7yamqkq7fgmssgpd7 +\end{proof}<|endoftext|> +\section{Complement of Lower Set is Upper Set} +Tags: Upper Sets, Lower Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $L$ be a [[Definition:Lower Set|lower set]]. +Then $S \setminus L$ is an [[Definition:Upper Set|upper set]]. +\end{theorem} + +\begin{proof} +Let $u \in S \setminus L$. +Let $s \in S$ such that $u \preceq s$. +Suppose for the sake of contradiction that $s \notin S \setminus L$. +Then $s \in L$. +By the definition of [[Definition:Lower Set|lower set]], $u \in L$, a contradiction. +Hence $s \in S \setminus L$. +Since this holds for all such $u$ and $s$, $S \setminus L$ is an [[Definition:Upper Set|upper set]]. +{{qed}} +\end{proof}<|endoftext|> +\section{GO-Space Embeds as Closed Subspace of Linearly Ordered Space} +Tags: Generalized Ordered Spaces, Linearly Ordered Spaces + +\begin{theorem} +Let $(X, \preceq_X, \tau_X)$ be a [[Definition:Generalized Ordered Space|generalized ordered space]]. +Then there is a [[Definition:Linearly Ordered Space|linearly ordered space]] $(Y, \preceq_Y, \tau_Y)$ and a mapping $\phi: X \to Y$ such that $\phi$ is a topological embedding and an order embedding, and $\phi(X)$ is closed in $Y$. +\end{theorem} + +\begin{proof} +By [[GO-Space Embeds Densely into Linearly Ordered Space]], there is a linearly ordered space $(W, \preceq_W, \tau_W)$ and a mapping $\psi:X \to W$ which is an order embedding and a topological embedding. +Assume without loss of generality that $X$ is a subspace of $W$. +Let $Y = \left\{{ (x, 0): x \in X }\right\} \cup (W \setminus X) \times \Z$. +Let $\preceq_Y$ be the restriction to $Y$ of the lexicographic ordering on $W \times \Z$. +Let $\tau_Y$ be the $\preceq_Y$-order topology on $Y$. +Let $\phi:X \to Y$ be given by $\phi(x) = (x,0)$. +$\phi$ is clearly an order embedding. +Next, we show that it is a topological embedding: +If $$ +Finally, we show that $\phi(X)$ is closed in $Y$: +{{finish}} +\end{proof}<|endoftext|> +\section{Union of Total Ordering with Lower Sets is Total Ordering} +Tags: Lower Sets, Total Orderings + +\begin{theorem} +Let $\left({Y, \preceq}\right)$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +Let $X$ be the [[Definition:Disjoint Union (Set Theory)|disjoint union]] of $Y$ with the set of [[Definition:Lower Set|lower sets]] of $Y$. +Define a relation $\preceq'$ on $X$ extending $\preceq$ by letting: +:$y_1 \preceq' y_2 \iff y_1 \preceq y_2$ +:$y \preceq' L \iff y \in L$ +:$L_1 \preceq' L_2 \iff L_1 \subseteq L_2$ +:$L \preceq' y \iff y \in Y \setminus L$ +Then $\preceq'$ is a total ordering. +\end{theorem} + +\begin{proof} +First note that by [[Lower Sets in Totally Ordered Set form Nest]]: +:$\subseteq$ is a [[Definition:Total Ordering|total ordering]] on the set of lower sets. +Also note that by [[Complement of Lower Set is Upper Set]], the complement of each $\preceq$-lower set is a $\preceq$-upper set. +=== Reflexivity === +This follows immediately from the fact that $\preceq$ and $\subseteq$ are reflexive. +Thus $\preceq'$ is [[Definition:Reflexive Relation|reflexive]]. +{{qed|lemma}} +=== Transitivity === +There are eight possibilities to consider. +If $y_1 \preceq' y_2$ and $y_2 \preceq' y_3$, then $y_1 \preceq' y_3$ because $\preceq$ is transitive. +If $L_1 \preceq' L_2$ and $L_2 \preceq' L_3$, then $L_1 \preceq' L_3$ because $\subseteq$ is transitive. +If $y_1 \preceq' y_2$ and $y_2 \preceq' L$, then: +:$y_1 \preceq y_2$ and $y_2 \in L$ +Since $L$ is a [[Definition:Lower Set|lower set]] in $Y$: +:$y_1 \in L$ +so: +:$y_1 \preceq' L$ +If $L \preceq' y_1$ and $y_1 \preceq' y_2$, then: +:$y_1 \in Y \setminus L$ and $y_1 \preceq y_2$ +Since $Y \setminus L$ is an [[Definition:Upper Set|upper set]] in $Y$: +:$y_2 \in Y \setminus L$ +so: +:$L \preceq' y_2$ +If $y \preceq' L_1$ and $L_1 \preceq' L_2$, then: +:$y \in L_1$ and $L_1 \subseteq L_2$ +By the definition of subset: +:$y \in L_2$ +so: +:$y \preceq' L_2$ +If $L_1 \preceq' L_2$ and $L_2 \preceq' y$, then: +:$y \in Y \setminus L_2$ and $L_2 \supseteq L_1$ +so: +:$y \in Y \setminus L_1$ +so: +:$L_1 \preceq' y$ +If $y_1 \preceq' L$ and $L \preceq' y_2$ then +:$y_1 \in L$ and $y_2 \in Y \setminus L$. +Since $L$ is a lower set: +: $y_2 \not\preceq y_1$ +Since $\preceq$ is a total ordering: +:$y_1 \preceq y_2$ +so: +:$y_1 \preceq' y_2$ +If $L_1 \preceq' y$ and $y \preceq' L_2$, then: +:$y \in L_2$ but $y \notin L_1$ +Thus: +:$L_2 \not\subseteq L_1$ +Since $\subseteq$ is a total ordering on the lower sets: +:$L_1 \subseteq L_2$ +so: +:$L_1 \preceq' L_2$ +Thus $\preceq'$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +=== Antisymmetry === +There are three cases. +If $y_1 \preceq' y_2$ and $y_2 \preceq' y_1$ then: +:$y_1 \preceq y_2$ and $y_2 \preceq y_1$ +Since $\preceq$ is antisymmetric: +:$y_1 = y_2$ +If $L_1 \preceq' L_2$ and $L_2 \preceq' L_1$ then: +:$L_1 \subseteq L_2$ and $L_2 \subseteq L_1$ +Since $\subseteq$ is antisymmetric: +:$L_1 = L_2$ +By the definition of $\preceq'$, it is impossible for $y \preceq' L$ and $L \preceq' y$, so the third case cannot occur. +Thus$\preceq'$ is [[Definition:Antisymmetric Relation|antisymmetric]] +{{qed|lemma}} +Since $\preceq'$ is [[Definition:Reflexive Relation|reflexive]], [[Definition:Transitive Relation|transitive]], and [[Definition:Antisymmetric Relation|antisymmetric]], it is an [[Definition:Ordering|ordering]]. +$\preceq'$ is a [[Definition:Total Ordering|total ordering]] of $X$ because: +:$\preceq$ is a total ordering +:the set of lower sets is a nest +and: +:for any $y$ and $L$ either $y \in L$ or $y \in Y\setminus L$. +{{explain|Specify exactly why it follows from the above that $\preceq'$ is a [[Definition:Total Ordering|total ordering]]}} +{{qed}} +[[Category:Lower Sets]] +[[Category:Total Orderings]] +8p7dffqm112z0q5kjcc20o60fxg6c58 +\end{proof}<|endoftext|> +\section{Lower Closure is Lower Set} +Tags: Lower Sets, Lower Closures + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T$ be a [[Definition:Subset|subset]] of $S$. +Let $L$ be the [[Definition:Lower Closure of Subset|lower closure]] of $T$. +Then $L$ is a [[Definition:Lower Set|lower set]]. +\end{theorem} + +\begin{proof} +Let $a \in L$. +Let $b \in S$ with $b \preceq a$. +By the definition of [[Definition:Lower Closure of Subset|lower closure]], there is a $t \in T$ such that $a \preceq t$. +By [[Definition:Transitive Relation|transitivity]], $b \preceq t$. +Thus, again by the definition of [[Definition:Lower Closure of Subset|lower closure]], $b \in L$. +Since this holds for all such $a$ and $b$, $L$ is a [[Definition:Lower Set|lower set]]. +{{qed}} +\end{proof} + +\begin{proof} +Let $l \in p^\prec$. +Let $s \in S$ with $s \preceq l$. +Then by the definition of [[Definition:Strict Lower Closure of Element|strict lower closure]]: +:$l \prec p$ +Thus by [[Extended Transitivity]]: +:$s \prec p$ +So by the definition of [[Definition:Strict Lower Closure of Element|strict lower closure]]: +:$s \in p^\prec$ +Since this holds for all such $l$ and $s$, $p^\prec$ is a [[Definition:Lower Set|lower set]]. +{{qed}} +\end{proof} + +\begin{proof} +By [[Dual Pairs (Order Theory)]]: +:[[Definition:Strict Upper Closure of Element|strict upper closure]] is dual to [[Definition:Strict Lower Closure of Element|strict lower closure]] +:[[Definition:Upper Set|Upper set]] is dual to [[Definition:Lower Set|lower set]] +Thus the theorem holds by [[Strict Upper Closure is Upper Set]] and the [[Duality Principle (Order Theory)/Global Duality|duality principle]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Ordered Set is Upper Set in Itself} +Tags: Upper Sets + +\begin{theorem} +Let $(S, \preceq)$ be an [[Definition:Ordered Set|ordered set]]. +Then $S$ is an [[Definition:Upper Set|upper set]] in $S$. +\end{theorem} + +\begin{proof} +Follows immediately from the definition of [[Definition:Upper Set|upper set]]. +{{qed}} +[[Category:Upper Sets]] +3b2tr3jpcfkuapt8nr2dx0ad887se19 +\end{proof}<|endoftext|> +\section{Ordered Set is Lower Set in Itself} +Tags: Lower Sets + +\begin{theorem} +Let $(S, \preceq)$ be an [[Definition:Ordered Set|ordered set]]. +Then $S$ is a [[Definition:Lower Set|lower set]] in $S$. +\end{theorem} + +\begin{proof} +Follows immediately from the definition of [[Definition:Lower Set|lower set]]. +{{qed}} +[[Category:Lower Sets]] +57868spvvmikxz5nls23916ev9xoxg8 +\end{proof}<|endoftext|> +\section{Ordered Set is Convex in Itself} +Tags: Order Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Then $S$ is a [[Definition:Convex Set (Order Theory)|convex set]] in $S$. +\end{theorem} + +\begin{proof} +Follows immediately from the definition of [[Definition:Convex Set (Order Theory)|convex set]]. +{{qed}} +[[Category:Order Theory]] +6j6iuiv0lnnhfp51h069w7inoa9hvwq +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Generalized Ordered Space/Definition 3 implies Definition 1} +Tags: Equivalence of Definitions of Generalized Ordered Space + +\begin{theorem} +Let $\left({S, \preceq, \tau}\right)$ be a [[Definition:Generalized Ordered Space/Definition 3|generalized ordered space by Definition 3]]: +{{:Definition:Generalized Ordered Space/Definition 3}} +Then $\left({S, \preceq, \tau}\right)$ is a [[Definition:Generalized Ordered Space/Definition 1|generalized ordered space by Definition 1]]: +{{:Definition:Generalized Ordered Space/Definition 1}} +\end{theorem} + +\begin{proof} +
+Let $\mathcal S$ be a [[Definition:Sub-Basis|sub-basis]] for $\tau$ consisting of [[Definition:Upper Set|upper sets]] and [[Definition:Lower Set|lower sets]]. +Let $\mathcal B$ be the [[Definition:Set|set]] of [[Definition:Set Intersection|intersections]] of [[Definition:Finite Set|finite]] [[Definition:Subset|subsets]] of $\mathcal S$. +By [[Upper Set is Convex]], [[Lower Set is Convex]] and [[Intersection of Convex Sets is Convex Set (Order Theory)]] : +:the [[Definition:Element|elements]] of $\mathcal B$ are [[Definition:Convex Set (Order Theory)|convex]]. +{{explain|Link to theorem on why this is a basis.}} +But $\mathcal B$ is a [[Definition:Basis (Topology)|basis]] for $\tau$. +Therefore $\tau$ has a [[Definition:Basis (Topology)|basis]] consisting of [[Definition:Convex Set (Order Theory)|convex sets]]. +{{qed}} +
+[[Category:Equivalence of Definitions of Generalized Ordered Space]] +et9g81yhxxur5f9ub0xyqbvfl2lbdbl +\end{proof}<|endoftext|> +\section{Strict Upper Closure is Upper Set} +Tags: Upper Sets, Upper Closures + +\begin{theorem} +Let $(S, \preceq)$ be an [[Definition:Ordered Set|ordered set]]. +Let $p \in S$. +Then $p^\succ$, the [[Definition:Strict Upper Closure|strict upper closure]] of $p$, is an [[Definition:Upper Set|upper set]]. +\end{theorem} + +\begin{proof} +Let $u \in p^\succ$. +Let $s \in S$ with $u \preceq s$. +Then by the definition of [[Definition:Strict Upper Closure|strict upper closure]]: +: $p \prec u$ +Thus by [[Extended Transitivity]]: +: $p \prec s$ +So by the definition of [[Definition:Strict Upper Closure|strict upper closure]]: +: $s \in p^\succ$ +Since this holds for all such $u$ and $s$, $p^\succ$ is an [[Definition:Upper Set|upper set]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Strict Lower Closure is Lower Set} +Tags: Lower Sets, Lower Closures, Strict Lower Closure is Lower Set + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $p \in S$. +Then $p^\prec$, the [[Definition:Strict Lower Closure of Element|strict lower closure]] of $p$, is a [[Definition:Lower Set|lower set]]. +\end{theorem} + +\begin{proof} +Let $l \in p^\prec$. +Let $s \in S$ with $s \preceq l$. +Then by the definition of [[Definition:Strict Lower Closure of Element|strict lower closure]]: +:$l \prec p$ +Thus by [[Extended Transitivity]]: +:$s \prec p$ +So by the definition of [[Definition:Strict Lower Closure of Element|strict lower closure]]: +:$s \in p^\prec$ +Since this holds for all such $l$ and $s$, $p^\prec$ is a [[Definition:Lower Set|lower set]]. +{{qed}} +\end{proof} + +\begin{proof} +By [[Dual Pairs (Order Theory)]]: +:[[Definition:Strict Upper Closure of Element|strict upper closure]] is dual to [[Definition:Strict Lower Closure of Element|strict lower closure]] +:[[Definition:Upper Set|Upper set]] is dual to [[Definition:Lower Set|lower set]] +Thus the theorem holds by [[Strict Upper Closure is Upper Set]] and the [[Duality Principle (Order Theory)/Global Duality|duality principle]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Topology Discrete iff All Singletons Open} +Tags: Topology + +\begin{theorem} +Let $(X, \tau)$ be a [[Definition:Topological Space|topological space]]. +Then $\tau$ is the [[Definition:Discrete Topology|discrete topology]] on $X$ [[Definition:iff|iff]]: +: For all $x \in X$: $\{ x \} \in \tau$ +That is, iff every [[Definition:singleton|singleton]] of $X$ is [[Definition:Open Set (Topology)|$\tau$-open]]. +\end{theorem} + +\begin{proof} +=== Forward Implication === +Follows directly from [[Set in Discrete Topology is Clopen]]. +{{qed|lemma}} +=== Reverse Implication === +{{MissingLinks}} +Suppose that: +: For all $x \in X$: $\{ x \} \in \tau$ +Let $S \subseteq X$. +Then $S = \bigcup \left\{{ \{ s \}: s \in S }\right\}$. +Then since each $\{ s \}$ is open, and a union of open sets is open, $S$ is open. +Since this holds for all $S \subseteq X$, $\tau$ is the discrete topology. +{{qed}} +[[Category:Topology]] +8ze217dzd9ex1x6k6yqayam6ogag6xk +\end{proof}<|endoftext|> +\section{Characteristic Function of Universe} +Tags: Characteristic Functions + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\chi_S: S \to \left\{ {0, 1}\right\}$ be its [[Definition:Characteristic Function of Set|characteristic function]] (in itself). +Then: +:$\chi_S = f_1$ +where $f_1: S \to \left\{ {0, 1}\right\}$ is the [[Definition:Constant Mapping|constant mapping]] with value $1$. +\end{theorem} + +\begin{proof} +From [[Characteristic Function Determined by 1-Fiber]], $\chi_S$ is the [[Definition:Mapping|mapping]] determined by: +:$\forall s \in S: \chi_S \left({s}\right) = 1 \iff s \in S$ +Thus: +:$\forall s \in S: \chi_S \left({s}\right) = 1$ +By definition of [[Definition:Constant Mapping|constant mapping]]: +:$\chi_S = f_1$ +{{qed}} +[[Category:Characteristic Functions]] +gf9zrtuostpsz441vhfkigouidtz6u6 +\end{proof}<|endoftext|> +\section{Faltings' Theorem} +Tags: Algebraic Geometry, Named Theorems: Mordell + +\begin{theorem} +Let $C$ be a [[Definition:Curve (Algebraic Geometry)|curve]] over $\Q$ of [[Definition:Genus|genus]] $g > 1$. +Then $C$ has only finitely many [[Definition:Rational Point of Curve|rational points]]. +\end{theorem} + +\begin{proof} +{{ProofWanted}} +{{Namedfor|Gerd Faltings|cat = Faltings}} +\end{proof}<|endoftext|> +\section{Supremum of Lower Closure of Set} +Tags: Lower Closures + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T \subseteq S$. +Let $L = T^\preceq$ be the [[Definition:Lower Closure of Subset|lower closure]] of $T$ in $S$. +Let $s \in S$ +Then $s$ is the [[Definition:Supremum of Set|supremum]] of $T$ {{iff}} it is the [[Definition:Supremum of Set|supremum]] of $L$. +\end{theorem} + +\begin{proof} +By [[Supremum and Infimum are Unique]] we need only show that $s$ is a [[Definition:Supremum of Set|supremum]] of $L$ {{iff}} it is a [[Definition:Supremum of Set|supremum]] of $T$. +=== Forward Implication === +Let $s$ be a [[Definition:Supremum of Set|supremum]] of $T$. +$s$ is an [[Definition:Upper Bound of Set|upper bound]] of $L$: +Let $l \in L$. +Then by the definition of [[Definition:Lower Closure of Subset|lower closure]], there is a $t \in T$ such that $l \preceq t$. +By the definition of [[Definition:Supremum of Set|supremum]], $s$ is an [[Definition:Upper Bound of Set|upper bound]] of $T$. +Thus $t \preceq s$. +Since $\preceq$ is [[Definition:Transitive Relation|transitive]], $l \preceq s$. +Since this holds for all $l \in L$, $s$ is an [[Definition:Upper Bound of Set|upper bound]] of $L$. +Suppose that $u$ is an [[Definition:Upper Bound of Set|upper bound]] of $L$. +Then since $T \subseteq L$, $u$ is an [[Definition:Upper Bound of Set|upper bound]] of $T$. +Thus by the definition of [[Definition:Supremum of Set|supremum]], $s \preceq u$. +So: +: $s$ is an [[Definition:Upper Bound of Set|upper bound]] of $L$ +: $s$ precedes all [[Definition:Upper Bound of Set|upper bounds]] of $L$ +Thus it follows that $s$ is the [[Definition:Supremum of Set|supremum]] of $L$. +{{qed|lemma}} +=== Reverse Implication === +Let $s$ be a [[Definition:Supremum of Set|supremum]] of $L$. +Then $s$ is an [[Definition:Upper Bound of Set|upper bound]] of $L$. +Since $T \subseteq L$, $s$ is an [[Definition:Upper Bound of Set|upper bound]] of $T$. +Let $u$ be any [[Definition:Upper Bound of Set|upper bound]] of $T$ and let $l \in L$. +Then by the definition of [[Definition:Lower Closure of Subset|lower closure]], there is a $t \in T$ such that $l \preceq t$. +Then since $u$ is an [[Definition:Upper Bound of Set|upper bound]] of $T$, $t \preceq u$. +Thus since $\preceq$ is [[Definition:Transitive Relation|transitive]], $l \preceq u$. +Thus $u$ is an [[Definition:Upper Bound of Set|upper bound]] of $L$. +By the definition of [[Definition:Supremum of Set|supremum]], $s \preceq u$. +Thus $s$ is an [[Definition:Upper Bound of Set|upper bound]] of $T$ which precedes every [[Definition:Upper Bound of Set|upper bound]] of $T$. +Therefore $s$ is the [[Definition:Supremum of Set|supremum]] of $T$. +{{qed}} +[[Category:Lower Closures]] +ksm1xyro52wfs8c899gn9ltzff1h9jw +\end{proof}<|endoftext|> +\section{Upper Closure is Smallest Containing Upper Set} +Tags: Upper Closures, Upper Sets + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $T \subseteq S$. +Let $U = T^\succeq$ be the [[Definition:Upper Closure of Subset|upper closure]] of $T$. +Then $U$ is the smallest [[Definition:Upper Set|upper set]] containing $T$ as a [[Definition:Subset|subset]]. +\end{theorem} + +\begin{proof} +Follows from [[Upper Closure is Closure Operator]] and [[Set Closure is Smallest Closed Set/Closure Operator]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Upper Closure is Closure Operator} +Tags: Upper Closures, Closure Operators + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $T^\succeq$ be the [[Definition:Upper Closure of Subset|upper closure]] of $T$ for each $T \subseteq S$. +Then $\cdot^\succeq$ is a [[Definition:Closure Operator|closure operator]]. +\end{theorem} + +\begin{proof} +=== Inflationary === +Let $T \subseteq S$. +Let $t \in T$. +Then since $T \subseteq S$, $t \in S$ by the definition of [[Definition:subset|subset]]. +Since $\preceq$ is [[Definition:Reflexive Relation|reflexive]], $t \preceq t$. +Thus by the definition of [[Definition:Upper Closure of Subset|upper closure]], $t \in T^\succeq$. +Since this holds for all $t \in T$, $T \subseteq T^\succeq$. +Since this holds for all $T \subseteq S$: +: $\cdot^\succeq$ is [[Definition:Inflationary Mapping|inflationary]]. +{{qed|lemma}} +=== Order-Preserving=== +Let $T \subseteq U \subseteq S$. +Let $x \in T^\succeq$. +Then by the definition of [[Definition:Upper Closure of Subset|upper closure]]: for some $t \in T$, $t \preceq x$. +By the definition of [[Definition:Subset|subset]]: +: $t \in U$ +Thus by the definition of [[Definition:Upper Closure of Subset|upper closure]]: +: $x \in U^\succeq$ +Since this holds for all $x \in T^\succeq$: +: $T^\succeq \subseteq U^\succeq$ +Since this holds for all $T$ and $U$: +: $\cdot^\succeq$ is [[Definition:Increasing Mapping|order-preserving]]. +{{qed|lemma}} +=== Idempotent === +Let $T \subseteq S$. +By [[Upper Closure is Upper Set]], $T^\succeq$ is an [[Definition:Upper Set|upper set]]. +Thus by [[Equivalence of Definitions of Upper Set]]: +: $\left({T^\succeq}\right)^\succeq = T^\succeq$ +Since this holds for all $T$: +: $\cdot^\succeq$ is [[Definition:Idempotent Mapping|idempotent]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Upper Set} +Tags: Upper Sets + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $U \subseteq S$. +{{TFAE|def = Upper Set}} +\end{theorem} + +\begin{proof} +=== Definition 1 implies Definition 2 === +Suppose that: +:$\forall u \in U: \forall s \in S: u \preceq s \implies s \in U$ +Let $k \in U^\succeq$. +Then by the definition of [[Definition:Upper Closure of Subset|upper closure]], there is some $u \in U$ such that $u \preceq k$. +Since $k \in U^\succeq \subseteq S$, the premise proves that $k \in U$. +Since this holds for all $k \in U^\succeq$, it follows that: +: $U^\succeq \subseteq U$ +{{qed|lemma}} +=== Definition 2 implies Definition 3 === +Suppose that $U^\succeq \subseteq U$. +Let $u \in U$. +Then since $U \subseteq S$, $u \in S$ by the definition of [[Definition:subset|subset]]. +Since $\preceq$ is [[Definition:Reflexive Relation|reflexive]]: +: $u \preceq u$ +Thus by the definition of [[Definition:Upper Closure of Subset|upper closure]]: +: $u \in U^\succeq$. +Since this holds for all $u \in U$: +: $U \subseteq U^\succeq$ +Thus by definition of [[Definition:Set Equality/Definition 2|set equality]]: +: $U^\succeq = U$ +{{qed|lemma}} +=== Definition 3 implies Definition 1 === +Suppose that $U^\succeq = U$. +Let $u \in U$. +Let $s \in S$. +Let $u \preceq s$. +Then by the definition of [[Definition:Upper Closure of Subset|upper closure]], $s \in U$. +Thus we have shown that: +:$\forall u \in U: \forall s \in S: u \preceq s \implies s \in U$ +{{qed}} +[[Category:Upper Sets]] +pfk2cix6ah4phtbuf7v3g63yku3xwvj +\end{proof}<|endoftext|> +\section{Topological Closure is Closure Operator} +Tags: Set Closures, Examples of Closure Operators + +\begin{theorem} +The [[Definition:Closure (Topology)|topological closure]] operator is a [[Definition:Closure Operator|closure operator]]. +\end{theorem} + +\begin{proof} +=== Extensive === +Follows from [[Set is Subset of its Topological Closure]]. +=== Increasing === +Follows immediately from [[Topological Closure of Subset is Subset of Topological Closure]]. +=== Idempotent === +Follows immediately from [[Closure of Topological Closure equals Closure]]. +{{MissingLinks|the three concepts in the headers (link in the ''text'')}} +{{qed}} +[[Category:Set Closures]] +[[Category:Examples of Closure Operators]] +7j6hyd3oqs9bvg7unfcg2u4munbralz +\end{proof}<|endoftext|> +\section{Reflexive Closure is Closure Operator} +Tags: Reflexive Closures, Closure Operators, Reflexive Closure is Closure Operator + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $R$ be the set of all [[Definition:Endorelation|endorelations]] on $S$. +Then the [[Definition:Reflexive Closure|reflexive closure]] operator on $R$ is a [[Definition:Closure Operator|closure operator]]. +\end{theorem} + +\begin{proof} +Let $\mathcal Q$ be the [[Definition:Set of Sets|set]] of [[Definition:Reflexive Relation|reflexive relations]] on $S$. +By [[Intersection of Reflexive Relations is Reflexive]], the [[Definition:Set Intersection|intersection]] of any [[Definition:subset|subset]] of $\mathcal Q$ is in $Q$. +By the definition of [[Definition:Reflexive Closure/Intersection of Reflexive Supersets|reflexive closure]] as the intersection of reflexive supersets: +:The reflexive closure of a [[Definition:Endorelation|relation]] $\mathcal R$ on $S$ is the [[Definition:Set Intersection|intersection]] of elements of $\mathcal Q$ that contain $S$. +From [[Closure Operator from Closed Sets]] we conclude that reflexive closure is a [[Definition:Closure Operator|closure operator]]. +{{qed}} +\end{proof} + +\begin{proof} +=== [[Reflexive Closure is Inflationary]] === +{{:Reflexive Closure is Inflationary}}{{qed|lemma}} +=== [[Reflexive Closure is Order Preserving]] === +{{:Reflexive Closure is Order Preserving}}{{qed|lemma}} +=== [[Reflexive Closure is Idempotent]] === +{{:Reflexive Closure is Idempotent}}{{qed|lemma}} +Thus by the definition of [[Definition:Closure Operator|closure operator]], [[Definition:Reflexive Closure|reflexive closure]] is a closure operator. +{{qed}} +\end{proof}<|endoftext|> +\section{Set Closure is Smallest Closed Set/Closure Operator} +Tags: Closure Operators, Set Closure is Smallest Closed Set + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\cl: \powerset S \to \powerset S$ be a [[Definition:Closure Operator|closure operator]]. +Let $T \subseteq S$. +Then $\map \cl T$ is the smallest [[Definition:Closed Set under Closure Operator|closed set]] (with respect to $\cl$) containing $T$ as a [[Definition:Subset|subset]]. +\end{theorem} + +\begin{proof} +By definition, $\map \cl T$ is [[Definition:Closed Set under Closure Operator|closed]]. +Let $C$ be closed. +Let $T \subseteq C$. +By the definition of [[Definition:Closure Operator|closure operator]], $\cl$ is $\subseteq$-[[Definition:Increasing Mapping|increasing]]. +So: +:$\map \cl T \subseteq \map \cl C$ +Since $C$ is [[Definition:Closed Set under Closure Operator|closed]], $\map \cl C = C$. +So: +:$\map \cl T \subseteq C$ +Thus $\map \cl T$ is the smallest [[Definition:Closed Set under Closure Operator|closed set]] containing $T$ as a [[Definition:Subset|subset]]. +{{qed}} +[[Category:Closure Operators]] +[[Category:Set Closure is Smallest Closed Set]] +rgb5hevh3a910j1evzkrqqrzjppg3ey +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Lower Set} +Tags: Lower Sets + +\begin{theorem} +{{TFAE|def = Lower Set}} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $U \subseteq S$. +Then the following are equivalent: +{{begin-axiom}} +{{axiom | n = 1 + | m = \forall u \in U: \forall s \in S: s \preceq u \implies s \in U +}} +{{axiom | n = 2 + | m = U^\preceq \subseteq U +}} +{{axiom | n = 3 + | m = U^\preceq = U +}} +{{end-axiom}} +where $U^\preceq$ is the [[Definition:Lower Closure of Subset|lower closure]] of $U$. +\end{theorem} + +\begin{proof} +By the [[Duality Principle (Order Theory)/Global Duality|Duality Principle]], it suffices to prove that: +:$(1^*)$, $(2^*)$ and $(3^*)$ are [[Definition:Logically Equivalent|equivalent]] +where these are the [[Definition:Dual Statement (Order Theory)|dual statements]] of $(1)$, $(2)$ and $(3)$, respectively. +By [[Dual Pairs (Order Theory)|Dual Pairs]], it can be seen that these dual statements are as follows: +{{begin-axiom}} +{{axiom | n = 1^* + | m = \forall u \in U: \forall s \in S: u \preceq s \implies s \in U +}} +{{axiom | n = 2^* + | m = U^\succeq \subseteq U +}} +{{axiom | n = 3^* + | m = U^\succeq = U +}} +{{end-axiom}} +Their [[Definition:Logically Equivalent|equivalence]] is proved on [[Equivalence of Definitions of Upper Set]]. +{{qed}} +[[Category:Lower Sets]] +f08gllkp30urt8cig57kk7zesq4jvog +\end{proof}<|endoftext|> +\section{Zero and One are the only Consecutive Perfect Squares/Proof 1} +Tags: Zero and One are the only Consecutive Perfect Squares + +\begin{theorem} +{{:Zero and One are the only Consecutive Perfect Squares}} +
+Let $x$ and $h$ be [[Definition:Integer|integers]] such that $x^2 + 1 = \paren {x - h}^2$ +{{begin-eqn}} +{{eqn | l = x^2 + 1 + | r = \left({x - h}\right)^2 +}} +{{eqn | l = 1 + | r = -2 x h + h^2 +}} +{{eqn | l = 2 x h + | r = h^2 - 1 +}} +{{eqn | l = 2 x h + | r = \paren {h - 1} \paren {h + 1} +}} +{{end-eqn}} +We have that [[Consecutive Integers are Coprime]]. +However, both sides must have the same unique prime factorization by the [[Fundamental Theorem of Arithmetic]] +Therefore $h$ cannot have any prime factors since they cannot be shared by $\paren {h - 1} \paren {h + 1}$. +This leaves $h = -1$, $h = 0$, or $h = 1$ as the only possibilities since they are the only integers with no prime factors. +If $h = -1$ then $h + 1 = 0$, so $2 x h = 0$. +It follows that $x = 0$. +If $h = 1$ then $h - 1 = 0$, so $2 x h = 0$. +It follows that $x = 0$. +If $h = 0$, then $2 x \cdot 0 = \paren {-1} \paren 1$, which is a [[Definition:Contradiction|contradiction]]. +Therefore the only pairs of consecutive perfect squares are: +:$0^2 = 0$ and $\paren {0 + \paren {-1} }^2 = \paren {-1}^2 = 1$ +and: +:$0^2 = 0$ and $\paren {0 + 1}^2 = 1^2 = 1$ +{{qed}} +
+[[Category:Zero and One are the only Consecutive Perfect Squares]] +htz0vf4du4yfpb36uyojnh9tye85uv2 +\end{theorem}<|endoftext|> +\section{Zero and One are the only Consecutive Perfect Squares/Proof 2} +Tags: Zero and One are the only Consecutive Perfect Squares + +\begin{theorem} +{{:Zero and One are the only Consecutive Perfect Squares}} +
+Suppose that $k, l \in \Z$ are such that their squares are consecutive, i.e.: +:$l^2 - k^2 = 1$ +Then we can factor the left-hand side as: +:$l^2 - k^2 = \left({l + k}\right) \left({l - k}\right)$ +By [[Invertible Integers under Multiplication]], it follows that: +:$l + k = \pm 1 = l - k$ +Therefore, it must be that: +:$\left({l + k}\right) - \left({l - k}\right) = 0$ +That is, $2 k = 0$, from which we conclude $k = 0$. +So if $n$ and $n + 1$ are squares, then necessarily $n = 0$. +The result follows. +{{qed}} +
+[[Category:Zero and One are the only Consecutive Perfect Squares]] +k8g8dzfo5fx677zrb5d7aaqbvi1ouhp +\end{theorem}<|endoftext|> +\section{Convergent Series of Natural Numbers} +Tags: Natural Numbers, Series + +\begin{theorem} +Let $\left({a_n}\right)_{n \in \N}$ be a [[Definition:Sequence|sequence]] of [[Definition:Natural Number|natural numbers]]. +Then the following are [[Definition:Logical Equivalence|equivalent]]: +$(1): \quad \displaystyle \sum_{n \mathop = 1}^\infty a_n$ [[Definition:Convergent Series|converges]] +$(2): \quad \exists N \in \N: \forall n \ge N: a_n = 0$ +That is, $\displaystyle \sum_{n \mathop = 1}^\infty a_n$ converges {{iff}} only [[Definition:Finite Set|finitely many]] of the $a_n$ are non-zero. +\end{theorem} + +\begin{proof} +$(1) \implies (2)$: +Suppose that there is an [[Definition:Infinity|infinite]] [[Definition:Subsequence|subsequence]] $\left({ a_{n_k} }\right)_{k \in \N}$ such that for each $k$, $a_{n_k} \neq 0$. +For $N \in \N$ let +:$\displaystyle s_N = \sum_{n \mathop = 1}^N a_n$ +To show that $s_N$ [[Definition:Divergent Sequence|diverges]] it suffices to show that: +:$\forall M > 0\ \exists N \in \N : \forall n > N : \left\vert{ s_n }\right\vert > M$ +Since for each $n$, $a_n \ge 0$, $s_N$ is a [[Definition:Positive|positive]] [[Definition:Increasing Sequence|increasing sequence]] in $N$. +Therefore it suffices to show that: +:$\forall M > 0\ \exists N \in \N : s_N > M$ +Fix $M > 0$. +Let $k$ be any positive integer such that $n_k > M$. +Then we have: +{{begin-eqn}} +{{eqn | l = s_{n_k} + | r = \sum_{n \mathop = 1}^{n_k} a_n +}} +{{eqn | r =\sum_{n \mathop = 1}^{n_k} 1 + | o = \ge + | c = as the $a_n$ are positive and non-zero +}} +{{eqn | r = n_k + | c = +}} +{{eqn | r = M + | c = By the choice of $n_k$ +}} +{{end-eqn}} +Therefore the sequence $s_N$ diverges. +$(2) \implies (1)$: +Suppose there exists $N > 0$ such that $a_n = 0$ for all $n > N$. +Then we have, for all $L > N$: +:$\displaystyle s_L = \sum_{n \mathop = 1}^L a_n = \sum_{n \mathop = 1}^N a_n = s_N$ +In particular, for any $\epsilon > 0$ and all $L > N$: +:$\left\vert{s_L - s_N}\right\vert = 0 < \epsilon$ +Therefore the sequence converges to $s_N$. +{{Qed}} +[[Category:Natural Numbers]] +[[Category:Series]] +p7ollayrl8lk9jknqx3lw4nfcmlpv5f +\end{proof}<|endoftext|> +\section{Closure Operator from Closed Sets} +Tags: Closure Operators + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $\CC$ be a set of [[Definition:Subset|subsets]] of $S$. +Let $\CC$ be closed under arbitrary [[Definition:Set Intersection|intersections]]: +:$\forall \KK \in \powerset \CC: \bigcap \KK \in \CC$ +where $\bigcap \O$ is taken to be $S$. +Define $\cl: \powerset S \to \CC$ by letting: +:$\map \cl T = \bigcap \set {C \in \CC: T \subseteq C}$ +Then $\cl$ is a [[Definition:Closure Operator|closure operator]] whose [[Definition:Closed Set under Closure Operator|closed sets]] are the elements of $\CC$. +\end{theorem} + +\begin{proof} +First we will show that $\cl$ is a [[Definition:Closure Operator|closure operator]]. +=== Inflationary === +Let $T \subseteq S$. +By [[Set Intersection Preserves Subsets/General Result/Corollary]], $T \subseteq \map \cl T$. +Since this holds for all such $T$, $\cl$ is [[Definition:Inflationary Mapping|inflationary]]. +{{qed|lemma}} +=== Increasing === +Let $T \subseteq U \subseteq S$. +Let $\TT$ and $\UU$ be the sets of elements of $\CC$ containing $T$ and $U$, respectively. +Since [[Subset Relation is Transitive]], every set containing $U$ contains $T$, so $\UU \subseteq \TT$. +By [[Intersection is Decreasing]], $\bigcap \TT \subseteq \bigcap \UU$. +Thus $\map \cl T \subseteq \map \cl U$. +{{qed|lemma}} +=== Idempotent === +Let $T \subseteq S$. +By the premise, the [[Definition:Set Intersection|intersection]] of a [[Definition:Subset|subset]] of $\CC$ is in $\CC$. +Thus in particular $\map \cl T \in \CC$. +Therefore: +:$\map \cl {\map \cl T} \subseteq \map \cl T$ +Since $\cl$ is [[Definition:Inflationary Mapping|inflationary]]: +:$\map \cl T \subseteq \map \cl {\map \cl T}$ +By definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\map \cl {\map \cl T} = \map \cl T$ +Since this holds for all $T \subseteq S$, $\cl$ is [[Definition:Idempotent Mapping|idempotent]]. +{{qed|lemma}} +Finally, we need to show that the elements of $\CC$ are the [[Definition:Closed Set/Closure Operator|closed sets]] with respect to $\cl$. +If $C \in \CC$, then since $\cl$ is [[Definition:Inflationary Mapping|inflationary]]: +:$C \subseteq \map \cl C$ +But since $C \subseteq C$, $\map \cl C \subseteq C$. +Thus by definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\map \cl C = C$ +so $C$ is [[Definition:Closed Set under Closure Operator|closed]] with respect to $\cl$. +Suppose instead that $C$ is closed with respect to $\cl$. +Then $\map \cl C = C$. +Since $\CC$ is closed under intersections, $C \in \CC$. +{{qed}} +[[Category:Closure Operators]] +8l27ak827j0rbdlqdhr4a1qkp4tt57z +\end{proof}<|endoftext|> +\section{Intersection is Decreasing} +Tags: Set Intersection + +\begin{theorem} +Let $U$ be a [[Definition:Set|set]]. +Let $\mathcal F$ and $\mathcal G$ be [[Definition:Set of Sets|sets]] of [[Definition:Subset|subsets]] of $U$. +Then $\mathcal F \subseteq \mathcal G \implies \bigcap \mathcal G \subseteq \bigcap \mathcal F$, where by convention $\bigcap \varnothing = U$. +That is, $\bigcap$ is a [[Definition:Decreasing Mapping|decreasing mapping]] from $(\mathcal P(\mathcal P(U)), \subseteq)$ to $(\mathcal P(U), \subseteq)$, where $\mathcal P(U)$ is the [[Definition:Power Set|power set]] of $U$. +\end{theorem} + +\begin{proof} +Let $\mathcal F \subseteq \mathcal G$. +Let $x \in \bigcap \mathcal G$. +Then for each $S \in \mathcal F$, $S \in \mathcal G$. +By the definition of [[Definition:Set Intersection|intersection]], $x \in S$. +Since this holds for all $S \in \mathcal F$, $x \in \bigcap \mathcal F$. +Since this holds for all $ x \in \bigcap \mathcal G$: +: $\bigcap \mathcal G \subseteq \bigcap \mathcal F$ +{{qed}} +[[Category:Set Intersection]] +n0i62gr2ponbnrgzwsyc1rt36hg0id4 +\end{proof}<|endoftext|> +\section{Open Ray is Open in GO-Space} +Tags: Generalized Ordered Spaces + +\begin{theorem} +Let $\left({S, \preceq, \tau}\right)$ be a [[Definition:Generalized Ordered Space|generalized ordered space]]. +Let $p \in S$. +Then: +: $p^\prec$ and $p^\succ$ are [[Definition:Open Set (Topology)|$\tau$-open]] +where: +: $p^\prec$ is the [[Definition:Strict Lower Closure of Element|strict lower closure]] of $p$ +: $p^\succ$ is the [[Definition:Strict Upper Closure of Element|strict upper closure]] of $p$. +\end{theorem}<|endoftext|> +\section{Open Ray is Open in GO-Space/Definition 2} +Tags: Generalized Ordered Spaces + +\begin{theorem} +Let $\struct {S, \preceq, \tau}$ be a [[Definition:Generalized Ordered Space/Definition 2|generalized ordered space by Definition 2]]. +That is: +:Let $\struct {S, \preceq}$ be a [[Definition:Totally Ordered Set|totally ordered set]]. +:Let $\struct {S, \tau}$ be a [[Definition:Topological Space|topological space]]. +Let there be: +:a [[Definition:Linearly Ordered Space|linearly ordered space]] $\struct {S', \preceq', \tau'}$ +and: +:a [[Definition:Mapping|mapping]] $\phi: S \to S'$ which is both: +::a $\preceq$-$\preceq'$ [[Definition:Order Embedding|order embedding]] +:and: +::a $\tau$-$\tau'$ [[Definition:Topological Embedding|topological embedding]]. +Let $p \in S$. +Then: +:$p^\prec$ and $p^\succ$ are [[Definition:Open Set (Topology)|$\tau$-open]] +where: +:$p^\prec$ is the [[Definition:Strict Lower Closure of Element|strict lower closure]] of $p$ +:$p^\succ$ is the [[Definition:Strict Upper Closure of Element|strict upper closure]] of $p$. +\end{theorem} + +\begin{proof} +We will prove that $p^\succ$ is [[Definition:Open Set (Topology)|open]]. +{{explain|follow by duality how?}} +That $p^\prec$ is open will follow by duality. +By [[Inverse Image under Order Embedding of Strict Upper Closure of Image of Point]]: +:$\map {\phi^{-1} } {\map \phi p^\succ} = p^\succ$ +:$\map \phi p^\succ$ is an [[Definition:Open Ray|open ray]] in $S'$ +Therefore [[Definition:Open Set (Topology)|$\tau'$-open]] by the definition of the [[Definition:Order Topology|order topology]]. +{{explain|What exactly is [[Definition:Open Set (Topology)|$\tau'$-open]] here?}} +Since $\phi$ is a topological embedding, it is [[Definition:Continuous Mapping (Topology)|continuous]]. +Thus $p^\succ$ is [[Definition:Open Set (Topology)|$\tau$-open]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Union is Increasing} +Tags: Set Union + +\begin{theorem} +Let $U$ be a [[Definition:Set|set]]. +Let $\mathcal F$ and $\mathcal G$ be [[Definition:Set of Sets|sets]] of [[Definition:Subset|subsets]] of $U$. +Then $\mathcal F \subseteq \mathcal G \implies \bigcup \mathcal F \subseteq \bigcup \mathcal G$. +That is, $\bigcup$ is an [[Definition:Increasing Mapping|increasing mapping]] from $(\mathcal P(\mathcal P(U)), \subseteq)$ to $(\mathcal P(U), \subseteq)$, where $\mathcal P(U)$ is the [[Definition:Power Set|power set]] of $U$. +\end{theorem} + +\begin{proof} +Let $\mathcal F \subseteq \mathcal G$. +Let $x \in \bigcup \mathcal F$. +Then by the definition of [[Definition:Set Union|union]], for some $S \in \mathcal F$, $x \in S$. +By the definition of [[Definition:subset|subset]], $S \in \mathcal G$. +Thus by the definition of union, $x \in \bigcup \mathcal G$. +Since this holds for all $x \in \bigcup \mathcal F$: +: $\bigcup \mathcal F \subseteq \bigcup \mathcal G$ +{{qed}} +[[Category:Set Union]] +mebmzub0fzw8n5o285nhwbfmgikasrm +\end{proof}<|endoftext|> +\section{Intersection is Idempotent/Indexed Family} +Tags: Set Intersection, Indexed Families, Idempotence + +\begin{theorem} +Let $\family {F_i}_{i \mathop \in I}$ be a non-empty [[Definition:Indexed Family of Sets|indexed family of sets]]. +Suppose that all the [[Definition:Set|sets]] in the $\family {F_i}_{i \mathop \in I}$ are the same. +That is, suppose that for some [[Definition:Set|set]] $S$: +:$\forall i \in I: F_i = S$ +Then: +:$\displaystyle \bigcap_{i \mathop \in I} F_i = S$ +where $\displaystyle \bigcap_{i \mathop \in I} F_i$ is the [[Definition:Intersection of Family|intersection of $\family {F_i}_{i \mathop \in I}$]]. +\end{theorem} + +\begin{proof} +First we show that: +:$\displaystyle \bigcap_{i \mathop \in I} F_i \subseteq S$ +Let $x \in \displaystyle \bigcap_{i \mathop \in I} F_i$. +Since $I$ is [[Definition:Non-Empty Set|non-empty]], it has an [[Definition:Element|element]] $k$. +By the definition of [[Definition:Intersection of Family|intersection]], $x \in F_k$. +By the premise, $F_k = S$, so $x \in S$. +Since this holds for all $x \in \displaystyle \bigcap_{i \mathop \in I} F_i$: +:$\displaystyle \bigcap_{i \mathop \in I} F_i \subseteq S$ +Next we show that: +:$\displaystyle S \subseteq \bigcap_{i \mathop \in I} F_i$ +Let $x \in S$. +Then for all $i \in I$, $F_i = S$, so $x \in F_i$. +Thus by the definition of [[Definition:Intersection of Family|intersection]]: +:$x \in \displaystyle \bigcap_{i \mathop \in I} F_i$ +Since this holds for all $x \in S$: +:$S \subseteq \displaystyle \bigcap_{i \mathop \in I} F_i$ +By definition of [[Definition:Set Equality|set equality]]: +:$\displaystyle \bigcap_{i \mathop \in I} F_i = S$ +{{qed}} +[[Category:Set Intersection]] +[[Category:Indexed Families]] +[[Category:Idempotence]] +h4ptw6dbvab2024vremmg8oo427n5xt +\end{proof}<|endoftext|> +\section{Factor Principles/Conjunction on Right/Formulation 1/Proof 1} +Tags: Factor Principles + +\begin{theorem} +: $p \implies q \vdash \left({p \land r}\right) \implies \left ({q \land r}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \implies q \vdash \left({p \land r}\right) \implies \left ({q \land r}\right)}} +{{Premise|1|p \implies q}} +{{IdentityLaw|2||r \implies r|(None)|This is a theorem so depends on nothing}} +{{Conjunction|3|1|\left({p \implies q}\right) \land \left({r \implies r}\right)|1|2}} +{{SequentIntro|4|1|\left({p \land r}\right) \implies \left ({q \land r}\right)|3|[[Praeclarum Theorema]]}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Factor Principles/Conjunction on Left/Formulation 1/Proof 2} +Tags: Factor Principles + +\begin{theorem} +:$p \implies q \vdash \paren {r \land p} \implies \paren {r \land q}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \implies q \vdash \paren {r \land p} \implies \paren {r \land q}}} +{{Premise|1|p \implies q}} +{{Assumption|2|r \land p}} +{{Simplification|3|1, 2|p|2|2}} +{{ModusPonens|4|1, 2|q|1|3}} +{{Simplification|5|1, 2|r|2|1}} +{{Conjunction|6|1, 2|r \land q|5|4}} +{{Implication|7|1|\paren {r \land p} \implies \paren {r \land q}|2|6}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Factor Principles/Conjunction on Left/Formulation 1/Proof 1} +Tags: Factor Principles + +\begin{theorem} +: $p \implies q \vdash \paren {r \land p} \implies \paren {r \land q}$ +\end{theorem} + +\begin{proof} +{{BeginTableau|p \implies q \vdash \paren {r \land p} \implies \paren {r \land q} }} +{{Premise|1|p \implies q}} +{{IdentityLaw|2||r \implies r|(None)|This is a theorem so depends on nothing}} +{{Conjunction|3|1|\paren {r \implies r} \land \paren {p \implies q}|2|1}} +{{SequentIntro|4|1|\paren {r \land p} \implies \paren {r \land q}|3|[[Praeclarum Theorema]]}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Constructive Dilemma for Join Semilattices} +Tags: Lattice Theory + +\begin{theorem} +Let $\struct {S, \vee, \preceq}$ be a [[Definition:Join Semilattice|join semilattice]]. +Let $a, b, c, d \in S$. +Let $a \preceq b$. +Let $c \preceq d$. +Then $\paren {a \vee c} \preceq \paren {b \vee d}$. +\end{theorem} + +\begin{proof} +By [[Join Semilattice is Ordered Structure]], $\preceq$ is [[Definition:Relation Compatible with Operation|compatible]] with $\vee$. +By the definition of [[Definition:ordering|ordering]], $\preceq$ is [[Definition:Transitive Relation|transitive]]. +Thus the theorem holds by [[Operating on Transitive Relationships Compatible with Operation]]. +{{qed}} +[[Category:Lattice Theory]] +gsg75kiusqg9sajkk7sl9l8iitilbgy +\end{proof}<|endoftext|> +\section{Praeclarum Theorema for Meet Semilattices} +Tags: Lattice Theory + +\begin{theorem} +Let $(S, \wedge, \preceq)$ be a [[Definition:Meet Semilattice|meet semilattice]]. +Let $a, b, c, d \in S$. +Let $a \preceq b$. +Let $c \preceq d$. +Then $(a \wedge c) \preceq (b \wedge d)$. +\end{theorem} + +\begin{proof} +By [[Meet Semilattice is Ordered Structure]], $\preceq$ is [[Definition:Relation Compatible with Operation|compatible]] with $\wedge$. +By the definition of [[Definition:ordering|ordering]], $\preceq$ is [[Definition:Transitive Relation|transitive]]. +Thus the theorem holds by [[Operating on Transitive Relationships Compatible with Operation]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Supremum is Increasing relative to Product Ordering} +Tags: Order Theory, Increasing Mappings + +\begin{theorem} +Let $(S, \preceq)$ be an [[Definition:Ordered Set|ordered set]]. +Let $I$ be a [[Definition:Set|set]]. +Let $f, g: I \to S$. +Let $f \left[{I}\right]$ denote the [[Definition:Image of Subset under Mapping|image of $I$ under $f$]]. +Let: +:$\forall i \in I: f \left({i}\right) \preceq g \left({i}\right)$ +That is, let $f \preceq g$ in the product ordering. +Let $f \left[{I}\right]$ and $g \left[{I}\right]$ admit [[Definition:Supremum of Set|suprema]]. +Then: +: $\sup f \left[{I}\right] \preceq \sup g \left[{I}\right]$ +\end{theorem} + +\begin{proof} +Let $x \in f \left[{I}\right]$. +Then: +:$\exists j \in I: f \left({j}\right) = x$ +Then: +:$f \left({j}\right) \prec g \left({j}\right)$ +By the definition of [[Definition:Supremum of Set|supremum]]: +:$\sup g \left[{I}\right]$ is an [[Definition:Upper Bound of Set|upper bound]] of $g \left[{I}\right]$ +Thus: +:$g \left({j}\right) \preceq \sup g \left[{I}\right]$ +Since $\preceq$ is [[Definition:Transitive Relation|transitive]]: +:$x = f \left({j}\right) \preceq \sup g \left[{I}\right]$ +Since this holds for all $x \in f \left[{I}\right]$, $\sup g \left[{I}\right]$ is an [[Definition:Upper Bound of Set|upper bound]] of $f \left[{I}\right]$. +Thus by the definition of [[Definition:Supremum of Set|supremum]]: +:$\sup f \left[{I}\right] \preceq \sup g \left[{I}\right]$ +{{qed}} +[[Category:Order Theory]] +[[Category:Increasing Mappings]] +t4ucd6b4ofbzzdyz2idqo0fxee3o15s +\end{proof}<|endoftext|> +\section{Reflexive Closure of Strict Ordering is Ordering} +Tags: Order Theory, Reflexive Closures + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $\prec$ be a [[Definition:Strict Ordering|strict ordering]] on $S$. +Let $\preceq$ be the [[Definition:Reflexive Closure|reflexive closure]] of $\prec$. +Then $\preceq$ is an [[Definition:ordering|ordering]]. +\end{theorem} + +\begin{proof} +Since $\prec$ is a [[Definition:Strict Ordering|strict ordering]], it is by definition [[Definition:Transitive Relation|transitive]] and [[Definition:Asymmetric Relation|asymmetric]]. +By [[Asymmetric Relation is Antisymmetric]], $\prec$ is [[Definition:Antisymmetric Relation|antisymmetric]]. +Thus by [[Reflexive Closure of Transitive Antisymmetric Relation is Ordering]], $\preceq$ is an [[Definition:Ordering|ordering]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Reflexive Closure is Reflexive} +Tags: Reflexive Closures + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Binary Relation|relation]] on a [[Definition:Set|set]] $S$. +Then $\mathcal R^=$, the [[Definition:Reflexive Closure|reflexive closure]] of $\mathcal R$, is [[Definition:Reflexive Relation|reflexive]]. +\end{theorem} + +\begin{proof} +Recall the definition of [[Definition:Reflexive Closure/Union with Diagonal|reflexive closure]]: +:$\mathcal R^= := \mathcal R \cup \Delta_S$ +From [[Set is Subset of Union]]: +:$\Delta_S \subseteq \mathcal R^=$ +The result follows directly from [[Relation Contains Diagonal Relation iff Reflexive]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Reflexive Closure} +Tags: Reflexive Closures + +\begin{theorem} +{{TFAE|def = Reflexive Closure}} +Let $\RR$ be a [[Definition:Binary Relation|relation]] on a [[Definition:Set|set]] $S$. +\end{theorem} + +\begin{proof} +Let $\RR$ be a [[Definition:Endorelation|relation]] on a [[Definition:set|set]] $S$. +=== [[Definition:Reflexive Closure/Union with Diagonal|Union with Diagonal]] is [[Definition:Reflexive Closure/Smallest Reflexive Superset|Smallest Reflexive Superset]] === +Let $\Delta_S$ be the [[Definition:Diagonal Relation|diagonal relation]] on $S$. +Let $\RR^= = \RR \cup \Delta_S$ +By [[Smallest Element is Unique]], at most one [[Definition:Endorelation|relation]] on $S$ can be the [[Definition:Smallest Set by Set Inclusion|smallest]] [[Definition:Reflexive Relation|reflexive]] [[Definition:Superset|superset]] of $\RR$. +From [[Subset of Union]]: +:$\RR \subseteq \RR^=$ +:$\Delta_S \subseteq \RR^=$ +By [[Relation Contains Diagonal Relation iff Reflexive]], $\RR^=$ is [[Definition:Reflexive Relation|reflexive]]. +Thus $\RR^=$ is a [[Definition:Reflexive Relation|reflexive relation]] containing $\RR$. +Again by [[Relation Contains Diagonal Relation iff Reflexive]], ''every'' reflexive relation containing $\RR$ must also contain $\Delta_S$. +From [[Union is Smallest Superset]], it follows that $\RR^=$ is the [[Definition:Smallest Set by Set Inclusion|smallest]] [[Definition:Reflexive Relation|reflexive relation]] on $S$ which [[Definition:Subset|contains]] $\RR$. +{{qed|lemma}} +=== [[Definition:Reflexive Closure/Intersection of Reflexive Supersets|Intersection of Reflexive Supersets]] is [[Definition:Reflexive Closure/Union with Diagonal|Union with Diagonal]] === +Let $\QQ$ be the [[Definition:set|set]] of all [[Definition:Reflexive Relation|reflexive relations]] containing $\RR$ as a [[Definition:Subset|subset]]. +Let $\RR^= = \bigcap \QQ$. +By the above proof that $\RR \cup \Delta_S$ is a reflexive relation containing $\RR$: +:$\RR \cup \Delta_S \in \QQ$ +By [[Intersection is Subset]]: +:$\RR^= \subseteq \RR \cup \Delta_S$ +By the above proof that $\RR \cup \Delta_S$ is the smallest reflexive relation containing $\RR$: +:$\forall \PP \in \QQ: \RR \cup \Delta_S \subseteq \PP$ +By [[Intersection is Largest Subset/Set of Sets|Intersection is Largest Subset]]: +:$\RR \cup \Delta_S \subseteq \RR^=$ +Thus by definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\RR^= = \RR \cup \Delta_S$ +{{qed}} +[[Category:Reflexive Closures]] +fu65mekifuk8slb72c8z8wsj4zcft5m +\end{proof}<|endoftext|> +\section{Reflexive Closure is Inflationary} +Tags: Reflexive Closures + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $R$ denote the set of all [[Definition:Endorelation|endorelations]] on $S$. +Then the [[Definition:Reflexive Closure|reflexive closure]] operator is an [[Definition:Inflationary Mapping|inflationary mapping]] on $R$. +\end{theorem} + +\begin{proof} +Let $\mathcal R \in R$. +The [[Definition:Reflexive Closure/Union with Diagonal|reflexive closure]] $\mathcal R^=$ of $\mathcal R$ is defined as: +:$\mathcal R^= := \mathcal R \cup \Delta_S$ +From [[Set is Subset of Union]]: +:$\mathcal R \subseteq \mathcal R^=$ +Hence the [[Definition:Reflexive Closure|reflexive closure]] operator is an [[Definition:Inflationary Mapping|inflationary mapping]]. +\end{proof}<|endoftext|> +\section{Reflexive Closure is Order Preserving} +Tags: Reflexive Closures + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $R$ denote the set of all [[Definition:Endorelation|endorelations]] on $S$. +Then the [[Definition:Reflexive Closure|reflexive closure]] operator is an [[Definition:Increasing Mapping|order preserving mapping]] on $R$. +That is: +:$\forall \RR, \SS \in R: \RR \subseteq \SS \implies \mathcal R^= \subseteq \SS^=$ +where $\RR^=$ and $\SS^=$ denote the reflexive closure of $\RR$ and $\SS$ respectively. +\end{theorem} + +\begin{proof} +Let $\RR, \SS \in R$. +Suppose: +:$\RR \subseteq \SS$ +Their respective [[Definition:Reflexive Closure/Union with Diagonal|reflexive closures]] $\RR^=$ and $\SS^=$ are defined as: +:$\RR^= := \RR \cup \Delta_S$ +:$\SS^= := \SS \cup \Delta_S$ +Hence by [[Set Union Preserves Subsets/Corollary|Corollary to Set Union Preserves Subsets]]: +:$\RR^= \subseteq \SS^=$ +\end{proof}<|endoftext|> +\section{Reflexive Closure is Idempotent} +Tags: Reflexive Closures + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $R$ denote the set of all [[Definition:Endorelation|endorelations]] on $S$. +Then the [[Definition:Reflexive Closure|reflexive closure]] operator is an [[Definition:Idempotent Mapping|idempotent mapping]] on $R$. +That is: +:$\forall \RR \in R: \RR^= = \paren {\RR^=}^=$ +where $\RR^=$ denotes the reflexive closure of $\RR$. +\end{theorem} + +\begin{proof} +Let $\RR \in R$. +By the definition of [[Definition:Reflexive Closure/Union with Diagonal|reflexive closure]]: +:$\RR^= = \RR \cup \Delta_S$ +:$\paren {\RR^=}^= = \paren {\RR \cup \Delta_S} \cup \Delta_S$ +By [[Union is Associative]]: +:$\paren {\RR^=}^= = \RR \cup \paren {\Delta_S \cup \Delta_S}$ +By [[Union is Idempotent]]: +:$\paren {\RR^=}^= = \RR \cup \Delta_S$ +Hence: +:$\forall \RR \in R: \RR^= = \paren {\RR^=}^=$ +\end{proof}<|endoftext|> +\section{Transitive Closure Always Exists (Relation Theory)} +Tags: Transitive Closures + +\begin{theorem} +Let $\RR$ be a [[Definition:Relation|relation]] on a [[Definition:Set|set]] $S$. +Then the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] $\RR^+$ of $\RR$ always exists. +\end{theorem} + +\begin{proof} +First, note that there exists at least one [[Definition:Transitive Relation|transitive relation]] containing $\mathcal R$. +That is, the [[Definition:Trivial Relation|trivial relation]] $S \times S$, which is [[Trivial Relation is Equivalence|an equivalence]] and therefore [[Definition:Transitive Relation|transitive]] by [[Definition:Equivalence Relation|definition]]. +Next, note that the [[Intersection of Transitive Relations is Transitive]]. +Hence the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] of $\mathcal R$ is the [[Definition:Set Intersection|intersection]] of all [[Definition:Transitive Relation|transitive relations]] containing $\mathcal R$. +\end{proof} + +\begin{proof} +Note that the [[Definition:Trivial Relation|trivial relation]] $\mathcal T = S \times S$ on $S$ contains $\mathcal R$, by definition. +Further, $\mathcal T$ is [[Definition:Transitive Relation|transitive]] by [[Trivial Relation is Equivalence]]. +Thus there is at least one [[Definition:Transitive Relation|transitive relation]] on $S$ that contains $\mathcal R$. +Now define $\mathcal R^\cap$ as the [[Definition:Set Intersection|intersection]] of all [[Definition:Transitive Relation|transitive relations]] on $S$ that contain $\mathcal R$: +:$\displaystyle \mathcal R^\cap := \bigcap \left\{{\mathcal R': \text{$\mathcal R'$ is transitive and $\mathcal R \subseteq \mathcal R'$}}\right\}$ +By [[Intersection of Transitive Relations is Transitive]], $\mathcal R^\cap$ is also a [[Definition:Transitive Relation|transitive relation]] on $S$. +By [[Set Intersection Preserves Subsets]], it also holds that $\mathcal R \subseteq \mathcal R^\cap$. +Lastly, by [[Intersection is Subset]], for any [[Definition:Transitive Relation|transitive relation]] $\mathcal R'$ containing $\mathcal R$, it must be that $\mathcal R^\cap \subseteq \mathcal R'$. +Thus $\mathcal R^\cap$ is indeed the [[Definition:Minimal Element|minimal]] [[Definition:Transitive Relation|transitive relation]] on $S$ containing $\mathcal R$. +That is, $\mathcal R^+ = \mathcal R^\cap$, and thence the [[Definition:Transitive Closure of Relation|transitive closure]] of $\mathcal R$ exists. +{{qed}} +\end{proof}<|endoftext|> +\section{Transitive Closure Always Exists (Relation Theory)/Proof 1} +Tags: Transitive Closures + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Relation|relation]] on a [[Definition:Set|set]] $S$. +Then the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] $\mathcal R^+$ of $\mathcal R$ always exists. +\end{theorem} + +\begin{proof} +First, note that there exists at least one [[Definition:Transitive Relation|transitive relation]] containing $\mathcal R$. +That is, the [[Definition:Trivial Relation|trivial relation]] $S \times S$, which is [[Trivial Relation is Equivalence|an equivalence]] and therefore [[Definition:Transitive Relation|transitive]] by [[Definition:Equivalence Relation|definition]]. +Next, note that the [[Intersection of Transitive Relations is Transitive]]. +Hence the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] of $\mathcal R$ is the [[Definition:Set Intersection|intersection]] of all [[Definition:Transitive Relation|transitive relations]] containing $\mathcal R$. +\end{proof}<|endoftext|> +\section{Transitive Closure Always Exists (Relation Theory)/Proof 2} +Tags: Transitive Closures + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Relation|relation]] on a [[Definition:Set|set]] $S$. +Then the [[Definition:Transitive Closure of Relation|transitive closure]] $\mathcal R^+$ of $\mathcal R$ always exists. +\end{theorem} + +\begin{proof} +Note that the [[Definition:Trivial Relation|trivial relation]] $\mathcal T = S \times S$ on $S$ contains $\mathcal R$, by definition. +Further, $\mathcal T$ is [[Definition:Transitive Relation|transitive]] by [[Trivial Relation is Equivalence]]. +Thus there is at least one [[Definition:Transitive Relation|transitive relation]] on $S$ that contains $\mathcal R$. +Now define $\mathcal R^\cap$ as the [[Definition:Set Intersection|intersection]] of all [[Definition:Transitive Relation|transitive relations]] on $S$ that contain $\mathcal R$: +:$\displaystyle \mathcal R^\cap := \bigcap \left\{{\mathcal R': \text{$\mathcal R'$ is transitive and $\mathcal R \subseteq \mathcal R'$}}\right\}$ +By [[Intersection of Transitive Relations is Transitive]], $\mathcal R^\cap$ is also a [[Definition:Transitive Relation|transitive relation]] on $S$. +By [[Set Intersection Preserves Subsets]], it also holds that $\mathcal R \subseteq \mathcal R^\cap$. +Lastly, by [[Intersection is Subset]], for any [[Definition:Transitive Relation|transitive relation]] $\mathcal R'$ containing $\mathcal R$, it must be that $\mathcal R^\cap \subseteq \mathcal R'$. +Thus $\mathcal R^\cap$ is indeed the [[Definition:Minimal Element|minimal]] [[Definition:Transitive Relation|transitive relation]] on $S$ containing $\mathcal R$. +That is, $\mathcal R^+ = \mathcal R^\cap$, and thence the [[Definition:Transitive Closure of Relation|transitive closure]] of $\mathcal R$ exists. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Transitive Closure (Relation Theory)/Union of Compositions is Smallest} +Tags: Equivalence of Definitions of Transitive Closure (Relation Theory) + +\begin{theorem} +Let $\RR$ be a [[Definition:Endorelation|relation]] on a [[Definition:Set|set]] $S$. +Let: +:$\RR^n := \begin{cases} +\RR & : n = 0 \\ +\RR^{n - 1} \circ \RR & : n > 0 +\end{cases}$ +where $\circ$ denotes [[Definition:Composition of Relations|composition of relations]]. +{{explain|Really? I would have thought $\RR^1 {{=}} \RR$, not $\RR^0 {{=}} \RR$. If anything, the [[Definition:Diagonal Relation|diagonal relation]] $\Delta_S$ should be $\RR^0$.}} +Finally, let: +:$\displaystyle \RR^+ = \bigcup_{i \mathop \in \N} \RR^i$ +Then $\RR^+$ is the [[Definition:Smallest Set by Set Inclusion|smallest]] [[Definition:Transitive Relation|transitive relation]] on $S$ that [[Definition:Subset|contains]] $\RR$. +\end{theorem} + +\begin{proof} +==== $\RR^+$ is Transitive ==== +By [[Relation contains Composite with Self iff Transitive]], we can prove that $\RR^+$ is [[Definition:Transitive Relation|transitive]] by proving the following: +:$\RR^+ \circ \RR^+ \subseteq \RR^+$ +Let $\tuple {a, c} \in \RR^+ \circ \RR^+$. +Then: +:$\exists b \in S: \tuple {a, b} \in \RR^+, \tuple {b, c} \in \RR^+$ +Thus: +:$\exists n \in \N: \tuple {a, b} \in \RR^n$ +:$\exists m \in \N: \tuple {b, c} \in \RR^m$ +From [[Composition of Relations is Associative]]: +:$\RR^{n + m} = \RR^n \circ \RR^m$ +so: +:$\tuple {a, c} \in \RR^{n + m} \subseteq \RR^+$ +Since this holds for all $\tuple {a, c} \in \RR^+ \circ \RR^+$: +:$\RR^+ \circ \RR^+ \subseteq \RR^+$ +Thus $\RR^+$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +==== $\RR^+$ contains $\RR$ ==== +$\RR \subseteq \RR^+$ by [[Set is Subset of Union/Family of Sets|Set is Subset of Union]]. +==== $\RR^+$ is Smallest ==== +Let $\RR'$ be a [[Definition:Transitive Relation|transitive relation]] on $S$ such that $\RR \subseteq \RR'$. +We must show that $\RR^+ \subseteq \RR'$. +Let $\tuple {a, b} \in \RR^+$. +That is: +:$a \mathrel \RR b$ +Then: +:$\exists n \in \N: \tuple {a, b} \in \RR^n$ +Thus by the definition of [[Definition:Composition of Relations|composition of relations]], there exists $x_{n-1} \in S$ such that: +:$a \mathrel {\RR^{n - 1} } x_{n - 1} \land x_{n - 1} \mathrel \RR b$ +Likewise there exists $x_{n-2} \in S$ such that: +:$a \mathrel {\RR^{n - 2} } x_{n - 2} \land x_{n - 2} \mathrel \RR x_{n - 1}$ + +And so forth there exist elements $x_0, \dots, x_n \in S$ such that: +:$x_0 = a$ +:$x_n = b$ +:$\forall k \in \N_n: x_k \mathrel \RR x_{k + 1}$ +Since $\RR \subseteq \RR'$: +:$\forall k \in \N_n: x_k \mathrel {\RR'} x_{k + 1}$ +Since $\RR'$ is [[Definition:Transitive Relation|transitive]]: +:$a \mathrel {\RR'} b$ +That is: +:$\tuple {a, b} \in \RR'$ +Since this holds for all $\tuple {a, b} \in \RR^+$: +:$\RR^+ \subseteq \RR'$ +Since this holds for all transitive relations $\RR'$ that contain $\RR$: +$\RR^+$ is the [[Definition:Smallest Set by Set Inclusion|smallest]] transitive relation containing $\RR$. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Transitive Closure (Relation Theory)/Finite Chain Equivalent to Union of Compositions} +Tags: Equivalence of Definitions of Transitive Closure (Relation Theory) + +\begin{theorem} +The [[Definition:Transitive Closure (Relation Theory)/Finite Chain|finite chain]] and [[Definition:Transitive Closure (Relation Theory)/Union of Compositions|union of compositions]] definitions of '''transitive closure''' are equivalent. +\end{theorem} + +\begin{proof} +{{explain|more detail required}} +Follows from the definition of [[Definition:Composition of Relations|composition of relations]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Chasles' Relation} +Tags: Affine Geometry + +\begin{theorem} +Let $\mathcal E$ be an [[Definition:Affine Space|affine space]]. +Let $p, q, r \in \mathcal E$ be points. +Then: +:$\vec{p q} = \vec{p r} + \vec{r q}$ +\end{theorem} + +\begin{proof} +We have: +{{begin-eqn}} +{{eqn|l = \vec{p r} + \vec{r q} + |r = \left({r - p}\right) + \left({q - r}\right) + |c = Definition [[Definition:Vector (Affine Geometry)|Vector in Affine Space]] +}} +{{eqn|r = \left({r + \left({q - r}\right)}\right) - p + |c = Definition of [[Definition:Affine Space|Affine Space: axiom $(A3)$]] +}} +{{eqn|r = q - p + |c = Definition of [[Definition:Affine Space|Affine Space: axiom $(A1)$]] +}} +{{eqn|r = \vec{p q} + |c = Definition [[Definition:Vector (Affine Geometry)|Vector in Affine Space]] +}} +{{end-eqn}} +{{Qed}} +{{namedfor|Michel Chasles|cat=Chasles}} +[[Category:Affine Geometry]] +8ncowekvl3l3sifurb0613kogovvmkk +\end{proof}<|endoftext|> +\section{Affine Coordinates are Well-Defined} +Tags: Affine Geometry + +\begin{theorem} +Let $\mathcal E$ be an [[Definition:Affine Space|affine space]] with [[Definition:Difference Space|difference space]] $V$ over a [[Definition:Field (Abstract Algebra)|field]] $k$. +Let $\mathcal R = \left({p_0, e_1, \ldots, e_n}\right)$ be an [[Definition:Affine Frame|affine frame]] in $\mathcal E$. +Define a mapping $\Theta_{\mathcal R} : k^n \to \mathcal E$ by: +:$\displaystyle \Theta_\mathcal R \left({\lambda_1, \ldots, \lambda_n}\right) = p_0 + \sum_{i \mathop = 1}^n \lambda_i e_i$ +Then $\Theta_\mathcal R$ is a [[Definition:Bijection|bijection]]. +\end{theorem} + +\begin{proof} +=== Proof of Surjection === +Let $p \in \mathcal E$. +Let $v = p - p_0 \in V$. +Let $\left({\lambda_1, \ldots, \lambda_n}\right)$ be [[Definition:Coordinate|coordinates]] of $v$ in the [[Definition:Ordered Basis|basis]] $\left({e_1, \ldots, e_n}\right)$. +Then: +{{begin-eqn}} +{{eqn|l = p_0 + \sum_{i \mathop = 1}^n \lambda_ie_i + |r = p_0 + v +}} +{{eqn|r = p_0 + \left({p - p_0}\right) +}} +{{eqn|r = p +}} +{{end-eqn}} +thus demonstrating that $\Theta_\mathcal R$ is a [[Definition:Surjection|surjection]]. +=== Proof of Injection === +Let: +:$\Theta_\mathcal R \left({\lambda_1, \ldots, \lambda_n}\right) = \Theta_\mathcal R \left({\mu_1, \ldots, \mu_n}\right)$ +That is: +:$\displaystyle p_0 + \sum_{i \mathop = 1}^n \lambda_i e_i = p_0 + \sum_{i \mathop = 1}^n \mu_i e_i$ +Then by $(3)$ of [[Properties of Affine Spaces]]: +:$\displaystyle \sum_{i \mathop = 1}^n \lambda_i e_i = \sum_{i \mathop = 1}^n \mu_i e_i$ +By [[Expression of Vector as Linear Combination from Basis is Unique]]: +: $\lambda_i = \mu_i$ +for $i = 1, \ldots, n$. +Hence the result. +{{Qed}} +[[Category:Affine Geometry]] +o23me65r2z1l0vvbrkmcidnuk3vnftm +\end{proof}<|endoftext|> +\section{Barycenter Exists and is Well Defined} +Tags: Affine Geometry + +\begin{theorem} +Let $\mathcal E$ be an [[Definition:Affine Space|affine space]] over a [[Definition:Field (Abstract Algebra)|field]] $k$. +Let $p_1, \ldots, p_n \in \mathcal E$ be points. +Let $\lambda_1, \ldots, \lambda_n \in k$ such that $\displaystyle \sum_{i \mathop = 1}^n \lambda_i = 1$. +Then the [[Definition:Barycentre|barycentre]] of $p_1, \ldots, p_n$ with weights $\lambda_1, \ldots, \lambda_n$ exists and is unique. +\end{theorem} + +\begin{proof} +Let $r$ be any point in $\mathcal E$. +Set: +:$\displaystyle q = r + \sum_{i \mathop = 1}^n \lambda_i \vec{r p_i}$ +We are required to prove that for any other point $m \in \mathcal E$: +:$\displaystyle q = m + \sum_{i \mathop = 1}^n \lambda_i \vec{m p_i}$ +So: +{{begin-eqn}} +{{eqn | l = m + \sum_{i \mathop = 1}^n \lambda_i \vec{m p_i} + | r = m + \sum_{i \mathop = 1}^n \lambda_i \left({\vec{m r} + \vec{r p_i} }\right) + | c = [[Chasles' Relation]] +}} +{{eqn | r = m + \left(\sum_{i \mathop = 1}^n \lambda_i\right) \vec{m r} + \sum_{i \mathop = 1}^n \lambda_i \vec{r p_i} +}} +{{eqn | r = m + \vec{m r} + \sum_{i \mathop = 1}^n \lambda_i \vec{r p_i} + | c = by the assumption $\displaystyle \sum_{i \mathop = 1}^n \lambda_i = 1$ +}} +{{eqn | r = r + \sum_{i \mathop = 1}^n \lambda_i \vec{r p_i} + | c = Axiom $(1)$ for an [[Definition:Affine Space|affine space]] +}} +{{eqn | r = q + | c = Definition of $q$ +}} +{{end-eqn}} +Hence the result. +{{Qed}} +[[Category:Affine Geometry]] +0pqxk9fc9gk6u8augbzooca1p170whd +\end{proof}<|endoftext|> +\section{Transitive Chaining} +Tags: Transitive Relations + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Transitive Relation|transitive relation]] on a [[Definition:Set|set]] $S$. +Let $n \in \N$ be a [[Definition:Natural Number|natural number]]. +Let $n \ge 2$. +Let $\langle x_k \rangle_{k \in \left\{ {1, 2, \dots, n}\right\} }$ be a [[Definition:Sequence of n Terms|sequence of $n$ terms]]. +For each $k \in \left\{ {1, 2, \dots, n-1}\right\}$, let $x_k \mathrel {\mathcal R} x_{k+1}$. +That is, let $x_1 \mathrel {\mathcal R} x_2$, $x_2 \mathrel {\mathcal R} x_3, \dotsc, x_n-1 \mathrel {\mathcal R} x_n$. +Then $x_1 \mathrel {\mathcal R} x_n$ +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|induction]] on $n$, the number of terms in the [[Definition:Finite Sequence|sequence]]. +We first define a [[Definition:Propositional Function|propositional function]], $P$, as follows: +For each $n \in \N$ such that $n \ge 2$, let $P(n)$ be the [[Definition:Proposition|proposition]] that if both of the following hold: +: $\langle x_k \rangle_{k \in \left\{ {1, 2, \dots, n}\right\} }$ is a [[Definition:Sequence of n Terms|sequence of $n$ terms]] +: $\forall k \in \left\{ {1, 2, \dots, n-1}\right\}: x_k \mathrel {\mathcal R} x_{k+1}$ +then $x_1 \mathrel {\mathcal R} x_n$. +=== Basis for the Induction === +The case $n = 2$ is verified as follows: +In this case, the [[Definition:Finite Sequence|sequence]] has only two elements, $x_1$ and $x_2$. +Thus by the premise, $x_1 \mathrel {\mathcal R} x_2$, so $P(2)$ holds. +This is the [[Principle of Mathematical Induction#Basis for the Induction|basis for the induction]]. +=== Induction Hypothesis === +Fix $n \in \N$ with $n \ge 2$. +Suppose that $P(n)$ holds. +This is our [[Principle of Mathematical Induction#Induction Hypothesis|induction hypothesis]]. +=== Induction Step === +This is our [[Principle of Mathematical Induction#Induction Step|induction step]]: +Let $\langle x_k \rangle_{k \in \left\{ {1, 2, \dots, n, n+1}\right\} }$ be a [[Definition:Sequence of n Terms|sequence of $n+1$ terms]]. +For each $k \in \left\{ {1, 2, \dots, n-1, n}\right\}$, let $x_k \mathrel{\mathcal R} x_{k+1}$. +In particular, $x_n \mathrel{\mathcal R} x_{n+1}$. +By the [[#Induction Hypothesis|induction hypothesis]]: +:$x_1 \mathrel{\mathcal R} x_n$. +Thus since $\mathcal R$ is [[Definition:Transitive Relation|transitive]]: +:$x_1 \mathrel {\mathcal R} x_{n+1}$ +We conclude that $P(n+1)$ holds. +The result follows by the [[Principle of Mathematical Induction]]. +{{qed}} +[[Category:Transitive Relations]] +a0r2ufbrr8fyp3k1s5ddqbgb6lgb7ar +\end{proof}<|endoftext|> +\section{Szpilrajn Extension Theorem} +Tags: Order Theory + +\begin{theorem} +Let $\struct {S, \prec}$ be a [[Definition:Strictly Ordered Set|strictly ordered set]]. +{{Disambiguate|Definition:Strictly Ordered Set}} +Then there is a [[Definition:Strict Total Ordering|strict total ordering]] on $S$ of which $\prec$ is a [[Definition:Subset|subset]]. +\end{theorem} + +\begin{proof} +{{proof wanted}} +{{Namedfor|Edward Szpilrajn|cat = Marczewski}} +[[Category:Order Theory]] +lji5i6b8gp30a7jge1hz1i76m5xmudk +\end{proof}<|endoftext|> +\section{Strict Ordering can be Expanded to Compare Additional Pair} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \prec}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $a$ and $b$ be distinct, [[Definition:Non-Comparable|$\prec$-incomparable]] elements of $S$. +That is, let: +:$a \not \prec b$ and $b \not \prec a$. +Let ${\prec'} = {\prec} \cup \left\{ {\left({a, b}\right)} \right\}$. +Define a [[Definition:Endorelation|relation]] $\prec'^+$ by letting $p \prec'^+ q$ {{iff}}: +: $p \prec q$ +or: +: $p \preceq a$ and $b \preceq q$ +where $\preceq$ is the [[Definition:Reflexive Closure|reflexive closure]] of $\prec$. +Then: +: $\prec'^+$ is a [[Definition:Strict Ordering|strict ordering]] +: $\prec^+$ is the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] of $\prec'$. +\end{theorem} + +\begin{proof} +First, note that since $\prec$ is a [[Definition:Strict Ordering|strict ordering]], $\preceq$ is an [[Definition:Ordering|ordering]] by [[Reflexive Closure of Strict Ordering is Ordering]]. +=== $a$ and $b$ are $\preceq$-incomparable === +Suppose that $a \preceq b$. +By the definition of [[Definition:Reflexive Closure|reflexive closure]], either $a \prec b$ or $a = b$. +Each possibility contradicts one of the premises, so $a \not \preceq b$. +For the same reasons, $b \not \preceq a$. +{{qed|lemma}} +=== $\prec'^+$ is antireflexive === +Let $p \in S$. +Then by the definition of [[Definition:Strict Ordering|strict ordering]]: +$p \not\prec p$. +Suppose that $p \preceq a$ and $b \preceq p$. +Then since $\preceq$ is [[Definition:Transitive Relation|transitive]], $b \preceq a$, contradicting the fact that $a$ and $b$ are [[Definition:Non-Comparable|$\preceq$-incomparable]]. +Since neither $p \prec p$ nor $\paren {p \preceq a \land \paren {b \preceq p}$ holds: +:$p \not \prec'^+ p$. +Since this is the case for all $p \in S$, $\prec'^+$ is [[Definition:Antireflexive Relation|antireflexive]]. +{{qed|lemma}} +=== $\prec'^+$ is transitive === +Let $p \prec'^+ q$ and $q \prec'^+ r$. +Then there are three possibilities: +$(1): \quad p \prec q$ and $p \prec r$ +Because $\prec$ is [[Definition:Transitive Relation|transitive]]: +:$p \prec r$ +Thus: +:$p \prec'^+ r$ +$(2): \quad p \prec q$, $q \preceq a$, and $b \preceq r$ +By [[Extended Transitivity]], $p \prec a$. +Since $p \prec a$ and $b \prec r$: +:$p \prec'^+ r$ +$(3): \quad p \preceq a$, $b \preceq q$, and $q \prec r$ +By [[Extended Transitivity]]: +:$b \prec r$ +Therefore: +:$b \preceq r$ +Since $p \preceq a$ and $b \preceq r$: +: $p \prec'^+ r$ +Note that it is impossible to have $p \preceq a$, $b \preceq q$, $q \preceq a$ and $b \preceq r$. +If that were so, $b \preceq q$ and $q \preceq a$ together would imply by transitivity that $b \preceq a$. +But this contradicts the fact that $a$ and $b$ are [[Definition:Non-Comparable|$\preceq$-incomparable]]. +Thus in all cases, $p \prec'^+ q$ and $q \prec'^+ r$ imply $p \prec'^+ r$, so $\prec'^+$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +Since $\prec'^+$ is [[Definition:Transitive Relation|transitive]] and [[Definition:Antireflexive Relation|antireflexive]], it is by definition a [[Definition:Strict Ordering|strict ordering]]. +=== $\prec'^+$ is the transitive closure of $\prec'$ === +First note that $\prec'$ is a [[Definition:Subset|subset]] of $\prec'^+$: +If $p \prec' q$ then either +:$p \prec q$ or +:$p = a$ and $q = b$ +If $p \prec q$ then $p \prec'^+ q$ by definition. +If $p = a$ and $q = b$, then $p \preceq a$ and $q \preceq b$ by the definition of $\preceq$. +Thus $p \prec'^+ q$ by the definition of $\preceq'^+$. +Let $\mathcal R$ be a [[Definition:Transitive Relation|transitive relation]] [[Definition:Subset|containing]] $\prec'$. +Let $p, q \in S$ and let $p \prec'^+ q$. +Then either: +:$p \prec q$ or +:$p \preceq a$ and $b \preceq q$ +If $p \prec q$, then by the definition of [[Definition:Subset|subset]], $p \mathrel {\mathcal R} q$. +Suppose instead that $p \preceq a$ and $b \preceq q$. By the definition of $\preceq'$, $a \preceq' b$. +Since [[Reflexive Closure is Closure Operator]], it is [[Definition:Increasing Mapping|increasing]], so $\preceq \subseteq \mathcal R^=$. +Thus $p \mathrel {\mathcal R}^= a$, $a \mathrel {\mathcal R}^= b$, and $b \mathrel {\mathcal R}^= q$. +Since $\mathcal R$ is transitive, $\mathcal R^=$ is as well, by [[Reflexive Closure of Transitive Relation is Transitive]]. +Thus $p \mathrel {\mathcal R}^= q$. +Since $\preceq'^+$ is [[Definition:Antireflexive Relation|antireflexive]] and we assumed $p \preceq'^+ q$, we conclude that $p \ne q$. +Thus by the definition of [[Definition:Reflexive Closure|reflexive closure]]: +:$p \mathrel {\mathcal R} q$ +Thus we have shown that $\preceq'^+$ is a subset of $\mathcal R$. +Since this holds when $\mathcal R$ is any transitive superset of $\preceq'$, $\preceq'^+$ is the [[Definition:Transitive Closure (Relation Theory)/Smallest Transitive Superset|transitive closure]] of $\preceq'$. +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Interior of Triangle} +Tags: Topology + +\begin{theorem} +Let $\triangle$ be a [[Definition:Triangle (Geometry)|triangle]] embedded in $\R^2$. +Denote the [[Definition:Vertex (Geometry)|vertices]] of $\triangle$ as $A_1, A_2, A_3$. +For $i \in \set {1, 2, 3}$, put $j = i \bmod 3 + 1$, $k = \paren {i + 1} \bmod 3 + 1$, and: +:$U_i = \set {A_i + s t \paren {A_j - A_i} + \paren {1 - s} t \paren {A_k - A_i} : s \in \openint 0 1, t \in \R_{>0} }$ +Then: +:$\displaystyle \Int \triangle = \bigcap_{i \mathop = 1}^3 U_i$ +where $\Int \triangle$ denotes the [[Definition:Interior of Jordan Curve|interior]] of the [[Definition:Boundary (Geometry)|boundary]] of $\triangle$. +\end{theorem} + +\begin{proof} +From [[Boundary of Polygon is Jordan Curve]], it follows that the [[Definition:Boundary (Geometry)|boundary]] of $\triangle$ is equal to the [[Definition:Image of Mapping|image]] of a [[Definition:Jordan Curve|Jordan curve]], so $\Int \triangle$ is well-defined. +=== Interior is Subset === +Let $q \in \Int \triangle$. +Let $i \in \set {1, 2, 3}$, and put $j = i \bmod 3 + 1$, $k = \paren {i + 1} \bmod 3 + 1$. +Let $S_i$ be the [[Definition:Side of Polygon|side]] of $\triangle$ that is [[Definition:Adjacent (in Triangle)|adjacent]] to $A_i$ and $A_j$, let $S_j$ be the side adjacent to $A_j$ and $A_k$, and let $S_k$ be the side adjacent to $A_k$ and $A_i$. +Define $\mathbf v = A_j - A_i \in \R^2$, $\mathbf w = A_k - A_i \in \R^2$, and define $\mathbf u = \mathbf v - \mathbf w$. +Define two [[Definition:Ray (Geometry)|rays]] $\LL = \set {q + s \mathbf u: s \in \R_{\ge 0} }$, and $\LL' = \set {q + s' \paren {-\mathbf u} : s' \in \R_{\ge 0} }$. +As both rays are [[Definition:Parallel Lines|parallel]] to $S_j$, $\LL$ or $\LL'$ can only [[Definition:Crossing (Jordan Curve)|cross]] $S_j$ if $S_i$ and $S_k$ lie on opposite sides of $S_j$. +This would imply that there is a [[Definition:Convex Angle|non-convex angle]] in $\triangle$. +As [[Sum of Angles of Triangle Equals Two Right Angles]] shows, this is impossible, as a non-convex angle is larger than two [[Definition:Right Angle|right angles]]. +Then, neither $\LL$ nor $\LL'$ crosses $S_j$. +As $\LL \cup \LL'$ is a [[Definition:Straight Line|straight line]], and $\LL \cap \LL' = \set q$, it follows that $\LL$ and $\LL'$ cannot both intersect the same side. +Then [[Jordan Polygon Interior and Exterior Criterion]] shows that $\LL$ and $\LL'$ each crosses one of the sides $S_i$ and $S_k$. +When we denote the intersection points $p_1, p_2 \in \R^2$, we have: +:$p_1 = A_i + r_1 \mathbf v = q + r \paren {\mathbf v - \mathbf w}$ +:$p_2 = A_i + r_2 \mathbf w = q + r' \paren {\mathbf v - \mathbf w}$ +for some $r_1, r_2 \in \openint 0 1$, where either $r, -r' \in \R_{>0}$ or $-r, r' \in \R_{>0}$. +Subtracting the two equations gives: +:$r_1 \mathbf v - r_2 \mathbf w = \paren {r - r'} \paren {\mathbf v - \mathbf w}$ +which can be rearranged as: +:$\paren {r_1 + r' - r} \mathbf v - \paren {r_2 + r' - r} \mathbf w$ +As $\mathbf v$ and $\mathbf w$ are [[Definition:Direction|direction]] [[Definition:Vector|vectors]] for the adjacent sides $S_i$ and $S_k$, they cannot be parallel, so $v$ and $w$ are [[Definition:Linearly Independent/Sequence/Real Vector Space|linearly independent]]. +It follows that $0 = r_1 + r' - r = r_2 + r' - r$, so $r_1 = r_2$. +Adding the two equations gives: +:$2 A_i + r_1 \mathbf v + r_2 \mathbf w = 2 q + \paren {r + r'} \paren {\mathbf v - \mathbf w}$ +which can be rearranged to give an expression for $q$: +{{begin-eqn}} +{{eqn | l = q + | r = A_i + \paren {\dfrac 1 2 r_1 - \dfrac 1 2 r - \dfrac 1 2 r'} \mathbf v + \paren {\dfrac 1 2 r_1 + \dfrac 1 2 r + \dfrac 1 2 r'} \mathbf w + | c = as $r_1 = r_2$ +}} +{{eqn | r = A_i + \paren {\dfrac 1 2 - \dfrac{r + r'} {2 r_1} } r_1 \mathbf v + \paren {1 - \paren {\dfrac 1 2 - \dfrac {r + r'} {2 r_1} } } r_1 \mathbf w +}} +{{end-eqn}} +This shows that $q \in U_i$. +As $i \in \set {1, 2, 3}$ was arbitrary, it follows that $\displaystyle q \in \bigcap_{i \mathop = 1}^3 U_i$. +{{qed|lemma}} +=== Interior is Superset === +Let $\displaystyle q \in \bigcap_{i \mathop = 1}^3 U_i$. +For $i \in \set {1, 2, 3}$, define $j, k \in \set {1, 2, 3}$, the [[Definition:Side of Polygon|sides]] $S_i, S_j, S_k$ of $\triangle$, and their [[Definition:Direction|direction]] [[Definition:Vector|vectors]] $\mathbf v, \mathbf u, \mathbf w$ as in the section above. +As $q \in U_i$, it follows that $q = A_i + st \mathbf v + t \paern {1 - s} t \mathbf w$ for some $s \in \openint 0 1$ and $t \in \R_{>0}$. +Let $\LL = \set {q + r \paren {-\mathbf v}: r \in \R_{\ge 0} }$ be a [[Definition:Ray (Geometry)|ray]] with start point $q$. +If $\LL$ [[Definition:Crossing (Jordan Curve)|crosses]] the side $S_i$ that $\LL$ is [[Definition:Parallel Lines|parallel]] to, then the intersection point is: +:$A_i + r_1 \mathbf v = q - r \mathbf v$ +for some $r_1 \in \closedint 0 1, r \in \R_{\ge 0}$, which can be rearranged as: +:$q = A_i + \paren {r_1 - r} \mathbf v + 0 \mathbf w$ +As $\mathbf v$ and $\mathbf w$ are [[Definition:Linearly Independent/Sequence/Real Vector Space|linearly independent]], this implies $\paren {1 - s} t = 0$. +Then either $t = 0$ or $s = 1$, which is impossible, so $\LL$ does not intersect $S_i$. +However, we will show that $\LL$ crosses $S_k$, as the intersection point is: +{{begin-eqn}} +{{eqn |l= A_i + r_2 \mathbf w + |r= q - r \mathbf v +}} +{{eqn |r= A_i + st \mathbf v + t \paren {1 - s} t \mathbf w - r \mathbf v +}} +{{end-eqn}} +for some $r_2 \in \closedint 0 1$, $r \in \R_{>0}$, which implies: +:$\mathbf 0 = \paren {s t - r} \mathbf v + \paren {t \paren {1 - s} - r_2} \mathbf w$ +As $v$ and $w$ are linearly independent, we have $0 = st - r$ and $0 = t \paren {1 - s} - r_2$. +Then $r = st \in R_{>0}$, and $r_2 = t \paren {1 - s} \in \R_{>0}$. +We must show that $r_2 < 1$. +As $q \in U_k$, we have $q = A_k + s't' \paren {-\mathbf w} + t' \paren {1 - s'} \mathbf u$ for some $s' \in \openint 0 1$, $t' \in \R_{>0}$. +As $A_k = A_i + \mathbf w$, we have: +:$q - r \mathbf v = A_i + \mathbf w - s't' \mathbf w + t' \\paren {1 - s'} \mathbf v - t' \paren {1 - s'} \mathbf w - r \mathbf v$ +As $q - r \mathbf v = A_i + r_2 \mathbf w$, we rearrange the equality to obtain: +:$\mathbf 0 = \paren {t' \paren {1 - s'} - r} \mathbf v + \paren {1 - r_2 - s't' - t' \paren {1 - s'} } \mathbf w$ +As $\mathbf v$ and $\mathbf w$ are linearly independent, this gives two equations: +:$0 = t' \paren {1 - s'} - r$ +:$0 = 1 - r_2 - s't' - t' \paren {1 - s'}$ +Adding these equations gives: +:$s't' + r = 1 - r_2$ +As $s't' > 0$ and $r > 0$, it follows that $r_2 < 1$. +Then, we have shown that $\LL$ crosses $S_k$. +Let $\LL' = \set {q + r \mathbf v : r \in \R_{\ge 0} }$ be a ray with start point $q$. +An argument similar to the one above shows that $\LL'$ crosses the side $S_j$. +As $\LL \cup \LL'$ is a [[Definition:Straight Line|straight line]], $\LL$ and $\LL'$ cannot both intersect the same side. +It follows that $\LL$ has one crossing of the [[Definition:Boundary (Geometry)|boundary]] of $\triangle$, so the [[Definition:Crossing (Jordan Curve)/Parity|parity]] of $q$ is $\map {\mathrm {par} } q = 1$. +From [[Jordan Polygon Interior and Exterior Criterion]], it follows that $q \in \Int \triangle$. +{{qed|lemma}} +The result now follows by definition of [[Definition:Set Equality/Definition 2|set equality]]. +{{qed}} +[[Category:Topology]] +4iuiu6w17z89omsjuyr48ykh9htwp6p +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Reflexive Transitive Closure} +Tags: Reflexive Closures, Transitive Closures + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Endorelation|relation]] on a [[Definition:set|set]] $S$. +{{TFAE|def = Reflexive Transitive Closure}} +\end{theorem} + +\begin{proof} +The result follows from: +:[[Transitive Closure of Reflexive Relation is Reflexive]] +:[[Reflexive Closure of Transitive Relation is Transitive]] +:[[Composition of Compatible Closure Operators]] +{{qed}} +[[Category:Reflexive Closures]] +[[Category:Transitive Closures]] +bw3oi7eog31sgwy7klra98nk1gd0sr8 +\end{proof}<|endoftext|> +\section{Intersection of Relation with Inverse is Symmetric Relation} +Tags: Set Intersection, Inverse Relations, Symmetric Relations + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Binary Relation|relation]] on a [[Definition:Set|set]] $S$. +Then $\mathcal R \cap \mathcal R^{-1}$, the [[Definition:Set Intersection|intersection]] of $\mathcal R$ with its [[Definition:Inverse Relation|inverse]], is [[Definition:Symmetric Relation|symmetric]]. +\end{theorem} + +\begin{proof} +Let $\left({x, y}\right) \in \mathcal R \cap \mathcal R^{-1}$ +By definition of [[Definition:Set Intersection|intersection]]: +:$\left({x, y}\right) \in \mathcal R$ +:$\left({x, y}\right) \in \mathcal R^{-1}$ +By definition of [[Definition:Inverse Relation|inverse relation]]: +:$\left({x, y}\right) \in \mathcal R \implies \left({y, x}\right) \in \mathcal R^{-1}$ +:$\displaystyle \left({x, y}\right) \in \mathcal R^{-1} \implies \left({y, x}\right) \in \left ({\mathcal R^{-1}} \right )^{-1}$ +By [[Inverse of Inverse Relation]] the second statement may be rewritten: +:$\left({x, y}\right) \in \mathcal R \implies \left({y, x}\right) \in \mathcal R^{-1}$ +:$\left({x, y}\right) \in \mathcal R^{-1} \implies \left({y, x}\right) \in \mathcal R$ +Then by definition of [[Definition:Set Intersection|intersection]]: +:$\left({y, x}\right) \in \mathcal R \cap \mathcal R^{-1}$ +Hence $\mathcal R \cap \mathcal R^{-1}$ is [[Definition:Symmetric Relation|symmetric]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Closed Sets is Closed/Closure Operator} +Tags: Closure Operators, Set Intersection + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $f: \powerset S \to \powerset S$ be a [[Definition:Closure Operator|closure operator]] on $S$. +Let $\CC$ be the [[Definition:Set|set]] of all [[Definition:Subset|subsets]] of $S$ that are [[Definition:Closed Set under Closure Operator|closed]] with respect to $f$. +Let $\AA \subseteq \CC$. +Then $\bigcap \AA \in \CC$. +\end{theorem} + +\begin{proof} +Let $Q = \bigcap \AA$. +By the definition of [[Definition:Closure Operator|closure operator]], $f$ is [[Definition:Inflationary Mapping|inflationary]], [[Definition:Order-Preserving Mapping|order-preserving]], and [[Definition:Idempotent Mapping|idempotent]]. +Let $A \in \AA$. +By [[Intersection is Largest Subset/Set of Sets|Intersection is Largest Subset]], $Q \subseteq A$. +Since $f$ is [[Definition:Order-Preserving Mapping|order-preserving]], $\map f Q \subseteq \map f A$. +By the definition of [[Definition:Closed Set under Closure Operator|closed set]], $\map f A = A$ +Thus $\map f Q \subseteq A$. +This holds for all $A \in \AA$. +Thus by [[Intersection is Largest Subset/Set of Sets|Intersection is Largest Subset]]: +:$\map f Q \subseteq \bigcap \AA$ +Since $\bigcap \AA = Q$: +:$\map f Q \subseteq Q$ +Since $f$ is [[Definition:Inflationary Mapping|inflationary]]: +:$Q \subseteq \map f Q$ +Thus by definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$Q = \map f Q$ +Therefore $Q$ is [[Definition:Closed Set under Closure Operator|closed]] with respect to $f$. +{{qed}} +[[Category:Closure Operators]] +[[Category:Set Intersection]] +0wx60nxfhxnwbqfzj1mo6nccgfu2jok +\end{proof}<|endoftext|> +\section{Closure is Closed/Power Set} +Tags: Closure Operators + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\powerset S$ be the [[Definition:Power Set|power set]] of $S$. +Let $\cl: \powerset S \to \powerset S$ be a [[Definition:Closure Operator|closure operator]]. +Let $T \subseteq S$. +Then $\map \cl T$ is a [[Definition:Closed Set under Closure Operator|closed set]] with respect to $\cl$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Closure Operator/Power Set|closure operator]], $\cl$ is [[Definition:Idempotent Mapping|idempotent]]. +Therefore $\map \cl {\map \cl T} = \map \cl T$, so $\map \cl t$ is [[Definition:Closed Set under Closure Operator|closed]]. +{{qed}} +[[Category:Closure Operators]] +eclqthg2av1s8vwraog48pwy1xzukub +\end{proof}<|endoftext|> +\section{Relation Intersection Inverse is Greatest Symmetric Subset of Relation} +Tags: Relation Theory, Symmetric Relations + +\begin{theorem} +Let $\RR$ be a [[Definition:Binary Relation|relation]] on a [[Definition:Set|set]] $S$. +Let $\powerset \RR$ be the [[Definition:Power Set|power set]] of $\RR$. +By definition, $\powerset \RR$ is the [[Definition:Set|set]] of all [[Definition:Binary Relation|relation]]s on $S$ that are [[Definition:Subset|subsets]] of $\RR$. +Then the [[Definition:Greatest Element|greatest element]] of $\powerset \RR$ that is [[Definition:Symmetric Relation|symmetric]] is: +:$\RR \cap \RR^{-1}$ +\end{theorem} + +\begin{proof} +By [[Intersection of Relation with Inverse is Symmetric Relation]]: +:$\RR \cap \RR^{-1}$ is a [[Definition:Symmetric Relation|symmetric relation]]. +Suppose for some $\SS \in \powerset \RR$ that $S$ is [[Definition:Symmetric Relation|symmetric]] and not equal to $\RR \cap \RR^{-1}$. +We will show that it is a [[Definition:Proper Subset|proper subset]] of $\RR \cap \RR^{-1}$. +Suppose $\tuple {x, y} \in \SS$. +Then as $\SS \subseteq \RR$: +:$\tuple {x, y} \in \RR$ +As $\SS$ is [[Definition:Symmetric Relation|symmetric]]: +:$\tuple {x, y} \in \SS$ +So as $\SS \subseteq \RR$: +:$\tuple {x, y} \in \RR$ +By definition of [[Definition:Inverse Relation|inverse relation]]: +:$\tuple {x, y} \in \RR^{-1}$ +By definition of [[Definition:Set Intersection|intersection]]: +:$\tuple {x, y} \in \RR \cap \RR^{-1}$ +Thus: +:$\tuple {x, y} \in \SS \implies \tuple {x, y} \in \RR \cap \RR^{-1}$ +By definition of [[Definition:Subset|subset]]: +:$\SS \subseteq \RR \cap \RR^{-1}$ +Finally, as we assumed $\SS \ne \RR \cap \RR^{-1}$: +:$\SS \subset \RR \cap \RR^{-1}$ +Hence the result. +{{qed}} +[[Category:Relation Theory]] +[[Category:Symmetric Relations]] +6k95y20lcui80oc5hcca1henqlhj01p +\end{proof}<|endoftext|> +\section{Composition of Compatible Closure Operators} +Tags: Closure Operators + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $f, g: \mathcal P \left({S}\right) \to \mathcal P \left({S}\right)$ be [[Definition:Closure Operator|closure operators]] on $S$. +Let $\mathcal C_f$ and $\mathcal C_g$ be the sets of [[Definition:Closed Set under Closure Operator|closed sets]] of $S$ with respect to $f$ and $g$ respectively. +For each [[Definition:subset|subset]] $T$ of $S$, let the following hold: +: $(1): \quad$ If $T$ is [[Definition:Closed Set/Closure Operator|closed]] with respect to $g$, then $f \left({T}\right)$ is closed with respect to $g$. +:: That is, if $T \in \mathcal C_g$ then $f \left({T}\right) \in \mathcal C_g$. +: $(2): \quad$ If $T$ is closed with respect to $f$, then $g \left({T}\right)$ is closed with respect to $f$. +:: That is, if $T \in \mathcal C_f$ then $g \left({T}\right) \in \mathcal C_f$. +Let $\mathcal C_h = \mathcal C_f \cap \mathcal C_g$. +Then: +: $\mathcal C_h$ [[Closure Operator from Closed Sets|induces a closure operator]] $h$ on $S$ +: $f \circ g = g \circ f = h$, where $\circ$ represents [[Definition:Composition of Mappings|composition of mappings]]. +\end{theorem} + +\begin{proof} +First we show that $\mathcal C_h$ [[Closure Operator from Closed Sets|induces a closure operator]] on $S$. +Let $\mathcal A \subseteq \mathcal C_h$. +By [[Intersection is Largest Subset]]: +: $\mathcal A \subseteq \mathcal C_f$ +and: +: $\mathcal A \subseteq \mathcal C_g$ +Thus by [[Intersection of Closed Sets is Closed/Closure Operator]]: +:$\bigcap \mathcal A \in \mathcal C_f$ +and +:$\bigcap \mathcal A \in \mathcal C_g$ +Thus by the definition of [[Definition:Set Intersection|set intersection]]: +: $\bigcap \mathcal A \in \mathcal C_h$ +Thus by [[Closure Operator from Closed Sets]], $C_h$ [[Closure Operator from Closed Sets|induces a closure operator]] $h$ on $S$. +Now we will show that $f \circ g = h$. +Having established that, it can be seen that $g \circ f = h$ will hold by reversing the variable names. +Let $T \subseteq S$. +By definition of [[Definition:Closed Set under Closure Operator|closed set]]: +:$f \left({g \left({T}\right)}\right) \in \mathcal C_f$ +:$g \left({T}\right) \in \mathcal C_g$ +By the premise: +: $f \left({g \left({T}\right)}\right) \in \mathcal C_g$ +Thus by definition of [[Definition:Set Intersection|set intersection]]: +: $f \left({g \left({T}\right)}\right) \in \mathcal C_f \cap \mathcal C_g = C_h$ +So $f \left({g \left({T}\right)}\right)$ is [[Definition:Closed Set/Closure Operator|closed]] with respect to $h$. +By [[Set Closure is Smallest Closed Set/Closure Operator]]: +: $h \left({T}\right) \subseteq f \left({g \left({T}\right)}\right)$ +By definition of [[Definition:Closed Set under Closure Operator|closed set]]: +: $h \left({T}\right) \in C_h$ +Thus by the definition of [[Definition:Set Intersection|set intersection]]: +: $h \left({T}\right) \in C_f$ +and +: $h \left({T}\right) \in C_g$ +By [[Set Closure is Smallest Closed Set/Closure Operator]]: +: $g \left({T}\right) \subseteq h \left({T}\right)$ +By [[Definition:Closure Operator/Power Set|Closure Operator: Axiom $(2)$]] $f$ is [[Definition:Order-Preserving Mapping|order-preserving]]: +: $f \left({g \left({T}\right)}\right) \subseteq f \left({h \left({T}\right)}\right)$ +Recall that $h \left({T}\right) \in C_f$. +By definition of [[Definition:Closed Set under Closure Operator|closed set]]: +: $f \left({h \left({T}\right)}\right) = h \left({T}\right)$ +Thus: +: $f \left({g \left({T}\right)}\right) \subseteq h \left({T}\right)$ +We have that: +:$h \left({T}\right) \subseteq f \left({g \left({T}\right)}\right)$ +So by definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$h \left({T}\right) = f \left({g \left({T}\right)}\right)$ +{{qed}} +[[Category:Closure Operators]] +fhkw1vv19pbm9uivq9sbv61y6amq2cu +\end{proof}<|endoftext|> +\section{Closure is Closed} +Tags: Closure Operators + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $\cl: S \to S$ be a [[Definition:Closure Operator (Order Theory)|closure operator]]. +Let $x \in S$. +Then $\map \cl x$ is a [[Definition:Closed Element|closed element]] of $S$ with respect to $\cl$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Closure Operator (Order Theory)|closure operator]], $\cl$ is [[Definition:Idempotent Mapping|idempotent]]. +Therefore: +:$\map \cl {\map \cl x} = \map \cl x$ +It follows by definition that $\map \cl x$ is a [[Definition:Closed Element|closed element]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Closure Operator from Closed Elements} +Tags: Closure Operators, Order Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $C \subseteq S$. +Suppose that $C$ is a [[Definition:Subset|subset]] of $S$ with the property that every [[Definition:Element|element]] of $S$ has a [[Definition:Smallest Element|smallest]] [[Definition:Successor Element|successor]] in $C$. +Let $\cl: S \to S$ be defined as follows: +For $x \in S$: +:$\map \cl x = \map \min {C \cap x^\succeq}$ +where $x^\succeq$ is the [[Definition:Upper Closure|upper closure]] of $x$. +That is, let $\map \cl x$ be the [[Definition:Smallest Element|smallest]] [[Definition:Successor Element|successor]] of $x$ in $C$. +Then: +:$\cl$ is a [[Definition:Closure Operator (Order Theory)|closure operator]] on $S$ +:The [[Definition:Closed Element|closed elements]] of $\cl$ are precisely the elements of $C$. +\end{theorem} + +\begin{proof} +=== Inflationary === +$x$ is a [[Definition:Lower Bound of Set|lower bound]] of $x^\succeq$. +Hence by [[Lower Bound for Subset]], $x$ is also a [[Definition:Lower Bound of Set|lower bound]] of $C \cap x^\succeq$. +By the definition of [[Definition:Smallest Element|smallest element]], $x \preceq \map \cl x$. +{{qed|lemma}} +=== Order-Preserving === +Suppose that $x \preceq y$. +Then: +:$C \cap y^\succeq \subseteq C \cap x^\succeq$ +By [[Smallest Element of Subset]]: +:$\map \cl x \preceq \map \cl y$ +=== Idempotent === +Let $x \in S$. +For each $x \in S$: +:$\map \cl x = \map \min {C \cap x^\succeq}$ +Thus: +:$\map \cl x \in \paren {C \cap x^\succeq} \subseteq C$ +That is to say, $\map \cl x$ is its own [[Definition:Smallest Element|smallest]] [[Definition:Successor Element|successor]] in $C$. +Thus: +:$\map \cl x = \map \cl {\map \cl x}$ +{{qed|lemma}} +When $x \in C$, $x$ is the [[Definition:Smallest Element|minimum]] of $C \cap x^\succeq$ +Hence, elements of $C$ are [[Definition:Closed Element|closed elements]] with respect to $\cl$. +Suppose that $x$ is [[Definition:Closed Element|closed]] with respect to $\cl$. +Then: +:$x = \map \min {C \cap x^\succeq}$ +so in particular: +:$x \in C$ +{{qed}} +[[Category:Closure Operators]] +[[Category:Order Theory]] +hzff01klrhedb7dqje56pkzdwsi8ljk +\end{proof}<|endoftext|> +\section{Product of Affine Spaces is Affine Space} +Tags: Affine Geometry + +\begin{theorem} +Let $\mathcal E, \mathcal F$ be [[Definition:Affine Space|affine spaces]]. +Let $\mathcal G = \mathcal E \times \mathcal F$ be the [[Definition:Product of Affine Spaces|product]] of $\mathcal E$ and $\mathcal F$. +Then $\mathcal G$ is an affine space. +\end{theorem} + +\begin{proof} +Let $G = \vec{\mathcal G}$ be the [[Definition:Difference Space|difference space]] of $\mathcal G$. +We are required to show that the following axioms are satisfied: +{{begin-axiom}} +{{axiom | n = 1 + | q = \forall p, q \in \mathcal G + | m = p + \left({q - p}\right) = q +}} +{{axiom | n = 2 + | q = \forall p \in \mathcal G: \forall u, v \in G + | m = \left({p + u}\right) + v = p + \left({u + v}\right) +}} +{{axiom | n = 3 + | q = \forall p, q \in \mathcal G: \forall u \in G + | m = \left({p - q}\right) + u = \left({p + u}\right) - q +}} +{{end-axiom}} +Proof of $(1)$: +Let $p = \left({p', p''}\right), q = \left({q', q''}\right) \in \mathcal G$. +We have: +{{begin-eqn}} +{{eqn | l = p + \left({q - p}\right) + | r = \left({p', p''}\right) + \left({\left({q', q''}\right) - \left({p', p''}\right)}\right) +}} +{{eqn | r = \left({p', p''}\right) + \left({q' - p', q'' - p''}\right) + | c = Definition of $-$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = \left({p' + \left({q' - p'}\right), p'' + \left({q'' - p''}\right)}\right) + | c = Definition of $+$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = \left({q' , q''}\right) + | c = Axiom $(1)$ in [[Definition:Affine Space|Affine Spaces]] $\mathcal E$, $\mathcal F$ +}} +{{end-eqn}} +{{qed|lemma}} +Proof of $(2)$: +Let $p = \left({p', p''}\right) \in \mathcal G$. +Let $u = \left({u', u''}\right), v = \left({v', v''}\right) \in G$. +We have: +{{begin-eqn}} +{{eqn | l = \left({p + u}\right) + v + | r = \left({\left({p', p''}\right) + \left({u', u''}\right)}\right) + \left({v', v''}\right) +}} +{{eqn | r = \left({p' + u', p'' + u''}\right) + \left({v', v''}\right) + | c = Definition of $+$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = \left({\left({p' + u'}\right) + v', \left({p'' + u''}\right) + v''}\right) + | c = Definition of $+$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = \left({p' + \left({u' + v'}\right), p'' + \left({u'' + v''}\right)}\right) + | c = Axiom $(2)$ in [[Definition:Affine Space|Affine Spaces]] $\mathcal E$, $\mathcal F$ +}} +{{eqn | r = \left({p', p''}\right) + \left({\left({u', u''}\right) + \left({v', v''}\right)}\right) + | c = Definition of $+$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = p + \left({u + v}\right) +}} +{{end-eqn}} +{{qed|lemma}} +Proof of $(3)$: +Let $p = \left({p', p''}\right), q = \left({q', q''}\right) \in \mathcal G$. +Let $u = \left({u', u''}\right) \in G$. +We have: +{{begin-eqn}} +{{eqn | l = \left({p - q}\right) + u + | r = \left({\left({p', p''}\right) - \left({q', q''}\right)}\right) + \left({u', u''}\right) +}} +{{eqn | r = \left({\left({p' - q'}\right) + u', \left({p'' - q''}\right) + u''}\right) + | c = Definition of $+,-$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = \left({\left({p' + u'}\right) - q', \left({p'' + u''}\right) - q''}\right) + | c = Axiom $(3)$ in [[Definition:Affine Space|Affine Spaces]] $\mathcal E$, $\mathcal F$ +}} +{{eqn | r = \left({\left({p', p''}\right) + \left({u', u''}\right)}\right) - \left({q', q''}\right) + | c = Definition of $+,-$ in [[Definition:Product of Affine Spaces|Product Space]] +}} +{{eqn | r = \left({p - q}\right) + u +}} +{{end-eqn}} +{{Qed}} +[[Category:Affine Geometry]] +flidbfjyz98ggjlutx77hmw1swmiuyy +\end{proof}<|endoftext|> +\section{Intersection of Complete Meet Subsemilattices invokes Closure Operator} +Tags: Closure Operators + +\begin{theorem} +Let $\struct {S, \preccurlyeq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $f_i$ be a [[Definition:Closure Operator (Order Theory)|closure operator]] on $S$ for each $i \in I$. +Let $C_i = \map {f_i} S$ be the [[Definition:Set|set]] of [[Definition:Closed Element|closed elements]] with respect to $f_i$ for each $i \in I$. +Suppose that for each $i \in I$, $C_i$ is a '''complete meet subsemilattice''' of $S$ in the following sense: +:For each $D \subseteq C_i$, $D$ has an [[Definition:Infimum of Set|infimum]] in $S$ such that $\inf D \in C_i$. +Then $C = \displaystyle \bigcap_{i \mathop \in I} C_i$ [[Closure Operator from Closed Elements|induces]] a [[Definition:Closure Operator (Order Theory)|closure operator]] on $S$. +\end{theorem} + +\begin{proof} +=== Lemma === +Let $\struct {S, \preccurlyeq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $C_i$ be a '''complete meet subsemilattice''' of $S$. +Then $C = \displaystyle \bigcap_{i \mathop \in I} C_i$ is also a '''complete meet subsemilattice'''. +=== Proof === +Let $D \subseteq C$. +By [[Intersection is Largest Subset]], $D \subseteq C_i$ for each $i \in I$. +Thus $D$ has an [[Definition:Infimum of Set|infimum]] in $S$ and $\inf D \in C_i$ for each $i \in I$. +By the definition of [[Definition:Set Intersection|intersection]], $\inf D \in C$. +{{qed|lemma}} +By the [[Intersection of Complete Meet Subsemilattices invokes Closure Operator#Lemma|lemma]], $C$ is a '''complete meet semilattice'''. +Let $x \in S$. +Then $C \cap x^\succcurlyeq$ has an [[Definition:Infimum of Set|infimum]] in $S$ which lies in $C$, where $x^\succcurlyeq$ is the [[Definition:Upper Closure of Element|upper closure]] of $x$. +By the definition of [[Definition:Infimum of Set|infimum]]: +:$x \preceq \inf \struct {C \cap x^\succcurlyeq}$ +so this [[Definition:Infimum of Set|infimum]] is in fact the [[Definition:Smallest Element|smallest element]] of $C \cap x^\succcurlyeq$. +Thus $C$ induces a [[Definition:Closure Operator|closure operator]] on $S$ by [[Closure Operator from Closed Elements]]. +{{qed}} +[[Category:Closure Operators]] +5pdwkakzph1uw2ae1711bkuw0g0c9gu +\end{proof}<|endoftext|> +\section{Vector Space with Standard Affine Structure is Affine Space} +Tags: Affine Geometry + +\begin{theorem} +Let $E$ be a [[Definition:Vector Space|vector space]]. +Let $\left({\mathcal E, E, +, -}\right)$ be the [[Definition:Standard Affine Structure on Vector Space|standard affine structure]] on $E$. +Then with this structure, $\mathcal E$ is an [[Definition:Affine Space|affine space]]. +\end{theorem} + +\begin{proof} +We are required to show that: +{{begin-axiom}} +{{axiom|n = 1 + |q = \forall p, q \in \mathcal E + |m = p + \left({q - p}\right) = q +}} +{{axiom|n = 2 + |q = \forall p \in \mathcal E: \forall u, v \in E + |m = \left({p + u}\right) + v = p + \left({u \mathop{+} v}\right) +}} +{{axiom|n = 3 + |q = \forall p, q \in \mathcal E: \forall u \in E + |m = \left({p - q}\right) \mathop{+} u = \left({p + u}\right) - q +}} +{{end-axiom}} +By the definition of the [[Definition:Standard Affine Structure on Vector Space|standard affine structure]], the addition and subtraction operations are simply those in the [[Definition:Vector Space|vector space]] $E$. +That is, we want to show that: +{{begin-axiom}} +{{axiom|n = 1 + |q = \forall u,v \in E + |m = u + \left({v - u}\right) = v +}} +{{axiom|n = 2 + |q = \forall u,v,w \in E + |m = \left({u + v}\right) + w = u + \left({v \mathop{+} w}\right) +}} +{{axiom|n = 3 + |q = \forall u,v,w \in E + |m = \left({v - u}\right) \mathop{+} w = \left({v + w}\right) - u +}} +{{end-axiom}} +By definition the addition operation on a [[Definition:Vector Space|vector space]] is [[Definition:Commutative Operation|commutative]] and [[Definition:Associative|associative]]. +But all three axioms are immediate consequences of [[Definition:Commutative Operation|commutativity]] and [[Definition:Associative|associativity]]. +This concludes the proof. +{{Qed}} +{{MissingLinks|particularly to addition, subtraction etc.}} +[[Category:Affine Geometry]] +1mwu9z9v1i4kpuxgvjfopf2qxpv9z8i +\end{proof}<|endoftext|> +\section{Reflexive Reduction of Ordering is Strict Ordering} +Tags: Order Theory, Reflexive Reductions, Reflexive Reduction of Ordering is Strict Ordering + +\begin{theorem} +Let $\mathcal R$ be an [[Definition:Ordering|ordering]] on a [[Definition:Set|set]] $S$. +Let $\mathcal R^\ne$ be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\mathcal R$. +Then $\mathcal R^\ne$ is a [[Definition:Strict Ordering|strict ordering]] on $S$. +\end{theorem} + +\begin{proof} +=== Antireflexivity === +Follows from [[Reflexive Reduction is Antireflexive]]. +{{qed|lemma}} +=== Transitivity === +Suppose $\tuple {x, y}, \tuple {y, z} \in \RR^\ne$. +By [[Definition:Antireflexive Relation|antireflexivity]] $x \ne y$ and $y \ne z$. +We consider the two remaining cases. +==== Case 1: $x = z$ ==== +If $x = z$ then: +:$\tuple {x, y}, \tuple {y, x} \in \RR^\ne$ +and so: +:$\tuple {x, y}, \tuple {y, x} \in \RR$ +Then by the [[Definition:Antisymmetric Relation|antisymmetry]] of $\RR$: +:$x = y$ +and: +:$\tuple {x, x} \in \RR^\ne$ +which contradicts that $\RR^\ne$ is [[Definition:Antireflexive Relation|antireflexive]]. +==== Case 2: $x \ne z$ ==== +By the [[Definition:Transitive Relation|transitivity]] of $\RR$: +:$\tuple {x, z} \in \RR$ +and by $x$ and $z$ being distinct: +:$\tuple {x, z} \notin \Delta_S$ +It follows by the definition of [[Definition:Reflexive Reduction|reflexive reduction]]: +:$\tuple {x, z} \in \RR^\ne$ +Hence $\RR^\ne$ is [[Definition:Transitive Relation|transitive]]. +{{qed}} +\end{proof} + +\begin{proof} +By definition, an [[Definition:Ordering|ordering]] is both [[Definition:Reflexive Relation|reflexive]] and [[Definition:Transitive Relation|transitive]]. +The result then follows from [[Reflexive Reduction of Transitive Antisymmetric Relation is Strict Ordering]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Vectorialization of Affine Space is Vector Space} +Tags: Affine Geometry + +\begin{theorem} +Let $\mathcal E$ be an [[Definition:Affine Space|affine space]] over a [[Definition:Field (Abstract Algebra)|field]] $k$ with [[Definition:Difference Space|difference space]] $E$. +Let $\mathcal R = \tuple {p_0, e_1, \ldots, e_n}$ be an [[Definition:Affine Frame|affine frame]] in $\mathcal E$. +Let $\struct {\mathcal E, +, \cdot}$ be the [[Definition:Vectorialization of Affine Space|vectorialization]] of $\mathcal E$. +Then $\struct {\mathcal E, +, \cdot}$ is a [[Definition:Vector Space|vector space]]. +\end{theorem} + +\begin{proof} +By the definition of the [[Definition:Vectorialization of Affine Space|vectorialization of an affine space]], the [[Definition:Mapping|mapping]] $\Theta_\mathcal R : k^n \to \mathcal E$ defined by: +:$\displaystyle \map {\Theta_\mathcal R} {\lambda_1, \ldots, \lambda_n} = p_0 + \sum_{i \mathop = 1}^n \lambda_i e_i$ +is a [[Definition:Bijection|bijection]] from $k^n$ to $\mathcal E$. +Therefore, by [[Homomorphic Image of Vector Space]], it suffices to prove that $\Theta_\mathcal R$ is a [[Definition:Linear Transformation on Vector Space|linear transformation]]. +By [[General Linear Group is Group]]: +:$\Theta_\mathcal R$ is a [[Definition:Linear Transformation on Vector Space|linear transformation]] {{iff}} its [[Definition:Inverse Mapping|inverse]] ${\Theta_\mathcal R}^{-1}$ is a [[Definition:Linear Transformation on Vector Space|linear transformation]]. +Therefore, it suffices to show that: +:$\forall p, q \in \mathcal E, \mu \in k: \map { {\Theta_\mathcal R}^{-1} } {\mu \cdot p + q} = \mu \cdot \map { {\Theta_\mathcal R}^{-1} } p + \map { {\Theta_\mathcal R}^{-1} } g$ +Thus: +{{begin-eqn}} +{{eqn | l = \map { {\Theta_\mathcal R}^{-1} } {\mu \cdot p + q} + | r = \map { {\Theta_\mathcal R}^{-1} } {\map {\Theta_\mathcal R} {\mu \cdot \map { {\Theta_\mathcal R}^{-1} } p} + q} + | c = Definition of $\mu \cdot p$ +}} +{{eqn | r = {\Theta_\mathcal R}^{-1} \map {\Theta_\mathcal R} {\mu \cdot \map { {\Theta_\mathcal R}^{-1} } p + \map { {\Theta_\mathcal R}^{-1} } q} + | c = Definition of $+$ in $\mathcal E$ +}} +{{eqn | r = \mu \cdot \map { {\Theta_\mathcal R}^{-1} } p + \map { {\Theta_\mathcal R}^{-1} } q + | c = because $\map { {\Theta_\mathcal R}^{-1} } {\Theta_\mathcal R}$ is the [[Definition:Identity Mapping|identity mapping]] +}} +{{end-eqn}} +This is the required identity. +{{Qed}} +[[Category:Affine Geometry]] +c1s8miwk3qonr3mfv14spg8gq6tz8co +\end{proof}<|endoftext|> +\section{Reflexive Reduction is Antireflexive} +Tags: Reflexive Reductions + +\begin{theorem} +Let $\mathcal R$ be a [[Definition:Endorelation|relation]] on a [[Definition:Set|set]] $S$. +Let $\mathcal R^\ne$, be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\mathcal R$. +Then $\mathcal R^\ne$ is [[Definition:Antireflexive Relation|antireflexive]]. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Reflexive Reduction|reflexive reduction]]: +:$\mathcal R^\ne = \mathcal R \setminus \Delta_S$ +where $\Delta_S$ denotes the [[Definition:Diagonal Relation|diagonal relation]] on $S$. +By [[Set Difference Intersection with Second Set is Empty Set]]: +:$\left({\mathcal R \setminus \Delta_S}\right) \cap \Delta_S = \varnothing$ +Hence by [[Relation is Antireflexive iff Disjoint from Diagonal Relation]], $\mathcal R^\ne$ is [[Definition:Antireflexive Relation|antireflexive]]. +{{qed}} +[[Category:Reflexive Reductions]] +07pom45czxxv2l3lexaqcs1zqac5e8e +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Strict Ordering} +Tags: Order Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\RR$ be a [[Definition:Endorelation|relation]] on $S$. +{{TFAE|def = Strict Ordering}} +\end{theorem} + +\begin{proof} +Let $\RR$ be [[Definition:Transitive|transitive]]. +Then by [[Transitive Relation is Antireflexive iff Asymmetric]] it follows directly that: +:$(1): \quad$ If $\RR$ is [[Definition:Antireflexive Relation|antireflexive]] then it is [[Definition:Asymmetric Relation|asymmetric]] +:$(2): \quad$ If $\RR$ is [[Definition:Asymmetric Relation|asymmetric]] then it is [[Definition:Antireflexive Relation|antireflexive]]. +{{qed}} +[[Category:Order Theory]] +rp8tzzdaz1n1ad5581rq06y42eiwj2g +\end{proof}<|endoftext|> +\section{Subband iff Idempotent under Induced Operation} +Tags: Abstract Algebra, Idempotence + +\begin{theorem} +Let $\left({S, \circ}\right)$ be a [[Definition:Band|band]]. +Let $\left({\mathcal P \left({S}\right), \circ_\mathcal P}\right)$ be the [[Definition:Algebraic Structure|algebraic structure]] consisting of the [[Definition:Power Set|power set]] of $S$ and the [[Definition:Subset Product|operation induced on $\mathcal P \left({S}\right)$ by $\circ$]]. +Let $X \in \mathcal P \left({S}\right)$. +Then $X$ is [[Definition:Idempotent Element|idempotent]] {{iff}} $\left({X, \circ}\right)$ is a [[Definition:Subband|subband]] of $\left({S, \circ}\right)$. +\end{theorem} + +\begin{proof} +=== Subbandhood implies Idempotency === +==== Proving $\left({X \circ_{\mathcal P} X}\right) \subseteq X$ ==== +Let $c \in X \circ_{\mathcal P} X$. +By the definition of [[Definition:Subset Product|subset product]] for some $a, b \in X$ we have: +:$a \circ b = c$ +Suppose $c \notin X$. +Then: +:$a \circ b \notin X$ +Which contradicts that $\left({X, \circ}\right)$ is a subband. +==== Proving $X \subseteq \left({X \circ_{\mathcal P} X}\right)$ ==== +Let $a \in X$. +By the definition of [[Definition:Subset Product|subset product]]: +:$X \circ_{\mathcal P} X = \{ a \circ b: a, b \in X \}$ +As $\circ$ is [[Definition:Idempotent Operation|idempotent]]: +:$a \circ a = a$. +Thus: +:$a \in \left({X \circ_{\mathcal P} X}\right)$ +Hence by the definition of [[Definition:Subset|subset]]: +:$X \subseteq \left({X \circ_{\mathcal P} X}\right)$ +{{qed|lemma}} +=== Idempotency implies Subbandhood === +Let $X \in \mathcal P \left({S}\right)$. +Suppose $X$ is [[Definition:Idempotent Element|idempotent]]: +That is suppose: +:$X \circ_{\mathcal P} X = X$ +Let $a, b \in X$. +By the definition of [[Definition:Subset Product|subset product]]: +:$X \circ_{\mathcal P} X = \{ a \circ b: a, b \in X \}$ +Then $a \circ b \in X$. +Hence $\left({X, \circ}\right)$ is a [[Definition:Magma|magma]]. +By [[Restriction of Associative Operation is Associative]] it is a [[Definition:Semigroup|semigroup]]. +Finally by [[Restriction of Idempotent Operation is Idempotent]] it is a [[Definition:Band|band]]. +{{qed}} +[[Category:Abstract Algebra]] +[[Category:Idempotence]] +71ppa6bwguziz1w5pc0ba576pb8l322 +\end{proof}<|endoftext|> +\section{Restriction of Idempotent Operation is Idempotent} +Tags: Abstract Algebra, Idempotence + +\begin{theorem} +Let $\left({S, \circ}\right)$ be an [[Definition:Algebraic Structure|algebraic structure]]. +Let $T \subseteq S$. +Let the [[Definition:Binary Operation|operation]] $\circ$ be [[Definition:Idempotent Operation|idempotent]]. +Then $\circ$ is also [[Definition:Idempotent Operation|idempotent]] upon [[Definition:Restriction of Operation|restriction]] to $\left({T, \circ \restriction_T}\right)$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = T + | o = \subseteq + | r = S + | c = +}} +{{eqn | ll= \implies + | lo= \forall a \in T: + | l = a + | o = \in + | r = S + | c = {{Defof|Subset}} +}} +{{eqn | ll= \implies + | l = a \mathop{\circ_T} a + | r = a \circ a + | c = +}} +{{eqn | r = a + | c = +}} +{{end-eqn}} +{{qed}} +[[Category:Abstract Algebra]] +[[Category:Idempotence]] +o5sxc9opg5nuy0lvdvrzqrlph881vwk +\end{proof}<|endoftext|> +\section{Subband of Induced Operation is Set of Subbands} +Tags: Abstract Algebra + +\begin{theorem} +Let $\left({S, \circ}\right)$ be a [[Definition:Band|band]]. +Let $\left({\mathcal P \left({S}\right), \circ_\mathcal P}\right)$ be the [[Definition:Algebraic Structure|algebraic structure]] consisting of: +: the [[Definition:Power Set|power set]] $\mathcal P \left({S}\right)$ of $S$ +and +: the [[Definition:Operation Induced on Power Set|operation $\circ_\mathcal P$ induced on $\mathcal P \left({S}\right)$ by $\circ$]]. +Let $T \subseteq \mathcal P \left({S}\right)$. +Let $\left({T, \circ_\mathcal P}\right)$ be a [[Definition:Subband|subband]] of $\left({\mathcal P \left({S}\right), \circ_\mathcal P}\right)$. +Then every [[Definition:Element|element]] of $T$ is a subband of $\left({S, \circ}\right)$. +\end{theorem} + +\begin{proof} +{{improve|See talk page}} +=== Case 1: $T$ is the Empty Set === +By: +: [[Empty Set is Submagma of Magma]] +: [[Restriction of Associative Operation is Associative]] +: [[Restriction of Idempotent Operation is Idempotent]] +it follows that $\left({\varnothing, \circ_\mathcal P}\right)$ is a [[Definition:Subband|subband]] of $\left({T, \circ_\mathcal P}\right)$. +Let $X \in \varnothing$. +Then by the definition of the [[Definition:Empty Set|empty set]] it follows that $\left({X, \circ}\right)$ is a [[Definition:Subband|subband]] of $\left({S, \circ}\right)$ [[Definition:Vacuous Truth|vacuously]]. +{{qed|lemma}} +=== Case 2: $T$ is Non-Empty === +Let $X \in T$. +Then by definition of a [[Definition:Subband|subband]] $X$ is [[Definition:Idempotent Element|idempotent]] under $\circ_\mathcal P$. +That is: +:$X \circ_\mathcal P X = X$ +By [[Subband iff Idempotent under Induced Operation]] we have that $\left({X, \circ}\right)$ is a [[Definition:Subband|subband]] of $\left({S, \circ}\right)$. +Hence the result. +{{qed}} +[[Category:Abstract Algebra]] +rzucm5udvldrjrsxyvx0v6pqqp1dcu0 +\end{proof}<|endoftext|> +\section{Composition of Commuting Idempotent Mappings is Idempotent} +Tags: Idempotence, Mapping Theory, Composite Mappings, Composition of Commuting Idempotent Mappings is Idempotent + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $f, g: S \to S$ be [[Definition:Idempotent Mapping|idempotent mappings]] from $S$ to $S$. +Let: +:$f \circ g = g \circ f$ +where $\circ$ denotes [[Definition:Composition of Mappings|composition]]. +Then $f \circ g$ is [[Definition:Idempotent Mapping|idempotent]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \paren {f \circ g} \circ \paren {f \circ g} + | r = f \circ \paren {g \circ f} \circ g + | c = [[Composition of Mappings is Associative]] +}} +{{eqn | r = f \circ \paren {f \circ g} \circ g + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{eqn | r = \paren {f \circ f} \circ \paren {g \circ g} + | c = [[Composition of Mappings is Associative]] +}} +{{eqn | r = f \circ g + | c = $f$ and $g$ are [[Definition:Idempotent Mapping|idempotent]] [[Definition:By Hypothesis|by hypothesis]] +}} +{{end-eqn}} +{{qed}} +\end{proof} + +\begin{proof} +By [[Set of All Self-Maps is Semigroup]], the [[Definition:Set|set]] of all [[Definition:Self-Map|self-maps]] on $S$ forms a [[Definition:Semigroup|semigroup]] under [[Definition:Composition of Mappings|composition]]. +The result follows from [[Product of Commuting Idempotent Elements is Idempotent]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Compositions of Closure Operators are both Closure Operators iff Operators Commute} +Tags: Closure Operators + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $f$ and $g$ be [[Definition:Closure Operator (Order Theory)|closure operators]] on $S$. +Then the following are equivalent: +:$(1): \quad f \circ g$ and $g \circ f$ are both [[Definition:Closure Operator (Order Theory)|closure operators]]. +:$(2): \quad f$ and $g$ [[Definition:Commute|commute]] (that is, $f \circ g = g \circ f$). +:$(3): \quad \operatorname{img}\left({f \circ g}\right) = \operatorname{img}\left({g \circ f}\right)$ +where $\operatorname{img}$ represents the [[Definition:Image of Mapping|image of a mapping]]. +\end{theorem} + +\begin{proof} +By [[Composition of Inflationary Mappings is Inflationary]]: +: $f \circ g$ and $g \circ f$ are [[Definition:Inflationary Mapping|inflationary]]. +By [[Composition of Increasing Mappings is Increasing]]: +: $f \circ g$ and $g \circ f$ are [[Definition:Increasing Mapping|increasing]]. +Thus each of the two [[Definition:Composition of Mappings|composite mappings]] will be a [[Definition:Closure Operator (Order Theory)|closure operator]] {{iff}} it is [[Definition:Idempotent Mapping|idempotent]]. +Therefore the equivalences follow from [[Composition of Inflationary and Idempotent Mappings]]. +{{qed}} +[[Category:Closure Operators]] +oucxe64yg144ymp7baexi0vhnaqojit +\end{proof}<|endoftext|> +\section{Composition of Increasing Mappings is Increasing} +Tags: Increasing Mappings + +\begin{theorem} +Let $\struct {S, \preceq_S}$, $\struct {T, \preceq_T}$ and $\struct {U, \preceq_U}$ be [[Definition:Ordered Set|ordered sets]]. +Let $g: S \to T$ and $f: T \to U$ be [[Definition:Increasing Mapping|increasing mappings]]. +Then their [[Definition:Composition of Mappings|composition]] $f \circ g: S \to U$ is also [[Definition:Increasing Mapping|increasing]]. +\end{theorem} + +\begin{proof} +Let $x, y \in S$ with $x \preceq_S y$. +Since $g$ is [[Definition:Increasing Mapping|increasing]]: +:$\map g x \preceq_T \map g y$ +Since $f$ is increasing: +:$\map f {\map g x} \preceq_U \map f {\map g y}$ +By the definition of [[Definition:Composition of Mappings|composition]]: +:$\map {\paren {f \circ g} } x \preceq_U \map {\paren {f \circ g} } y$ +Since this holds for all such $x$ and $y$, $f \circ g$ is [[Definition:Increasing Mapping|increasing]]. +{{qed}} +[[Category:Increasing Mappings]] +9140tydzpn8oxb1j16avgpnzfzhls01 +\end{proof}<|endoftext|> +\section{Composition of Inflationary Mappings is Inflationary} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $f, g: S \to S$ be [[Definition:Inflationary Mapping|inflationary mappings]]. +Then $f \circ g$, the [[Definition:Composition of Mappings|composition]] of $f$ and $g$, is also [[Definition:Inflationary Mapping|inflationary]]. +\end{theorem} + +\begin{proof} +Let $x \in S$. +{{begin-eqn}} +{{eqn |n = 1 + |l = x + |o = \preceq + |r = g \left({x}\right) + |c = $g$ is [[Definition:Inflationary Mapping|inflationary]] +}} +{{eqn |n = 2 + |l = g \left({x}\right) + |o = \preceq + |r = f \left({g \left({x}\right)}\right) + |c = $f$ is [[Definition:Inflationary Mapping|inflationary]] +}} +{{eqn |l = x + |o = \preceq + |r = f \left({g \left({x}\right)}\right) + |c = $(1)$ and $(2)$ and $\preceq$ is an [[Definition:Ordering|ordering]] and hence [[Definition:Transitive Relation|transitive]] +}} +{{eqn |ll = \implies + |l = x + |o = \preceq + |r = \left({f \circ g}\right) \left({x}\right) + |c = Definition of [[Definition:Composition of Mappings|composition]] +}} +{{end-eqn}} +Since this holds for all $x \in S$, $f \circ g$ is [[Definition:Inflationary Mapping|inflationary]]. +{{qed}} +[[Category:Order Theory]] +7kdh1yq2liq0v5xy1cfcyjy0dhfbzec +\end{proof}<|endoftext|> +\section{Fixed Point of Idempotent Mapping} +Tags: Idempotent Mappings + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $f: S \to S$ be an [[Definition:Idempotent Mapping|idempotent mapping]]. +Let $f \left[{S}\right]$ be the [[Definition:Image of Mapping|image]] of $S$ under $f$. +Let $x \in S$. +Then $x$ is a [[Definition:Fixed Point|fixed point]] of $f$ {{iff}} $x \in f \left[{S}\right]$. +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $x$ be a [[Definition:Fixed Point|fixed point]] of $f$. +Then: +: $f \left({x}\right) = x$ +and so by the definition of [[Definition:Image of Mapping|image of mapping]]: +: $x \in f \left[{S}\right]$ +{{qed|lemma}} +=== Sufficient Condition === +Let $x \in f \left[{S}\right]$. +Then by the definition of [[Definition:Image of Mapping|image]]: +:$\exists y \in S: f \left({y}\right) = x$ +Then: +{{begin-eqn}} +{{eqn | l = x + | r = f \left({y}\right) + | c = +}} +{{eqn | ll= \implies + | l = f \left({x}\right) + | r = f \left({f \left({y}\right)}\right) + | c = Definition of [[Definition:Mapping|Mapping]] +}} +{{eqn | r = f \left({y}\right) + | c = Definition of [[Definition:Idempotent Mapping|Idempotent Mapping]] +}} +{{eqn | r = x + | c = +}} +{{end-eqn}} +Thus by definition $x$ is a [[Definition:Fixed Point|fixed point]] of $f$. +{{qed}} +[[Category:Idempotent Mappings]] +qpaykkfuia110sfxp5wukrwvj13eviq +\end{proof}<|endoftext|> +\section{Symmetric Closure of Ordering may not be Transitive} +Tags: Closure Operators + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $\preceq^\leftrightarrow$ be the [[Definition:Symmetric Closure|symmetric closure]] of $\preceq$. +Then it is not necessarily the case that $\preceq^\leftrightarrow$ is [[Definition:Transitive Relation|transitive]]. +\end{theorem} + +\begin{proof} +[[Proof by Counterexample]]: +Let $S = \left\{{a, b, c}\right\}$ where $a$, $b$, and $c$ are [[Definition:Distinct|distinct]]. +Let: +: ${\preceq} = \left\{{\left({a, a}\right), \left({b, b}\right), \left({c, c}\right), \left({a, c}\right), \left({b, c}\right)}\right\}$: +Then $\preceq$ is an [[Definition:Ordering|ordering]], but $\preceq^\leftrightarrow$ is not [[Definition:Transitive Relation|transitive]], as follows: +$\preceq$ is [[Definition:Reflexive Relation|reflexive]] because it [[Definition:Subset|contains]] the [[Definition:Diagonal Relation|diagonal relation]] on $S$. +That $\preceq$ is [[Definition:Transitive Relation|transitive]] and [[Definition:Antisymmetric Relation|antisymmetric]] can be verified by inspecting all [[Definition:Ordered Pair|ordered pairs]] of its [[Definition:Element|elements]]. +Thus $\preceq$ is an [[Definition:Ordering|ordering]]. +Now consider $\preceq^\leftrightarrow$, the [[Definition:Symmetric Closure|symmetric closure]] of $\preceq$: +: ${\preceq^\leftrightarrow} = {\preceq} \cup {\preceq}^{-1} = \left\{{\left({a, a}\right), \left({b, b}\right), \left({c, c}\right), \left({a, c}\right), \left({c, a}\right), \left({b, c}\right), \left({c, b}\right)}\right\}$ +by inspection. +Now $\left({a, c}\right) \in {\preceq^\leftrightarrow}$ and $\left({c, b}\right) \in {\preceq^\leftrightarrow}$, but $\left({a, b}\right) \notin {\preceq^\leftrightarrow}$. +Thus $\preceq^\leftrightarrow$ is not [[Definition:Transitive Relation|transitive]]. +{{qed}} +[[Category:Closure Operators]] +e6yrejzm7xnk4pm1f0q9c2yo0ztm679 +\end{proof}<|endoftext|> +\section{Composition of Idempotent Mappings} +Tags: Idempotent Mappings, Composite Mappings + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $f, g: S \to S$ be [[Definition:Idempotent Mapping|idempotent mappings]]. +Suppose that $f \circ g$ and $g \circ f$ have the same [[Definition:Image of Mapping|images]]. +That is, suppose that $f \sqbrk {g \sqbrk S} = g \sqbrk {f \sqbrk S}$. +Then $f \circ g$ and $g \circ f$ are [[Definition:Idempotent Mapping|idempotent]]. +\end{theorem} + +\begin{proof} +Let $x \in S$. +By the premise: +:$\map f {\map g x} \in g \sqbrk {f \sqbrk S}$ +Since $f \sqbrk S \subseteq S$: +:$\map f {\map g x} \in g \sqbrk S$ +Thus for some $y \in S$: +:$\map f {\map g x} = \map g y$ +Since $g$ is [[Definition:Idempotent Mapping|idempotent]]: +:$\map g {\map g y} = \map g y$ +By the choice of $y$: +:$\map g {\map f {\map g x} } = \map g {\map g y} = \map g y = \map f {\map g x}$ +Thus: +:$\map f {\map g {\map f {\map g x} } } = \map f {\map f {\map g x} } = \map f {\map g x}$ +That is, $f \circ g$ is [[Definition:Idempotent Mapping|idempotent]]. +{{qed}} +[[Category:Idempotent Mappings]] +[[Category:Composite Mappings]] +188o1vw8v5s7jzlw3xg1s414okta2j3 +\end{proof}<|endoftext|> +\section{Composition of Inflationary and Idempotent Mappings} +Tags: Mapping Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $f$ and $g$ be [[Definition:Inflationary Mapping|inflationary]] and [[Definition:Idempotent Mapping|idempotent]] [[Definition:Mapping|mappings]] on $S$. +Then the following are equivalent: +:$(1): \quad f \circ g$ and $g \circ f$ are both [[Definition:Idempotent Mapping|idempotent]] +:$(2): \quad f$ and $g$ [[Definition:Commute|commute]] (that is, $f \circ g = g \circ f$) +:$(3): \quad \Img {f \circ g} = \Img {g \circ f}$ +where: +:$\circ$ represents [[Definition:Composition of Mappings|composition]] +:$\Img f$ represents the [[Definition:Image of Mapping|image]] of a [[Definition:Mapping|mapping]] $f$. +\end{theorem} + +\begin{proof} +=== $(2)$ implies $(1)$ === +Follows from [[Composition of Commuting Idempotent Mappings is Idempotent]]. +{{qed|lemma}} +=== $(1)$ implies $(2)$ === +Suppose that $f \circ g$ and $g \circ f$ are [[Definition:Idempotent Mapping|idempotent]]. +Then $\paren {f \circ g} \circ \paren {f \circ g} = f \circ g$. +By [[Composition of Mappings is Associative]] and the definition of [[Definition:Composition of Mappings|composition]], we have for each $x \in S$: +:$\map f {\map g {\map f {\map g x} } } = \map f {\map g x}$ +Because $\preceq$ is an [[Definition:Ordering|ordering]] and hence [[Definition:Reflexive Relation|reflexive]]: +:$\map f {\map g {\map f {\map g x} } } \preceq \map f {\map g x}$ +Since $f$ is [[Definition:Inflationary Mapping|inflationary]]: +:$\map g {\map f {\map g x} } \preceq \map f {\map g {\map f {\map g x} } }$ +Thus since $\preceq$ is an [[Definition:Ordering|ordering]] and hence [[Definition:Transitive Relation|transitive]]: +:$\map g {\map f {\map g x} } \preceq \map f {\map g x}$ +Since $g$ is [[Definition:Inflationary Mapping|inflationary]]: +:$\map f {\map g x} \preceq \map g {\map f {\map g x} }$ +Thus since $\preceq$ is an [[Definition:Ordering|ordering]] and hence [[Definition:Antisymmetric Relation|antisymmetric]]: +:$\map g {\map f {\map g x} } = \map f {\map g x}$ +Since this holds for all $x \in S$, [[Equality of Mappings]] shows that: +:$g \circ f \circ g = f \circ g$ + +The same argument, with the roles of $f$ and $g$ reversed, shows that: +:$f \circ g \circ f = g \circ f$ +Combining everything, we obtain: +:$f \circ g = f \circ \paren {g \circ f \circ g} = f \circ \paren {g \circ f} = g \circ f$ +Thus $f \circ g = g \circ f$, so $f$ and $g$ [[Definition:Commute|commute]]. +{{qed|lemma}} +=== $(2)$ implies $(3)$ === +Equals substitute for equals. +{{qed|lemma}} +=== $(3)$ implies $(1)$ === +Follows from [[Composition of Idempotent Mappings]]. +{{qed}} +[[Category:Mapping Theory]] +jsjv4nlgl8koimfkb9zq9tqoq98tor4 +\end{proof}<|endoftext|> +\section{Closure is Smallest Closed Successor} +Tags: Closure Operators + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $f: S \to S$ be a [[Definition:Closure Operator (Order Theory)|closure operator]] on $S$. +Let $x \in S$. +Then $\map f x$ is the [[Definition:Smallest Element|smallest]] [[Definition:Closed Element|closed element]] that [[Definition:Succeed|succeeds]] $x$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Closure Operator (Order Theory)|closure operator]], $f$ is [[Definition:Inflationary Mapping|inflationary]]. +Thus $x \preceq \map f x$. +By definition, $\map f x$ is [[Definition:Closed Element|closed]]. +So $\map f x$ is a closed element that [[Definition:Succeed|succeeds]] $x$. +We will now show that it is the [[Definition:Smallest Element|smallest]] such. +Let $k$ be a closed element of $S$ such that $x \preceq k$. +Since $f$ is a [[Definition:Closure Operator (Order Theory)|closure operator]], it is [[Definition:Increasing Mapping|increasing]]. +Therefore $\map f x \preceq \map f k$. +Since $k$ is [[Definition:Closed Element|closed]], $\map f k = k$. +Thus $\map f x \preceq k$. +{{qed}} +[[Category:Closure Operators]] +1955mm4t98ditsvzrbvqb6rtpq7y9zu +\end{proof}<|endoftext|> +\section{Closed Elements Uniquely Determine Closure Operator} +Tags: Closure Operators + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $f, g: S \to S$ be [[Definition:Closure Operator (Order Theory)|closure operators]] on $S$. +Suppose that $f$ and $g$ have the same [[Definition:Closed Element|closed elements]]. +Then $f = g$. +\end{theorem} + +\begin{proof} +Let $x \in S$. +Let $C$ be the [[Definition:Set|set]] of [[Definition:Closed Element|closed elements]] of $S$ (with respect to either $f$ or $g$) that [[Definition:Succeed|succeed]] $x$. +By [[Closure is Smallest Closed Successor]], $f \left({x}\right)$ and $g \left({x}\right)$ are [[Definition:Smallest/Ordered Set|smallest]] closed [[Definition:Successor|successors]] of $x$. +That is, $f \left({x}\right)$ and $g \left({x}\right)$ are smallest elements of $C \cap \bar\uparrow x$, where $\bar\uparrow x$ is the [[Definition:Upper Closure of Element|upper closure]] of $x$. +By [[Smallest Element is Unique]], $f \left({x}\right) = g \left({x}\right)$. +Since this holds for all $x \in S$, $f = g$ by [[Equality of Mappings]]. +{{qed}} +[[Category:Closure Operators]] +2kotny5ma94x5wbj6yj7udjqagueqdr +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Closed Element} +Tags: Closure Operators + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $\cl$ be a [[Definition:Closure Operator (Order Theory)|closure operator]] on $S$. +Let $x \in S$. +{{TFAE|def = Closed Element}} +\end{theorem} + +\begin{proof} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Let $\cl: S \to S$ be a [[Definition:Closure Operator|closure operator]] on $S$. +Let $x \in S$. +By the definition of [[Definition:Closure Operator|closure operator]], $\cl$ is [[Definition:Idempotent Mapping|idempotent]]. +Thus by [[Fixed Point of Idempotent Mapping]]: +:An element of $S$ is a [[Definition:Fixed Point|fixed point]] of $\cl$ {{iff}} it is in the [[Definition:Image of Mapping|image]] of $\cl$. +Thus the above definitions are equivalent. +{{qed}} +[[Category:Closure Operators]] +51loub76vimcrpl17rqj45v5kghjuk3 +\end{proof}<|endoftext|> +\section{Square of Number Always Exists} +Tags: Numbers + +\begin{theorem} +Let $x$ be a [[Definition:Number|number]]. +Then its [[Definition:Square (Algebra)|square]] $x^2$ is guaranteed to exist. +\end{theorem} + +\begin{proof} +Whatever flavour of [[Definition:Number|number]] under discussion, the [[Definition:Algebraic Structure|algebraic structure]] $\struct {\mathbb K, +, \times}$ in which this number sits is at least a [[Definition:Semiring|semiring]]. +The [[Definition:Binary Operation|binary operation]] that is [[Definition:Multiplication|multiplication]] is therefore [[Definition:Closed Algebraic Structure|closed]] on that [[Definition:Algebraic Structure|algebraic structure]]. +Therefore: +: $\forall x \in \mathbb K: x \times x \in \mathbb K$ +{{qed}} +[[Category:Numbers]] +h9o91tir35n4ut6k92frbx01j9dqge4 +\end{proof}<|endoftext|> +\section{Schröder Rule} +Tags: Relation Theory + +\begin{theorem} +Let $A$, $B$ and $C$ be [[Definition:Endorelation|relations]] on a [[Definition:Set|set]] $S$. +Then the following are [[Definition:Logical Equivalence|equivalent]] statements: +:$(1): \quad A \circ B \subseteq C$ +:$(2): \quad A^{-1} \circ \overline C \subseteq \overline B$ +:$(3): \quad \overline C \circ B^{-1} \subseteq \overline A$ +where: +: $\circ$ denotes [[Definition:Composition of Relations|relation composition]] +: $A^{-1}$ denotes the [[Definition:Inverse Relation|inverse]] of $A$ +: $\overline A$ denotes the [[Definition:Complement of Relation|complement]] of $A$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Composition of Relations|relation composition]] and [[Definition:Subset|subset]] we have that statement $(1)$ may be written as: +:$(1')\quad \forall x, y, z \in S: \left({ (y, z) \in A \land (x, y) \in B \implies (x, z) \in C }\right)$ +{{explain|Actually, that only gets us to $\forall x, z \in S: ((\exists y: (y, z) \in A \land (x, y) \in B) \implies (x,z) \in C)$.}} +Using a different arrangement of variable names, statement $(2)$ can be written: +:$(2')\quad \forall x, y, z \in S: \left({ (z, y) \in A^{-1} \land (x, z) \in \overline C \implies (x, y) \in \overline B }\right)$ +By the definition of the [[Definition:Inverse Relation|inverse]] and the [[Definition:Complement of Relation|complement]] of a relation we can rewrite this as: +:$(2'')\quad \forall x, y, z \in S: \left({ (y, z) \in A \land (x, z) \notin C) \implies (x, y) \notin B }\right)$ +Similarly, statement $(3)$ can be written: +:$(3')\quad \forall x, y, z \in S: \left({ (x, z) \in \overline C \land (y, x) \in B^{-1} \implies (y, z) \in \overline A }\right)$ +By the definition of the [[Definition:Inverse Relation|inverse]] and the [[Definition:Complement of Relation|complement]] of a relation we can rewrite this as: +:$(3'')\quad \forall x, y, z \in S: \left({ (x, z) \notin C \land (x, y) \in B \implies (y, z) \notin A }\right)$ +So in all we have: +:$(1')\quad \forall x, y, z \in S: \left({ (y, z) \in A \land (x, y) \in B \implies (x, z) \in C }\right)$ +:$(2'')\quad \forall x, y, z \in S: \left({ (y, z) \in A \land (x, z) \notin C) \implies (x, y) \notin B }\right)$ +:$(3'')\quad \forall x, y, z \in S: \left({ (x, z) \notin C \land (x, y) \in B \implies (y, z) \notin A }\right)$ +{{finish}} +\end{proof} + +\begin{proof} +=== $(1)$ iff $(2)$ === +By the definition of [[Definition:Composition of Relations|relation composition]] and [[Definition:Subset|subset]] we have that statement $(1)$ may be written as: +:$(1'):\quad \forall x, y, z \in S: \left({ (y, z) \in A \land (x, y) \in B \implies (x, z) \in C }\right)$ +Using a different arrangement of variable names, statement $(2)$ can be written: +:$(2'):\quad \forall x, y, z \in S: \left({ (z, y) \in A^{-1} \land (x, z) \in \overline C \implies (x, y) \in \overline B }\right)$ +By the definition of [[Definition:Inverse Relation|inverse relation]] and the [[Definition:Complement of Relation|complement]] of a relation we can rewrite this as: +:$(2''):\quad \forall x, y, z \in S: \left({ (y, z) \in A \land (x, z) \notin C) \implies (x, y) \notin B }\right)$ +We shall use the [[Method of Truth Tables/Proof of Interderivability|method of truth tables]]. +The two statements will be [[Definition:Logical Equivalence|equivalent]] [[Definition:Iff|iff]] the columns under the [[Definition:Main Connective|main connectives]], which is $\implies$ in each case, are identical. +'''Statement 1:''' +$\begin{array}{ccccc} +((y, z) \in A & \land & (x, y) \in B) & \implies & (x, z) \in C \\ +\hline +T & T & T & T & T \\ +T & T & T & F & F \\ +T & F & F & T & T \\ +T & F & F & T & F \\ +F & F & T & T & T \\ +F & F & T & T & F \\ +F & F & F & T & T \\ +F & F & F & T & F \\ +\end{array}$ +'''Statement 2:''' +$\begin{array}{ccccc} +((y, z) \in A & \land & (x, z) \notin C) & \implies & (x, y) \notin B \\ +\hline +T & F & F & T & F \\ +T & T & T & F & F \\ +T & F & F & T & T \\ +T & T & T & T & T \\ +F & F & F & T & F \\ +F & F & T & T & F \\ +F & F & F & T & T \\ +F & F & T & T & T \\ +\end{array}$ +{{qed|lemma}} +=== $(2)$ iff $(3)$ === +{{finish}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Dual Relation} +Tags: Relation Theory + +\begin{theorem} +{{TFAE|def = Dual Relation}} +Let $\RR \subseteq S \times T$ be a [[Definition:Binary Relation|relation]]. +\end{theorem} + +\begin{proof} +Let $\tuple {x, y} \in \paren {\overline \RR}^{-1}$. +Then: +{{begin-eqn}} +{{eqn | l = \tuple {x, y} + | o = \in + | r = \overline \RR + | c = +}} +{{eqn | ll= \leadstoandfrom + | l = \tuple {y, x} + | o = \in + | r = \overline \RR + | c = {{Defof|Inverse Relation}} +}} +{{eqn | ll= \leadstoandfrom + | l = \tuple {y, x} + | o = \notin + | r = \RR + | c = {{Defof|Complement of Relation}} +}} +{{eqn | ll= \leadstoandfrom + | l = \tuple {x, y} + | o = \notin + | r = \RR^{-1} + | c = {{Defof|Inverse Relation}} +}} +{{eqn | ll= \leadstoandfrom + | l = \tuple {x, y} + | o = \in + | r = \overline {\paren {\RR^{-1} } } + | c = {{Defof|Complement of Relation}} +}} +{{end-eqn}} +{{qed}} +[[Category:Relation Theory]] +ensi99c6zqi2h5m2vwmz30jqqt18exa +\end{proof}<|endoftext|> +\section{Trivial Gradation is Gradation} +Tags: Ring Theory + +\begin{theorem} +Let $\left({R, +, \circ}\right)$ be a [[Definition:Ring (Abstract Algebra)|ring]]. +Let $\left({M, e,\cdot}\right)$ be a [[Definition:Monoid|monoid]]. +Let +:$\displaystyle R = \bigoplus_{m \mathop \in M} R_m$ +be the [[Definition:Trivial Gradation|trivial $M$-gradation]] on $R$. +This is a [[Definition:Gradation Compatible with Ring Structure|gradation]] on $R$. +\end{theorem} + +\begin{proof} +We are required to show that: +:$\forall x \in R_m, y \in R_n: x \circ y \in R_{m \cdot n}$ +First suppose that $m = n = e$ are both the [[Definition:Identity Element|identity]]. +In this case, $R_m = R_n = R$. +Since by definition, $R$ is [[Definition:Closed Algebraic Structure|closed]] under $\circ$, it follows that +:$\forall x \in R, y \in R: x \circ y \in R$ +as required. +Now suppose that either $m \neq e$ or $n \neq e$. +After possibly exchanging $m$ and $n$, we may as well assume that $n \neq e$. +In particular, $R_n = \mathbf 0$ is the [[Definition:Null Ring|zero ring]]. +So if $y \in R_n$, then $y = 0$. +Therefore, for every $x \in R_m$, by [[Ring Product with Zero]], we must have +:$x \circ y = x \circ 0 = 0$ +Since $R_{m \cdot n}$ is an [[Definition:Abelian Group|abelian group]] it must by definition contain $0$. +Therefore $x \circ y \in R_{m \cdot n}$ as required. +{{Qed}} +[[Category:Ring Theory]] +l0jo8rrsxtsep3cb7ip1u31nhyifjba +\end{proof}<|endoftext|> +\section{Fixed Point of Mappings is Fixed Point of Composition} +Tags: Mapping Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $f, g: S \to S$ be [[Definition:Mapping|mappings]]. +Let $x \in S$ be a [[Definition:Fixed Point|fixed point]] of both $f$ and $g$. +Then $x$ is also a [[Definition:Fixed Point|fixed point]] of $f \circ g$, the [[Definition:Composition of Mappings|composition]] of $f$ and $g$. +\end{theorem} + +\begin{proof} +Since $x$ is a [[Definition:Fixed Point|fixed point]] of $g$: +: $g \left({x}\right) = x$ +Thus: +: $f \left({g \left({x}\right)}\right) = f \left({x}\right)$ +Since $x$ is a [[Definition:Fixed Point|fixed point]] of $f$: +: $f \left({x}\right) = x$ +It follows that: +: $\left({f \circ g}\right) \left({x}\right) = f \left({g \left({x}\right)}\right) = x$ +Thus $x$ is a [[Definition:Fixed Point|fixed point]] of $f \circ g$. +{{qed}} +[[Category:Mapping Theory]] +5xe9ki10ex12x7axmxtisa1dllpha31 +\end{proof}<|endoftext|> +\section{Fixed Point of Mappings is Fixed Point of Composition/General Result} +Tags: Mapping Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $n \in \N$ be a [[Definition:Strictly Positive Integer|strictly positive integer]]. +Let $\N_n$ be the [[Definition:Initial Segment of Natural Numbers|initial segment]] of $n$ in $\N$. +That is, let $\N_n = \left\{{0, 1, \dots, n-1}\right\}$. +For each $i \in \N_n$, let $f_i: S \to S$ be a [[Definition:Mapping|mapping]]. +Let $x \in S$ be a [[Definition:Fixed Point|fixed point]] of $f_i$ for each $i \in \N_n$. +Let $g = f_0 \circ f_1 \circ \dots \circ f_{n-1}$ be the [[Definition:Composition of Mappings|composition]] of all the $f_i$s. +Then $x$ is a [[Definition:Fixed Point|fixed point]] of $g$. +\end{theorem} + +\begin{proof} +The proof proceeds by [[Principle of Mathematical Induction|mathematical induction]] on $n$, the number of [[Definition:Mapping|mappings]]. +=== Base Case === +{{questionable|Flawed. The base case needs to be the two-element case for obvious reasons.}} +If $n = 1$, then $g = f_0$. +Since $x$ is a [[Definition:Fixed Point|fixed point]] of $f_0$, it is also a fixed point of $g$. +{{qed|lemma}} +=== Inductive Step === +Suppose that the theorem holds for $n$. We will show that it holds for $n+1$. +Let $x \in S$ be a [[Definition:Fixed Point|fixed point]] of $f_i$ for each $i \in \N_{n+1}$. +Let $g = f_0 \circ f_1 \circ \dots \circ f_{n-1} \circ f_n$ be the [[Definition:Composition of Mappings|composition]] of all the $f_i$s. +Since the theorem holds for $n$, $x$ is a [[Definition:Fixed Point|fixed point]] of $f_0 \circ f_1 \circ \dots \circ f_{n-1}$. +By [[Composition of Mappings is Associative]]: +: $g = \left({ f_0 \circ f_1 \circ \dots \circ f_{n-1} }\right) \circ f_n$ +Thus by [[Fixed Point of Mappings is Fixed Point of Composition]] (for two mappings), $x$ is a [[Definition:Fixed Point|fixed point]] of $g$. +{{qed}} +[[Category:Mapping Theory]] +h1jv5hvio53fngdgbwydje3btthk4dg +\end{proof}<|endoftext|> +\section{Polynomial has Integer Coefficients iff Content is Integer} +Tags: Content of Polynomial + +\begin{theorem} +$f$ has [[Definition:Integer|integer]] [[Definition:Polynomial Coefficient|coefficients]] {{iff}} $\cont f$ is an [[Definition:Integer|integer]]. +\end{theorem} + +\begin{proof} +If $f \in \Z \sqbrk X$ then $\cont f \in \Z$ by definition of [[Definition:Content of Rational Polynomial|content]]. +Conversely, suppose that: +:$f = a_d X^d + \cdots + a_1 X + a_0 \notin \Z \sqbrk X$ +Let $m = \min \set {n \in \N : n f \in \Z \sqbrk X}$. +Then, by definition of [[Definition:Content of Rational Polynomial|content]]: +:$\cont f = \dfrac 1 m \gcd \set {m a_d, \ldots, m a_0}$ +So $\cont f \in \Z$ would mean that this [[Definition:Greatest Common Divisor of Integers|GCD]] is a [[Definition:Multiple|multiple]] of $m$. +This, however, means that for each $i$, $\dfrac {m a_i} m = a_i$ is an [[Definition:Integer|integer]], which contradicts our assumption that $f \notin \Z \sqbrk X$. +{{Qed}} +[[Category:Content of Polynomial]] +tle7se59a7q909dvaxtit66n56tgio1 +\end{proof}<|endoftext|> +\section{Content of Monic Polynomial} +Tags: Content of Polynomial, Monic Polynomials + +\begin{theorem} +If $f$ is [[Definition:Monic Polynomial|monic]], then $\cont f = \dfrac 1 n$ for some [[Definition:Integer|integer]] $n$. +\end{theorem} + +\begin{proof} +Since $f$ is [[Definition:Monic Polynomial|monic]], it can be written as: +:$f = X^r + \cdots + a_1 X + a_0$ +Let $n = \inf \set {n \in \N : n f \in \Z \sqbrk X}$. +Let $d = \cont {n f}$. +Then by definition of [[Definition:Content of Rational Polynomial|content]]: +:$d = \gcd \set {n, n a_{r - 1}, \ldots, n a_1, n a_0}$ +Therefore, by definition of [[Definition:Greatest Common Divisor of Integers|GCD]], $d$ [[Definition:Divisor of Integer|divides]] $n$. +So say $n = k d$ with $k \in \Z$. +Then: +:$\cont f = \dfrac d {k d} = \dfrac 1 k$ +as required. +{{Qed}} +[[Category:Content of Polynomial]] +[[Category:Monic Polynomials]] +kblu9qebsdbv86z0a5zd2jhnb86ubfh +\end{proof}<|endoftext|> +\section{Content of Scalar Multiple} +Tags: Polynomial Theory, Content of Polynomial + +\begin{theorem} +:$\cont {q f} = q \cont f$ +\end{theorem} + +\begin{proof} +Let $q = \dfrac a b$ with $a, b \in \Z$. +Let $\Z \sqbrk X$ denote the [[Definition:Ring of Polynomials|ring of polynomials]] over $\Z$. +Let $n \in \Z$ such that $n f \in \Z \sqbrk X$. +Then we have: +:$b n \paren {q f} = a n f \in \Z \sqbrk X$ +By the definition of [[Definition:Content of Rational Polynomial|content]], and using that $a \in \Z$: +:$\cont {b n q f} = a \cont {n f}$ +{{handwaving|why is $b n$ the infimum mentioned in the definition?}} +By definition of [[Definition:Content of Rational Polynomial|content]]: +:$\cont {q f} = \dfrac 1 {b n} \cont {b n q f}$ +Combining the above with the definition of $\cont f$: +:$\cont {q f} = \dfrac a b \dfrac 1 n \cont {n f} = q \cont f$ +{{Qed}} +[[Category:Polynomial Theory]] +[[Category:Content of Polynomial]] +jydm79bz6zwzzp09mabap9kjb8p52c8 +\end{proof}<|endoftext|> +\section{Fixed Point of Composition of Inflationary Mappings} +Tags: Order Theory + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be a [[Definition:Ordered Set|ordered set]]. +Let $f, g: S \to S$ be [[Definition:Inflationary Mapping|inflationary mappings]]. +Let $x \in S$. +Then: +: $x$ is a [[Definition:Fixed Point|fixed point]] of $f \circ g$ +{{iff}}: +: $x$ is a [[Definition:Fixed Point|fixed point]] of both $f$ and $g$. +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Follows from [[Fixed Point of Mappings is Fixed Point of Composition]]. +{{qed|lemma}} +=== Sufficient Condition === +Let $h = f \circ g$. +Let $x$ be a [[Definition:Fixed Point|fixed point]] of $h$. +Then by the definition of [[Definition:Composition of Mappings|composition]]: +: $f \left({g \left({x}\right)}\right) = x$ +Since $f$ is [[Definition:Inflationary Mapping|inflationary]]: +: $x \preceq g \left({x}\right)$ +Suppose [[Proof by Contradiction|for the sake of contradiction]] that $x \ne g \left({x}\right)$. +Then $x \prec g \left({x}\right)$. +Since $f$ is also [[Definition:Inflationary Mapping|inflationary]]: +: $g \left({x}\right) \preceq f \left({g \left({x}\right)}\right)$ +Thus by [[Extended Transitivity]]: +: $x \prec f \left({g \left({x}\right)}\right)$ +But this contradicts the assumption that $x$ is a [[Definition:Fixed Point|fixed point]] of $f \circ g$. +Therefore, $x = g \left({x}\right)$, and $x$ is a [[Definition:Fixed Point|fixed point]] of $g$. +Suppose [[Proof by Contradiction|for the sake of contradiction]] that $f \left({x}\right) \ne x$. +Then $x \prec f \left({x}\right)$. +As we have shown that $x = g \left({x}\right)$, it follows that: +: $x \prec f \left({g \left({x}\right)}\right)$ +But this contradicts assumption that $x$ is a [[Definition:Fixed Point|fixed point]] of $f \circ g$. +Hence, $x$ is also a [[Definition:Fixed Point|fixed point]] of $f$. +{{qed}} +[[Category:Order Theory]] +fgaz4yr9gvacrktsbz58kviss2ovnsl +\end{proof}<|endoftext|> +\section{Group of Units is Group} +Tags: Rings with Unity + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Ring with Unity|ring with unity]]. +Then the [[Definition:Set|set]] of [[Definition:Unit of Ring|units]] of $\struct {R, +, \circ}$ forms a [[Definition:Group|group]] under $\circ$. +Hence the justification for referring to the [[Definition:Group of Units of Ring|group of units]] of $\struct {R, +, \circ}$. +\end{theorem} + +\begin{proof} +Follows directly from [[Invertible Elements of Monoid form Subgroup of Cancellable Elements]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Principal Ideal of Principal Ideal Domain is of Irreducible Element iff Maximal/Forward Implication} +Tags: Principal Ideal of Principal Ideal Domain is of Irreducible Element iff Maximal + +\begin{theorem} +Let $\struct {D, +, \circ}$ be a [[Definition:Principal Ideal Domain|principal ideal domain]]. +Let $p$ be an [[Definition:Irreducible Element of Ring|irreducible element]] of $D$. +Let $\ideal p$ be the [[Definition:Principal Ideal of Ring|principal ideal of $D$ generated by $p$]]. +Then $\ideal p$ is a [[Definition:Maximal Ideal of Ring|maximal ideal]] of $D$. +\end{theorem} + +\begin{proof} +Let $p$ be [[Definition:Irreducible Element of Ring|irreducible]] in $D$. +Let $U_D$ be the [[Definition:Group of Units of Ring|group of units]] of $D$. +By definition, an [[Definition:Irreducible Element of Ring|irreducible element]] is not a [[Definition:Unit of Ring|unit]]. +So from [[Principal Ideals in Integral Domain]]: +:$\ideal p \subset D$ +Suppose the [[Definition:Principal Ideal of Ring|principal ideal]] $\ideal p$ is not [[Definition:Maximal Ideal of Ring|maximal]]. +Then there exists an [[Definition:Ideal of Ring|ideal]] $K$ of $D$ such that: +:$\ideal p \subset K \subset R$ +Because $D$ is a [[Definition:Principal Ideal Domain|principal ideal domain]]: +:$\exists x \in R: K = \ideal x$ +Thus: +:$\ideal p \subset \ideal x \subset D$ +Because $\ideal p \subset \ideal x$: +:$x \divides p$ +by [[Principal Ideals in Integral Domain]]. +That is: +:$\exists t \in D: p = t \circ x$ +But $p$ is [[Definition:Irreducible Element of Ring|irreducible]] in $D$, so $x \in U_D$ or $t \in U_D$. +That is, either $x$ is a [[Definition:Unit of Ring|unit]] or $x$ is an [[Definition:Associate in Integral Domain|associate]] of $p$. +But since $K \subset D$: +:$\ideal x \ne D$ so $x \notin U_D$ +by [[Principal Ideals in Integral Domain]]. +Also, since $\ideal p \subset \ideal x$: +:$\ideal p \ne \ideal x$ +so $x$ is not an [[Definition:Associate in Integral Domain|associate]] of $p$, by [[Principal Ideals in Integral Domain]]. +This contradiction shows that $\ideal p$ is a [[Definition:Maximal Ideal of Ring|maximal ideal]] of $D$. +{{qed}} +\end{proof}<|endoftext|> +\section{Principal Ideal of Principal Ideal Domain is of Irreducible Element iff Maximal/Reverse Implication} +Tags: Principal Ideal of Principal Ideal Domain is of Irreducible Element iff Maximal + +\begin{theorem} +Let $\left({D, +, \circ}\right)$ be a [[Definition:Principal Ideal Domain|principal ideal domain]]. +Let $\left({p}\right)$ be the [[Definition:Principal Ideal of Ring|principal ideal of $D$ generated by $p$]]. +Let $\left({p}\right)$ be a [[Definition:Maximal Ideal of Ring|maximal ideal]] of $D$. +Then $p$ is [[Definition:Irreducible Element of Ring|irreducible]]. +\end{theorem} + +\begin{proof} +Let $\left({p}\right)$ be a [[Definition:Maximal Ideal of Ring|maximal ideal]] of $D$. +Let $p = f g$ be any [[Definition:Factorization|factorization]] of $p$. +We must show that one of $f, g$ is a [[Definition:Unit of Ring|unit]]. +Suppose that neither of $f, g$ is a [[Definition:Unit of Ring|unit]]. +First it will be shown that: +:$\left({p}\right) \subsetneqq \left({f}\right)$ +Let $x \in \left({p}\right)$. +That is: +:$\exists q \in D: x = p q$ +Then: +:$x = f g q \in \left({f}\right)$ +so: +:$\left({p}\right) \subseteq \left({f}\right)$ +Now suppose $f \in \left({p}\right)$. +Then: +:$\exists r \in D: f = r p$ +and so from $p = f g$ above: +:$f = r g f$ +Therefore: +:$r g = 1$ +and so $g$ is a [[Definition:Unit of Ring|unit]]. +This is a contradiction. +Thus: +:$f \notin \left({p}\right)$ +and clearly: +:$f \in \left({f}\right)$ +so: +:$\left({p}\right) \subsetneqq \left({f}\right)$ +as claimed. +{{Handwaving|"Clearly" needs to be replaced by a link to the definition which specifies this fact.}} +Therefore, since $\left({p}\right)$ is [[Definition:Maximal Ideal of Ring|maximal]], we must have: +:$\left({f}\right) = D$ +But we assumed that $f$ is not a [[Definition:Unit of Ring|unit]]. +So there is no $h \in D$ such that $f h = 1$. +Therefore: +:$1 \notin \left({f}\right) = \left\{{f h: h \in D}\right\}$ +and: +:$\left({f}\right) \subsetneqq D$ +This is a contradiction. +Therefore at least one of $f, g$ must be a [[Definition:Unit of Ring|unit]]. +This completes the proof. +{{qed}} +\end{proof}<|endoftext|> +\section{Subring of Polynomials over Integral Domain Contains that Domain} +Tags: Polynomial Theory, Subrings + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Commutative Ring|commutative ring]]. +Let $\struct {D, +, \circ}$ be an [[Definition:Subdomain|integral subdomain]] of $R$. +Let $x \in R$. +Let $D \sqbrk x$ denote the [[Definition:Ring of Polynomials in Ring Element|ring of polynomials]] in $x$ over $D$. +Then $D \sqbrk x$ contains $D$ as a [[Definition:Subring|subring]] and $x$ as an [[Definition:Element|element]]. +\end{theorem} + +\begin{proof} +We have that $\displaystyle \sum_{k \mathop = 0}^m a_k \circ x^k$ is a [[Definition:Polynomial over Integral Domain|polynomial]] for all $m \in \Z_{\ge 0}$. +Set $m = 0$: +: $\displaystyle \sum_{k \mathop = 0}^0 a_k \circ x^k = a_k \circ x^0 = a_k \circ 1_D = a_k$ +Thus: +:$\displaystyle \forall a_k \in D: \sum_{k \mathop = 0}^0 a_k \circ x^k \in D$ +It follows directly that $D$ is a subring of $D \left[{x}\right]$ by applying the [[Subring Test]] on elements of $D$. +{{qed}} +\end{proof}<|endoftext|> +\section{Subring of Polynomials over Integral Domain is Smallest Subring containing Element and Domain} +Tags: Polynomial Theory, Subrings + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Commutative Ring|commutative ring]]. +Let $\struct {D, +, \circ}$ be an [[Definition:Subdomain|integral subdomain]] of $R$. +Let $x \in R$. +Let $D \sqbrk x$ denote the [[Definition:Ring of Polynomials in Ring Element|ring of polynomials]] in $x$ over $D$. +Then $D \sqbrk x$ is the [[Definition:Smallest Set by Set Inclusion|smallest]] [[Definition:Subring|subring]] of $R$ which contains $D$ as a [[Definition:Subring|subring]] and $x$ as an [[Definition:Element|element]]. +\end{theorem} + +\begin{proof} +{{proof wanted|Whitelaw says "fairly obviously", so should be more or less straightforward.}} +\end{proof}<|endoftext|> +\section{Cantor-Bernstein-Schröder Theorem/Lemma} +Tags: Cantor-Bernstein-Schröder Theorem + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $T \subseteq S$. +Suppose that $f: S \to T$ is an [[Definition:Injection|injection]]. +Then there is a [[Definition:Bijection|bijection]] $g: S \to T$. +\end{theorem}<|endoftext|> +\section{Cantor-Bernstein-Schröder Theorem/Proof 5} +Tags: Cantor-Bernstein-Schröder Theorem + +\begin{theorem} +Let $S$ and $T$ be [[Definition:Set|sets]]. +Let $f: S \to T$ and $g: T \to S$ be [[Definition:Injection|injections]]. +Then there exists a [[Definition:Bijection|bijection]] $\phi: S \to T$. +\end{theorem} + +\begin{proof} +By [[Injection to Image is Bijection]]: +:$g: T \to g \sqbrk T$ is a [[Definition:Bijection|bijection]]. +Thus $T$ is [[Definition:Set Equivalence|equivalent]] to $g \sqbrk T$. +By [[Composite of Injections is Injection]] $g \circ f: S \to g \sqbrk T \subset S$ is also an [[Definition:Injection|injection]] (to a [[Definition:Subset|subset]] of the [[Definition:Domain of Mapping|domain]] of $g \circ f$). +Then by [[Cantor-Bernstein-Schröder Theorem/Lemma|Cantor-Bernstein-Schröder Theorem: Lemma]]: +:There exists a [[Definition:Bijection|bijection]] $h: S \to g \sqbrk T$. +Thus $S$ is [[Definition:Set Equivalence|equivalent]] to $g \sqbrk T$. +We already know that $T$ is equivalent to $g \sqbrk T$. +Thus by [[Set Equivalence is Equivalence Relation]], $S$ is [[Definition:Set Equivalence|equivalent]] to $T$. +By the definition of [[Definition:Set Equivalence|set equivalence]]: +:There is a [[Definition:Bijection|bijection]] $\phi: S \to T$. +{{qed}} +\end{proof}<|endoftext|> +\section{Quotient Space of Real Line may be Indiscrete} +Tags: Quotient Spaces, Real Number Line with Euclidean Topology + +\begin{theorem} +Let $\struct {\R, \tau}$ denote the [[Definition:Real Number Line with Euclidean Topology|real number line with the usual (Euclidean) topology]]. +Let $\Q$ be the [[Definition:Rational Number|rational numbers]]. +Let $\mathbb I$ be the [[Definition:Irrational Number|irrational numbers]]. +Then $\set {\Q, \mathbb I}$ is a [[Definition:Partition (Set Theory)|partition]] of $\R$. +Let $\sim$ be the [[Definition:Equivalence Relation|equivalence relation]] [[Definition:Relation Induced by Partition|induced]] on $\R$ by $\set {\Q, \mathbb I}$. +Let $T_\sim := \struct {\R / {\sim}, \tau_\sim} +$ be the [[Definition:Quotient Space (Topology)|quotient space]] of $\R$ by $\sim$. +Then $T_\sim$ is an [[Definition:Indiscrete Space|indiscrete space]]. +\end{theorem} + +\begin{proof} +Let $\phi: \R \to \R/{\sim}$ be the [[Definition:Quotient Mapping|quotient mapping]]. +Then: +:$\forall x \in \Q: \map \phi x = \Q$ +:$\forall x \in \mathbb I: \map \phi x = \mathbb I$ +{{AimForCont}} $\set {\mathbb I} \in \tau_\sim$. +Then by the definition of the [[Definition:Quotient Topology|quotient topology]]: +:$\O \subsetneqq \mathbb I = \phi^{-1} \sqbrk {\set {\mathbb I} } \in \tau$ +Thus by [[Rationals are Everywhere Dense in Topological Space of Reals]], $\mathbb I$ contains a [[Definition:Rational Number|rational number]]. +This is a [[Definition:Contradiction|contradiction]]. +{{AimForCont}} $\set \Q \in \tau_\sim$. +Then: +:$\O \subsetneqq \Q = \phi^{-1} \sqbrk {\set \Q} \in \tau$ +Thus by [[Irrationals are Everywhere Dense in Topological Space of Reals]], $\Q$ contains a [[Definition:Irrational Number|irrational number]]. +This is a [[Definition:Contradiction|contradiction]]. +As $\R / {\sim}$ has exactly two elements, its only [[Definition:Non-Empty Set|non-empty]] [[Definition:Proper Subset|proper subsets]] are $\set \Q$ and $\set {\mathbb I}$. +As neither of these sets is $\tau_\sim$-open, $\struct {\R / {\sim}, \tau_\sim}$ is [[Definition:Indiscrete Space|indiscrete]]. +{{qed}} +[[Category:Quotient Spaces]] +[[Category:Real Number Line with Euclidean Topology]] +7xylwfsreu0d6btn0gh71xdhpx4qwml +\end{proof}<|endoftext|> +\section{Quotient Space of Real Line may not be Kolmogorov} +Tags: Quotient Spaces, Real Number Line with Euclidean Topology, T0 Spaces + +\begin{theorem} +Let $\struct {\R, \tau}$ denote the [[Definition:Real Number Line with Euclidean Topology|real number line with the usual (Euclidean) topology]]. +Then there exists an [[Definition:Equivalence Relation|equivalence relation]] $\sim$ on $\R$ such that the [[Definition:Quotient Space (Topology)|quotient space]] $\struct {\R / {\sim}, \tau_\sim}$ is not [[Definition:Kolmogorov Space|Kolmogorov]]. +\end{theorem} + +\begin{proof} +By [[Quotient Space of Real Line may be Indiscrete]], there is an [[Definition:Equivalence Relation|equivalence relation]] $\sim$ on $\R$ such that the [[Definition:Quotient Space (Topology)|quotient space]] $\struct {\R / {\sim}, \tau_\sim}$ has two points and is [[Definition:Indiscrete Space|indiscrete]]. +It follows directly from the definition of [[Definition:Kolmogorov Space|Kolmogorov space]] that $\struct {\R / {\sim}, \tau_\sim}$ is not a [[Definition:Kolmogorov Space|Kolmogorov space]]. +{{qed}} +[[Category:Quotient Spaces]] +[[Category:Real Number Line with Euclidean Topology]] +[[Category:T0 Spaces]] +1k2eb023ogto02shmzysst4j3e45btq +\end{proof}<|endoftext|> +\section{Quotient Space of Real Line may be Kolmogorov but not Fréchet} +Tags: Quotient Spaces, Real Number Line with Euclidean Topology, T0 Spaces, T1 Spaces + +\begin{theorem} +Let $\struct {\R, \tau}$ denote the [[Definition:Real Number Line with Euclidean Topology|real number line with the usual (Euclidean) topology]]. +Define an [[Definition:Equivalence Relation|equivalence relation]] $\sim$ by letting $x \sim y$ {{iff}} either: +:$x = y$ +or: +:$x, y \in \Q$ +Let $\struct {\R / {\sim}, \tau_\sim}$ be the [[Definition:Quotient Space (Topology)|quotient space]] of $\R$ by $\sim$. +Then $\struct {\R / {\sim}, \tau_\sim}$ is a [[Definition:Kolmogorov Space|Kolmogorov space]] but not a [[Definition:Fréchet Space (Topology)|Fréchet space]]. +\end{theorem} + +\begin{proof} +Let $Y = \R / {\sim}$. +Let $\phi: \R \to Y$ be the [[Definition:Quotient Mapping|quotient mapping]]. +Note that: +:$\map \phi x = \set x$ if $x$ is [[Definition:Irrational Number|irrational]]. +:$\map \phi x = \Q$ if $x$ is [[Definition:Rational Number|rational]]. +=== Kolmogorov === +If $x$ is irrational, then $\phi^{-1} \sqbrk {Y \setminus \set x} = \R \setminus \set x$. +Thus $Y \setminus \set x$ is [[Definition:Open Set (Topology)|open]] in $Y$. +Let $p, q \in Y$ such that $p \ne q$. +Then $\set p$ or $\set q$ must be a [[Definition:Singleton|singleton]] containing an [[Definition:Irrational Number|irrational number]]. +{{WLOG}}, suppose that $\set p$ is a [[Definition:Singleton|singleton]] containing an [[Definition:Irrational Number|irrational number]]. +Then as shown above, $Y \setminus P$ is [[Definition:Open Set (Topology)|open]] in $Y$. +Thus so $p$ and $q$ are [[Definition:Topologically Distinguishable|distinguishable]]. +Since this holds for any two points in $Y$, the space is [[Definition:Kolmogorov Space|Kolmogorov]]. +{{qed|lemma}} +=== Not Fréchet === +{{AimForCont}} $\set \Q$ is [[Definition:Closed Set (Topology)|closed]] in $Y$. +By [[Identification Mapping is Continuous]], $\phi$ is [[Definition:Everywhere Continuous Mapping (Topology)|continuous]]. +Thus $\phi^{-1} \sqbrk {\set \Q} = \Q$ is [[Definition:Closed Set (Topology)|closed]] in $\R$. +But this [[Definition:Contradiction|contradicts]] the fact that $\Q \subsetneqq \R$ and [[Rationals are Everywhere Dense in Topological Space of Reals]]. +Thus the singleton $\set \Q$ is not [[Definition:Closed Set (Topology)|closed]] in $Y$. +Hence $\struct {Y, \tau_\sim}$ is not a [[Definition:Fréchet Space (Topology)|Fréchet space]]. +{{qed}} +[[Category:Quotient Spaces]] +[[Category:Real Number Line with Euclidean Topology]] +[[Category:T0 Spaces]] +[[Category:T1 Spaces]] +axy3wekfsjuhd6sbkmjrs6p3rxqg1bj +\end{proof}<|endoftext|> +\section{Unique Representation in Polynomial Forms/General Result} +Tags: Polynomial Theory + +\begin{theorem} +Let $f$ be a [[Definition:Polynomial Form|polynomial form]] in the [[Definition:Indeterminate (Polynomial Theory)|indeterminates]] $\set {X_j: j \in J}$ such that $f: \mathbf X^k \mapsto a_k$. +For $r \in \R$, $\mathbf X^k \in M$, let $r \mathbf X^k$ denote the [[Definition:Polynomial Form|polynomial form]] that takes the value $r$ on $\mathbf X^k$ and zero on all other [[Definition:Monomial|monomials]]. +Let $Z$ denote the set of all [[Definition:Multiindex|multiindices]] indexed by $J$. +Then the sum representation: +:$\ds \hat f = \sum_{k \mathop \in Z} a_k \mathbf X^k$ +has only [[Definition:Finite|finitely many]] non-zero [[Definition:Term of Polynomial|terms]]. +Moreover it is everywhere equal to $f$, and is the unique such sum. +\end{theorem} + +\begin{proof} +Suppose that the sum has infinitely many non-zero terms. +Then infinitely many $a_k$ are non-zero, which contradicts the definition of a polynomial. +Therefore the sum consists of finitely many non-zero terms. +Let $\mathbf X^m \in M$ be arbitrary. +Then: +{{begin-eqn}} +{{eqn | l = \map {\hat f} {\mathbf X^m} + | r = \paren {\sum_{k \mathop \in Z} a_k \mathbf X^k} \paren {\mathbf X^m} +}} +{{eqn | r = \paren {a_m \mathbf X^m} \paren {\mathbf X^m} + \sum_{k \mathop \ne m \mathop \in Z} \paren {a_k \mathbf X^k} \paren {\mathbf X^m} +}} +{{eqn | r = a_m +}} +{{end-eqn}} +So $\hat f = f$. +Finally suppose that: +:$\ds \tilde f = \sum_{k \mathop \in Z} b_k \mathbf X^k$ +is another such representation with $b_m \ne a_m$ for some $m \in Z$. +Then: +:$\map {\tilde f} {\mathbf X^m} = b_m \ne a_m = \map f {\mathbf X^m}$ +Therefore $\hat f$ as defined above is the only such representation. +{{qed}} +[[Category:Polynomial Theory]] +7o8pvns4dhu5hef6lmp7exgbdq66ayi +\end{proof}<|endoftext|> +\section{Closed Element of Composite Closure Operator} +Tags: Closure Operators + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $f, g: S \to S$ be [[Definition:Closure Operator|closure operators]]. +Let $h = f \circ g$, where $\circ$ represents [[Definition:Composition of Mappings|composition]]. +Suppose that $h$ is also a closure operator. +Then an element $x \in S$ is [[Definition:Closed Element|closed]] with respect to $h$ [[Definition:Iff|iff]] it is closed with respect to $f$ and with respect to $g$. +\end{theorem} + +\begin{proof} +An element is [[Definition:Closed Element|closed]] with respect to a [[Definition:Closure Operator|closure operator]] [[Definition:Iff|iff]] it is a [[Definition:Fixed Point|fixed point]] of that operator. +Since $f$ and $g$ are [[Definition:Closure Operator|closure operators]], they are [[Definition:Inflationary Mapping|inflationary]]. +Thus the result follows from [[Fixed Point of Composition of Inflationary Mappings]]. +{{qed}} +[[Category:Closure Operators]] +hwt0nny0li0kzk0oud7lzfroivzhwel +\end{proof}<|endoftext|> +\section{Law of Excluded Middle for Two Variables} +Tags: Propositional Logic + +\begin{theorem} +:$\vdash (p \land q) \lor (\lnot p \land q) \lor (p \land \lnot q) \lor (\lnot p \land \lnot q)$ +\end{theorem} + +\begin{proof} +{{BeginTableau| \vdash ((p \land q) \lor (\lnot p \land q)) \lor ( (p \land \lnot q) \lor (\lnot p \land \lnot q)) }} +{{ExcludedMiddle|1|p \lor \lnot p}} +{{ExcludedMiddle|2|q \lor \lnot q}} +{{Conjunction|3||(p \lor \lnot p) \land (q \lor \lnot q)|1|2}} +{{SequentIntro|4||((p \lor \lnot p) \land q) \lor ((p \lor \lnot p) \land \lnot q)|3|[[Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 1|Conjunction Distributes over Disjunction]]}} +{{Assumption|5|(p \lor \lnot p) \land q}} +{{SequentIntro|6|5|(p \land q) \lor (\lnot p \land q)|5|[[Rule of Distribution/Conjunction Distributes over Disjunction/Right Distributive/Formulation 1|Conjunction Distributes over Disjunction]]}} +{{Implication|7||(p \lor \lnot p) \land q \implies (p \land q) \lor (\lnot p \land q)|5|6 }} +{{Assumption|8|(p \lor \lnot p) \land \lnot q}} +{{SequentIntro|9|8| (p \land \lnot q) \lor (\lnot p \land \lnot q)|8| [[Rule of Distribution/Conjunction Distributes over Disjunction/Right Distributive/Formulation 1|Conjunction Distributes over Disjunction]] }} +{{Implication|10|| (p \lor \lnot p) \land \lnot q \implies (p \land \lnot q) \lor (\lnot p \land \lnot q)|8|9}} +{{SequentIntro|11|| ((p \lor \lnot p) \land q) \lor ((p \lor \lnot p) \land \lnot q) \implies ((p \land q) \lor (\lnot p \land q)) \lor ( (p \land \lnot q) \lor (\lnot p \land \lnot q))|7,10|[[Constructive Dilemma/Formulation 1|Constructive Dilemma]]}} +{{ModusPonens|12|| ((p \land q) \lor (\lnot p \land q)) \lor ( (p \land \lnot q) \lor (\lnot p \land \lnot q))|11|4 }} +{{EndTableau}} +{{qed}} +{{LEM}} +[[Category:Propositional Logic]] +48jjx3jhedwa77osqylwqo68vmo427a +\end{proof}<|endoftext|> +\section{Cardinality of Finite Set is Well-Defined} +Tags: Set Theory, Cardinality + +\begin{theorem} +Let $S$ be a [[Definition:Finite Set|finite set]]. +Then there is a unique [[Definition:Natural Number|natural number]] $n$ such that $S \sim \N_n$, where: +:$\sim$ represents [[Definition:Set Equivalence|set equivalence]] +and: +:$\N_n = \set {0, 1, \dotsc, n - 1}$ is the [[Definition:Initial Segment of Natural Numbers|initial segment of $\N$]] determined by $n$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Finite Set|finite set]], there is an $n \in \N$ such that $S \sim \N_n$. +Suppose $m \in \N$ and $S \sim \N_m$. +It follows from [[Set Equivalence is Equivalence Relation]] that $\N_n \sim \N_m$. +Thus by [[Equality of Natural Numbers]], $n = m$. +Therefore the [[Definition:Cardinality|cardinality]] of a [[Definition:Finite|finite set]] is [[Definition:Well-Defined Mapping|well-defined]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Ring of Polynomial Forms is Commutative Ring with Unity} +Tags: Polynomial Rings + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +Let $A = R \sqbrk {\set {X_j: j \in J} }$ be the set of all [[Definition:Polynomial Form|polynomial forms]] over $R$ in the indeterminates $\set {X_j: j \in J}$. +Then $\struct {A, +, \circ}$ is a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +\end{theorem} + +\begin{proof} +We must show that the [[Definition:Commutative and Unitary Ring Axioms|commutative and unitary ring axioms]] are satisfied: +{{:Definition:Commutative and Unitary Ring Axioms}} +=== Proof of the additive axioms === +'''A1:''' +This is shown by [[Polynomials Closed under Addition]]. +'''A2-A5:''' +According to the formal definition, a polynomial is a map from the [[Definition:Free Commutative Monoid|free commutative monoid]] to $R$. +Now observe that addition of [[Definition:Polynomial Form|polynomial forms]] is [[Definition:Induced Structure|induced]] by addition in $R$. +Therefore: +:'''A2''' is shown by [[Structure Induced by Associative Operation is Associative]] +:'''A3''' is shown by [[Induced Structure Identity]] +:'''A4''' is shown by [[Induced Structure Inverse]] +:'''A5''' is shown by [[Structure Induced by Commutative Operation is Commutative]] +=== Proof of the multiplicative axioms === +'''M1:''' +This is shown by [[Polynomials Closed under Ring Product]]. +Multiplication of polynomial forms is not [[Definition:Induced Structure|induced]] by multiplication in $R$, so we must show the multiplicative axioms by hand. +'''M2:''' +This is shown by [[Multiplication of Polynomials is Associative]]. +'''M3:''' +This is shown by [[Polynomials Contain Multiplicative Identity]]. +'''M4:''' +This is shown by [[Multiplication of Polynomials is Commutative]]. +'''D:''' +This is shown by [[Multiplication of Polynomials Distributes over Addition]]. +Therefore, all of the axioms of a [[Definition:Commutative and Unitary Ring|commutative ring with unity]] are satisfied. +{{qed}} +[[Category:Polynomial Rings]] +ld9w9xriw4vtobh8neg5cpkgnx0kh3k +\end{proof}<|endoftext|> +\section{Idempotent Elements form Subsemigroup of Commutative Semigroup} +Tags: Subsemigroups, Idempotence, Idempotent Elements form Subsemigroup of Commutative Semigroup + +\begin{theorem} +Let $\struct {S, \circ}$ be a [[Definition:Semigroup|semigroup]] such that $\circ$ is [[Definition:Commutative Operation|commutative]]. +Let $I$ be the [[Definition:Set|set]] of all [[Definition:Element|elements]] of $S$ that are [[Definition:Idempotent Element|idempotent]] under $\circ$. +That is: +:$I = \set {x \in S: x \circ x = x}$ +Then $\struct {I, \circ}$ is a [[Definition:Subsemigroup|subsemigroup]] of $\struct {S, \circ}$. +\end{theorem} + +\begin{proof} +By [[Subsemigroup Closure Test]] we need only show that: +:For all $x, y \in I$: $x \circ y \in I$. +That is: +:$\paren {x \circ y} \circ \paren {x \circ y} = x \circ y$ +We reason as follows: +{{begin-eqn}} +{{eqn | l = \paren {x \circ y} \circ \paren {x \circ y} + | r = \paren {x \circ y} \circ \paren {y \circ x} + | c = $\circ$ is [[Definition:Commutative Operation|commutative]] +}} +{{eqn | r = \paren {x \circ \paren {y \circ x} } \circ y + | c = $\circ$ is [[Definition:Associative Operation|associative]] +}} +{{eqn | r = \paren {x \circ \paren {x \circ y} } \circ y + | c = $\circ$ is [[Definition:Commutative Operation|commutative]] +}} +{{eqn | r = \paren {x \circ x} \circ \paren {y \circ y} + | c = $\circ$ is [[Definition:Associative Operation|associative]] +}} +{{eqn | r = x \circ y + | c = $x$ and $y$ are [[Definition:Idempotent Element|idempotent]] +}} +{{end-eqn}} +Hence the result. +{{qed}} +\end{proof} + +\begin{proof} +By [[Subsemigroup Closure Test]] we need only show that: +: For all $x, y \in I$: $x \circ y \in I$. +As $x, y \in I$, they are [[Definition:Idempotent Element|idempotent]]. +We have that $\circ$ is [[Definition:Commutative Operation|commutative]]. +Thus, by definition, $x$ and $y$ [[Definition:Commute|commute]]. +From [[Product of Commuting Idempotent Elements is Idempotent]], $\left({x \circ y}\right)$ is [[Definition:Idempotent Element|idempotent]]. +That is: +:$x \circ y \in I$ +{{qed}} +\end{proof}<|endoftext|> +\section{Product of Commuting Idempotent Elements is Idempotent} +Tags: Semigroups, Idempotence + +\begin{theorem} +Let $\struct {S, \circ}$ be a [[Definition:Semigroup|semigroup]]. +Let $a, b \in S$ be [[Definition:Idempotent Element|idempotent elements]] of $S$. +Let $a$ and $b$ [[Definition:Commute|commute]]: +:$a \circ b = b \circ a$ +Then $a \circ b$ is [[Definition:Idempotent Element|idempotent]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \paren {a \circ b} \circ \paren {a \circ b} + | r = \paren {a \circ \paren {b \circ a} } \circ b + | c = $\circ$ is [[Definition:Associative Operation|associative]] by definition of [[Definition:Semigroup|semigroup]] +}} +{{eqn | r = \paren {a \circ \paren {a \circ b} } \circ b + | c = $a$ and $b$ [[Definition:Commute|commute]] +}} +{{eqn | r = \paren {a \circ a} \circ \paren {b \circ b} + | c = $\circ$ is [[Definition:Associative Operation|associative]] +}} +{{eqn | r = a \circ b + | c = $a$ and $b$ are [[Definition:Idempotent Element|idempotent]] by the premise +}} +{{end-eqn}} +Thus $a \circ b$ is [[Definition:Idempotent Element|idempotent]]. +{{qed}} +[[Category:Semigroups]] +[[Category:Idempotence]] +5hcn0hrqp0efy8tk9dzdvy04zje69lm +\end{proof}<|endoftext|> +\section{Set of All Self-Maps is Semigroup} +Tags: Mapping Theory, Examples of Semigroups + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $S^S$ be the [[Definition:Set of All Mappings|set of all mappings]] from $S$ to itself. +Let the [[Definition:Binary Operation|operation]] $\circ$ represent [[Definition:Composition of Mappings|composition of mappings]]. +Then the [[Definition:Algebraic Structure|algebraic structure]] $\struct {S^S, \circ}$ is a [[Definition:Semigroup|semigroup]]. +\end{theorem} + +\begin{proof} +Let $f, g \in S^S$. +As the [[Definition:Domain of Mapping|domain]] of $g$ and [[Definition:Codomain of Mapping|codomain]] of $f$ are the same, the [[Definition:Composition of Mappings|composition]] $f \circ g$ is defined. +By the definition of composition, $f \circ g$ is a [[Definition:Mapping|mapping]] from the domain of $g$ to the codomain of $f$. +Thus $f \circ g: S \to S$, so $f \circ g \in S^S$. +Since this holds for all $f, g \in S^S$, $\struct {S^S, \circ}$ is [[Definition:Closed Algebraic Structure|closed]]. +By [[Composition of Mappings is Associative]], $\circ$ is [[Definition:Associative|associative]]. +Since $\struct {S^S, \circ}$ is [[Definition:Closed Algebraic Structure|closed]] and $\circ$ is associative: +:$\struct {S^S, \circ}$ is a [[Definition:Semigroup|semigroup]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Integers form Subdomain of Reals} +Tags: Integers, Real Numbers + +\begin{theorem} +The [[Integers form Integral Domain|integral domain of integers]] $\struct {\Z, +, \times}$ forms a [[Definition:Subdomain|subdomain]] of the [[Definition:Field of Real Numbers|field of real numbers]]. +\end{theorem} + +\begin{proof} +We have that [[Integers form Subdomain of Rationals]]. +We have that [[Rational Numbers form Subfield of Real Numbers]]. +Hence the result, from the definition of [[Definition:Subdomain|subdomain]]. +{{qed}} +[[Category:Integers]] +[[Category:Real Numbers]] +k7dkktib40yaper07azh5367u9i60v8 +\end{proof}<|endoftext|> +\section{Identity Element is Idempotent} +Tags: Identity Elements, Idempotence + +\begin{theorem} +Let $\struct {S, \circ}$ be an [[Definition:Algebraic Structure|algebraic structure]]. +Let $e \in S$ be an [[Definition:Identity Element|identity]] with respect to $\circ$. +Then $e$ is [[Definition:Idempotent Element|idempotent]] under $\circ$. +\end{theorem} + +\begin{proof} +By the definition of an [[Definition:Identity Element|identity element]]: +:$\forall x \in S: e \circ x = x$ +Thus in particular: +:$e \circ e = e$ +Therefore $e$ is [[Definition:Idempotent Element|idempotent]] under $\circ$. +{{qed}} +\end{proof}<|endoftext|> +\section{Identity of Algebraic Structure is Preserved in Substructure} +Tags: Identity Elements + +\begin{theorem} +Let $\struct {S, \circ}$ be an [[Definition:Algebraic Structure|algebraic structure]] with [[Definition:Identity Element|identity]] $e$. +Let $\struct {T, \circ}$ be a [[Definition:Algebraic Substructure|algebraic substructure]] of $\struct {S, \circ}$. +That is, let $T \subseteq S$. +Let $e \in T$. +Then $e$ is an [[Definition:Identity Element|identity]] of $\struct {T, \circ}$. +\end{theorem} + +\begin{proof} +Let $x \in T$. +By the definition of [[Definition:Subset|subset]], $x \in S$. +Since $e$ is an [[Definition:Identity Element|identity]] of $\struct {S, \circ}$: +:$e \circ x = x \circ e = x$ +Since this holds for all $x \in T$, $e$ is an [[Definition:Identity Element|identity]] of $\struct {T, \circ}$. +{{qed}} +[[Category:Identity Elements]] +n2ie5wgzy61jxufp2t0pdsatrdnts8o +\end{proof}<|endoftext|> +\section{Idempotent Elements form Submonoid of Commutative Monoid} +Tags: Monoids + +\begin{theorem} +Let $\left({S, \circ}\right)$ be a [[Definition:Commutative Monoid|commutative monoid]]. +Let $e \in S$ be the [[Definition:Identity Element|identity element]] of $\left({S, \circ}\right)$. +Let $I$ be the [[Definition:Set|set]] of all [[Definition:Element|elements]] of $S$ that are [[Definition:Idempotent Element|idempotent]] under $\circ$. +That is: +:$I = \left\{{x \in S: x \circ x = x}\right\}$ +Then $\left({I, \circ}\right)$ is a [[Definition:Submonoid|submonoid]] of $\left({S, \circ}\right)$ with identity $e$. +\end{theorem} + +\begin{proof} +By [[Idempotent Elements form Subsemigroup of Commutative Semigroup]], $\left({I, \circ}\right)$ is a [[Definition:Subsemigroup|subsemigroup]] of $\left({S, \circ}\right)$. +By [[Identity Element is Idempotent]], $e \in I$. +By [[Identity of Algebraic Structure is Preserved in Substructure]], $e$ is an [[Definition:Identity Element|identity]] of $(I, \circ)$. +Since $\left({T, \circ}\right)$ is a [[Definition:Semigroup|semigroup]] and has an [[Definition:Identity Element|identity]], $\left({T, \circ}\right)$ is a [[Definition:Monoid|monoid]]. +Since $T \subseteq S$, $\left({T, \circ}\right)$ is a [[Definition:Submonoid|submonoid]] of $\left({S, \circ}\right)$ with [[Definition:Identity Element|identity]] $e$. +{{qed}} +[[Category:Monoids]] +hf714gnpsngl4li3spzhqmiu6kvh0p7 +\end{proof}<|endoftext|> +\section{Inverse Image under Order Embedding of Strict Upper Closure of Image of Point} +Tags: Order Embeddings, Upper Closures + +\begin{theorem} +Let $\struct {S, \preceq}$ and $\struct {T, \preceq'}$ be [[Definition:Ordered Set|ordered sets]]. +Let $\phi: S \to T$ be an [[Definition:Order Embedding|order embedding]] of $\struct {S, \preceq}$ into $\struct {T, \preceq'}$ +Let $p \in S$. +Then: +:$\map {\phi^{-1} } {\map \phi p^{\succ'} } = p^\succ$ +where $\cdot^\succ$ and $\cdot^{\succ'}$ represent [[Definition:Strict Upper Closure of Element|strict upper closure]] with respect to $\preceq$ and $\preceq'$, respectively. +\end{theorem} + +\begin{proof} +Let $x \in \map {\phi^{-1} } {\map \phi p^{\succ'} }$. +By the definition of [[Definition:Inverse Image|inverse image]]: +:$\map \phi x \in \map \phi p^{\succ'}$ +By the definition of [[Definition:Strict Upper Closure of Element|strict upper closure]]: +:$\map \phi p \prec' \map \phi x$ +Since $\phi$ is an [[Definition:Order Embedding|order embedding]]: +:$p \prec x$ +Thus by the definition of [[Definition:Strict Upper Closure of Element|strict upper closure]]: +:$x \in p^\succ$ +and so: +:$\map {\phi^{-1} } {\map \phi p^{\succ'} } \subseteq p^\succ$ +Let $x \in p^\succ$. +By the definition of [[Definition:Strict Upper Closure of Element|strict upper closure]]: +:$p \prec x$ +Since $\phi$ is an [[Definition:Order Embedding|order embedding]]: +:$\map \phi p \prec' \map \phi x$ +Thus by the definition of [[Definition:Strict Upper Closure of Element|strict upper closure]]: +:$\map \phi x \in \map \phi p^{\succ'}$ +Thus by the definition of [[Definition:Inverse Image|inverse image]]: +:$x \in \map {\phi^{-1} } {\map \phi p^{\succ'} }$ +and so: +:$p^\succ \subseteq \map {\phi^{-1} } {\map \phi p^{\succ'} }$ +Thus by definition of [[Definition:Set Equality|set equality]]: +:$\map {\phi^{-1} } {\map \phi p^{\succ'} } = p^\succ$ +{{qed}} +[[Category:Order Embeddings]] +[[Category:Upper Closures]] +io0oltfff5r2qj4nelhv9cohyuvf1sj +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Order Embedding/Definition 1 implies Definition 3} +Tags: Order Embeddings + +\begin{theorem} +Let $\struct {S, \preceq_1}$ and $\struct {T, \preceq_2}$ be [[Definition:Ordered Set|ordered sets]]. +Let $\phi: S \to T$ be a [[Definition:Mapping|mapping]]. +Let $\phi: S \to T$ be an [[Definition:Order Embedding|order embedding]] by [[Definition:Order Embedding/Definition 1|Definition 1]]: +{{:Definition:Order Embedding/Definition 1}} +Then $\phi: S \to T$ is an [[Definition:Order Embedding|order embedding]] by [[Definition:Order Embedding/Definition 3|Definition 3]]: +{{:Definition:Order Embedding/Definition 3}} +\end{theorem} + +\begin{proof} +Let $\phi$ be an [[Definition:Order Embedding/Definition 1|order embedding by definition 1]]. +Then by definition: +:$\forall x, y \in S: x \preceq_1 y \iff \map \phi x \preceq_2 \map \phi y$ +$\phi$ is [[Definition:Injection|injective]] by [[Order Embedding is Injection]]. +It remains to be shown that: +: $x \prec_1 y \iff \map \phi x \prec_2 \map \phi y$ +Suppose first that $x \prec_1 y$. +Then $x \preceq_1 y$ and $x \ne y$. +Thus by the premise: +:$\map \phi x \preceq_2 \map \phi y$ +Since $\phi$ is [[Definition:Injection|injective]]: +:$\map \phi x \ne \map \phi y$ +Therefore: +:$\map \phi x \prec_2 \map \phi y$ +Suppose instead that $\map \phi x \prec_2 \map \phi y$ +Then: +:$\map \phi x \preceq_2 \map \phi y$ +and: +:$\map \phi x \ne \map \phi y$ +By the premise: +:$x \preceq_1 y$ +By the substitutive property of equality: +:$x \ne y$ +Thus: +:$x \prec_1 y$ +Thus $\phi$ is an [[Definition:Order Embedding/Definition 3|order embedding by definition 3]]. +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Order Embedding/Definition 3 implies Definition 1} +Tags: Order Embeddings + +\begin{theorem} +Let $\struct {S, \preceq_1}$ and $\struct {T, \preceq_2}$ be [[Definition:Ordered Set|ordered sets]]. +Let $\phi: S \to T$ be a [[Definition:Mapping|mapping]]. +Let $\phi: S \to T$ be an [[Definition:Order Embedding|order embedding]] by [[Definition:Order Embedding/Definition 3|Definition 3]]: +{{:Definition:Order Embedding/Definition 3}} +Then $\phi: S \to T$ is an [[Definition:Order Embedding|order embedding]] by [[Definition:Order Embedding/Definition 1|Definition 1]]: +{{:Definition:Order Embedding/Definition 1}} +\end{theorem} + +\begin{proof} +Let $\phi$ be an [[Definition:Order Embedding/Definition 3|order embedding by definition 3]]. +Then by definition: +:$(1): \quad \phi$ is [[Definition:Injection|injective]] +:$(2): \quad \forall x, y, \in S: x \prec_1 y \iff \map \phi x \prec_2 \map \phi y$ +Let $x \preceq_1 y$. +Then $x \prec_1 y$ or $x = y$. +If $x \prec_1 y$, then by hypothesis: +:$\map \phi x \prec_2 \map \phi y$ +Thus: +:$\map \phi x \preceq_2 \map \phi y$ +If $x = y$, then: +:$\map \phi x = \map \phi y$ +Thus: +:$\map \phi x \preceq_2 \map \phi y$ +Thus it has been shown that: +:$x \preceq_1 y \implies \map \phi x \preceq_2 \map \phi y$ +{{qed|lemma}} +Let $\map \phi x \preceq_2 \map \phi y$. +Then: +:$\map \phi x \prec_2 \map \phi y$ +or: +:$\map \phi x = \map \phi y$ +Suppose $\map \phi x \prec_2 \map \phi y$. +Then by hypothesis: +:$x \prec_1 y$ +and so: +:$x \preceq_1 y$ +Suppose $\map \phi x = \map \phi y$. +Then since $\phi$ is [[Definition:Injection|injective]]: +:$x = y$ +and so: +:$x \preceq_1 y$ +Thus [[Proof by Cases|in both cases]]: +:$x \preceq_1 y$ +and so: +:$\map \phi x \preceq_2 \map \phi y \implies x \preceq_1 y$ +{{qed|lemma}} +Hence the result: +:$x \preceq_1 y \iff \map \phi x \preceq_2 \map \phi y$ +and so $\phi$ is an [[Definition:Order Embedding/Definition 1|order embedding by definition 1]]. +\end{proof}<|endoftext|> +\section{Inverse Image under Embedding of Image under Relation of Image of Point} +Tags: Relation Theory + +\begin{theorem} +Let $S$ and $T$ be [[Definition:Set|sets]]. +Let $\mathcal R_S$ and $\mathcal R_t$ be [[Definition:Endorelation|relations]] on $S$ and $T$, respectively. +Let $\phi: S \to T$ be a [[Definition:Mapping|mapping]] with the property that: +: $\forall p, q \in S: \left({ p \mathrel{\mathcal R_S} q \iff \phi(p) \mathrel{\mathcal R_T} \phi(q) }\right)$ +Then for each $p \in S$: +: $\mathcal R_S (p) = \phi^{-1}\left({\mathcal R_T \left({ \phi(p) }\right) }\right)$ +\end{theorem} + +\begin{proof} +Let $p \in S$. +{{begin-eqn}} +{{eqn |o = + |r = x \in \mathcal R_S (p) +}} +{{eqn |lo= \iff |o= + |r = p \mathrel{\mathcal R_S} x + |c = Definition of the [[Definition:Image of Element under Relation|image]] of $p$ under $\mathcal R_S$ +}} +{{eqn |lo= \iff |o= + |r = \phi(p) \mathrel{\mathcal R_T} \phi(x) + |c = Premise +}} +{{eqn |lo= \iff |o= + |r = \phi(x) \in \mathcal R_T \left({ \phi(p) }\right) + |c = Definition of the image of $\phi(x)$ under $\mathcal R_T$ +}} +{{eqn |lo = \iff |o= + |r = x \in \phi^{-1}\left({\mathcal R_T \left({ \phi(p) }\right) }\right) + |c = Definition of [[Definition:Inverse Image|inverse image]] +}} +{{end-eqn}} +Thus by the [[Axiom:Axiom of Extension|Axiom of Extension]]: +: $\mathcal R_S (p) = \phi^{-1}\left({\mathcal R_T \left({ \phi(p) }\right) }\right)$ +{{qed}} +[[Category:Relation Theory]] +p01vhur6jk7qpkalxpz316iw3q5m1rh +\end{proof}<|endoftext|> +\section{Path as Parameterization of Contour} +Tags: Contour Integration + +\begin{theorem} +Let $\left[{a \,.\,.\, b}\right]$ be a [[Definition:Closed Real Interval|closed real interval]]. +Let $\gamma: \left[{a \,.\,.\, b}\right] \to \C$ be a [[Definition:Path (Topology)|path]]. +Let there exist $n \in \N$ and a [[Definition:Subdivision (Real Analysis)|subdivision]] $\left\{{a_0, a_1, \ldots, a_n}\right\}$ of $\left[{a \,.\,.\, b}\right]$ such that: +: $\gamma {\restriction_{ \left[{a_{k - 1} \,.\,.\, a_k}\right] } }$ is a [[Definition:Smooth Path (Complex Analysis)|smooth path]] for all $k \in \left\{ {1, \ldots, n}\right\}$ +where $\gamma {\restriction_{\left[{a_{k - 1} \,.\,.\, a_k}\right]} }$ denotes the [[Definition:Restriction of Mapping|restriction]] of $\gamma$ to $\left[{a_{k - 1} \,.\,.\, a_k}\right]$. +Then there exists a [[Definition:Contour (Complex Plane)|contour]] $C$ with [[Definition:Parameterization of Contour (Complex Plane)|parameterization]] $\gamma$ and these properties: +:$(1): \quad$ If $\gamma$ is a [[Definition:Closed Path (Topology)|closed path]], then $C$ is a [[Definition:Closed Contour (Complex Plane)|closed contour]]. +:$(2): \quad$ If $\gamma$ is a [[Definition:Jordan Arc|Jordan arc]], then $C$ is a [[Definition:Simple Contour (Complex Plane)|simple contour]]. +:$(3): \quad$ If $\gamma$ is a [[Definition:Jordan Curve|Jordan curve]], then $C$ is a [[Definition:Simple Contour (Complex Plane)|simple]] [[Definition:Closed Contour (Complex Plane)|closed contour]]. +\end{theorem} + +\begin{proof} +Put $\gamma_k = \gamma {\restriction_{ \left[{a_{k-1} \,.\,.\, a_k}\right] } } : \left[{a_{k-1} \,.\,.\, a_k}\right] \to \C$. +By definition, it follows that there exists a [[Definition:Directed Smooth Curve|directed smooth curve]] $C_k$ with [[Definition:Directed Smooth Curve/Parameterization|parameterization]] $\gamma_k$. +For all $k \in \left\{ {1, \ldots, n-1}\right\}$, we have $\gamma_k \left({a_k}\right) = \gamma_{k + 1} \left({a_k}\right)$. +Define the [[Definition:Contour (Complex Plane)|contour]] $C$ as the [[Definition:Concatenation of Contours|concatenation]] $C_1 \cup C_2 \cup \ldots \cup C_n$. +Then, it follows by definition that $\gamma$ is a possible [[Definition:Parameterization of Contour (Complex Plane)|parameterization]] of $C$. +{{qed|lemma}} +Suppose that $\gamma$ is a [[Definition:Closed Path (Topology)|closed path]]. +Then $\gamma \left({a}\right) = \gamma_1 \left({a_0}\right) = \gamma_n \left({a_n}\right)$, so $C_1$ has [[Definition:Start Point of Contour (Complex Plane)|start point]] $\gamma \left({a}\right)$, and $C_n$ has [[Definition:End Point of Contour (Complex Plane)|end point]] $\gamma \left({a}\right)$. +By definition, it follows that $C$ is a [[Definition:Closed Contour (Complex Plane)|closed contour]]. +{{qed|lemma}} +Suppose that $\gamma$ is a [[Definition:Jordan Arc|Jordan arc]]. +Let $k_1, k_2 \in \left\{ {1, \ldots, n}\right\}$, and $t_1 \in \left[{a_{k_1 - 1} \,.\,.\, a_{k_1} }\right), t_2 \in \left[{a_{k_2 - 1} \,.\,.\, a_{k_2} }\right)$. +Then $\gamma \left({t_1}\right) \ne \gamma \left({t_2}\right)$ by the definition of Jordan arc, so $\gamma_{k_1} \left({t_1}\right) \ne \gamma_{k_2} \left({t_2}\right)$. +Let instead $k \in \left\{ {1, \ldots, n}\right\}$ and $t \in \left[{a_{k-1} \,.\,.\, a_k}\right)$ with $t \ne a_1$. +Then $\gamma \left({t}\right) \ne \gamma \left({a_n}\right)$ by the definition of Jordan arc, so $\gamma_k \left({t}\right) \ne \gamma_n \left({a_n}\right)$. +By definition, it follows that $C$ is a [[Definition:Simple Contour (Complex Plane)|simple contour]]. +{{qed|lemma}} +Suppose that $\gamma$ is a [[Definition:Jordan Curve|Jordan curve]]. +As a Jordan curve by definition is both a [[Definition:Jordan Arc|Jordan arc]] and a [[Definition:Closed Path (Topology)|closed path]], it follows from what is shown above that $C$ is a [[Definition:Simple Contour (Complex Plane)|simple]] [[Definition:Closed Contour (Complex Plane)|closed contour]]. +{{qed}} +[[Category:Contour Integration]] +oy9jy2rtbhg9g4e65kfchpvs7rx5u52 +\end{proof}<|endoftext|> +\section{Kernel of Induced Homomorphism of Polynomial Forms} +Tags: Polynomial Theory + +\begin{theorem} +Let $R$ and $S$ be [[Definition:Commutative and Unitary Ring|commutative rings with unity]]. +Let $\phi: R \to S$ be a [[Definition:Ring Homomorphism|ring homomorphism]]. +Let $K = \ker \phi$. +Let $R \left[{X}\right]$ and $S \left[{X}\right]$ be the [[Definition:Ring of Polynomial Forms|rings of polynomial forms]] over $R$ and $S$ respectively in the indeterminate $X$. +Let $\bar\phi: R \left[{X}\right] \to S \left[{X}\right]$ be the [[Induced Homomorphism of Polynomial Forms|induced morphism of polynomial rings]]. +Then the [[Definition:Kernel of Ring Homomorphism|kernel]] of $\bar\phi$ is: +:$\ker \bar\phi = \left\{{ a_0 + a_1 X + \cdots + a_n X^n \in R \left[{X}\right] : \phi \left({a_i}\right) = 0 \text{ for } i = 0, \ldots, n }\right\}$ +Or, more concisely: +:$\ker \bar\phi = \left({\ker \phi}\right) \left[{X}\right]$ +\end{theorem} + +\begin{proof} +Let $P \left(X\right) = a_0 + a_1 X + \cdots + a_n X^n \in R \left[{X}\right]$. +Suppose first that $\phi \left({a_i}\right) = 0$ for $i = 0, \ldots, n$. +We have by definition that: +:$\bar\phi \left({a_0 + a_1 X + \cdots + a_n X^n}\right) = \phi \left({a_0}\right) + \phi \left({a_1}\right) X + \cdots + \phi \left({a_n}\right) X^n = 0$ +That is to say, $P \left({X}\right) \in \ker \bar\phi$. +Conversely, suppose that $P \left({X}\right) \in \ker \bar\phi$. +That is, $\bar\phi \left({P \left({X}\right)}\right) = \phi \left({a_0}\right) + \phi \left({a_1}\right) X + \cdots + \phi \left({a_n}\right) X^n$ is the [[Definition:Null Polynomial/Polynomial Form|null polynomial]]. +This by definition means that for $i = 0, \ldots, n$ we have $\phi \left({a_i}\right) = 0$. +Hence, $P \left({X}\right) \in \left({\ker \phi}\right) \left[{X}\right]$. +This concludes the proof. +{{qed}} +[[Category:Polynomial Theory]] +gn2m9numjm5k02aoqfmo9vc114v0qsk +\end{proof}<|endoftext|> +\section{Boundary of Polygon as Contour} +Tags: Contour Integration + +\begin{theorem} +Let $P$ be a [[Definition:Polygon|polygon]] embedded in the [[Definition:Complex Plane|complex plane]] $\C$. +Denote the [[Definition:Boundary (Geometry)|boundary]] of $P$ as $\partial P$. +Then there exists a [[Definition:Simple Contour (Complex Plane)|simple]] [[Definition:Closed Contour (Complex Plane)|closed contour]] $C$ such that: +: $\operatorname{Im} \left({C}\right) = \partial P$ +where $\operatorname{Im} \left({C}\right)$ denotes the [[Definition:Image of Contour (Complex Plane)|image]] of $C$. +\end{theorem} + +\begin{proof} +Let $n \in \N$ be the number of [[Definition:Side of Polygon|sides]] of $P$. +Denote the [[Definition:Vertex of Polygon|vertices]] of $P$ as $A_1, \ldots, A_n$. +From [[Complex Plane is Metric Space]], it follows that $\C$ is [[Definition:Homeomorphic Metric Spaces|homeomorphic]] to $\R^2$. +Then, we can consider $\partial P$ as a [[Definition:Subset|subset]] of $\R^2$. +From [[Boundary of Polygon is Jordan Curve]], it follows that there exists a [[Definition:Jordan Curve|Jordan curve]] $\gamma: \left[{0 \,.\,.\, 1}\right] \to \R^2$ such that $\operatorname{Im} \left({\gamma}\right) = \partial P$. +The same theorem shows that $\gamma$ is a [[Definition:Concatenation (Topology)|concatenation]] of $n$ [[Definition:Convex Set (Vector Space)/Line Segment|line segments]], parameterized as: +:$\gamma_k \left({t}\right) = \left({1 - t}\right) A_k + tA_{k+1}$ +where $k \in \left\{ {1, \ldots, n}\right\}$. +We identify $A_{n + 1}$ with $A_1$. +Then, $\gamma_k: \left[{a_{k - 1} \,.\,.\, a_k}\right] \to \R^2$, where $a_{k - 1}, a_k \in \left[{0 \,.\,.\, 1}\right]$. +As $\gamma$ is a [[Definition:Concatenation (Topology)|concatenation]] of $\gamma_1, \ldots, \gamma_n$, it follows that $\left\{ {a_0, a_1, \ldots, a_n}\right\}$ is a [[Definition:Subdivision (Real Analysis)|subdivision]] of $\left[{0 \,.\,.\, 1}\right]$. +We have: +:$\dfrac \d {\d t} \gamma_k \left({t}\right) = A_{k + 1} - A_k \ne \mathbf 0$ +as $A_k$ and $A_{k + 1}$ are two different vertices. +As $\C$ is [[Definition:Homeomorphic Metric Spaces|homeomorphic]] to $\R^2$, we can consider $\gamma$ as a [[Definition:Continuous Complex Function|continuous complex function]] $\gamma: \left[{0 \,.\,.\, 1}\right] \to \C$. +Then $\gamma_k$ is [[Definition:Complex-Differentiable at Point|complex-differentiable]] for all values of $t \in \left({a_{k - 1} \,.\,.\, a_k}\right)$ with its [[Definition:Derivative of Smooth Path in Complex Plane|derivative]] $\gamma_k'$ defined by: +:$\gamma_k' \left({t}\right) = x \left({\dfrac \d {\d t} \gamma_k \left({t}\right) }\right) + i y \left({\dfrac \d {\d t} \gamma_k \left({t}\right) }\right)$ +where: +:$x \left({\dfrac \d {\d t} \gamma_k \left({t}\right) }\right)$ is the [[Definition:Real Part|real part]] of $\dfrac \d {\d t} \gamma_k \left({t}\right)$ +:$y \left({\dfrac \d {\d t} \gamma_k \left({t}\right) }\right)$ is the [[Definition:Imaginary Part|imaginary part]] of $\dfrac \d {\d t} \gamma_k \left({t}\right)$ +As shown above, $\gamma_k' \left({t}\right) \ne 0$. +By definition, it follows that $\gamma_k = \gamma {\restriction_{\left[{a_{k-1} \,.\,.\, a_k}\right] } }$ is a [[Definition:Smooth Path (Complex Analysis)|smooth path]]. +From [[Path as Parameterization of Contour]], it follows that there exists a [[Definition:Simple Contour (Complex Plane)|simple]] [[Definition:Closed Contour (Complex Plane)|closed contour]] $C$ with $\operatorname{Im} \left({C}\right) = \partial P$. +{{qed}} +[[Category:Contour Integration]] +s08ifxybz9kg9dn79jt3a8qti4hr4mb +\end{proof}<|endoftext|> +\section{Zero Simple Staircase Integral Condition for Primitive} +Tags: Complex Analysis + +\begin{theorem} +Let $f: D \to \C$ be a [[Definition:Continuous Complex Function|continuous complex function]], where $D$ is a [[Definition:Connected Domain (Complex Analysis)|connected domain]]. +Let $\displaystyle \oint_C \map f z \rd z = 0$ for all [[Definition:Simple Contour (Complex Plane)|simple]] [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contours]] $C$ in $D$. +Then $f$ has a [[Definition:Complex Primitive|primitive]] $F: D \to \C$. +\end{theorem} + +\begin{proof} +Let $C$ be a [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contour]] in $D$, not necessarily [[Definition:Simple Contour (Complex Plane)|simple]]. +If we show that $\displaystyle \oint_C \map f z \rd z = 0$, then the result follows from [[Zero Staircase Integral Condition for Primitive]]. +The staircase contour $C$ is a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of $C_1, \ldots, C_n$, where the [[Definition:Image of Contour (Complex Plane)|image]] of each $C_k$ is a [[Definition:Convex Set (Vector Space)/Line Segment|line segment]] [[Definition:Parallel Lines|parallel]] with either the [[Definition:Real Axis|real axis]] or the [[Definition:Imaginary Axis|imaginary axis]]. +Denote the [[Definition:Parameterization of Contour (Complex Plane)|parameterization]] of $C$ as $\gamma: \closedint a b \to \C$, where $\closedint a b$ is a [[Definition:Closed Real Interval|closed real interval]]. +Denote the [[Definition:Parameterization of Directed Smooth Curve (Complex Plane)|parameterization]] of $C_k$ as $\gamma_k: \closedint {a_k} {b_k \to \C$. +=== [[Zero Simple Staircase Integral Condition for Primitive/Lemma|Lemma]] === +{{:Zero Simple Staircase Integral Condition for Primitive/Lemma}} +=== Splitting up the Contour === +The lemma shows that given a [[Definition:Staircase Contour|staircase contour]] $C$, we can assume that for $k \in \set {1, \ldots, n - 1}$, the [[Definition:Set Intersection|intersection]] of the [[Definition:Image of Contour (Complex Plane)|images]] of $C_k$ and $C_{k + 1}$ is equal to their common [[Definition:End Point of Contour (Complex Plane)|end point]] $\map {\gamma_k} {b_k}$. +This means that in order to intersect itself, $C$ must be a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of at least $4$ [[Definition:Directed Smooth Curve (Complex Plane)|directed smooth curves]]. +Now, we prove the main requirement for [[Zero Staircase Integral Condition for Primitive]], that $\displaystyle \oint_C \map f z \rd z = 0$. +The proof is by [[Principle of Mathematical Induction|induction]] over $n \in \N$, the number of [[Definition:Directed Smooth Curve|directed smooth curves]] that $C$ is a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of. +=== Basis for the Induction === +For $n = 1$, $C$ can only be a [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contour]] if $\gamma$ is [[Definition:Constant Mapping|constant]], so: +{{begin-eqn}} +{{eqn | l = \oint_C \map f z \rd z + | r = \int_a^b \map f {\map \gamma t} \map {\gamma'} t \rd t + | c = {{Defof|Complex Contour Integral}} +}} +{{eqn | r = 0 + | c = [[Derivative of Complex Polynomial]]: $\gamma$ is constant +}} +{{end-eqn}} +For $n = 4$, $C$ can only be a [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contour]] if $C$ is a [[Definition:Simple Contour (Complex Plane)|simple contour]]. +Then, $\displaystyle \oint_C \map f z \rd z = 0$ by the original assumption of this theorem. +=== Induction Hypothesis === +For $N \in \N$, if $C$ is a [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contour]] that is a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of $n$ [[Definition:Directed Smooth Curve (Complex Plane)|directed smooth curves]] with $n \le N$, then: +:$\displaystyle \oint_C \map f z \rd z = 0$ +=== Induction Step === +Suppose that $C$ is a [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contour]] that is a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of $n + 1$ [[Definition:Directed Smooth Curve (Complex Plane)|directed smooth curves]]. +If $C$ is a [[Definition:Simple Contour (Complex Plane)|simple contour]], the [[Definition:Induction Hypothesis|induction hypothesis]] is true by the original assumption of this theorem. +Otherwise, define $t_0 = a$, and $t_3 = b$. +Define $t_1 \in \closedint a b$ as the [[Definition:Infimum of Set|infimum]] of all $t \in \closedint a b$ for which $\gamma$ intersects itself. +Then define $t_2 \in \hointl {t_1} b$ as the [[Definition:Infimum of Set|infimum]] of all $t \in \hointl {t_1} b$ for which $\map \gamma t = \map \gamma {t_1}$. +For $k \in \set {1, \ldots, 3}$, define $\tilde C_k$ as the [[Definition:Staircase Contour|staircase contour]] with [[Definition:Parameterization of Contour (Complex Plane)|parameterization]] $\gamma \restriction {\closedint {t_{k - 1} } {t_k} }$. +Then $\tilde C_2$ is a [[Definition:Closed Contour (Complex Plane)|closed]] [[Definition:Staircase Contour|staircase contour]] that is a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of at least $4$ [[Definition:Directed Smooth Curve (Complex Plane)|directed smooth curves]]. +Then both $\tilde C_1 \cup \tilde C_3$ and $\tilde C_2$ are a [[Definition:Concatenation of Contours (Complex Plane)|concatenation]] of fewer than $n + 1$ [[Definition:Directed Smooth Curve (Complex Plane)|directed smooth curves]], so: +{{begin-eqn}} +{{eqn | l = \oint_C \map f z \rd z + | r = \oint_{\tilde C_1 \cup \tilde C_2 \cup \tilde C_3} \map f z \rd z +}} +{{eqn | r = \oint_{\tilde C_1 \cup \tilde C_3} \map f z \rd z + \oint_{\tilde C_2} \map f z \rd z + | c = [[Contour Integral of Concatenation of Contours]] +}} +{{eqn | r = 0 + | c = [[Zero Simple Staircase Integral Condition for Primitive#Induction Hypothesis|Induction Hypothesis]] +}} +{{end-eqn}} +{{qed}} +[[Category:Complex Analysis]] +d9syvp4ve618ilyjlzt9dae82wmnqfj +\end{proof}<|endoftext|> +\section{Preordering induces Equivalence Relation} +Tags: Preorder Theory, Equivalence Relations + +\begin{theorem} +Let $\struct {S, \precsim}$ be a [[Definition:Preordered Set|preordered set]]. +Define a [[Definition:Endorelation|relation]] $\sim$ on $S$ by letting $x \sim y$ {{iff}} $x \precsim y$ and $y \precsim x$. +Then $\sim$ is an [[Definition:Equivalence Relation|equivalence relation]]. +\end{theorem} + +\begin{proof} +To show that $\sim$ is an [[Definition:Equivalence Relation|equivalence relation]], we must show that it is [[Definition:Reflexive Relation|reflexive]], [[Definition:Transitive Relation|transitive]], and [[Definition:Symmetric Relation|symmetric]]. +By the definition of [[Definition:Preordering|preordering]], $\precsim$ is [[Definition:Transitive Relation|transitive]] and [[Definition:Reflexive Relation|reflexive]]. +=== Transitive === +Let $p, q, r \in S$. +Suppose that $p \sim q$ and $q \sim r$. +Then $p \precsim q$, $q \precsim r$, $r \precsim q$, and $q \precsim p$. +Since $\precsim$ is [[Definition:Transitive Relation|transitive]]: +:$p \precsim r$ and $r \precsim p$. +Thus by the definition of $\sim$, $p \sim r$. +Since this holds for all $p$, $q$, and $r$, $\sim$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +=== Reflexive === +Let $p \in S$. +Since $\precsim$ is [[Definition:Reflexive Relation|reflexive]]: +: $p \precsim p$ +Thus by the definition of $\sim$: +: $p \sim p$ +As this holds for all $p$, $\sim$ is [[Definition:Reflexive Relation|reflexive]]. +{{qed|lemma}} +=== Symmetric === +Let $p, q \in S$ with $p \sim q$. +Then $p \precsim q$ and $q \precsim p$. +Thus $q \sim p$. +Since this holds for all $p$ and $q$, $\sim$ is [[Definition:Symmetric Relation|symmetric]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Content of Rational Polynomial is Multiplicative} +Tags: Gauss's Lemma (Polynomial Theory), Content of Polynomial, Content of Rational Polynomial is Multiplicative + +\begin{theorem} +Let $h \in \Q \sqbrk X$ be a [[Definition:Polynomial over Ring in One Variable|polynomial]] with [[Definition:Rational Number|rational]] [[Definition:Polynomial Coefficient|coefficients]]. +Let $\cont h$ denote the [[Definition:Content of Rational Polynomial|content]] of $h$. +Then for any polynomials $f, g \in \Q \sqbrk X$ with [[Definition:Rational Number|rational]] [[Definition:Polynomial Coefficient|coefficients]]: +:$\cont {f g} = \cont f \cont g$ +\end{theorem} + +\begin{proof} +From [[Rational Polynomial is Content Times Primitive Polynomial]], let $\map f X$ and $\map g X$ be expressed as: +:$\map f X = \cont f \cdot \map {f^*} X$ +:$\map g X = \cont g \cdot \map {g^*} X$ +where: +:$\cont f, \cont g$ are the [[Definition:Content of Rational Polynomial|content]] of $f$ and $g$ respectively +:$f^*, g^*$ are [[Definition:Primitive Polynomial (Ring Theory)|primitive]]. +We have, by applications of [[Rational Polynomial is Content Times Primitive Polynomial]]: +:$\cont h \cdot \map {h^*} X = \cont f \cont g \cdot \map {f^*} X \, \map {g^*} X$ +By [[Gauss's Lemma on Primitive Rational Polynomials]] we have that $\map {f^*} X \, \map {g^*} X$ is [[Definition:Primitive Polynomial (Ring Theory)|primitive]]. +As $\cont f > 0$ and $\cont g > 0$, then so is $\cont f \cont g > 0$. +By the [[Rational Polynomial is Content Times Primitive Polynomial/Uniqueness|uniqueness clause in Rational Polynomial is Content Times Primitive Polynomial]], the result follows. +{{qed}} +\end{proof}<|endoftext|> +\section{Gauss's Lemma on Irreducible Polynomials} +Tags: Gauss's Lemma (Polynomial Theory) + +\begin{theorem} +Let $\Z$ be the [[Definition:Ring of Integers|ring of integers]]. +Let $\Z \sqbrk X$ be the [[Definition:Ring of Polynomials|ring of polynomials]] over $\Z$. +Let $h \in \Z \sqbrk X$ be a [[Definition:Polynomial over Ring|polynomial]]. +{{TFAE}} +:$(1): \quad h$ is [[Definition:Irreducible Polynomial|irreducible]] in $\Q \sqbrk X$ and [[Definition:Primitive Polynomial over Integers|primitive]] +:$(2): \quad h$ is [[Definition:Irreducible Polynomial|irreducible]] in $\Z \sqbrk X$. +\end{theorem} + +\begin{proof} +{{explain|Needs to be made explicit as to exactly what is being assumed and what follows as a consequence. As it stands, the consequence of 1 implies 2, for example, still needs to be completed so as to explain exactly how that show $h$ is irreducible -- it relies upon the implicit understanding of what irreducible means.}} +=== 1 implies 2 === +Suppose first that $h$ is not [[Definition:Irreducible Polynomial|irreducible]] in $\Z \sqbrk X$. +Let $\displaystyle h = a_0 + a_1 X + \cdots + a_n X^n$. +If $\deg h = 0$, then the [[Definition:Content of Integer Polynomial|content]] of $h$ is: +:$\cont h = \gcd \set {a_0} = \size {a_0}$ +Since $h$ is [[Definition:Primitive Polynomial (Ring Theory)|primitive]] by hypothesis, we have $h = \pm 1$. +Now by [[Units of Ring of Polynomial Forms over Field]], the [[Definition:Unit of Ring|units]] of $\Q \sqbrk X$ are the [[Definition:Unit of Ring|units]] of $\Q$. +Thus $h$ is a [[Definition:Unit of Ring|unit]] of $\Q \sqbrk X$. +Therefore $h$ is [[Definition:Irreducible Polynomial|irreducible]]. +If $\deg h \ge 1$, then by [[Units of Ring of Polynomial Forms over Integral Domain]], the [[Definition:Unit of Ring|units]] of $\Z \sqbrk X$ are the [[Definition:Unit of Ring|units]] of $\Z$. +Therefore $h$ is not a [[Definition:Unit of Ring|unit]] of $\Z \sqbrk X$. +Thus since $h$ is reducible, there is a [[Definition:Non-Trivial Factorization|non-trivial factorization]] $h = f g$ in $\Z \sqbrk X$, with $f$ and $g$ both not [[Definition:Unit of Ring|units]]. +If $\deg f = 0$, that is, $f \in \Z$, then $f$ divides each coefficient of $h$. +Since $h$ is primitive, this means that $f$ divides $\cont h = 1$. +But the [[Divisors of One|divisors of $1$ are $\pm 1$]], so $f = \pm 1$. +But then $f$ is a unit in $\Z \sqbrk X$, a contradiction. +Therefore $\deg f \ge 1$, so $f$ is a non-unit in $\Q \sqbrk X$. +Similarly, $g$ is a non-unit in $\Q \sqbrk X$. +Therefore $h = fg$ is a [[Definition:Non-Trivial Factorization|non-trivial factorization]] in $\Q \sqbrk X$. +=== 2 implies 1 === +{{tidy|ok in terms of details, but presentation needs touching up}} +Suppose now that $h$ is not [[Definition:Irreducible Polynomial|irreducible]] in $\Q \sqbrk X$. +That is, $h$ has a [[Definition:Non-Trivial Factorization|non-trivial factorization]] in $\Q \sqbrk X$. +Since the [[Units of Ring of Polynomial Forms over Field|units of $\Q \sqbrk X$ are the units of $\Q$]], this means that $h = f g$, with $f$ and $g$ both of [[Definition:Positive Integer|positive]] [[Definition:Degree of Polynomial|degree]]. +Let $c_f$ and $c_g$ be the [[Definition:Content of Integer Polynomial|contents]] of $f$ and $g$ respectively. +Define $\tilde f = c_f^{-1} f$ and $\tilde g = c_g^{-1} g$. +By [[Content of Scalar Multiple]], it follows that $\cont {\tilde f} = \cont {\tilde g} = 1$. +Moreover by [[Polynomial has Integer Coefficients iff Content is Integer]] we have $\tilde f, \tilde g \in \Z \sqbrk X$. +Now we have: +:$\tilde f \tilde g = \dfrac {f g} {c_f c_g} = \dfrac h {c_f c_g}$ +Taking the content, and using [[Content of Scalar Multiple]] we have: +:$\cont {\tilde f \tilde g} = \dfrac 1 {c_f c_g} \cont h$ +By [[Gauss's Lemma on Primitive Rational Polynomials]] we know that $\cont {\tilde f \tilde g} = 1$. +Moreover, by [[Irreducible Integer Polynomial is Primitive]], $\cont h = 1$. +Therefore we must have $c_f c_g = 1$. +Thus we have a factorization in $\Z \sqbrk X$: +:$\tilde f \tilde g = h$ +This is a [[Definition:Trivial Factorization|non-trivial factorization]] of $h$, as both $f$ and $g$ have [[Definition:Positive Integer|positive]] [[Definition:Degree of Polynomial|degree]]. +Thus $h$ is not [[Definition:Irreducible Polynomial|irreducible]] in $\Z \sqbrk X$. +{{Qed}} +{{Namedfor|Carl Friedrich Gauss|cat = Gauss}} +[[Category:Gauss's Lemma (Polynomial Theory)]] +kbf6czd3gif8u3rldfr8pstovy16j0i +\end{proof}<|endoftext|> +\section{Antisymmetric Quotient of Preordered Set is Ordered Set} +Tags: Order Theory, Preorder Theory, Quotient Sets + +\begin{theorem} +Let $\struct {S, \precsim}$ be a [[Definition:Preordered Set|preordered set]]. +Let $\sim$ be the [[Definition:Equivalence Relation|equivalence relation]] on $S$ [[Preordering induces Equivalence Relation|induced]] by $\precsim$. +Let $\struct {S / {\sim}, \preceq}$ be the [[Definition:Antisymmetric Quotient|antisymmetric quotient]] of $\struct {S, \precsim}$. +Then: +:$\struct {S / {\sim}, \preceq}$ is an [[Definition:Ordered Set|ordered set]]. +:$\forall P, Q \in S / {\sim}: \paren {P \preceq Q} \land \paren {p \in P} \land \paren {q \in Q} \implies p \precsim q$ +This second statement means that we could just as well have defined $\preceq$ by letting $P \preceq Q$ iff: +:$\forall p \in P: \forall q \in Q: p \precsim q$ +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Equivalence Relation|equivalence relation]], $\sim$ is [[Definition:Transitive Relation|transitive]], [[Definition:Reflexive Relation|reflexive]], and [[Definition:Symmetric Relation|symmetric]]. +By the definition of [[Definition:preordering]], $\precsim$ is [[Definition:Transitive Relation|transitive]] and [[Definition:Reflexive Relation|reflexive]]. +To show that $\preceq$ is an [[Definition:Ordering|ordering]], we must show that it is [[Definition:Transitive Relation|transitive]], [[Definition:Reflexive Relation|reflexive]], and [[Definition:Antisymmetric Relation|antisymmetric]]. +=== Transitive === +Let $P, Q, R \in S / {\sim}$. +Suppose that $P \preceq Q$ and $Q \preceq R$. +Then for some $p \in P$, $q_1, q2 \in Q$, and $r \in R$: +:$p \precsim q_1$ and $q_2 \precsim r$. +By the definition of [[Definition:Quotient Set|quotient set]], $q_1 \sim q_2$. +By the [[Preordering induces Equivalence Relation|definition]] of $\sim$: +:$q_1 \precsim q_2$ +Since $p \precsim q_1$, $q_1 \precsim q_2$, $q_2 \precsim r$, and $\precsim$ is [[Definition:Transitive Relation|transitive]], [[Transitive Chaining]] shows that: +:$p \precsim r$ +Thus by the definition of $\preceq$: +:$P \preceq R$. +Since this holds for all such $P$, $Q$, and $R$, $\preceq$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +=== Reflexive === +Let $P \in S / {\sim}$. +By the definition of [[Definition:Quotient Set|quotient set]], $P$ is [[Definition:Non-Empty Set|non-empty]]. +Thus there exists a $p \in P$. +Since $\precsim$ is a [[Definition:Preordering|preordering]], it is [[Definition:Reflexive Relation|reflexive]], so $p \precsim p$. +By definition of the [[Definition:Equivalence Relation|equivalence relation]], we have that $q\sim p$ for any other $q\in P$ +This gives that: +:$q \sim p \precsim p$ +which is equivalent to $q \precsim p \precsim p$ by definition of the [[Definition:Equivalence Relation|equivalence relation]]. +It also gives that $p \precsim p \precsim q$ by similar reasoning. +Both by [[Definition:Transitive Relation|transitivity]] gives $p\precsim q$ and $q\precsim p$. +This gives us that $P \preceq P$ +As this holds for all $P \in S / {\sim}$, $\preceq$ is [[Definition:Reflexive Relation|reflexive]]. +{{qed|lemma}} +=== Antisymmetric === +Let $P, Q \in S / {\sim}$ such that: +:$P \preceq Q$ +:$Q \preceq P$ +By the definition of $\preceq$, there are elements $p_1, p_2 \in P$ and $q_1, q_2 \in Q$ such that: +:$(1)\quad p_1 \precsim q_1$ +:$(2)\quad q_2 \precsim p_2$ +Let $p \in P$. +Then by the definition of [[Definition:Quotient Set|quotient set]]: +:$p \sim p_1$ +:$p_2 \sim p$ +By the definition of $\sim$: +:$p \precsim p_1$ +:$p_2 \precsim p$ +Thus by $(1)$ and $(2)$ and the fact that $\precsim$ is [[Definition:Transitive Relation|transitive]]: +:$p \precsim q_1$ +:$q_2 \precsim p$ +By the definition of [[Definition:Quotient Set|quotient set]]: +:$q_1 \sim q_2$ +Thus by the definition of $\sim$: +:$q_1 \precsim q_2$ +Since $\precsim$ is [[Definition:Transitive Relation|transitive]]: +:$p \precsim q_2$ +We already know that: +:$q_2 \precsim p$ +Thus $p \sim q_2$. +By the definition of [[Definition:Quotient Set|quotient set]]: +:$p \in Q$ +The same argument shows that each element of $Q$ is also in $P$. +Thus by the [[Axiom:Axiom of Extension|Axiom of Extension]]: +:$P = Q$ +As this holds for all such $P, Q \in S / {\sim}$, $\preceq$ is [[Definition:Antisymmetric Relation|antisymmetric]]. +{{qed|lemma}} +=== Relation between Sets implies all their Elements are Related === +Let $P, Q \in S / {\sim}$ with $P \preceq Q$. +Then by the definition of $\preceq$, there are $p \in P$ and $q \in Q$ such that $p \precsim q$. +Let $p' \in P$ and $q' \in Q$. +By the definition of [[Definition:Quotient Set|quotient set]]: +:$p' \sim p$ +:$q \sim q'$ +Thus by the definition of $\sim$: +:$p' \precsim p$ +:$q \precsim q'$ +Since $p \precsim q$ and $\precsim$ is [[Definition:Transitive Relation|transitive]]: +:$p' \precsim q'$ +We have shown that: +:$\forall P, Q \in S / {\sim}: \paren {P \preceq Q} \land \paren {p \in P} \land \paren {q \in Q} \implies p \precsim q$ +{{qed}} +\end{proof}<|endoftext|> +\section{Ordering on Partition Determines Preordering} +Tags: Order Theory, Preorder Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\PP$ be a [[Definition:Partition (Set Theory)|partition]] of $S$. +Let $\phi: S \to \PP$ be the [[Definition:Quotient Mapping|quotient mapping]]. +Let $\preceq$ be a [[Definition:ordering|ordering]] of $\PP$. +Define a [[Definition:Endorelation|relation]] $\precsim$ on $S$ by letting $p \precsim q$ {{iff}}: +:$\map \phi p \preceq \map \phi q$ +Then: +:$\precsim$ is a [[Definition:Preordering|preordering]] on $S$. +:$\precsim$ is the only preordering on $S$ that [[Antisymmetric Quotient of Preordered Set is Ordered Set|induces]] the $\preceq$ ordering on $\PP$. +\end{theorem} + +\begin{proof} +To show that $\precsim$ is a [[Definition:preordering|preordering]] we must show that it is [[Definition:Reflexive Relation|reflexive]] and [[Definition:Transitive Relation|transitive]]. +=== Reflexive === +Let $p \in S$. +Then $\map \phi p = \map \phi p$. +Since $\preceq$ is an [[Definition:ordering|ordering]] it is [[Definition:Reflexive Relation|reflexive]]. +Thus $\map \phi p \preceq \map \phi p$. +By the definition of $\precsim$, $p \precsim p$. +As this holds for all $p \in S$, $\precsim$ is reflexive. +{{qed|lemma}} +=== Transitive === +Let $p, q, r \in S$. +Suppose that $p \precsim q$ and $q \precsim r$. +By the definition of $\precsim$: +:$\map \phi p \preceq \map \phi q$ +:$\map \phi q \preceq \map \phi r$ +Since $\preceq$ is an [[Definition:ordering|ordering]], it is [[Definition:Transitive Relation|transitive]], so: +:$\map \phi p \preceq \map \phi r$ +Thus by the definition of $\precsim$, $p \precsim r$. +As this holds for all such $p$, $q$, and $r$, $\precsim$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +=== $\precsim$ induces the $\preceq$ ordering on $\PP$ === +Let $P, Q \in P$. +First suppose that $P \preceq Q$. +Let $p \in P$ and let $q \in Q$. +By the definition of [[Definition:Quotient Mapping|quotient mapping]]: +:$\map \phi p = P$ and $\map \phi q = Q$. +Thus $\map \phi p \preceq \map \phi q$. +So by the definition of $\precsim$: +:$p \precsim q$ +Suppose instead that for some $p \in P$ and $q \in Q$, $p \precsim q$. +Then by the definition of $\precsim$: +:$\map \phi p \preceq \map \phi q$ +By the definition of [[Definition:Quotient Mapping|quotient mapping]]: +:$\map \phi p = P$ and $\map \phi q = Q$. +Thus $P \preceq Q$. +{{qed|lemma}} +=== $\struct {\PP, \preceq}$ is the Antisymmetric Quotient of $\struct {S, \precsim}$ === +Let $\sim$ be the [[Definition:Equivalence Relation|equivalence relation]] on $S$ [[Preordering induces Equivalence Relation|induced]] by $\precsim$. +First we show that $\PP = S / {\sim}$. +As both $\PP$ and $S/ {\sim}$ are [[Definition:Partition (Set Theory)|partitions]] of $S$, we need only show that for $p, q \in S$: +:$\map \phi p = \map \phi q \iff p \sim q$ +First suppose that $p \sim q$. +By the definition of $\sim$: +:$p \precsim q$ and $q \precsim p$. +Then by the definition of $\precsim$: +:$\map \phi p \preceq \map \phi q$ +:$\map \phi q \preceq \map \phi p$ +Since $\preceq$ is an [[Definition:ordering|ordering]], and hence [[Definition:Antisymmetric Relation|antisymmetric]]: +:$\map \phi p = \map \phi q$ +Suppose instead that $\map \phi p = \map \phi q$. +Since $\preceq$ is [[Definition:Reflexive Relation|reflexive]]: +:$\map \phi p \preceq \map \phi q$ +:$\map \phi q \preceq \map \phi p$ +By the definition of $\precsim$: +:$p \precsim q$ and $q \precsim p$. +By the definition of $\sim$: +:$p \sim q$ +Now we must show that for $P, Q \in \PP$: +:$P \preceq Q \iff \exists p \in P: \exists q \in Q: p \precsim q$ +Suppose that $P \preceq Q$. +Let $p \in P$ and $q \in Q$. +Then $\map \phi p = P$ and $\map \phi q = Q$, so $p \precsim q$ by the definition of $\precsim$. +Suppose instead that $\exists p \in P: \exists q \in Q: p \precsim q$. +Then by the definition of $\precsim$, $P \preceq Q$. +{{qed|lemma}} +=== $\precsim$ is Unique === +Let $\precsim'$ be a [[Definition:Preordering|preordering]] such that the [[Definition:Antisymmetric Quotient|antisymmetric quotient]] of $\struct {S, \precsim'}$ is $\struct {P, \preceq}$. +Let $p, q \in S$. +First suppose that $p \precsim' q$. +Then $\map \phi p \preceq \map \phi q$ by the definition of antisymmetric quotient. +Thus $p \precsim q$ by the definition of $\precsim$. +Suppose instead that $p \precsim q$. +Then $\map \phi p \preceq \map \phi q$ by the definition of $\precsim$. +Thus $p \precsim' q$ by the definition of antisymmetric quotient. +{{qed}} +[[Category:Order Theory]] +[[Category:Preorder Theory]] +sxc05rmv5q06ns1feh0ltljtnph65pw +\end{proof}<|endoftext|> +\section{Units of Ring of Polynomial Forms over Commutative Ring} +Tags: Polynomial Theory + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a non-[[Definition:Null Ring|null]] [[Definition:Commutative Ring with Unity|commutative ring with unity]] whose [[Definition:Ring Zero|zero]] is $0_R$ and whose [[Definition:Unity of Ring|unity]] is $1_R$. +Let $R \sqbrk X$ be the [[Definition:Ring of Polynomial Forms|ring of polynomial forms]] in an [[Definition:Indeterminate (Polynomial Theory)|indeterminate]] $X$ over $R$. +Let $\map P X = a_0 + a_1 X + \cdots + a_n X^n \in R \sqbrk X$. +Then: +:$\map P X$ is a [[Definition:Unit of Ring|unit]] of $R \sqbrk X$ +{{iff}}: +:$a_0$ is a [[Definition:Unit of Ring|unit]] of $R$ +Also, for $i = 1, \ldots, n$, $a_i$ is [[Definition:Nilpotent Ring Element|nilpotent]] in $R$. +\end{theorem} + +\begin{proof} +=== Necessary condition === +Let $a_0$ be a [[Definition:Unit of Ring|unit]] of $R$. +For $i = 1, \ldots, n$, let $a_i$ be [[Definition:Nilpotent Ring Element|nilpotent]] in $R$. +Because the [[Definition:Nilradical of Ring|nilradical]] is an [[Definition:Ideal of Ring|ideal]] of $R$, it follows that: +:$Q = -a_1 X + \dotsb + -a_n X^n$ +is [[Definition:Nilpotent Ring Element|nilpotent]]. +Moreover, multiplying through by $a_0^{-1}$ we may as well assume that $a_0 = 1_R$. +Then: +:$P = 1_R - Q$ +and from [[Unity plus Negative of Nilpotent Ring Element is Unit]] $P$ is a [[Definition:Unit of Ring|unit]] of $R \sqbrk X$. +{{qed|lemma}} +=== Sufficient condition === +Let $\map P X$ be a [[Definition:Unit of Ring|unit]] of $R \sqbrk X$. +That is, there exists: +:$Q = b_0 + b_1 X + \dotsb + b_m X^m \in R \sqbrk X$ +such that $P Q = 1$. +By the definition of [[Definition:Multiplication of Polynomial Forms|polynomial multiplication]] the [[Definition:Polynomial of Degree Zero|degree zero]] term of $P Q$ is $a_0 b_0$. +Therefore $a_0 b_0 = 1_R$. +So $a_0$ is a [[Definition:Unit of Ring|unit]] of $R$. +{{qed|lemma}} +Next we show that $a_1, \dotsc, a_n$ are [[Definition:Nilpotent Ring Element|nilpotent]]. +By [[Spectrum of Ring is Nonempty]], $R$ has at least one [[Definition:Prime Ideal of Ring|prime ideal]] $\mathfrak p$. +By [[Prime Ideal iff Quotient Ring is Integral Domain]]: +:$R / \mathfrak p$ is an [[Definition:Integral Domain|integral domain]]. +By [[Ring of Polynomial Forms over Integral Domain is Integral Domain]]: +:$R / \mathfrak p \sqbrk X$ is also an [[Definition:Integral Domain|integral domain]]. +For any polynomial $T \in R \sqbrk X$ let $\overline T$ denote the image of $T$ under the [[Induced Homomorphism of Polynomial Forms]] defined by the [[Definition:Quotient Mapping|quotient mapping]] $R \to R / \mathfrak p$. +Now we have: +:$\overline P \cdot \overline Q = 1_{R / \mathfrak p}$ +By [[Units of Ring of Polynomial Forms over Integral Domain]] this implies that $\overline P$ has [[Definition:Polynomial of Degree Zero|degree zero]]. +In particular for $i = 1, \dotsc, n$, the image of $a_i$ in $R / \mathfrak p$ is $0_{R / \mathfrak p}$. +By definition, this means that $a_i \in \mathfrak p$. +But this is true for every [[Definition:Prime Ideal of Ring|prime ideal]] $\mathfrak p$. +Thus by definition: +:$a_i \in \Nil R$ +where $\Nil R$ denotes the [[Definition:Nilradical of Ring|nilradical]] of $R$. +{{Qed}} +[[Category:Polynomial Theory]] +aewy1zp3boybd5gid8q2bag3v9j2elu +\end{proof}<|endoftext|> +\section{Polynomials Closed under Addition/Polynomials over Integral Domain} +Tags: Polynomial Theory + +\begin{theorem} +Let $\left({R, +, \circ}\right)$ be a [[Definition:Commutative Ring with Unity|commutative ring with unity]]. +Let $\left({D, +, \circ}\right)$ be an [[Definition:Subdomain|integral subdomain]] of $R$. +Then $\forall x \in R$, the set $D \left[{x}\right]$ of [[Definition:Polynomial over Integral Domain|polynomials in $x$ over $D$]] is [[Definition:Closed Algebraic Structure|closed]] under the operation $+$. +\end{theorem}<|endoftext|> +\section{Polynomials Closed under Addition/Polynomials over Ring} +Tags: Polynomial Theory + +\begin{theorem} +Let $\left({R, +, \circ}\right)$ be a [[Definition:Ring (Abstract Algebra)|ring]]. +Let $\left({S, +, \circ}\right)$ be a [[Definition:Subring|subring]] of $R$. +Then $\forall x \in R$, the set $S \left[{x}\right]$ of [[Definition:Polynomial over Ring|polynomials in $x$ over $S$]] is [[Definition:Closed Algebraic Structure|closed]] under the operation $+$. +\end{theorem} + +\begin{proof} +Let $p, q$ be [[Definition:Polynomial over Ring|polynomials in $x$ over $S$]]. +We can express them as: +: $\displaystyle p = \sum_{k \mathop = 0}^m a_k \circ x^k$ +: $\displaystyle q = \sum_{k \mathop = 0}^n b_k \circ x^k$ +where: +: $(1): \quad a_k, b_k \in S$ for all $k$ +: $(2): \quad m, n \in \Z_{\ge 0}$, that is, are [[Definition:Non-Negative Integer|non-negative integers]]. +Suppose $m = n$. +Then: +: $\displaystyle p + q = \sum_{k \mathop = 0}^n a_k \circ x^k + \sum_{k \mathop = 0}^n b_k \circ x^k$ +Because $\left({R, +, \circ}\right)$ is a [[Definition:Ring (Abstract Algebra)|ring]], it follows that: +: $\displaystyle p + q = \sum_{k \mathop = 0}^n \left({a_k + b_k}\right) \circ x^k$ +which is also a polynomial in $x$ over $S$. +{{handwaving|What needs to be done here is to establish that each of the terms is an element of $R$ and that each of the coefficients is an element of $S$. Trivial, but important.}} +Now suppose [[Definition:WLOG|WLOG]] that $m > n$. +Then we can express $q$ as: +: $\displaystyle \sum_{k \mathop = 0}^n b_k \circ x^k + \sum_{k \mathop = n \mathop + 1}^m 0_D \circ x^k$ +Thus: +: $\displaystyle p + q = \sum_{k \mathop = 0}^n \left({a_k + b_k}\right) \circ x^k + \sum_{k \mathop = n \mathop + 1}^m a_k \circ x^k$ +which is also a polynomial in $x$ over $S$. +Thus the sum of two [[Definition:Polynomial over Ring|polynomials in $x$ over $S$]] is another [[Definition:Polynomial over Ring|polynomial in $x$ over $S$]]. +Hence the result. +{{qed}} +[[Category:Polynomial Theory]] +i52w3woxyh57xvvzudjjhg7qfzd85ml +\end{proof}<|endoftext|> +\section{Polynomials Closed under Addition/Polynomial Forms} +Tags: Polynomial Theory + +\begin{theorem} +Let: +: $\displaystyle f = \sum_{k \mathop \in Z} a_k \mathbf X^k$ +: $\displaystyle g = \sum_{k \mathop \in Z} b_k \mathbf X^k$ +be [[Definition:Polynomial Form|polynomials]] in the [[Definition:Indeterminate (Polynomial Theory)|indeterminates]] $\left\{{X_j: j \in J}\right\}$ over the [[Definition:Ring (Abstract Algebra)|ring]] $R$. +Then the operation of [[Definition:Addition of Polynomial Forms|polynomial addition]] on $f$ and $g$: +Define the sum: +:$\displaystyle f \oplus g = \sum_{k \mathop \in Z} \left({a_k + b_k}\right) \mathbf X^k$ +Then $f \oplus g$ is a [[Definition:Polynomial Form|polynomial]]. +That is, the [[Definition:Binary Operation|operation]] of [[Definition:Addition of Polynomial Forms|polynomial addition]] is [[Definition:Closed Operation|closed]] on the set of all [[Definition:Polynomial Form|polynomials]] on a given set of [[Definition:Indeterminate (Polynomial Theory)|indeterminates]] $\left\{{X_j: j \in J}\right\}$. +\end{theorem} + +\begin{proof} +It is immediate that $f \oplus g$ is a map from the [[Definition:Free Commutative Monoid|free commutative monoid]] to $R$, so we need only prove that $f \oplus g$ is nonzero on finitely many $\mathbf X^k$, $k \in Z$. +Suppose that for some $k \in Z$, $a_k + b_k \ne 0$ +This forces at least one of $a_k$ and $b_k$ to be non-zero. +This can only be true for a [[Definition:Finite|finite number]] of [[Definition:Term of Polynomial|terms]] because $f$ and $g$ are [[Definition:Polynomial Form|polynomials]]. +The result follows. +{{qed}} +[[Category:Polynomial Theory]] +{{proofread}} +meubepouwyzytdegniyqmpwk5ne5cvx +\end{proof}<|endoftext|> +\section{Fuzzy Intersection is Commutative} +Tags: Fuzzy Set Theory + +\begin{theorem} +[[Definition:Fuzzy Intersection|Fuzzy intersection]] is [[Definition:Commutative Operation|commutative]]. +\end{theorem} + +\begin{proof} +Let $\textbf A = \left({A, \mu_A}\right)$ and $\textbf B = \left({B, \mu_B}\right)$ be [[Definition:Fuzzy Set|fuzzy sets]]. +=== Proving Domain Equality === +By the definition of [[Definition:Fuzzy Intersection|fuzzy intersection]] the [[Definition:Fuzzy Set/Domain|domain]] of $\textbf A \cap \textbf B$ is: +:$A \cap B$ +Similarly the domain of $\textbf B \cap \textbf A$ is: +:$B \cap A$ +By [[Intersection is Commutative]]: +:$A \cap B = B \cap A$ +Hence their domains are equal. +{{qed|lemma}} +=== Proving Membership Function Equality === +==== Proving Form Equality ==== +By the definition of [[Definition:Fuzzy Intersection|fuzzy intersection]] the [[Definition:Fuzzy Set/Membership Function|membership function]] of $\textbf A \cap \textbf B$ is of the form: +:$\mu:A \cap B \to \left [{0 \,.\,.\, 1}\right]$ +Similarly, the [[Definition:Fuzzy Set/Membership Function|membership function]] of $\textbf B \cap \textbf A$ is of the form: +:$\mu:B \cap A \to \left [{0 \,.\,.\, 1}\right]$ +By [[Intersection is Commutative]] this is the same as: +:$\mu:A \cap B \to \left [{0 \,.\,.\, 1}\right]$ +Hence the [[Definition:Fuzzy Set/Membership Function|membership functions]] are of the same form. +==== Proving Rule Equality ==== +{{begin-eqn}} +{{eqn | l=\forall x \in A \cap B: \mu_{A \cap B}(x) = \operatorname{min}\left({\mu_A(x), \mu_B(x)}\right) + | o=\iff + | r=\forall x \in B \cap A: \mu_{B \cap A}(x) = \operatorname{min}\left({\mu_A(x), \mu_B(x)}\right) + | c=[[Intersection is Commutative]] +}} +{{eqn | r=\forall x \in B \cap A: \mu_{B \cap A}(x) = \operatorname{min}\left({\mu_B(x), \mu_A(x)}\right) + | o=\iff + | c=[[Max and Min are Commutative|Min Operation is Commutative]] +}} +{{end-eqn}} +Hence the [[Definition:Fuzzy Set/Membership Function|membership functions]] have the same rule. +{{qed}} +[[Category:Fuzzy Set Theory]] +s2aicbj8uixr4w0uhz7a9168hepj7x5 +\end{proof}<|endoftext|> +\section{Nilpotent Element is Zero Divisor} +Tags: Nilpotent Ring Elements, Zero Divisors + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Ring (Abstract Algebra)|ring]] whose [[Definition:Ring Zero|zero]] is $0_R$. +Suppose further that $R$ is not the [[Definition:Null Ring|null ring]]. +Let $x \in R$ be a [[Definition:Nilpotent Ring Element|nilpotent element]] of $R$. +Then $x$ is a [[Definition:Zero Divisor of Ring|zero divisor]] in $R$. +\end{theorem} + +\begin{proof} +First note that when $R$ is the [[Definition:Null Ring|null ring]] the result is false. +This is because although $0_R$ is [[Definition:Nilpotent Ring Element|nilpotent element]] in the [[Definition:Null Ring|null ring]], it is not actually a [[Definition:Zero Divisor of Ring|zero divisor]]. +Hence in this case $0_R$ is both [[Definition:Nilpotent Ring Element|nilpotent]] and a [[Definition:Zero Divisor of Ring|zero divisor]]. +So, let $R$ be a non-[[Definition:Null Ring|null ring]]. +By hypothesis, there exists $n \in \Z_{>0}$ such that $x^n = 0_R$. +If $n = 1$, then $x = 0_R$. +By hypothesis, $R$ is not the [[Definition:Null Ring|null ring]], so we may choose $y \in R \setminus \set 0$. +By [[Ring Product with Zero]]: +:$y \circ x = y \circ 0_R = 0_R$ +Therefore $x$ is a [[Definition:Zero Divisor of Ring|zero divisor]] in $R$. +If $n \ge 2$, define $y = x^{n - 1}$. +Then: +:$y \circ x = x^{n - 1} \circ x = x^n = 0_R$ +so $x$ is a [[Definition:Zero Divisor of Ring|zero divisor]] in $R$. +{{Qed}} +[[Category:Nilpotent Ring Elements]] +[[Category:Zero Divisors]] +820we46dktq2afef9pcvxgsk5f4sprg +\end{proof}<|endoftext|> +\section{Integral Domain is Reduced Ring} +Tags: Ring Theory + +\begin{theorem} +Let $\left({D, +, \circ}\right)$ be an [[Definition:Integral Domain|integral domain]]. +Then $D$ is [[Definition:Reduced Ring|reduced]]. +\end{theorem} + +\begin{proof} +Let $x \in D$ be a [[Definition:Nilpotent Ring Element|nilpotent element]]. +Then by [[Nilpotent Element is Zero Divisor]], $x$ is a [[Definition:Zero Divisor|zero divisor]] in $D$. +By the definition of an [[Definition:Integral Domain|integral domain]], this means that $x = 0$. +Therefore the only [[Definition:Nilpotent Ring Element|nilpotent element]] of $D$ is $0$. +That is, $D$ is [[Definition:Reduced Ring|reduced]]. +{{Qed}} +[[Category:Ring Theory]] +fm7xo02i9ov8o6hcq03u0qp2633wo8v +\end{proof}<|endoftext|> +\section{Units of Ring of Polynomial Forms over Integral Domain} +Tags: Polynomial Theory + +\begin{theorem} +Let $\struct {D, +, \circ}$ be an [[Definition:Integral Domain|integral domain]]. +Let $D \sqbrk X$ be the [[Definition:Ring of Polynomial Forms|ring of polynomial forms]] in an [[Definition:Indeterminate (Polynomial Theory)|indeterminate]] $X$ over $D$. +Then the [[Definition:Group of Units of Ring|group of units]] of $D \sqbrk X$ is precisely the [[Definition:Group|group]] of [[Definition:Element|elements]] of $D \sqbrk X$ of [[Definition:Polynomial of Degree Zero|degree zero]] that are [[Definition:Unit of Ring|units]] of $D$. +\end{theorem} + +\begin{proof} +It is immediate that a [[Definition:Unit of Ring|unit]] of $D$ is also a [[Definition:Unit of Ring|unit]] of $D \sqbrk X$. +Let $P$ be a [[Definition:Unit of Ring|unit]] of $D \sqbrk X$. +Then there exists $Q \in D \sqbrk X$ such that $P Q = 1$. +By [[Degree of Product of Polynomials over Ring/Corollary 2|Corollary 2 to Degree of Product of Polynomials over Ring]] we have: +:$0 = \map \deg 1 = \map \deg P + \map \deg Q$ +Therefore: +:$\map \deg P = \map \deg Q = 0$ +That is, $P \in R$ and $Q \in R$. +Moreover $P Q = 1$ in $R$, so it follows that $P$ is a [[Definition:Unit of Ring|unit]] of $R$. +{{Qed}} +[[Category:Polynomial Theory]] +4dkr1neieh4qu20hakri4h3i80a93f5 +\end{proof}<|endoftext|> +\section{Kernel of Magma Homomorphism is Submagma} +Tags: Abstract Algebra + +\begin{theorem} +Let $\left({S, *}\right)$ and $\left({T, \circ}\right)$ be [[Definition:Algebraic Structure|algebraic structures]]. +Let $\left({T, \circ}\right)$ have an [[Definition:Identity Element|identity]] $e$. +Let $\phi: S \to T$ be a [[Definition:Homomorphism (Abstract Algebra)|magma homomorphism]]. +Then the [[Definition:Kernel of Magma Homomorphism|kernel]] of $\phi$ is a [[Definition:Submagma|submagma]] of $\left({S, *}\right)$. +That is: +:$\left({\phi^{-1} \left({e}\right), *}\right)$ is a [[Definition:Submagma|submagma]] of $\left({S, *}\right)$ +where $\phi^{-1} \left({e}\right)$ denote the [[Definition:Preimage of Element under Mapping|preimage]] of $e$. +\end{theorem} + +\begin{proof} +Let $x, y \in \phi^{-1} \left({e}\right)$. +It is to be shown that: +:$x * y \in \phi^{-1} \left({e}\right)$ +Thus: +{{begin-eqn}} +{{eqn | l = x, y \in \phi^{-1} \left({e}\right) + | o = \iff + | r = \left({\phi \left({x}\right) = e}\right) \land \left({\phi \left({y}\right) = e}\right) + | c = Definition of [[Definition:Kernel of Magma Homomorphism|Kernel]] +}} +{{eqn | o = \iff + | r = \phi \left({x}\right) \circ \phi \left({y}\right) = e + | c = Definition of [[Definition:Identity Element|Identity]] +}} +{{eqn | o = \iff + | r = \phi \left({x * y}\right) = e + | c = Definition of [[Definition:Homomorphism (Abstract Algebra)|Homomorphism]] +}} +{{eqn | o = \iff + | r = x*y \in \phi^{-1} \left({e}\right) + | c = Definition of [[Definition:Preimage of Element under Mapping|Preimage]] +}} +{{end-eqn}} +Hence the result. +{{qed}} +[[Category:Abstract Algebra]] +677e0zsz2ea0h4jfe8kvauldn584i1e +\end{proof}<|endoftext|> +\section{Preimage of Zero of Homomorphism is Submagma} +Tags: Abstract Algebra + +\begin{theorem} +Let $\struct {S, *}$ be a [[Definition:Magma|magma]]. +Let $\struct {T, \circ}$ be a [[Definition:Magma|magma]] with a [[Definition:Zero Element|zero element]] $0$. +Let $\phi: S \to T$ be a [[Definition:Homomorphism (Abstract Algebra)|magma homomorphism]]. +Then $\struct {\phi^{-1} \sqbrk 0, *}$ is a [[Definition:Submagma|submagma]] of $\struct {S, *}$. +\end{theorem} + +\begin{proof} +Let $x, y \in \phi^{-1} \sqbrk 0$. +It is to be shown that: +:$x * y \in \phi^{-1} \sqbrk 0$ +Thus: +{{begin-eqn}} +{{eqn | l = x, y \in \phi^{-1} \sqbrk 0 + | o = \leadstoandfrom + | r = \paren {\map \phi x = 0} \land \paren {\map \phi y = 0} + | c = {{Defof|Preimage of Element under Mapping}} +}} +{{eqn | o = \leadstoandfrom + | r = \map \phi x \circ \map \phi y = 0 + | c = {{Defof|Zero Element}} +}} +{{eqn | o = \leadstoandfrom + | r = \map \phi {x * y} = 0 + | c = {{Defof|Homomorphism (Abstract Algebra)}} +}} +{{eqn | o = \leadstoandfrom + | r = x * y \in \phi^{-1} \sqbrk 0 + | c = {{Defof|Preimage of Element under Mapping}} +}} +{{end-eqn}} +Hence the result. +{{qed}} +[[Category:Abstract Algebra]] +6xlhe0vgz3184l91icqbi52xt92i8m8 +\end{proof}<|endoftext|> +\section{Polynomial over Field is Reducible iff Scalar Multiple is Reducible} +Tags: Polynomial Theory + +\begin{theorem} +Let $K$ be a [[Definition:Field (Abstract Algebra)|field]]. +Let $K \left[{X}\right]$ be the [[Definition:Ring of Polynomial Forms|ring of polynomial forms]] over $K$. +Let $P \in K \left[{X}\right]$. +Let $\lambda \in K \setminus \left\{{0}\right\}$. +Then $P$ is [[Definition:Irreducible Polynomial|irreducible]] in $K \left[{X}\right]$ [[Definition:Iff|iff]] $\lambda P$ is also [[Definition:Irreducible Polynomial|irreducible]] in $K \left[{X}\right]$. +{{expand|Investigate whether this result also holds where $K$ is a general ring.}} +\end{theorem} + +\begin{proof} +=== Necessary Condition === +Let $P$ be [[Definition:Irreducible Polynomial|irreducible]]. +Suppose further that $ \lambda P$ has a [[Definition:Trivial Factorization|non-trivial factorization]]: +:$\displaystyle \lambda P = Q_1 Q_2$ +that is, such that $Q_1$ and $Q_2$ are not [[Definition:Unit of Ring|units]] of $K \left[{X}\right]$. +By [[Units of Ring of Polynomial Forms over Field]] it follows that $\deg Q_1 \ge 1$ and $\deg Q_2 \ge 1$. +Let $Q_1' = \lambda^{-1} Q_1$. +This implies that: +:$P = Q_1' Q_2$ +with $\deg Q_1' = \deg Q_1 \ge 1$. +But this is a [[Definition:Trivial Factorization|non-trivial factorization]] of $P$ in $K \left[{X}\right]$. +This contradicts our supposition that $P$ is [[Definition:Irreducible Polynomial|irreducible]]. +Therefore $\lambda P$ has no [[Definition:Trivial Factorization|non-trivial factorization]], that is, $\lambda P$ is [[Definition:Irreducible Polynomial|irreducible]]. +{{qed|lemma}} +=== Sufficient Condition === +Let $\lambda P$ be [[Definition:Irreducible Polynomial|irreducible]]. +Let $Q = \lambda P$. +From the [[Polynomial over Field is Reducible iff Scalar Multiple is Reducible#Necessary Condition|necessary condition]], we know that any [[Definition:Scalar Multiple of Polynomial|scalar multiple]] of $Q$ is [[Definition:Irreducible Polynomial|irreducible]]. +In particular: +:$\lambda^{-1}Q = \lambda^{-1}\lambda P = P$ +is [[Definition:Irreducible Polynomial|irreducible]], the required result. +{{Qed}} +[[Category:Polynomial Theory]] +nw6yg0yol9cx0ajlkik5il3g22753ym +\end{proof}<|endoftext|> +\section{Conjunction of Disjunctions Consequence} +Tags: Conjunction, Disjunction + +\begin{theorem} +:$\left({p \lor q}\right) \land \left({r \lor s}\right) \vdash p \lor r \lor \left({q \land s}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\left({p \lor q}\right) \land \left({r \lor s}\right) \vdash \left({p \lor r}\right) \lor \left({q \land s}\right)}} +{{Premise|1|\left({p \lor q}\right) \land \left({r \lor s}\right)}} +{{SequentIntro|2|1|\left({p \land \left({r \lor s}\right)}\right) \lor \left({q \land \left({r \lor s}\right)}\right)|1|[[Rule of Distribution/Conjunction Distributes over Disjunction/Right Distributive/Formulation 1|Conjunction Distributes over Disjunction]]}} +{{TheoremIntro|3|p \land \left({r \lor s}\right) \implies p|[[Rule of Simplification/Sequent Form/Formulation 2|Simplification]]}} +{{TheoremIntro|4|q \land \left({r \lor s}\right) \implies \left({q \land r}\right) \lor \left({q \land s}\right)|[[Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 2/Forward Implication|Conjunction Distributes over Disjunction]]}} +{{TheoremIntro|5|q \land r \implies r|[[Rule of Simplification/Sequent Form/Formulation 2|Simplification]]}} +{{TheoremIntro|6|q \land s \implies q \land s|[[Law of Identity/Formulation 2]]}} +{{SequentIntro|7||\left({q \land r}\right) \lor \left({q \land s}\right) \implies r \lor \left({q \land s}\right)|5,6|[[Constructive Dilemma/Formulation 1|Constructive Dilemma]]}} +{{SequentIntro|8||q \land \left({r \lor s}\right) \implies r \lor \left({q \land s}\right)|4,7|[[Hypothetical Syllogism/Formulation 1|Hypothetical Syllogism]]}} +{{SequentIntro|9||\left({p \lor q}\right) \land \left({r \lor s}\right) \implies p \lor \left({r \lor \left({q \land s}\right)}\right)|3,8|[[Constructive Dilemma/Formulation 1|Constructive Dilemma]]}} +{{ModusPonens|10|1|p \lor \left({r \lor \left({q \land s}\right)}\right)|9|1}} +{{SequentIntro|11|1|\left({p \lor r}\right) \lor \left({q \land s}\right)|10|[[Rule of Association/Disjunction/Formulation 1|Rule of Association]]}} +{{EndTableau}} +{{qed}} +[[Category:Conjunction]] +[[Category:Disjunction]] +75311jdpussf09y7sbnft5t38dm2bjf +\end{proof}<|endoftext|> +\section{Existence of Ring of Polynomial Forms in Transcendental over Integral Domain} +Tags: Polynomial Theory + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Commutative Ring with Unity|commutative ring with unity]]. +Let $\struct {D, +, \circ}$ be an [[Definition:Subdomain|integral subdomain]] of $R$ whose [[Definition:Ring Zero|zero]] is $0_D$. +Let $X \in R$ be [[Definition:Transcendental over Integral Domain|transcendental over $D$]] +Then the [[Definition:Ring of Polynomials in Ring Element|ring of polynomials $D \sqbrk X$]] in $X$ over $D$ exists. +\end{theorem} + +\begin{proof} +{{finish|The following is an outline only}} +Suppose that $D \sqbrk X$ exists. +Let $\displaystyle \map P X = \sum_{k \mathop = 0}^n a_k X^k$, where $a_n \ne 0_D$, be an arbitrary [[Definition:Element|element]] of $D \sqbrk X$. +Then $\displaystyle \map P X$ corresponds to, and is completely described by, the [[Definition:Ordered Tuple|ordered tuple]] of [[Definition:Coefficient|coefficients]] $\tuple {a_0, a_1, \dotsc, a_n, 0_D, 0_D, 0_D, \dotsc}$. +Consider the set $S$ of [[Definition:Infinite Sequence|infinite sequences]] of [[Definition:Element|elements]] of $D$ which are eventually $0_D$. +That is, whose [[Definition:Element|elements]] are of the form $\tuple {b_0, b_1, \dotsc, b_n, 0_D, 0_D, 0_D, \dotsc}$ where $b_0, \ldots, b_n \in D$. +Consider the [[Definition:Polynomial Ring over Sequence|polynomial ring over $S$]] by defining the operations: +{{begin-axiom}} +{{axiom | n = 1 + | lc= '''Ring Addition:''' + | ml= \sequence {r_0, r_1, r_2, \ldots} + \sequence {s_0, s_1, s_2, \ldots} + | mo= = + | mr= \sequence {r_0 + s_0, r_1 + s_1, r_2 + s_2, \ldots} + | c = +}} +{{axiom | n = 2 + | lc= '''Ring Negative:''' + | ml= -sequence {r_0, r_1, r_2, \ldots} + | mo= = + | mr= \sequence {-r_0, -r_1, -r_2, \ldots} + | c = +}} +{{axiom | n = 3 + | lc= '''Ring Product:''' + | ml= \sequence {r_0, r_1, r_2, \ldots} \circ \sequence {s_0, s_1, s_2, \ldots} + | mo= = + | mr= \sequence {t_0, t_1, t_2, \ldots} + | rc= where $\displaystyle t_i = \sum_{j \mathop + k \mathop = i} r_j s_k$ +}} +{{end-axiom}} +From [[Polynomial Ring of Sequences is Ring]] we have that $\struct {S, +, \circ}$ is a [[Definition:Ring (Abstract Algebra)|ring]]. +{{Finish|To be proved: a) that the sequences $\tuple {a_0, 0_D, 0_d}$ form a subring $D'$ of $\struct {S, +, \circ}$ isomorphic to $D$, b) the sequence $\tuple {0_D, 1_D, 0_D, 0_D, \dotsc}$ is transcendental over $D'$, and c) that $D' \sqbrk X$ is the whole of $R$. Thus we have constructed $D' \simeq D$. If we now ignore the difference between $a_0 \in D$ and $\tuple {a_0, 0_D, 0_d} \in D'$ so that $D'$ is identified with $D$ the ring $D \sqbrk X$ has been constructed as required.}} +\end{proof}<|endoftext|> +\section{Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 2/Proof 2} +Tags: Rule of Distribution + +\begin{theorem} +:$\vdash \left({p \land \left({q \lor r}\right)}\right) \iff \left({\left({p \land q}\right) \lor \left({p \land r}\right)}\right)$ +\end{theorem} + +\begin{proof} +{{BeginTableau|\vdash \left({p \land \left({q \lor r}\right)}\right) \iff \left({\left({p \land q}\right) \lor \left({p \land r}\right)}\right)}} +{{TheoremIntro|1|\left({p \land \left({q \lor r}\right)}\right) \implies \left({\left({p \land q}\right) \lor \left({p \land r}\right)}\right)|[[Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 2/Forward Implication|Conjunction Distributes over Disjunction: Forward Implication]]}} +{{TheoremIntro|2|\left({\left({p \land q}\right) \lor \left({p \land r}\right)}\right) \implies \left({p \land \left({q \lor r}\right)}\right)|[[Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 2/Reverse Implication|Conjunction Distributes over Disjunction: Reverse Implication]]}} +{{BiconditionalIntro|3||\left({p \land \left({q \lor r}\right)}\right) \iff \left({\left({p \land q}\right) \lor \left({p \land r}\right)}\right)|1|2}} +{{EndTableau}} +{{qed}} +\end{proof}<|endoftext|> +\section{Eisenstein Integers form Integral Domain} +Tags: Number Theory, Integral Domains, Eisenstein Integers + +\begin{theorem} +The [[Definition:Ring of Eisenstein Integers|ring of Eisenstein integers]] $\struct {\Z \sqbrk \omega, +, \times}$ is an [[Definition:Integral Domain|integral domain]]. +\end{theorem} + +\begin{proof} +By [[Eisenstein Integers form Subring of Complex Numbers]] we know that $\struct {\Z \sqbrk \omega, +, \times}$ is a [[Definition:Subring|subring]] of the [[Definition:Complex Number|complex numbers]] $\C$. +Let $1_\C$ be the [[Definition:Unity of Ring|unity]] of $\C$. +Let $1_\omega$ be the [[Definition:Unity of Ring|unity]] of $\Z \sqbrk \omega$. +By the [[Subdomain Test]] it suffices to show that $1_\C = 1_\omega$. +By [[Unity of Ring is Unique]] it suffices to show that $1_\C$ is a [[Definition:Unity of Ring|unity]] of $\Z \sqbrk \omega$. +First we note that: +:$\Z \sqbrk \omega = \set {a + b\omega: a, b \in \Z}$ +In particular: +:$1_\C \in \Z \sqbrk \omega$ +Moreover, by definition, $\Z \sqbrk \omega$ inherits its [[Definition:Ring Product|ring product]] from $\C$. +For any $\alpha \in \Z \sqbrk \omega$: +:$1_\C \alpha = \alpha 1_\C = \alpha$ +in $\C$. +Therefore this identity holds in $\Z \sqbrk \omega$ as well. +{{Qed}} +[[Category:Number Theory]] +[[Category:Integral Domains]] +[[Category:Eisenstein Integers]] +5sqorqvi9uyhayy87nukjuax98mo1k8 +\end{proof}<|endoftext|> +\section{Eisenstein Integers form Subring of Complex Numbers} +Tags: Integral Domains, Subrings, Complex Numbers, Eisenstein Integers + +\begin{theorem} +The set of [[Definition:Eisenstein Integer|Eisenstein integers]] $\Z \sqbrk \omega$, under the operations of [[Definition:Complex Addition|complex addition]] and [[Definition:Complex Multiplication|complex multiplication]], forms a [[Definition:Subring|subring]] of the set of [[Definition:Complex Number|complex numbers]] $\C$. +\end{theorem} + +\begin{proof} +We will use the [[Subring Test]]. +This is valid, as the [[Complex Numbers form Field|set of complex numbers $\C$ forms a field]], which is [[Definition:Field (Abstract Algebra)|by definition]] itself a [[Definition:Ring (Abstract Algebra)|ring]]. +We note that $\Z \sqbrk \omega$ is not [[Definition:Empty Set|empty]], as (for example) $0 + 0 \omega \in \Z \sqbrk \omega$. +Let $a + b \omega, c + d \omega \in \Z \sqbrk \omega$. +Then we have $-\paren {c + d \omega} = -c - d \omega$, and so: +{{begin-eqn}} +{{eqn | l = \paren {a + b \omega} + \paren {-\paren {c + d \omega} } + | r = \paren {a + b \omega} + \paren {-c - d \omega} + | c = +}} +{{eqn | r = \paren {a + \paren {-c} } + \paren {b + \paren {-d} } \omega + | c = +}} +{{eqn | r = \paren {a - c} + \paren {b - d} \omega + | c = +}} +{{end-eqn}} +We have that $a, b, c, d \in \Z$ and [[Integers form Integral Domain|$\Z$ is an integral domain]]. +Therefore by [[Definition:Integral Domain|definition]] $\Z$ is a [[Definition:Ring (Abstract Algebra)|ring]]. +So it follows that $a - c \in \Z$ and $b - d \in \Z$. +Hence $\paren {a - c} + \paren {b - d} \omega \in \Z \sqbrk \omega$. +Now consider $\paren {a + b \omega} \paren {c + d \omega}$. +By the definition of [[Definition:Complex Multiplication|complex multiplication]], we have: +:$\paren {a + b \omega} \paren {c + d \omega} = \paren {a c - b d} + \paren {a d + b c} \omega$ +As $a, b, c, d \in \Z$ and $\Z$ is a [[Definition:Ring (Abstract Algebra)|ring]], it follows that $a c - b d \in \Z$ and $ad + bc \in \Z$. +Hence: +:$\paren {a + b \omega} \paren {c + d \omega} \in \Z \sqbrk \omega$ +So by the [[Subring Test]], $\Z \sqbrk \omega$ is a [[Definition:Subring|subring]] of $\C$. +{{qed}} +\end{proof}<|endoftext|> +\section{Norm of Eisenstein Integer} +Tags: Algebraic Number Theory + +\begin{theorem} +Let $\alpha$ be an [[Definition:Eisenstein Integer|Eisenstein integer]]. +That is, $\alpha = a + b \omega$ for some $a, b \in \Z$, where $\omega = e^{2\pi i /3}$. +Then: +:$\cmod \alpha^2 = a^2 - a b + b^2$ +where $\cmod {\, \cdot \,}$ denotes the [[Definition:Complex Modulus|modulus]] of a [[Definition:Complex Number|complex number]]. +\end{theorem} + +\begin{proof} +We find that: +{{begin-eqn}} +{{eqn | l = \cmod \alpha^2 + | r = \alpha \overline \alpha + | c = [[Modulus in Terms of Conjugate]] +}} +{{eqn | r = \paren {a + b \omega} \paren {\overline {a + b \omega} } + | c = [[Modulus in Terms of Conjugate]] +}} +{{eqn | r = \paren {a + b \omega} \paren {\overline a + \overline b \overline \omega} + | c = [[Sum of Complex Conjugates]] and [[Product of Complex Conjugates]] +}} +{{eqn | r = \paren {a + b \omega} \paren {a + b \overline \omega} + | c = [[Complex Number equals Conjugate iff Wholly Real]] +}} +{{eqn | r = a^2 + \paren {\omega + \overline \omega} a b + \omega \overline \omega b^2 + | c = +}} +{{end-eqn}} +By the definition of the [[Definition:Polar Form of Complex Number|polar form of a complex number]]: +:$\omega = \exp \paren {\dfrac {2 \pi i} 3} = \map \cos {\dfrac {2 \pi} 3} + i \, \map \sin {\dfrac {2 \pi} 3} = -\dfrac 1 2 + i \dfrac {\sqrt 3} 2$ +Thus by [[Sum of Complex Number with Conjugate]]: +:$\omega + \overline \omega = 2 \cdot \paren {-\dfrac 1 2} = -1$ +Also: +{{begin-eqn}} +{{eqn | l = \omega \overline \omega + | r = \map \exp {\dfrac {2 \pi i} 3} \, \overline {\map \exp {\dfrac {2 \pi i} 3} } + | c = +}} +{{eqn | r = \map \exp {\dfrac {2 \pi i} 3} \, \map \exp {-\dfrac {2 \pi i} 3} + | c = [[Polar Form of Complex Conjugate]] +}} +{{eqn | r = \map \exp {\dfrac {2 \pi i} 3 - \dfrac {2 \pi i} 3} + | c = [[Exponential of Sum]] +}} +{{eqn | r = \map \exp 0 + | c = +}} +{{eqn | r = 1 + | c = [[Exponential of Zero]] +}} +{{end-eqn}} +Therefore: +:$\cmod \alpha^2 = a^2 + \paren {\omega + \overline \omega} a b + \omega \overline \omega b^2 = a^2 - a b + b^2$ +as required. +{{qed}} +[[Category:Algebraic Number Theory]] +033fhr3hho1o0vaercxao9w8ucefa8h +\end{proof}<|endoftext|> +\section{Polynomial Forms over Field form Integral Domain/Formulation 2} +Tags: Polynomial Forms over Field form Integral Domain + +\begin{theorem} +Let $\struct {F, +, \circ}$ be a [[Definition:Field (Abstract Algebra)|field]] whose [[Definition:Field Zero|zero]] is $0_F$ and whose [[Definition:Unity of Field|unity]] is $1_F$. +Let $\GF$ be the [[Definition:Set|set]] of all [[Definition:Polynomial over Field as Sequence|polynomials over $\struct {F, +, \circ}$ defined as sequences]]. +Let [[Definition:Addition of Polynomials over Field as Sequence|polynomial addition]] and [[Definition:Multiplication of Polynomials over Field as Sequence|polynomial multiplication]] be defined as: +:$\forall f = \sequence {a_k} = \tuple {a_0, a_1, a_2, \ldots}, g = \sequence {b_k} = \tuple {b_0, b_1, b_2, \ldots} \in \GF$: +::$f \oplus g := \tuple {a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots}$ +::$f \otimes g := \tuple {c_0, c_1, c_2, \ldots}$ where $\displaystyle c_i = \sum_{j \mathop + k \mathop = i} a_j \circ b_k$ +Then $\struct {\GF, \oplus, \otimes}$ is an [[Definition:Integral Domain|integral domain]]. +\end{theorem} + +\begin{proof} +As $\struct {F, +, \circ}$ is a [[Definition:Field (Abstract Algebra)|field]], it is also by definition a [[Definition:Ring (Abstract Algebra)|ring]]. +Thus from [[Polynomial Ring of Sequences is Ring]] we have that $\struct {\GF, \oplus, \otimes}$ is a [[Definition:Ring (Abstract Algebra)|ring]]. +{{explain|Use an analogous result to [[Ring of Polynomial Forms is Commutative Ring with Unity]] to get the CRU bit done}} +From [[Field is Integral Domain]], a [[Definition:Field (Abstract Algebra)|field]] is also by definition an [[Definition:Integral Domain|integral domain]]. +Let $f, g \in \GF$ such that neither $f$ nor $g$ are the [[Definition:Null Polynomial over Sequence|null polynomial]]. +Let: +:$\deg f = m, \deg g = n$ +where $\deg$ denotes the [[Definition:Degree of Polynomial over Field as Sequence|degree]] of $f$ and $g$ respectively. +By [[Degree of Product of Polynomials over Integral Domain]], the [[Definition:Degree of Polynomial over Field as Sequence|degree]] of $f \times g$ is $m + n$. +Then by definition of [[Definition:Multiplication of Polynomials over Field as Sequence|polynomial multiplication]], its [[Definition:Leading Coefficient of Polynomial|leading coefficient]] is $a_m \circ b_n$. +As by definition an [[Definition:Integral Domain|integral domain]] has no [[Definition:Proper Zero Divisor|proper zero divisors]]: +:$a_m \circ b_n \ne 0_F$. +So, by definition, $f \otimes g$ has a [[Definition:Leading Coefficient of Polynomial|leading coefficient]] which is not $0_F$. +That is, $f \otimes g$ is not the [[Definition:Null Polynomial over Sequence|null polynomial]] +The result follows by definition of [[Definition:Integral Domain|integral domain]]. +\end{proof}<|endoftext|> +\section{Maximal Spectrum of Ring is Nonempty} +Tags: Commutative Algebra + +\begin{theorem} +Let $A$ be a [[Definition:Non-Trivial Ring|non-trivial]] [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +Then its [[Definition:Maximal Spectrum of Ring|maximal spectrum]] is [[Definition:Non-Empty Set|non-empty]]: +:$\operatorname {Max} \Spec A \ne \O$ +\end{theorem} + +\begin{proof} +This is a reformulation of [[Krull's Theorem]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Ring of Polynomial Functions is Commutative Ring with Unity} +Tags: Polynomial Theory + +\begin{theorem} +Let $\struct {R, +, \circ}$ be a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +Let $R \sqbrk {\set {X_j: j \in J} }$ be the [[Definition:Ring of Polynomial Forms|ring of polynomial forms]] over $R$ in the [[Definition:Indeterminate (Polynomial Theory)|indeterminates]] $\set {X_j: j \in J}$. +Let $R^J$ be the [[Definition:Free Module|free module]] on $J$. +Let $A$ be the set of all [[Definition:Polynomial Function/General Definition|polynomial functions]] $R^J \to R$. +Let $\struct {A, +, \circ}$ be the [[Definition:Ring of Polynomial Functions|ring of polynomial functions]] on $R$. +Then $\struct {A, +, \circ}$ is a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +\end{theorem} + +\begin{proof} +First we check that the operations of [[Definition:Ring Product|ring product]] and [[Definition:Ring Addition|ring addition]] are [[Definition:Closed Operation|closed in $A$]]. +Let $Z$ be the set of all [[Definition:Multiindex|multiindices]] indexed by $J$. +Let: +:$\displaystyle f = \sum_{k \mathop \in Z} a_k \mathbf X^k, \ g = \sum_{k \mathop \in Z} b_k \mathbf X^k \in R \sqbrk {\set {X_j: j \in J} }$. +Under the [[Equality of Polynomials|evaluation homomorphism]], $f$ and $g$ map to: +:$\displaystyle A \owns \hat f: \forall x \in R^J: \map {\hat f} x = \sum_{k \mathop \in Z} a_k x^k$ +:$\displaystyle A \owns \hat g: \forall x \in R^J: \map {\hat g} x = \sum_{k \mathop \in Z} b_k x^k$ +{{explain|Clarification needed on the above link: exactly what the "evaluation homomorphism" is needs to be established.}} +Then the [[Definition:Pointwise Operation|induced pointwise sum]] of $\hat f$ and $\hat g$ is: +{{begin-eqn}} +{{eqn | l = \map {\hat f} x + \map {\hat g} x + | r = \sum_{k \mathop \in Z} a_k x^k + \sum_{k \mathop \in Z} b_k x^k +}} +{{eqn | r = \sum_{k \mathop \in Z} \paren {a_k + b_k} x^k +}} +{{eqn | r = \map {\widehat {f + g} } x + | c = {{Defof|Addition of Polynomial Forms}} +}} +{{end-eqn}} +Thus [[Definition:Polynomial Function (Abstract Algebra)|polynomial functions]] are [[Definition:Closed Algebraic Structure|closed]] under [[Definition:Ring Addition|ring addition]]. +The [[[[Definition:Pointwise Operation|induced pointwise product]] of $\hat f$ and $\hat g$ is: +{{begin-eqn}} +{{eqn | l = \map {\hat f} x \circ \map {\hat g} x + | r = \paren {\sum_{k \mathop \in Z} a_k x^k} \circ \paren {\sum_{k \mathop \in Z} a_k x^k} +}} +{{eqn | r = \sum_{k \mathop \in Z} \paren {\sum_{p + q \mathop = k} a_p b_q} \mathbf X^k +}} +{{eqn | r = \map {\widehat {f \circ g} } x + | c = {{Defof|Multiplication of Polynomial Forms}} +}} +{{end-eqn}} +Thus [[Definition:Polynomial Function (Abstract Algebra)|polynomial functions]] are [[Definition:Closed Algebraic Structure|closed]] under [[Definition:Ring Product|ring product]]. +Finally, we invoke [[Structure Induced by Ring Operations is Ring]], which shows that $\struct {A, +, \circ}$ is a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +{{qed}} +[[Category:Polynomial Theory]] +d0rhzr8jw0klq6yvjr2jn9d9ky9hnhe +\end{proof}<|endoftext|> +\section{Knaster-Tarski Lemma} +Tags: Complete Lattices + +\begin{theorem} +Let $\left({L, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $f: L \to L$ be an [[Definition:Increasing Mapping|increasing mapping]]. +Then $f$ has a [[Definition:Smallest Element|least]] [[Definition:Fixed Point|fixed point]] and a [[Definition:Greatest Element|greatest]] [[Definition:Fixed Point|fixed point]]. +\end{theorem} + +\begin{proof} +Let $P = \left\{{x \in L: x \preceq f \left({x}\right)}\right\}$. +Let $p = \bigvee P$, the [[Definition:Supremum of Set|supremum]] of $P$. +Let $x \in P$. +Then by the definition of [[Definition:Supremum of Set|supremum]]: +: $x \preceq p$ +Since $f$ is [[Definition:Increasing Mapping|increasing]]: +: $f \left({x}\right) \preceq f \left({p}\right)$ +By the definition of $P$: +: $x \preceq f \left({x}\right)$ +Thus because $\preceq$ is an [[Definition:Ordering|ordering]], and therefore [[Definition:Transitive Relation|transitive]]: +: $x \preceq f \left({p}\right)$ +As this holds for all $x \in P$, $f \left({p}\right)$ is an [[Definition:Upper Bound of Set|upper bound]] of $P$. +By the definition of [[Definition:Supremum of Set|supremum]]: +: $p \preceq f \left({p}\right)$ +As $f$ is [[Definition:Increasing Mapping|increasing]]: +: $f \left({p}\right) \preceq f \left({f \left({p}\right)}\right)$ +Thus by the definition of $P$: +: $f \left({p}\right) \in P$ +Since $p$ is the [[Definition:Supremum of Set|supremum]] of $P$: +: $f \left({p}\right) \preceq p$ +Since we already know that $p \preceq f \left({p}\right)$: +: $f \left({p}\right) = p$ +because $\preceq$ is an [[Definition:Ordering|ordering]] and therefore [[Definition:Antisymmetric Relation|antisymmetric]]. +Thus $p$ is a [[Definition:Fixed Point|fixed point]] of $f$. +We have that $\preceq$ is an [[Definition:Ordering|ordering]], and therefore [[Definition:Reflexive Relation|reflexive]]. +Thus every [[Definition:Fixed Point|fixed point]] of $f$ is in $P$. +So $p$ is the [[Definition:Greatest Element|greatest]] [[Definition:Fixed Point|fixed point]] of $f$. +Now note that $f$ is also [[Definition:Increasing Mapping|increasing]] in the [[Definition:Dual Ordering|dual ordering]]. +Thus $f$ also has a [[Definition:Greatest Element|greatest]] [[Definition:Fixed Point|fixed point]] in the [[Definition:Dual Ordering|dual ordering]]. +That is, it has a [[Definition:Smallest Element|least]] [[Definition:Fixed Point|fixed point]] in the original [[Definition:Ordering|ordering]]. +{{qed}} +{{Namedfor|Bronisław Knaster|name2 = Alfred Tarski|cat = Knaster|cat2 = Tarski}} +\end{proof}<|endoftext|> +\section{Knaster-Tarski Theorem} +Tags: Complete Lattices + +\begin{theorem} +Let $\left({L, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $f: L \to L$ be an [[Definition:Increasing Mapping|increasing mapping]]. +Let $F$ be the [[Definition:Set|set]] (or [[Definition:Class (Class Theory)|class]]) of [[Definition:Fixed Point|fixed points]] of $f$. +Then $\left({F, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +\end{theorem} + +\begin{proof} +Let $S \subseteq F$. +Let $s = \bigvee S$ be the [[Definition:Supremum of Set|supremum]] of $S$. +We wish to show that there is an [[Definition:Element|element]] of $F$ that [[Definition:Succeed|succeeds]] all [[Definition:Element|elementd]] of $S$ and is the [[Definition:Smallest Element|smallest element]] of $F$ to do so. +By the definition of [[Definition:Supremum of Set|supremum]], an [[Definition:Element|element]] [[Definition:Succeed|succeeds]] all [[Definition:Element|elements]] of $S$ {{iff}} it [[Definition:Succeed|succeeds]] $s$. +Let $U = s^\succeq$ be the [[Definition:Upper Closure|upper closure]] of $s$. +Thus we seek the [[Definition:Smallest Element|smallest]] [[Definition:Fixed Point|fixed point]] of $f$ that lies in $U$. +Note that $U = \left[{s \,.\,.\, \top}\right]$, the [[Definition:Closed Interval|closed interval]] between $s$ and the [[Definition:Top (Lattice Theory)|top]] element of $L$. +First we show that $U$ is [[Definition:Closed under Mapping|closed]] under $f$. +We have that: +:$\forall a \in S: a \preceq s$ +so: +$a = f \left({a}\right) \preceq f \left({s}\right)$ +Thus $f \left({s}\right)$ is an upper bound of $S$, so by the definition of [[Definition:Supremum of Set|supremum]], $s \preceq f \left({s}\right)$. +Let $x \in U$. +Then $s \preceq x$. +So: +: $f \left({s}\right) \preceq f \left({x}\right)$ +Since $s \preceq f \left({s}\right)$, it follows that: +: $s \preceq f \left({x}\right)$ +so: +: $f \left({x}\right) \in U$ +Thus the restriction of $f$ to $U$ is an increasing mapping from $U$ to $U$. +By [[Interval in Complete Lattice is Complete Lattice]], $\left({U, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +Thus by [[Knaster-Tarski Lemma]], $f$ has a [[Definition:Smallest Element|smallest]] [[Definition:Fixed Point|fixed point]] in $U$. +Thus $S$ has a [[Definition:Supremum of Set|supremum]] in $F$. +A precisely similar argument shows that $S$ has an [[Definition:Infimum of Set|infimum]] in $F$. +Since this holds for all $S \subseteq F$, it follows that $\left({F, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Degree of Product of Polynomials over Ring/Corollary 2} +Tags: Degree of Product of Polynomials over Ring + +\begin{theorem} +Let $\struct {D, +, \circ}$ be an [[Definition:Integral Domain|integral domain]] whose [[Definition:Ring Zero|zero]] is $0_D$. +Let $D \sqbrk X$ be the [[Definition:Ring of Polynomials|ring of polynomials]] over $D$ in the [[Definition:Indeterminate (Polynomial Theory)|indeterminate]] $X$. +For $f \in D \sqbrk X$ let $\map \deg f$ denote the [[Definition:Degree of Polynomial|degree]] of $f$. +Then: +:$\forall f, g \in D \sqbrk X: \map \deg {f g} = \map \deg f + \map \deg g$ +\end{theorem} + +\begin{proof} +An [[Definition:Integral Domain|integral domain]] is a [[Definition:Commutative and Unitary Ring|commutative and unitary ring]] with no [[Definition:Proper Zero Divisor|proper zero divisors]]. +The result follows from [[Degree of Product of Polynomials over Ring/Corollary 1|Degree of Product of Polynomials over Ring: Corollary 1]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Knaster-Tarski Lemma/Power Set} +Tags: Mapping Theory, Power Set + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\powerset S$ be the [[Definition:Power Set|power set]] of $S$. +Let $f: \powerset S \to \powerset S$ be a $\subseteq$-[[Definition:Increasing Mapping|increasing mapping]]. +That is, suppose that for all $T, U \in \powerset S$: +:$T \subseteq U \implies \map f T \subseteq \map f U$ +Then $f$ has a [[Definition:Greatest Set by Set Inclusion|greatest]] [[Definition:Fixed Point|fixed point]] and a [[Definition:Smallest Set by Set Inclusion|least]] [[Definition:Fixed Point|fixed point]]. +\end{theorem} + +\begin{proof} +By [[Power Set is Complete Lattice]], $\struct {\powerset S, \cap, \cup, \subseteq}$ is a [[Definition:Complete Lattice|complete lattice]]. +Thus the theorem holds by the [[Knaster-Tarski Lemma]]. +{{qed}} +{{Namedfor|Bronisław Knaster|name2 = Alfred Tarski|cat = Knaster|cat2 = Tarski}} +\end{proof}<|endoftext|> +\section{Cantor-Bernstein-Schröder Theorem/Proof 6} +Tags: Cantor-Bernstein-Schröder Theorem + +\begin{theorem} +Let $A$ and $B$ be [[Definition:Set|sets]]. +Let $f: A \to B$ and $g: B \to A$ be [[Definition:Injection|injections]]. +Then there is a [[Definition:Bijection|bijection]] $h: A \to B$; so that $A$ and $B$ are [[Definition:Set Equivalence|equivalent]]. +Furthermore: +: For all $x \in A$ and $y \in B$, if $y = h \left({x}\right)$ then either $y = f \left({x}\right)$ or $x = g \left({y}\right)$. +\end{theorem} + +\begin{proof} +Let $\mathcal P \left({A}\right)$ be the [[Definition:Power Set|power set]] of $A$. +Define a mapping $E: \mathcal P \left({A}\right) \to \mathcal P \left({A}\right)$ thus: +: $E \left({S}\right) = A \setminus g \left({B \setminus f \left({S}\right)}\right)$ +=== $E$ is increasing === +Let $S, T \in \mathcal P \left({A}\right)$ such that $S \subseteq T$. +Then: +{{begin-eqn}} +{{eqn | l = f \left({S}\right) + | o = \subseteq + | r = f \left({T}\right) + | c = [[Image of Subset is Subset of Image]] +}} +{{eqn | ll= \implies + | l = B \setminus f \left({T}\right) + | o = \subseteq + | r = B \setminus f \left({S}\right) + | c = [[Set Difference with Subset is Superset of Set Difference]] +}} +{{eqn | ll= \implies + | l = g \left({B \setminus f \left({T}\right)}\right) + | o = \subseteq + | r = g \left({B \setminus f \left({S}\right)}\right) + | c = [[Image of Subset is Subset of Image]] +}} +{{eqn | ll= \implies + | l = A \setminus g \left({B \setminus f \left({S}\right)}\right) + | o = \subseteq + | r = A \setminus g \left({B \setminus f \left({T}\right)}\right) + | c = [[Set Difference with Subset is Superset of Set Difference]] +}} +{{end-eqn}} +That is, $E \left({S}\right) \subseteq E \left({T}\right)$. +{{qed|lemma}} +By the [[Knaster-Tarski Lemma/Power Set|Knaster-Tarski Lemma]], $E$ has a [[Definition:Fixed Point|fixed point]] $X$. +By the definition of [[Definition:Fixed Point|fixed point]]: +: $E \left({X}\right) = X$ +Thus by the definition of $E$: +: $A \setminus g \left({B \setminus f \left({X}\right)}\right) = X$ +Therefore: +: $(1): \quad A \setminus \left({A \setminus g \left({B \setminus f \left({X}\right)}\right)}\right) = A \setminus X$ +Since $g$ is a [[Definition:Mapping|mapping]] into $A$: +: $g \left({B \setminus f \left({X}\right)}\right) \subseteq A$ +Thus by [[Relative Complement of Relative Complement]]: +: $A \setminus \left({A \setminus g \left({B \setminus f \left({X}\right)}\right)}\right) = g \left({B \setminus f \left({X}\right)}\right)$ +Thus by $(1)$: +:$g \left({B \setminus f \left({X}\right)}\right) = A \setminus X$ +Let $f' = f \restriction_{X \times f \left({X}\right)}$ be the [[Definition:Restriction of Mapping|restriction]] of $f$ to $X \times f \left({X}\right)$. +Similarly, let $g' = g \restriction_{\left({B \setminus f \left({X}\right)}\right) \times \left({A \setminus X}\right)} = g \restriction_{\left({B \setminus f \left({X}\right)}\right) \times g \left({B \setminus f \left({X}\right)}\right)}$. +By [[Injection to Image is Bijection]], $f'$ and $g'$ are both [[Definition:Bijection|bijections]]. +Define a [[Definition:Relation|relation]] $h: A \to B$ by $h = f' \cup {g'}^{-1}$. +We will show that $h$ is a [[Definition:Bijection|bijection]] from $A$ onto $B$. +The [[Definition:Domain of Mapping|domain]] of $f'$ is $X$, which is [[Definition:Disjoint Sets|disjoint]] from the [[Definition:Codomain of Mapping|codomain]], $A \setminus X$, of $g'$. +The [[Definition:Domain of Mapping|domain]] of $g'$ is $B \setminus f \left({X}\right)$, which is [[Definition:Disjoint Sets|disjoint]] from the [[Definition:Codomain of Mapping|codomain]], $f \left({X}\right)$, of $f'$. +Let $h = f' \cup {g'}^{-1}$. +By the [[Union of Bijections with Disjoint Domains and Codomains is Bijection/Corollary|corollary to Union of Bijections with Disjoint Domains and Codomains is Bijection]]: +: $h$ is a [[Definition:Bijection|bijection]] from $X \cup \left({A \setminus X}\right)$ onto $f \left({X}\right) \cup \left({B \setminus f \left({X}\right)}\right)$. +By [[Union with Relative Complement]], $h$ is a [[Definition:Bijection|bijection]] from $A$ onto $B$. +Since $f' \subseteq f$ and $g' \subseteq g$, each element of $h$ is an element of $f$ or of $g^{-1}$. +That is, if $y = h \left({x}\right)$ then either $y = f \left({x}\right)$ or $x = g \left({y}\right)$. +{{Qed}} +\end{proof}<|endoftext|> +\section{Ring of Polynomial Forms over Integral Domain is Integral Domain} +Tags: Polynomial Rings, Integral Domains + +\begin{theorem} +Let $\struct {D, +, \circ}$ be an [[Definition:Integral Domain|integral domain]] whose [[Definition:Ring Zero|zero]] is $0_D$. +Let $\struct {D \sqbrk X, \oplus, \odot}$ be the [[Definition:Ring of Polynomial Forms|ring of polynomial forms]] over $D$ in the [[Definition:Indeterminate (Polynomial Theory)|indeterminate]] $X$. +Then $\struct {D \sqbrk X, \oplus, \odot}$ is an [[Definition:Integral Domain|integral domain]]. +\end{theorem} + +\begin{proof} +By definition an [[Definition:Integral Domain|integral domain]] is a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +From [[Ring of Polynomial Forms is Commutative Ring with Unity]] it follows that $\struct {D \sqbrk X, +, \circ}$ is a [[Definition:Commutative and Unitary Ring|commutative ring with unity]]. +Suppose $f, g \in D \sqbrk X$ such that neither $f$ nor $g$ are the [[Definition:Null Polynomial|null polynomial]]. +Let $\map \deg f = n$ and $\map \deg g = m$. +From [[Degree of Product of Polynomials over Integral Domain]] the [[Definition:Degree of Polynomial|degree]] of $f \odot g$ is $n + m$. +Thus by definition $f \odot g$ is not the [[Definition:Null Polynomial|null polynomial]] of $D \sqbrk X$. +Thus neither $f$ nor $g$ is a [[Definition:Proper Zero Divisor|proper zero divisor]] of $D \sqbrk X$. +This holds for any two arbitrary non-[[Definition:Null Polynomial|null polynomials]] elements of $D \sqbrk X$. +Hence $\struct {D \sqbrk X, \oplus, \odot}$ is a [[Definition:Commutative and Unitary Ring|commutative ring with unity]] with no [[Definition:Proper Zero Divisor|proper zero divisors]]. +That is, $\struct {D \sqbrk X, \oplus, \odot}$ is an [[Definition:Integral Domain|integral domain]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Union of One-to-Many Relations with Disjoint Images is One-to-Many} +Tags: Relation Theory + +\begin{theorem} +Let $S_1, S_2, T_1, T_2$ be [[Definition:Set|sets]] or [[Definition:Class (Class Theory)|classes]]. +Let $\mathcal R_1$ be a [[Definition:One-to-Many Relation|one-to-many relation]] on $S_1 \times T_1$. +Let $\mathcal R_2$ be a [[Definition:One-to-Many Relation|one-to-many relation]] on $S_2 \times T_2$. +Suppose that the [[Definition:Image Set of Relation|images]] of $\mathcal R_1$ and $\mathcal R_2$ are [[Definition:Disjoint Sets|disjoint]]. +Then $\mathcal R_1 \cup \mathcal R_2$ is a [[Definition:One-to-Many Relation|one-to-many relation]] on $(S_1 \cup S_2) \times (T_1 \cup T_2)$. +\end{theorem} + +\begin{proof} +Let $\mathcal Q = \mathcal R_1 \cup \mathcal R_2$. +Then $Q \subseteq (S_1 \times T_1) \cup (S_2 \times T_2) \subseteq (S_1 \cup S_2) \times (T_1 \cup T_2)$. +Thus $Q$ is a [[Definition:Relation|relation]] on $(S_1 \cup S_2) \times (T_1 \cup T_2)$. +Let $T'_1$ and $T'_2$ be the [[Definition:Image of Relation|images]] of $\mathcal R_1$ and $\mathcal R_2$, respectively. +Let $(x_1, y), (x_2, y) \in Q$. +Then $y \in T'_1$ or $y \in T'_2$. +If $y \in T'_1$ then $y \notin T'_2$, so neither $(x_1, y)$ nor $(x_2, y)$ is in $\mathcal R_2$, so these pairs are both in $\mathcal R_1$. +As $\mathcal R_1$ is [[Definition:One-to-Many Relation|one-to-many]], $x_1 = x_2$. +A similar argument leads to the same result for $y \in T'_2$. +As this holds for all such $x_1, x_2, y$: $Q$ is a one-to-many relation. +{{qed}} +[[Category:Relation Theory]] +l56ztdhi5bg9c7f5cwi8xib4au1autp +\end{proof}<|endoftext|> +\section{Union of Many-to-One Relations with Disjoint Domains is Many-to-One} +Tags: Relation Theory + +\begin{theorem} +Let $S_1, S_2, T_1, T_2$ be [[Definition:Set|sets]] or [[Definition:Class (Class Theory)|classes]]. +Let $\RR_1$ be a [[Definition:Many-to-One Relation|many-to-one relation]] on $S_1 \times T_1$. +Let $\RR_2$ be a [[Definition:Many-to-One Relation|many-to-one relation]] on $S_2 \times T_2$. +Suppose that the [[Definition:Domain of Relation|domains]] of $\RR_1$ and $\RR_2$ are [[Definition:Disjoint Sets|disjoint]]. +Then $\RR_1 \cup \RR_2$ is a [[Definition:Many-to-One Relation|many-to-one relation]] on $\paren {S_1 \cup S_2} \times \paren {T_1 \cup T_2}$. +\end{theorem} + +\begin{proof} +Let $\RR = \RR_1 \cup \RR_2$. +Let $\tuple {x, y_1}, \tuple {x, y_2} \in \RR$. +By the definition of [[Definition:Set Union|union]], $\tuple {x, y_1}$ and $\tuple {x, y_2}$ are each in $\RR_1$ or $\RR_2$. +Suppose that both are in $\RR_1$. +Then since $\RR_1$ is a [[Definition:Many-to-One Relation|many-to-one relation]], $y_1 = y_2$. +Suppose that $\tuple {x, y_1} \in \RR_1$ and $\tuple {x, y_2} \in \RR_2$. +Then $x$ is in the [[Definition:Domain of Relation|domain]] of $\RR_1$ and that of $\RR_2$, contradicting the premise, so this cannot occur. +The other two cases are precisely similar. +Thus in all cases $y_1 = y_2$. +As this holds for all such pairs, $\RR$ is [[Definition:Many-to-One Relation|many-to-one]]. +{{qed}} +[[Category:Relation Theory]] +93vaix66p8b4htn9iiddor48mxwxzmb +\end{proof}<|endoftext|> +\section{Nth Root of Integer is Integer or Irrational} +Tags: Irrationality Proofs, Integers + +\begin{theorem} +Let $n$ be a [[Definition:Natural Number|natural number]]. +Let $x$ be an [[Definition:Integer|integer]]. +If the [[Definition:Root (Analysis)|$n$th root]] of $x$ is not an [[Definition:Integer|integer]], it must be [[Definition:Irrational Number|irrational]]. +\end{theorem} + +\begin{proof} +We prove the [[Definition:Contrapositive Statement|contrapositive]]: if the [[Definition:Root (Analysis)|$n$th root]] of $x$ is [[Definition:Rational Number|rational]], it must be an [[Definition:Integer|integer]]. +By [[Existence of Canonical Form of Rational Number]], there exist an [[Definition:Integer|integer]] $a$ and a [[Definition:Natural Number|natural number]] $b$ which are [[Definition:Coprime Integers|coprime]] such that: +{{begin-eqn}} +{{eqn | l = x^{1/n} + | r = \frac a b +}} +{{eqn | ll= \leadsto + | l = x + | r = \frac {a^n} {b^n} +}} +{{end-eqn}} +Since $a$ and $b$ are [[Definition:Coprime Integers|coprime]], $a^n$ and $b^n$ are [[Definition:Coprime Integers|coprime]] by [[Powers of Coprime Numbers are Coprime]]. +Hence $\dfrac {a^n} {b^n}$ is by definition in [[Definition:Canonical Form of Rational Number|canonical form]]. +Suppose $b \ne 1$. +As the [[Definition:Denominator|denominator]] of $\dfrac {a^n} {b^n}$ is not $1$, $x = \dfrac {a^n} {b^n}$ is not an [[Definition:Integer|integer]]. +This is a [[Definition:Contradiction|contradiction]]. +Thus $b = 1$, and thus: +:$x^{1/n} = a$ +which is an [[Definition:Integer|integer]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Union of Bijections with Disjoint Domains and Codomains is Bijection} +Tags: Mapping Theory + +\begin{theorem} +Let $A$, $B$, $C$, and $D$ be [[Definition:Set|sets]] or [[Definition:Class (Class Theory)|classes]]. +Let $A \cap B = C \cap D = \varnothing$. +Let $f: A \to C$ and $g: B \to D$ be [[Definition:Bijection|bijections]]. +Then $f \cup g: A \cup B \to C \cup D$ is also a [[Definition:Bijection|bijection]]. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Bijection|bijection]], $f$ and $g$ are [[Definition:Many-to-One Relation|many-to-one]] and [[Definition:One-to-Many Relation|one-to-many relations]]. +By [[Union of Many-to-One Relations with Disjoint Domains is Many-to-One]] and [[Union of One-to-Many Relations with Disjoint Images is One-to-Many]]: +: $f \cup g$ is [[Definition:Many-to-One Relation|many-to-one]] and [[Definition:One-to-Many Relation|one-to-many]]. +Thus to show $f \cup g$ is a [[Definition:Bijection|bijection]] requires us only to demonstrate that it is both [[Definition:Left-Total Relation|left-total]] and [[Definition:Right-Total Relation|right-total]]. +We will show that $f \cup g$ is [[Definition:Left-Total Relation|left-total]]. +Let $x \in A \cup B$. +Then $x \in A$ or $x \in B$. +If $x \in A$ then since $f$ is [[Definition:Left-Total Relation|left-total]] there is a $y \in C$ such that $\left({x, y}\right) \in f$. +By the definition of [[Definition:Set Union|union]], $\left({x, y}\right) \in f \cup g$. +If $x \in B$ then since $g$ is [[Definition:Left-Total Relation|left-total]] there is a $y \in D$ such that $\left({x, y}\right) \in g$. +Then by the definition of [[Definition:Set Union|union]], $\left({x, y}\right) \in f \cup g$. +As this holds for all $x$, $f \cup g$ is [[Definition:Left-Total Relation|left-total]]. +The proof that $f \cup g$ is [[Definition:Right-Total Relation|right-total]] is similar. +Thus it has been demonstrated that: +: $f \cup g$ is [[Definition:Many-to-One Relation|many-to-one]] +: $f \cup g$ is [[Definition:One-to-Many Relation|one-to-many]] +: $f \cup g$ is [[Definition:Left-Total Relation|left-total]] +: $f \cup g$ is [[Definition:Right-Total Relation|right-total]] +and therefore, by definition, a [[Definition:Bijection|bijection]]. +{{qed}} +[[Category:Mapping Theory]] +b0uu79b9e81evrjh8lvkh3j7vtlt6ak +\end{proof}<|endoftext|> +\section{Interval in Complete Lattice is Complete Lattice} +Tags: Lattice Theory + +\begin{theorem} +Let $\left({L, \preceq}\right)$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $a, b \in L$ with $a \preceq b$. +Let $\left[{a \,.\,.\, b}\right]$ be the [[Definition:Closed Interval|closed interval]] between $a$ and $b$. +{{explain|Demonstrate that for each $a, b \in L$ that $\left[{a \,.\,.\, b}\right]$ exists and is unique.}} +Then $\left[{a \,.\,.\, b}\right]$ is also a [[Definition:Complete Lattice|complete lattice]] under $\preceq$. +\end{theorem} + +\begin{proof} +Let $I = \left[{a \,.\,.\, b}\right]$. +Let $S \subseteq I$. +If $S = \varnothing$, then it has a [[Definition:Supremum of Set|supremum]] in $I$ of $a$ and an [[Definition:Infimum of Set|infimum]] in $I$ of $b$. +Let $S \ne \varnothing$. +Since $S \subseteq I$, $a$ is a [[Definition:Lower Bound of Set|lower bound]] of $S$ and $b$ is an [[Definition:Upper Bound of Set|upper bound]] of $S$. +Since $L$ is a [[Definition:Complete Lattice|complete lattice]], $S$ has an [[Definition:Infimum of Set|infimum]], $p$, and a [[Definition:Supremum of Set|supremum]], $q$, in $L$. +Thus by the definitions of [[Definition:Infimum of Set|infimum]] and [[Definition:Supremum of Set|supremum]]: +: $a \preceq p$ and $q \preceq b$ +Let $x \in S$. +Since an [[Definition:Infimum of Set|infimum]] is a [[Definition:Lower Bound of Set|lower bound]]: +: $p \preceq x$ +Since a [[Definition:Supremum of Set|supremum]] is an [[Definition:Upper Bound of Set|upper bound]]: +: $x \preceq q$ +Thus $a \preceq p \preceq x \preceq q \preceq b$. +Since $\preceq$ is an [[Definition:Ordering|ordering]], it is [[Definition:Transitive Relation|transitive]], so by [[Transitive Chaining]]: +:$a \preceq p \preceq b$ and $a \preceq q \preceq b$. +That is, $p, q \in I$. +Thus $p$ and $q$ are the [[Definition:Infimum of Set|infimum]] and [[Definition:Supremum of Set|supremum]] of $S$ in $I$. +As every subset of $I$ has a [[Definition:Supremum of Set|supremum]] and [[Definition:Infimum of Set|infimum]] in $I$, $I$ is a [[Definition:Complete Lattice|complete lattice]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Dedekind-Complete Bounded Ordered Set is Complete Lattice} +Tags: Complete Lattices + +\begin{theorem} +Let $\left({L, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Let $L$ have a [[Definition:Lower Bound of Set|lower bound]] $\bot$ and an [[Definition:Upper Bound of Set|upper bound]] $\top$. +Let $\left({L, \preceq}\right)$ be [[Definition:Dedekind Complete|Dedekind-complete]]. +Then $\left({L, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +\end{theorem} + +\begin{proof} +Let $S \subseteq L$. +If $S = \varnothing$, then $S$ has a [[Definition:Supremum of Set|supremum]] of $\bot$ and an [[Definition:Infimum of Set|infimum]] of $\top$. +Let $S \ne \varnothing$. +$S$ is [[Definition:Bounded Above Set|bounded above]] by $\top$. +As $\left({L, \preceq}\right)$ is [[Definition:Dedekind Complete|Dedekind complete]], $S$ has a [[Definition:Supremum of Set|supremum]]. +$S$ is [[Definition:Bounded Below Set|bounded below]] by $\bot$. +By [[Dedekind Completeness is Self-Dual]], $S$ has an [[Definition:Infimum of Set|infimum]]. +Thus every [[Definition:Subset|subset]] of $L$ has a [[Definition:Supremum of Set|supremum]] and an [[Definition:Infimum of Set|infimum]]. +So, by definition, $\left({L, \preceq}\right)$ is a [[Definition:Complete Lattice|complete lattice]]. +{{qed}} +[[Category:Complete Lattices]] +k3nlnv25ytz2hg1qp0qvvfaaszcffkv +\end{proof}<|endoftext|> +\section{Set Difference with Subset is Superset of Set Difference} +Tags: Set Difference + +\begin{theorem} +Let $A, B, S$ be [[Definition:Set|sets]] or [[Definition:Class (Class Theory)|classes]]. +Suppose that $A \subseteq B$. +Then $S \setminus B \subseteq S \setminus A$, where $\setminus$ represents [[Definition:Set Difference|set difference]]. +\end{theorem} + +\begin{proof} +Let $x \in S \setminus B$. +Then by the definition of [[Definition:Set Difference|set difference]]: +: $x \in S$ and $x \notin B$ +Suppose [[Proof by Contradiction|for the sake of contradiction]] that $x \in A$. +Then since $A$ is a [[Definition:subset|subset]] (or [[Definition:subclass|subclass]]) of $B$, $x \in B$, a [[Definition:contradiction|contradiction]]. +Thus $x \notin A$. +Since $x \in S$ and $x \notin A$, we conclude that $x \in S \setminus A$. +As this holds for all $x \in S \setminus B$: +: $S \setminus B \subseteq S \setminus A$ +{{qed}} +[[Category:Set Difference]] +t7nq6c7ruyp6dorjy26rdcerzo37il9 +\end{proof}<|endoftext|> +\section{Knaster-Tarski Lemma/Corollary} +Tags: Complete Lattices + +\begin{theorem} +Let $\struct {L, \preceq}$ be a [[Definition:Complete Lattice|complete lattice]]. +Let $f: L \to L$ be an [[Definition:Increasing Mapping|increasing mapping]]. +Then $f$ has a [[Definition:Fixed Point|fixed point]] +\end{theorem} + +\begin{proof} +By the [[Knaster-Tarski Lemma]], $f$ has a [[Definition:Smallest Element|least]] [[Definition:Fixed Point|fixed point]]. +Thus it has a [[Definition:Fixed Point|fixed point]]. +{{qed}} +[[Category:Complete Lattices]] +1umbgdu1usc8o7l7c7kujl3z3u5u7a7 +\end{proof}<|endoftext|> +\section{Knaster-Tarski Lemma/Corollary/Power Set} +Tags: Complete Lattices + +\begin{theorem} +Let $S$ be a [[Definition:set|set]]. +Let $\mathcal P \left({S}\right)$ be the [[Definition:Power Set|power set]] of $S$. +Let $f: \mathcal P \left({S}\right) \to \mathcal P \left({S}\right)$ be a $\subseteq$-[[Definition:Increasing Mapping|increasing mapping]]. +That is, suppose that for all $T, U \in \mathcal P \left({S}\right)$: +: $T \subseteq U \implies f \left({T}\right) \subseteq f\left({U}\right)$ +Then $f$ has a [[Definition:Fixed Point|fixed point]]. +\end{theorem}<|endoftext|> +\section{Natural Number has Same Prime Factors as Integer Power} +Tags: Natural Numbers + +\begin{theorem} +Let $x$ be a [[Definition:Natural Number|natural number]] such that $x > 1$. +Let $n \ge 1$ be a [[Definition:Strictly Positive Integer|(strictly) positive integer]]. +The [[Definition:Integer Power|$n$th power]] of $x$ has the same [[Definition:Prime Factor|prime factors]] as $x$. +\end{theorem} + +\begin{proof} +{{handwaving}} +Let $p$ a [[Definition:Prime Number|prime number]] such that $p$ divides $x^n$. +This is possible because $x > 1$, so $x^n > 1$, hence $x^n$ has prime divisors due to [[Fundamental Theorem of Arithmetic]]. +To prove the statement, we need to show $p$ divides $x$. +We will prove this statement by the [[Principle of Mathematical Induction]] on $n$. +=== Basis of the Induction === + +We have $n = 1$ +Clearly, since $p$ divides $x^1 = x$, then $p$ divides $x$. +{{qed |lemma}} +=== Inductive Step === +Suppose that for a given $n$, if $p$ divides $x^n$ then $p$ divides $x$. +Then, if $p$ divides $x^{n+1}$, by definition of [[Definition:Prime Number/Definition 6|prime number]], either $p$ divides $x^n$ or $p$ divides $x$. +If $p$ divides $x^n$, we get from induction hypothesis that $p$ divides $x$. +The other case trivially leads to our conclusion. +{{qed|lemma}} +Hence the result, by [[Principle of Mathematical Induction]]. +{{qed}} +Conversely, let $p$ a prime number such that it divides $x$. Then, $p$ divides $x * x^{n-1} = x^n$, as required. +{{qed}} +[[Category:Natural Numbers]] +crq4vrwlccilc19abse60k1dm99lvau +\end{proof}<|endoftext|> +\section{Rule of Simplification/Sequent Form/Formulation 1/Form 1} +Tags: Rule of Simplification + +\begin{theorem} +:$p \land q \vdash p$ +\end{theorem}<|endoftext|> +\section{Rule of Simplification/Sequent Form/Formulation 1/Form 2} +Tags: Rule of Simplification + +\begin{theorem} +:$p \land q \vdash q$ +\end{theorem}<|endoftext|> +\section{Alternative Definition of Ordinal in Well-Founded Theory} +Tags: Ordinals + +\begin{theorem} +A [[Definition:Set|set]] $S$ is an [[Definition:Ordinal|ordinal]] {{iff}} $S$ is [[Definition:Transitive Set|transitive]] and $\forall x, y \in S: \left({x \in y \lor x = y \lor y \in x}\right)$. +\end{theorem} + +\begin{proof} +=== Forward Implication === +Let $S$ be an [[Definition:Ordinal|ordinal]]. +By [[Alternative Definition of Ordinal]], $S$ is [[Definition:Transitive Set|transitive]] and [[Definition:Strict Well-Ordering|strictly well-ordered]] by the [[Definition:Epsilon Relation|epsilon relation]]. +By [[Strict Well-Ordering is Strict Total Ordering]], $S$ is [[Definition:Strict Total Ordering|strictly totally ordered]] by $\in$. +Thus: +:$\forall x, y \in S: \left({ x \in y \lor x = y \lor y \in x }\right)$ +{{qed|lemma}} +=== Reverse Implication === +Let $S$ be a [[Definition:Transitive Set|transitive set]] such that for any $x, y \in S$, $x \in y \lor y \in x \lor x = y$. +We first show that $\in$ is a [[Definition:Strict Ordering|strict ordering]] of $S$. +Asymmetric: Let $x, y \in S$. +By [[Epsilon is Foundational]], $\{ x,y \}$ has an [[Definition:Minimal Element under Relation|$\Epsilon$-minimal]] [[Definition:Element|element]]. +Thus $x \notin t$ or $y \notin x$. +Transitive: Let $x, y, z \in S$ with $x \in y$ and $y \in z$. +By assumption, $x = z$, $x \in z$, or $z \in x$. +Suppose for the sake of contradiction that $x = z$. +Then $x \in y$ and $y \in x$, contradicting the fact that $\Epsilon$ is [[Definition:Asymmetric Relation|asymmetric]]. +Suppose that $z \in x$. +Then $x \in y$, $y \in z$, and $z \in x$. +Thus the set $\left\{ {x, y, z}\right\}$ has no [[Definition:Minimal Element under Relation|$\Epsilon$-minimal]] [[Definition:Element|element]], contradicting [[Epsilon is Foundational]]. +Thus $x \in z$. +Thus $\in$ is a [[Definition:Strict Ordering|strict ordering]] of $S$. +Let $T$ be a non-empty subset of $S$. +By [[Epsilon is Foundational]], $S$ has an $\Epsilon$-minimal element, $m$. +Since a [[Definition:Minimal Element under Relation|minimal element]] of a [[Definition:Strict Total Ordering|strictly totally ordered set]] is the [[Definition:Smallest Element|smallest element]], $\Epsilon$ strictly well-orders $S$. +{{LinkWanted|Is there a link to the above statement?}} +Thus by [[Alternative Definition of Ordinal]], $S$ is an ordinal. +{{qed}} +\end{proof}<|endoftext|> +\section{Foundational Relation is Antireflexive/Corollary} +Tags: Foundational Relations + +\begin{theorem} +Let $\left({S, \preceq}\right)$ be an [[Definition:Ordered Set|ordered set]]. +Suppose that $S$ is non-empty. +Then $\preceq$ is not a [[Definition:Foundational Relation|foundational relation]]. +\end{theorem} + +\begin{proof} +Since $S$ is non-empty, it has an element $x$. +By the definition of [[Definition:Ordering|ordering]], $\preceq$ is a [[Definition:Reflexive Relation|reflexive relation]]. +Thus $x \preceq x$. +By [[Foundational Relation is Antireflexive]], $\preceq$ is not a [[Definition:Foundational Relation|foundational relation]]. +{{qed}} +[[Category:Foundational Relations]] +qrrdxd0b32u7n4vqpuyl10bmczd2tla +\end{proof}<|endoftext|> +\section{Reflexive Reduction of Well-Founded Ordering is Foundational Relation} +Tags: Reflexive Reductions, Order Theory, Foundational Relations + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $\preceq$ be a [[Definition:Well-Founded Ordering|well-founded ordering]] of $S$. +Let $\prec$ be the [[Definition:Reflexive Reduction|reflexive reduction]] of $\preceq$. +Then $\prec$ is a [[Definition:Foundational Relation|foundational relation]]. +\end{theorem} + +\begin{proof} +Let $T$ be a [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $S$. +Since $\preceq$ is a [[Definition:Well-Founded Ordering|well-founded ordering]], $T$ has a [[Definition:Minimal Element|minimal element]] with respect to the [[Definition:Ordering|ordering]] $\preceq$. +That is, there is an [[Definition:Element|element]] $m \in T$ such that $\forall x \in T: \left({x \npreceq m}\right) \lor \left({x = m}\right)$. +Let $x \in T$. +Then $x \npreceq m$ or $x = m$. +By the definition of [[Definition:Reflexive Reduction|reflexive reduction]], $\prec$ is a [[Definition:Subset|subset]] of $\preceq$. +Thus if $x \npreceq m$, $x \nprec m$. +If $x = m$ then by [[Reflexive Reduction is Antireflexive]], $x \nprec m$. +As this holds for all $x \in T$, $m$ is [[Definition:Minimal Element under Relation|$\prec$-minimal]] in $T$. +As each [[Definition:Non-Empty Set|non-empty]] [[Definition:Subset|subset]] of $S$ has a [[Definition:Minimal Element under Relation|$\prec$-minimal]], $\prec$ is a [[Definition:Foundational Relation|foundational relation]] on $S$. +{{qed}} +[[Category:Reflexive Reductions]] +[[Category:Order Theory]] +[[Category:Foundational Relations]] +52y9rgrl5pcrhyplotzmqa4ol0yzujt +\end{proof}<|endoftext|> +\section{Epsilon Relation is Proper} +Tags: Class Theory + +\begin{theorem} +Let $\mathbb U$ be the [[Definition:Universal Class|universal class]]. +Let $\Epsilon$ be the [[Definition:Epsilon Relation|epsilon relation]]. +Then $\left({\mathbb U, \Epsilon}\right)$ is a [[Definition:Proper Relational Structure|proper relational structure]]. +\end{theorem} + +\begin{proof} +{{NotZFC}} +Let $x \in \mathbb U$. +Then by the [[Axiom:Axiom of Extension|Axiom of Extension]]: +: $x = \Epsilon^{-1} \left({x}\right)$ +where $\Epsilon^{-1} \left({x}\right)$ denotes the [[Definition:Preimage of Element under Relation|preimage]] of $x$ under $\Epsilon$. +Since $x$ is a [[Definition:Set|set]], $\prec^{-1} \left({x}\right) = x$ is a set. +As this holds for all $x \in \mathbb U$, $\left({\mathbb U, \Epsilon}\right)$ is a [[Definition:Proper Relational Structure|proper relational structure]]. +{{qed}} +[[Category:Class Theory]] +770yldin2t1ypcot2usopgmypzljk5b +\end{proof}<|endoftext|> +\section{Rule of Simplification/Sequent Form/Formulation 2/Form 1} +Tags: Rule of Simplification + +\begin{theorem} +:$\vdash p \land q \implies p$ +\end{theorem}<|endoftext|> +\section{Rule of Simplification/Sequent Form/Formulation 2/Form 2} +Tags: Rule of Simplification + +\begin{theorem} +:$\vdash p \land q \implies q$ +\end{theorem}<|endoftext|> +\section{Relationship between Transitive Closure Definitions} +Tags: Set Theory + +\begin{theorem} +Let $x$ be a [[Definition:Set|set]]. +Let $a$ be the [[Definition:Smallest Set by Set Inclusion|smallest set]] such that $x \in a$ and $a$ is [[Definition:Transitive Set|transitive]]. +Let $b$ be the [[Definition:Smallest Set by Set Inclusion|smallest set]] such that $x \subseteq b$ and $b$ is [[Definition:Transitive Set|transitive]]. +Then $a = b \cup \set x$. +\end{theorem} + +\begin{proof} +We have that: +:$x \in a$ +and $a$ is [[Definition:Transitive Set|transitive]]. +So: +:$x \subseteq a$ +Thus by the definition of $b$ and of [[Definition:Smallest Set by Set Inclusion|smallest set]]: +:$b \subseteq a$ +Since we also have $x \in a$: +:$b \cup \set x \subseteq a$ +$x \in \set x$, so: +:$x \in b \cup \set x$ +$b \cup \set x$ is [[Definition:Transitive Set|transitive]]: +If $p \in b$ then: +:$p \subseteq b \subseteq b \cup \set x$. +If $p \in \set x$ then: +:$p = x$ +So by the definition of $b$: +:$p \subseteq b \subseteq b \cup \set x$ +Thus by the definition of $a$: +:$a \subseteq b \cup \set x$ +Thus the theorem holds by definition of [[Definition:Set Equality/Definition 2|set equality]]. +{{qed}} +[[Category:Set Theory]] +l7ziwup2v5r1puow7hgnuvd76gft23u +\end{proof}<|endoftext|> +\section{Ordinal is not Element of Itself} +Tags: Ordinals, Ordinal is not Element of Itself + +\begin{theorem} +Let $x$ be an [[Definition:Ordinal|ordinal]]. +Then $x \notin x$. +\end{theorem} + +\begin{proof} +By [[Successor Set of Ordinal is Ordinal]], the [[Definition:Successor Set|successor]] of $x$ is an [[Definition:Ordinal|ordinal]]. +That is, $x^+ = x \cup \set x$ is an [[Definition:Ordinal|ordinal]]. +By [[Set is Element of Successor]], $x \in x^+$. +Because $x^+$ is an [[Definition:Ordinal|ordinal]], it is [[Definition:Strict Well-Ordering|strictly well-ordered]] by the [[Definition:Epsilon Restriction|epsilon restriction]] $\Epsilon {\restriction_{x^+} }$. +Because a strict ordering is [[Definition:Antireflexive Relation|antireflexive]] and $x \in x^+$, we conclude that $x \notin x$. +{{qed}} +\end{proof} + +\begin{proof} +This result follows immediately from [[Set is Not Element of Itself]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Set is Element of Successor} +Tags: Ordinals + +\begin{theorem} +Let $x$ be a [[Definition:set|set]]. +Let $x^+$ be the [[Definition:Successor Set|successor]] of $x$. +Then $x \in x^+$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Successor Set|successor set]]: +: $x^+ = x \cup \{x\}$. +By the definition of [[Definition:singleton|singleton]], $x \in \{x\}$. +Thus by the definition of [[Definition:Set Union|union]], $x \in x^+$. +{{qed}} +[[Category:Ordinals]] +7sif0tawwnckd2ghx1u58z7u5b04ugc +\end{proof}<|endoftext|> +\section{Element of Ordinal is Ordinal} +Tags: Ordinals + +\begin{theorem} +Let $n$ be an [[Definition:ordinal|ordinal]]. +Let $m \in n$. +Then $m$ is also an ordinal. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Ordinal|ordinal]], $n$ is [[Definition:Transitive Class|transitive]]. +Thus $m \subseteq n$. +By [[Subset of Strictly Well-Ordered Set is Strictly Well-Ordered]], it follows that $m$ is [[Definition:Strict Well-Ordering|strictly well-ordered]] by the [[Definition:Epsilon Restriction|epsilon restriction]] $\Epsilon {\restriction_m}$. +It is now to be shown that $m$ is [[Definition:Transitive Set|transitive]]. +If $m = \varnothing$ then the result follows by [[Empty Set is Transitive]]. +If $m \ne \varnothing$, then let $x \in m$. +If $x = \varnothing$, then $x \subseteq m$ by [[Empty Set is Subset of All Sets]]. +If $x \ne \varnothing$, then let $y \in x$. +It suffices to show that $y \in m$. +Since $m \subseteq n$, it follows that $x \in n$. +Also, $y \in x \land x \in n \implies y \in n$ because $n$ is [[Definition:Transitive Set|transitive]]. +And so $x \in n$, $y \in n$, and $m \in n$. +A [[Definition:Strict Well-Ordering|strict well-ordering]] is [[Definition:Transitive Relation|transitive]] by definition. +Therefore: +:$y \in x \land x \in m \implies y \in m$ +Hence the result. +{{qed}} +[[Category:Ordinals]] +17fv3n075gb8vz4h5nkxs3ksn9aqhpm +\end{proof}<|endoftext|> +\section{Modulus of Exponential of Imaginary Number is One} +Tags: Complex Modulus, Modulus of Exponential of Imaginary Number is One + +\begin{theorem} +Let $\cmod z$ denote the [[Definition:Complex Modulus|modulus]] of a [[Definition:Complex Number|complex number]] $z$. +Let $e^z$ be the [[Definition:Complex Exponential Function|complex exponential]] of $z$. +Let $x$ be [[Definition:Wholly Real|wholly real]]. +Then: +:$\cmod {e^{i x} } = 1$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = e^{i x} + | r = \cos x + i \sin x + | c = [[Euler's Formula]] +}} +{{eqn | ll= \leadsto + | l = \cmod {e^{i x} } + | r = \cmod {\cos x + i \sin x} +}} +{{eqn | r = \sqrt {\paren {\map \Re {\cos x + i \sin x} }^2 + \paren {\map \Im {\cos x + i \sin x} }^2} + | c = {{Defof|Complex Modulus}} +}} +{{eqn | r = \sqrt {\cos^2 x + \sin^2 x} + | c = as $x$ is [[Definition:Wholly Real|wholly real]] +}} +{{eqn | r = 1 + | c = [[Sum of Squares of Sine and Cosine]] +}} +{{end-eqn}} +{{qed}} +[[Category:Complex Modulus]] +[[Category:Modulus of Exponential of Imaginary Number is One]] +4e54obxfjkhpr31zu5htm7dromjp3mj +\end{proof}<|endoftext|> +\section{Absolute Value of Power} +Tags: Absolute Value Function + +\begin{theorem} +Let $x$, $y$ be [[Definition:Real Number|real numbers]]. +Let $x^y$, [[Definition:Power (Algebra)|$x$ to the power of $y$]], be real. +Then: +:$\size {x^y} = \size x^y$ +\end{theorem} + +\begin{proof} +If $x = 0$, the theorem [[Definition:Clearly|clearly]] holds, by the definition of [[Definition:Power of Zero|powers of zero]]. +Suppose $x \ne 0$. +We use the interpretation of [[Definition:Real Number|real numbers]] as [[Definition:Wholly Real|wholly real complex numbers]]. +Likewise we interpret the [[Definition:Absolute Value|absolute value]] of $x$ as the [[Definition:Complex Modulus|modulus]] of $x$. +Then $x$ can be expressed in [[Definition:Polar Form of Complex Number|polar form]]: +:$x = r e^{i\theta}$ +where $r = \size x$ and $\theta$ is an [[Definition:Argument of Complex Number|argument]] of $x$. +Then: +{{begin-eqn}} +{{eqn | l = x + | r = r e^{i\theta} +}} +{{eqn | ll= \leadsto + | l = x^y + | r = \left(r{e^{i\theta} }\right)^y +}} +{{eqn | r = r^y e^{i \theta y} +}} +{{eqn | ll= \leadsto + | l = \size {x^y} + | r = \size {r^y e^{i \theta y} } +}} +{{eqn | r = \size {r^y} \size {e^{i \theta y} } + | c = [[Modulus of Product]] +}} +{{eqn | r = \size {r^y} + | c = [[Modulus of Exponential of Imaginary Number is One]] +}} +{{eqn | r = \size {\size x^y} + | c = by definition of $r$ +}} +{{eqn | r = \size x^y + | c = as $\size x^y \ge 0$ +}} +{{end-eqn}} +{{qed}} +{{MissingLinks|exponential properties for $\C$ and that $\size x^y \ge 0$}} +[[Category:Absolute Value Function]] +g0rl07jenlyqentmmvi3q5l1rpraizk +\end{proof}<|endoftext|> +\section{Count of Rows of Truth Table} +Tags: Truth Tables + +\begin{theorem} +Let $P$ be a [[Definition:WFF of Propositional Logic|WFF of propositional logic]]. +Suppose $\mathcal P$ is of [[Definition:Finite Set|finite size]] such that it contains $n$ different [[Definition:Letter|letters]]. +Then a [[Definition:Truth Table|truth table]] constructed to express $P$ will contain $2^n$ [[Definition:Row of Truth Table|rows]]. +\end{theorem} + +\begin{proof} +In a [[Definition:Truth Table|truth table]], one [[Definition:Row of Truth Table|row]] is needed for each [[Definition:Boolean Interpretation|boolean interpretation]] of $P$. +Let $S$ be the [[Definition:Set|set]] of different [[Definition:Letter|letters]] used in $P$. +The result then follows from applying [[Number of Boolean Interpretations for Finite Set of Variables]] to $S$. +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Transitive Closure (Set Theory)} +Tags: Set Theory + +\begin{theorem} +Let $x$ and $y$ be [[Definition:Set|sets]]. +{{TFAE|def = Transitive Closure (Set Theory)|view = Transitive Closure|context = Set Theory}} +\end{theorem} + +\begin{proof} +Let $x^t$ be the [[Definition:Transitive Closure (Set Theory)/Definition 2|transitive closure of $x$ by Definition 2]]. +Let the [[Definition:mapping|mapping]] $G$ be defined as on that definition page. +=== $x \in x^t$ === +$x \in \set x$ by the definition of [[Definition:singleton|singleton]]. +Since $\map G 0 = \set 0$: +:$\set x \in \map G \N$ +Thus $x \in x^t$ by the definition of [[Definition:Union of Set of Sets|union]]. +{{qed|lemma}} +=== $x^t$ is a Set === +By [[Denumerable Class is Set]], the [[Definition:Image of Subset under Mapping|image]] of $G$ is a [[Definition:Set|set]]. +Thus $x^t$ is a set by the [[Axiom:Axiom of Unions|Axiom of Unions]]. +{{qed|lemma}} +=== $x^t$ is a Transitive Set === +Let $y \in x^t$ and let $z \in y$. +By the definition of $x^t$: +:$\exists n \in \N: y \in \map G n$ +Then by definition of [[Definition:Union of Set of Sets|union]]: +:$\displaystyle z \in \bigcup \map G n$ +But by the definition of $G$: +:$z \in \map G {n^+}$ +Thus by the definition of $x^t$: +:$z \in x^t$ +As this holds for all such $y$ and $z$, $x^t$ is [[Definition:Transitive Set|transitive]]. +{{qed|lemma}} +=== $x^t$ is Smallest === +Let $m$ be a [[Definition:Transitive Set|transitive set]] such that $x \in m$. +We will show by [[Principle of Mathematical Induction|induction]] that $\map G n \subseteq m$ for each $n \in \N$. +By [[Union is Smallest Superset]], that will show that $x^t \subseteq m$. +Because $x \in m$: +:$\map G 0 = \set x \subseteq m$ +Suppose that $\map G n \subseteq m$. +Then by [[Union is Increasing]]: +:$\displaystyle \bigcup \map G n \subseteq \bigcup m$ +{{explain|Transitive set includes its union.}} +Thus: +:$\displaystyle \bigcup \map G n \subseteq m$ +{{qed|lemma}} +By [[Smallest Element is Unique]], $x^t$ is the only set satisfying $(2)$. +{{qed}} +[[Category:Set Theory]] +iqtibc9o9fsqisxkwxh0qhrkjxcvxyn +\end{proof}<|endoftext|> +\section{Denumerable Class is Set} +Tags: Set Theory + +\begin{theorem} +Let $A$ be a [[Definition:Class (Class Theory)|class]]. +Let $\N$ be the [[Definition:Natural Numbers|natural numbers]]. +Suppose that $F: \N \to A$ is a [[Definition:bijection|bijection]]. +Then $A$ is a [[Definition:set|set]]. +\end{theorem} + +\begin{proof} +By the [[Axiom:Axiom of Infinity|Axiom of Infinity]], $\N$ is a [[Definition:set|set]]. +Thus by the [[Axiom:Axiom of Replacement|Axiom of Replacement]], $A$ is also a set. +{{qed}} +[[Category:Set Theory]] +5hmyb1p303uf7bgmuq7hv5xmn9nuw12 +\end{proof}<|endoftext|> +\section{Relative Complement inverts Subsets} +Tags: Subsets, Relative Complement + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]]. +Let $A \subseteq S, B \subseteq S$ be [[Definition:Subset|subsets]] of $S$. +Then: +:$A \subseteq B \iff \relcomp S B \subseteq \relcomp S A$ +where $\complement_S$ denotes the [[Definition:Relative Complement|complement relative to $S$]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = A + | o = \subseteq + | r = B + | c = +}} +{{eqn | ll= \leadstoandfrom + | l = A \cap B + | r = A + | c = [[Intersection with Subset is Subset]] +}} +{{eqn | ll= \leadstoandfrom + | l = \relcomp S {A \cap B} + | r = \relcomp S A + | c = [[Relative Complement of Relative Complement]] +}} +{{eqn | ll= \leadstoandfrom + | l = \relcomp S A \cup \relcomp S B + | r = \relcomp S A + | c = [[De Morgan's Laws (Set Theory)/Relative Complement/Complement of Intersection|De Morgan's Laws: Complement of Intersection]] +}} +{{eqn | ll= \leadstoandfrom + | l = \relcomp S B + | o = \subseteq + | r = \relcomp S A + | c = [[Union with Superset is Superset]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Union of Subsets is Subset/Family of Sets} +Tags: Union of Subsets is Subset + +\begin{theorem} +Let $\family {S_i}_{i \mathop \in I}$ be a [[Definition:Indexed Family of Sets|family of sets indexed by $I$]]. +Then for all [[Definition:Set|sets]] $X$: +:$\displaystyle \paren {\forall i \in I: S_i \subseteq X} \implies \bigcup_{i \mathop \in I} S_i \subseteq X$ +where $\displaystyle \bigcup_{i \mathop \in I} S_i$ is the [[Definition:Union of Family|union of $\family {S_i}$]]. +\end{theorem} + +\begin{proof} +Suppose that $\forall i \in I: S_i \subseteq X$. +Consider any $\displaystyle x \in \bigcup_{i \mathop \in I} S_i$. +By definition of [[Definition:Union of Family|set union]]: +:$\exists i \in I: x \in S_i$ +But as $S_i \subseteq X$ it follows that $x \in X$. +Thus it follows that: +:$\displaystyle \bigcup_{i \mathop \in I} S_i \subseteq X$ +So: +:$\displaystyle \paren {\forall i \in I: S_i \subseteq X} \implies \bigcup_{i \mathop \in I} S_i \subseteq X$ +{{qed}} +\end{proof}<|endoftext|> +\section{Union Distributes over Union/Sets of Sets} +Tags: Union Distributes over Union + +\begin{theorem} +Let $A$ and $B$ denote [[Definition:Set of Sets|sets of sets]]. +Then: +:$\displaystyle \bigcup \left({A \cup B}\right) = \left({\bigcup A}\right) \cup \left({\bigcup B}\right)$ +where $\displaystyle \bigcup A$ denotes the [[Definition:Union of Set of Sets|union of $A$]]. +\end{theorem} + +\begin{proof} +Let $\displaystyle s \in \bigcup \left({A \cup B}\right)$. +Then by definition of [[Definition:Union of Set of Sets|union of set of sets]]: +:$\exists X \in A \cup B: s \in X$ +By definition of [[Definition:Set Union|set union]], either: +:$X \in A$ +or: +:$X \in B$ +If $X \in A$, then: +:$s \in \left\{{x: \exists X \in A: x \in X}\right\}$ +If $X \in B$, then: +:$s \in \left\{{x: \exists X \in B: x \in X}\right\}$ +Thus by definition of [[Definition:Union of Set of Sets|union of set of sets]], either: +:$\displaystyle s \in \bigcup A$ +or: +:$\displaystyle s \in \bigcup B$ +So by definition of [[Definition:Set Union|set union]]: +:$\displaystyle s \in \left({\bigcup A}\right) \cup \left({\bigcup B}\right)$ +So by definition of [[Definition:Subset|subset]]: +:$\displaystyle \bigcup \left({A \cup B}\right) \subseteq \left({\bigcup A}\right) \cup \left({\bigcup B}\right)$ +Now let $\displaystyle s \in \left({\bigcup A}\right) \cup \left({\bigcup B}\right)$. +By definition of [[Definition:Set Union|set union]], either: +:$\displaystyle s \in \bigcup A$ +or: +:$\displaystyle s \in \bigcup B$ +That is, by definition of [[Definition:Union of Set of Sets|union of set of sets]], either: +:$s \in \left\{{x: \exists X \in A: x \in X}\right\}$ +or: +:$s \in \left\{{x: \exists X \in B: x \in X}\right\}$ +{{WLOG}}, let $s \in X$ such that $X \in A$. +Then by [[Set is Subset of Union]]: +:$s \in X$ such that $X \in A \cup B$ +That is: +:$\displaystyle s \in \bigcup \left({A \cup B}\right)$ +Similarly if $x \in X$ such that $X \in B$. +So by definition of [[Definition:Subset|subset]]: +:$\displaystyle \left({\bigcup A}\right) \cup \left({\bigcup B}\right) \subseteq \bigcup \left({A \cup B}\right)$ +Hence by definition of [[Definition:Set Equality|equality of sets]]: +:$\displaystyle \bigcup \left({A \cup B}\right) = \left({\bigcup A}\right) \cup \left({\bigcup B}\right)$ +{{qed}} +[[Category:Union Distributes over Union]] +dfrc8pf2hupl9cy8eu3n6tg24uz9uvl +\end{proof}<|endoftext|> +\section{Union Distributes over Union/Families of Sets} +Tags: Union Distributes over Union, Indexed Families + +\begin{theorem} +Let $I$ be an [[Definition:Indexing Set|indexing set]]. +Let $\family {A_\alpha}_{\alpha \mathop \in I}$ and $\family {B_\alpha}_{\alpha \mathop \in I}$ be [[Definition:Indexed Family of Subsets|indexed families of subsets]] of a [[Definition:Set|set]] $S$. +Then: +:$\displaystyle \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha}$ +where $\displaystyle \bigcup_{\alpha \mathop \in I} A_\alpha$ denotes the [[Definition:Union of Family|union of $\family {A_\alpha}_{\alpha \mathop \in I}$]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} + | c = +}} +{{eqn | lll=\leadsto + | ll= \exists \beta \in I: + | l = x + | o = \in + | r = A_\beta \cup B_\beta + | c = {{Defof|Union of Family}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = A_\beta + | c = {{Defof|Set Union}} +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = B_\beta + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \bigcup_{\alpha \mathop \in I} A_\alpha + | c = [[Set is Subset of Union/Family of Sets|Set is Subset of Union]] +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = \bigcup_{\alpha \mathop \in I} B_\alpha + | c = [[Set is Subset of Union/Family of Sets|Set is Subset of Union]] +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha} + | c = {{Defof|Set Union}} +}} +{{end-eqn}} +Thus by definition of [[Definition:Subset|subset]]: +:$\displaystyle \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} \subseteq \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha}$ +{{qed|lemma}} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha} + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \bigcup_{\alpha \mathop \in I} A_\alpha + | c = {{Defof|Set Union}} +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = \bigcup_{\alpha \mathop \in I} B_\alpha + | c = +}} +{{eqn | lll=\leadsto + | ll= \exists \beta \in I: + | l = x + | o = \in + | r = A_\beta + | c = {{Defof|Union of Family}} +}} +{{eqn | lo= \lor + | ll= \exists \beta \in I: + | l = x + | o = \in + | r = B_\beta + | c = +}} +{{eqn | lll=\leadsto + | ll= \exists \beta \in I: + | l = x + | o = \in + | r = A_\beta \cup B_\beta + | c = {{Defof|Union of Family}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} + | c = +}} +{{end-eqn}} +Thus by definition of [[Definition:Subset|subset]]: +:$\displaystyle \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha} \subseteq \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha}$ +{{qed|lemma}} +By definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\displaystyle \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection Distributes over Intersection/Sets of Sets} +Tags: Intersection Distributes over Intersection + +\begin{theorem} +Let $A$ and $B$ denote [[Definition:Set of Sets|sets of sets]]. +Then: +:$\displaystyle \bigcap \paren {A \cap B} = \paren {\bigcap A} \cap \paren {\bigcap B}$ +where $\displaystyle \bigcap A$ denotes the [[Definition:Intersection of Set of Sets|intersection of $A$]]. +\end{theorem} + +\begin{proof} +{{proof wanted}} +[[Category:Intersection Distributes over Intersection]] +8pc0zsy2xi5kegx3vbru32vzpsg4j4f +\end{proof}<|endoftext|> +\section{Intersection Distributes over Intersection/Families of Sets} +Tags: Intersection Distributes over Intersection, Indexed Families + +\begin{theorem} +Let $I$ be an [[Definition:Indexing Set|indexing set]]. +Let $\family {A_\alpha}_{\alpha \mathop \in I}$ and $\family {B_\alpha}_{\alpha \mathop \in I}$ be [[Definition:Indexed Family of Subsets|indexed families of subsets]] of a [[Definition:Set|set]] $S$. +Then: +:$\displaystyle \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cap B_\alpha} = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cap \paren {\bigcap_{\alpha \mathop \in I} B_\alpha}$ +where $\displaystyle \bigcap_{\alpha \mathop \in I} A_i$ denotes the [[Definition:Intersection of Family|intersection of $\family {A_\alpha}$]]. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cap B_\alpha} + | c = +}} +{{eqn | lll=\leadsto + | ll= \forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha \cap B_\alpha + | c = {{Defof|Intersection of Family}} +}} +{{eqn | lll=\leadsto + | ll= \forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha + | c = {{Defof|Set Intersection}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = B_\alpha + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \bigcap_{\alpha \mathop \in I} A_\alpha + | c ={{Defof|Intersection of Family}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = \bigcap_{\alpha \mathop \in I} B_\alpha + | c = {{Defof|Intersection of Family}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cap \paren {\bigcap_{\alpha \mathop \in I} B_\alpha} + | c = {{Defof|Set Intersection}} +}} +{{end-eqn}} +Thus by definition of [[Definition:Subset|subset]]: +:$\displaystyle \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cap B_\alpha} \subseteq \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cap \paren {\bigcap_{\alpha \mathop \in I} B_\alpha}$ +{{qed|lemma}} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cap \paren {\bigcap_{\alpha \mathop \in I} B_\alpha} + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \bigcap_{\alpha \mathop \in I} A_\alpha + | c = {{Defof|Set Intersection}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = \bigcap_{\alpha \mathop \in I} B_\alpha + | c = +}} +{{eqn | lll=\leadsto + | ll= \forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha + | c = {{Defof|Intersection of Family}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = B_\alpha + | c = +}} +{{eqn | lll=\leadsto + | ll= \forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha \cap B_\alpha + | c = {{Defof|Set Intersection}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cap B_\alpha} + | c = {{Defof|Intersection of Family}} +}} +{{end-eqn}} +Thus by definition of [[Definition:Subset|subset]]: +:$\displaystyle \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cap \paren {\bigcap_{\alpha \mathop \in I} B_\alpha} \subseteq \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cap B_\alpha}$ +{{qed|lemma}} +By definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\displaystyle \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cap B_\alpha} = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cap \paren {\bigcap_{\alpha \mathop \in I} B_\alpha}$ +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection Distributes over Intersection/General Result} +Tags: Intersection Distributes over Intersection + +\begin{theorem} +Let $\left\langle{\mathbb S_i}\right\rangle_{i \in I}$ be an [[Definition:Indexed Family of Sets|$I$-indexed family]] of [[Definition:Set of Sets|sets of sets]]. +Then: +:$\displaystyle \bigcap_{i \mathop \in I} \bigcap \mathbb S_i = \bigcap \bigcap_{i \mathop \in I} \mathbb S_i$ +\end{theorem} + +\begin{proof} +{{proof wanted}} +[[Category:Intersection Distributes over Intersection]] +5b5b3b7i6z9sy2akx45notpt9jfv7cw +\end{proof}<|endoftext|> +\section{Intersection Distributes over Union/Family of Sets} +Tags: Intersection Distributes over Union, Indexed Families + +\begin{theorem} +Let $I$ be an [[Definition:Indexing Set|indexing set]]. +Let $\family {A_\alpha}_{\alpha \mathop \in I}$ be a [[Definition:Indexed Family of Subsets|indexed family of subsets]] of a [[Definition:Set|set]] $S$. +Let $B \subseteq S$. +Then: +:$\displaystyle \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cap B} = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cap B$ +where $\displaystyle \bigcup_{\alpha \mathop \in I} A_\alpha$ denotes the [[Definition:Union of Family|union]] of $\family {A_\alpha}_{\alpha \mathop \in I}$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \bigcup_{\alpha \mathop \in I} \paren {A_\alpha \cap B} + | c = +}} +{{eqn | lll=\leadsto + | ll= \exists \alpha \in I: + | l = x + | o = \in + | r = A_\alpha \cap B + | c = {{Defof|Union of Family}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = A_\alpha + | c = {{Defof|Set Intersection}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} + | c = [[Set is Subset of Union/Family of Sets|Set is Subset of Union]] +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cap B + | c = {{Defof|Set Intersection}} +}} +{{end-eqn}} +By definition of [[Definition:Subset|subset]]: +:$\displaystyle \bigcup_{\alpha \mathop \in I} \paren {A_\alpha \cap B} \subseteq \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cap B$ +{{qed|lemma}} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cap B + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} + | c = {{Defof|Set Intersection}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | ll =\exists \alpha \in I: + | l = x + | o = \in + | r = A_\alpha + | c = {{Defof|Union of Family}} +}} +{{eqn | lo= \land + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | ll =\exists \alpha \in I: + | l = x + | o = \in + | r = A_\alpha \cap B + | c = {{Defof|Set Intersection}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \bigcup_{\alpha \mathop \in I} \paren {A_\alpha \cap B} + | c = [[Set is Subset of Union/Family of Sets|Set is Subset of Union]] +}} +{{end-eqn}} +By definition of [[Definition:Subset|subset]]: +:$\displaystyle \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cap B \subseteq \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cap B}$ +{{qed|lemma}} +By definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\displaystyle \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cap B} = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cap B$ +{{qed}} +\end{proof}<|endoftext|> +\section{Union Distributes over Intersection/Family of Sets} +Tags: Union Distributes over Intersection, Indexed Families + +\begin{theorem} +Let $I$ be an [[Definition:Indexing Set|indexing set]]. +Let $\family {A_\alpha}_{\alpha \mathop \in I}$ be an [[Definition:Indexed Family of Subsets|indexed family of subsets]] of a [[Definition:Set|set]] $S$. +Let $B \subseteq S$. +Then: +:$\displaystyle \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B$ +where $\displaystyle \bigcap_{\alpha \mathop \in I} A_\alpha$ denotes the [[Definition:Intersection of Family|intersection]] of $\family {A_\alpha}_{\alpha \mathop \in I}$. +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} + | c = +}} +{{eqn | lll=\leadsto + | ll =\forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha \cup B + | c = [[Intersection is Subset/Family of Sets|Intersection is Subset]] +}} +{{eqn | lll=\leadsto + | ll =\forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha + | c = {{Defof|Set Union}} +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} + | c = {{Defof|Intersection of Family}} +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B + | c = {{Defof|Set Union}} +}} +{{end-eqn}} +By definition of [[Definition:Subset|subset]]: +:$\displaystyle \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} \subseteq \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B$ +{{qed|lemma}} +{{begin-eqn}} +{{eqn | l = x + | o = \in + | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B + | c = +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} + | c = {{Defof|Set Union}} +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | ll =\forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha + | c = [[Intersection is Subset/Family of Sets|Intersection is Subset]] +}} +{{eqn | lo= \lor + | l = x + | o = \in + | r = B + | c = +}} +{{eqn | lll=\leadsto + | ll =\forall \alpha \in I: + | l = x + | o = \in + | r = A_\alpha \cup B + | c = {{Defof|Set Union}} +}} +{{eqn | lll=\leadsto + | l = x + | o = \in + | r = \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} + | c = {{Defof|Intersection of Family}} +}} +{{end-eqn}} +By definition of [[Definition:Subset|subset]]: +:$\displaystyle \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B \subseteq \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B}$ +{{qed|lemma}} +By definition of [[Definition:Set Equality/Definition 2|set equality]]: +:$\displaystyle \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B$ +{{qed}} +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Well-Ordering} +Tags: Well-Orderings + +\begin{theorem} +{{TFAE|def = Well-Ordering}} +Let $\left({S, \preceq}\right)$ be a [[Definition:Ordered Set|ordered set]]. +\end{theorem} + +\begin{proof} +=== [[Equivalence of Definitions of Well-Ordering/Definition 1 implies Definition 2|Definition 1 implies Definition 2]] === +{{:Equivalence of Definitions of Well-Ordering/Definition 1 implies Definition 2}} +[[Definition:By Hypothesis|By hypothesis]], every [[Definition:Subset|subset]] of $S$ has a [[Definition:Smallest Element|smallest element]]. +By [[Smallest Element is Minimal]] it follows that every [[Definition:Subset|subset]] of $S$ has a [[Definition:Minimal Element|minimal element]]. +Thus it follows that $\preceq$ is a [[Definition:Well-Ordering|well-ordering]] on $S$ by [[Definition:Well-Ordering/Definition 2|definition 2]]. +{{qed|lemma}} +=== Definition 2 implies Definition 1 === +Let $\preceq$ be a [[Definition:Well-Ordering/Definition 2|well-ordering on $S$ by definition 2]]. +That is: +:$\preceq$ is a [[Definition:Well-Founded|well-founded]] [[Definition:Total Ordering|total ordering]]. +By definition of [[Definition:Well-Founded|well-founded]], every $T \subseteq S$ has a [[Definition:Minimal Element|minimal element]]. +By [[Minimal Element in Toset is Unique and Smallest]], every $T \subseteq S$ has a [[Definition:Smallest Element|smallest element]]. +The result follows. +{{qed}} +[[Category:Well-Orderings]] +aexj9bpqs6iubuikzd3vbbt2y6mzbcv +\end{proof}<|endoftext|> +\section{Equivalence of Definitions of Transitive Closure (Relation Theory)/Finite Chain is Smallest} +Tags: Equivalence of Definitions of Transitive Closure (Relation Theory) + +\begin{theorem} +Let $S$ be a [[Definition:set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $\RR$ be a [[Definition:Endorelation|relation]] on $S$. +Let $\RR^+$ be the transitive closure of $\RR$ by the [[Definition:Transitive Closure (Relation Theory)/Finite Chain|finite chain definition]]. +That is, for $x, y \in S$ let $x \mathrel {\RR^+} y$ {{iff}} for some [[Definition:Natural Number|natural number]] $n > 0$ there exist $s_0, s_1, \dots, s_n \in S$ such that $s_0 = x$, $s_n = y$, and: +:$\forall k \in \N_n: s_k \mathrel \RR s_{k+1}$ +Then $\RR^+$ is [[Definition:Transitive Relation|transitive]] and if $\QQ$ is a transitive relation on $S$ such that $\RR \subseteq \QQ$ then $\RR \subseteq \QQ$. +\end{theorem} + +\begin{proof} +==== $\RR^+$ is transitive ==== +Let $x,y,z \in S$. +Let $x \mathrel {\RR^+} y$ and $y \mathrel {\RR^+} z$. +Then for some $m, n \in \N_{>0}$ there are $s_0, s_1, \dots, s_m$ and $t_0, t_1, \dots, t_n$ such that $s_0 = x$, $s_m = y$, $t_0 = y$, $t_n = z$, and the following hold: +:$\forall k \in \N_m: s_k \mathrel {\RR^+} s_{k + 1}$ +:$\forall k \in \N_n: t_k \mathrel {\RR^+} t_{k + 1}$ +Let $\sequence {u_k}_{k \mathop \in \N_{m + n} }$ be defined thus: +:$u_k = \cases {s_k & \text{if $k \le m$} \\ t_{k - m} & \text {if $k > m$}}$ +Then clearly $u_k \mathrel {\RR^+} u_{k+1}$ whenever $k < m$ and whenever $k > m$. +But $u_m = s_m = y = t_0 \mathrel {\RR^+} t_1 = u_{m+1}$, so this holds also for $k = m$. +Furthermore, $u_0 = s_0 = x$ and $u_{m+n} = t_n = z$. +Therefore $x \mathrel {\RR^+} z$. +As this holds for all such $x$ and $z$, $\RR^+$ is [[Definition:Transitive Relation|transitive]]. +{{qed|lemma}} +==== $\RR^+$ is smallest ==== +Let $\QQ$ be any [[Definition:Transitive Relation|transitive relation]] on $S$ such that $\RR \subseteq \QQ$. +For any $x, y \in S$ such that $x \mathrel {\RR^+} y$, let $d \left({x, y}\right)$ be the [[Definition:Smallest Element|smallest]] [[Definition:Natural Number|natural number]] $n > 0$ such that there exist $s_0, s_1, \dots, s_n \in S$ such that $s_0 = x$, $s_n = y$, and: +:$\forall k \in \N_n: s_k \mathrel \RR s_{k + 1}$ +Such an $n$ always exists by the definition of $\RR^+$ and the fact that $\N$ is [[Definition:Well-Ordering|well-ordered]] by $\le$. +We will show by [[Principle of Mathematical Induction|induction]] on $n$ that for every $x, y$ such that $x \mathrel {\RR^+} y$ and $\map d {x, y} = n$, $x \mathrel \QQ y$. +This will show that $\RR^+ \subseteq \QQ$. +If $\map d {x, y} = 1$ then $x \mathrel \RR y$, so $x \mathrel \QQ y$. +Suppose that the result holds for $n$. +Let $\map d {x, y} = n + 1$. +Then there exist $s_0, s_1, \dots, s_{n + 1}$ such that $s_0 = x$, $s_{n + 1} = y$, and: +:$\forall k \in \N_{n + 1}: s_k \mathrel \RR s_{k + 1}$ +Then dropping the last term: +:$\forall k \in \N_n: s_k \mathrel \RR s_{k + 1}$ +so $x \mathrel {\RR^+} s_n$. +{{explain|Explain better: either show that minimality implies this or replace standard induction with complete induction}} +It should be clear, then, that $\map d {x, s_n} = n$. +Thus by the inductive hypothesis, $x \mathrel \QQ s_n$. +Since $\RR \subseteq \QQ$, $s_n \mathrel \QQ s_{n + 1} = y$. +Since $x \mathrel \QQ s_n$, $s_n \mathrel \QQ y$, and $\QQ$ is transitive: +:$x \mathrel \QQ y$ +As this holds for all such $x$ and $y$, $\RR^+ \subseteq \QQ$. +{{qed}} +[[Category:Equivalence of Definitions of Transitive Closure (Relation Theory)]] +t1gd2ly0jh4kzcqqzcse4obdyhx8c6i +\end{proof}<|endoftext|> +\section{Order-Preserving Bijection on Wosets is Order Isomorphism} +Tags: Well-Orderings, Order Isomorphisms + +\begin{theorem} +Let $\struct {S, \preceq_1}$ and $\struct {T, \preceq_2}$ be [[Definition:Well-Ordered Set|well-ordered sets]]. +Let $\phi: S \to T$ be a [[Definition:Bijection|bijection]] such that $\phi: S \to T$ is [[Definition:Order-Preserving|order-preserving]]: +:$\forall x, y \in S: x \preceq_1 y \implies \map \phi x \preceq_2 \map \phi y$ +Then: +:$\forall x, y \in S: \map \phi x \preceq_2 \map \phi y \implies x \preceq_1 y$ +That is, $\phi: S \to T$ is an [[Definition:Order Isomorphism|order isomorphism]]. +\end{theorem} + +\begin{proof} +A [[Definition:Well-Ordered Set|well-ordered set]] is a [[Definition:Totally Ordered Set|totally ordered set]] by definition. +A [[Definition:Bijection|bijection]] is a [[Definition:Surjection|surjection]] by definition. +The result follows from [[Order Isomorphism iff Strictly Increasing Surjection]]. +{{qed}} +[[Category:Well-Orderings]] +[[Category:Order Isomorphisms]] +bd9m2xcftcxo5aowtn8z62ncldgdsm8 +\end{proof}<|endoftext|> +\section{Inverse Image of Set under Set-Like Relation is Set} +Tags: Set Theory + +\begin{theorem} +Let $A$ be a [[Definition:Class (Class Theory)|class]]. +Let $\RR$ be a [[Definition:Set-Like Relation|set-like]] [[Definition:Endorelation|endorelation]] on $A$. +Let $B \subseteq A$ be a [[Definition:set|set]]. +Then $\map {\RR^{-1} } B$, the [[Definition:Inverse Image|inverse image]] of $B$ under $\RR$, is also a [[Definition:set|set]]. +\end{theorem} + +\begin{proof} +Since $\RR$ is [[Definition:Set-Like Relation|set-like]], $\map {\RR^{-1} } {\set x}$ is a [[Definition:Set|set]] for each $x$ in $A$. +As $B \subseteq A$, this holds also for each $x \in B$. +{{explain|Explain better.}} +But then $\displaystyle \map {\RR^{-1} } B = \bigcup_{x \mathop \in B} \map {\RR^{-1} } {\set x}$, which is a [[Definition:Set|set]] by the [[Axiom:Axiom of Unions|Axiom of Unions]]. +{{qed}} +[[Category:Set Theory]] +a0lkqyt765j7yboaj8pvu4luf5ejni3 +\end{proof}<|endoftext|> +\section{Reciprocal of Holomorphic Function} +Tags: Complex Analysis, Reciprocals + +\begin{theorem} +Let $f: \C \to \C$ be a [[Definition:Complex Function|complex function]]. +Let $U \subseteq \C$ be an [[Definition:Open Set (Complex Analysis)|open set]] such that $f$ has no [[Definition:Root of Function|zeros]] in $U$. +Suppose further that $f$ is [[Definition:Holomorphic Function|holomorphic]] in $U$. +Then the [[Definition:Complex Function|complex function]] +:$\dfrac 1 {f_{\restriction U} } : U \to \C$ +is [[Definition:Holomorphic Function|holomorphic]]. +\end{theorem} + +\begin{proof} +Let $g: U \to \C$ be such that $\map g x = 1 / \map f x$. +Since $\map f x$ is nonzero for $x \in U$, $g$ is well-defined. +By [[Quotient Rule for Continuous Functions]], $g$ is continuous. +Let $z_0 \in U$. +As $g$ is continuous: +:$\displaystyle \lim_{h \mathop \to 0} \frac 1 {\map f {z_0 + h} } = \frac 1 {\map f {z_0} }$ +As $f$ is holomorphic: +:$\displaystyle \lim_{h \mathop \to 0} \frac {\map f {z_0 + h} - \map f {z_0} } h = \map {f'} {z_0}$ + +By the [[Combination Theorem for Limits of Functions]], +{{begin-eqn}} +{{eqn | l = \lim_{h \mathop \to 0} \frac {\map g {z_0 + h} - \map g {z_0} } h + | r = \lim_{h \mathop \to 0} \frac {\frac 1 {\map f {z_0 + h} } - \frac 1 {\map f {z_0} } } h +}} +{{eqn | r = -\frac 1 {\map f {z_0} } \lim_{h \mathop \to 0} \paren {\paren {\frac 1 {\map f {z_0 + h} } } \paren {\frac {\map f {z_0 + h} - \map f {z_0} } h} } +}} +{{eqn | r = -\frac 1 {\map f {z_0}^2} \cdot \map {f'} {z_0} +}} +{{end-eqn}} +It follows that $g$ is holomorphic. +{{qed}} +[[Category:Complex Analysis]] +[[Category:Reciprocals]] +901s09w466k3i1akdzp6afbndcxrcez +\end{proof}<|endoftext|> +\section{Transitive Closure of Set-Like Relation is Set-Like} +Tags: Set Theory, Transitive Closures + +\begin{theorem} +Let $A$ be a [[Definition:Class (Class Theory)|class]]. +Let $\RR$ be a [[Definition:Set-Like Relation|set-like]] [[Definition:Endorelation|endorelation]] on $A$. +Let $\RR^+$ be the [[Definition:Transitive Closure (Relation Theory)/Finite Chain|transitive closure]] of $\RR$. +Then $\RR^+$ is also a [[Definition:Set-Like Relation|set-like relation]]. +\end{theorem} + +\begin{proof} +Let $x \in A$. +Let $A'$ be the [[Definition:Class (Class Theory)|class]] of all [[Definition:Subset|subsets]] of $A$. +For each $s \in A'$, $\RR^{-1}$ is a [[Definition:Subset|subset]] of $A$. +Hence by [[Inverse Image of Set under Set-Like Relation is Set]] and the definition of [[Definition:Endorelation|endorelation]]: +:$\RR^{-1} \in A'$ +Define a [[Definition:Mapping|mapping]] $G: A' \to A'$ as: +:$\forall s \in A': \map G s = \map {\RR^{-1} } s$ +[[Principle of Recursive Definition|Recursively define]] a [[Definition:Mapping|mapping]] $f: \N \to A'$ as follows: +:$\map f n = \begin {cases} \set x & : n = 0 \\ \map G {\map f {n - 1} } & : n > 0 \end {cases}$ +By the [[Axiom:Axiom of Infinity|Axiom of Infinity]] and the [[Axiom:Axiom of Replacement|Axiom of Replacement]]: +:$\map f \N$ is a set. +Thus by the [[Axiom:Axiom of Unions|Axiom of Unions]]: +:$\displaystyle \bigcup \map f \N$ is a [[Definition:Set|set]]. +Let $y \in \map {\paren {\RR^+}^{-1} } x$. +By the definition of [[Definition:Transitive Closure (Relation Theory)/Finite Chain|transitive closure]]: +:for some $n \in \N_{>0}$ there are $a_0, a_1, \dots, a_n$ such that $y = a_0 \mathrel \RR a_1 \mathrel \RR \cdots \mathrel \RR a_n = x$. +{{explain|it's a finite sort of induction, and a simple and common pattern.}} +Then by [[Principle of Mathematical Induction|induction]] (working from $n$ to $0$), $\displaystyle a_n, a_{n - 1}, \dots, a_0 \in \bigcup \map f \N$. +As this holds for all such $y$: +:$\displaystyle \map {\paren {\RR^+}^{-1} } x \subseteq \bigcup \map f \N$ +By the [[Axiom:Axiom of Specification|Axiom of Specification]]: +:$\map {\paren {\RR^+}^{-1} } x$ is a [[Definition:Set|set]]. +As this holds for all $x \in A$: +:$\RR^+$ is a [[Definition:Set-Like Relation|set-like relation]]. +{{qed}} +[[Category:Set Theory]] +[[Category:Transitive Closures]] +8wsogx7xf6uebkx6imqtrrgno2wptdm +\end{proof}<|endoftext|> +\section{Relational Closure from Transitive Closure} +Tags: Relational Closures + +\begin{theorem} +Let $A$ be a [[Definition:Set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $\RR$ be a [[Definition:Endorelation|relation]] on $A$. +Let $\RR^+$ be the [[Definition:Transitive Closure (Relation Theory)|transitive closure]] of $\RR$. +Let $B \subseteq A$. +Let $B' = B \cup \map {\paren {\RR^+}^{-1} } B$. +Let $C$ be an [[Definition:Transitive with Respect to a Relation|$\RR$-transitive]] [[Definition:Subset|subset]] or [[Definition:Subclass|subclass]] of $A$ such that $B \subseteq C$. +Then: +:$B'$ is [[Definition:Transitive with Respect to a Relation|$\RR$-transitive]] +:$B' \subseteq C$ +:If $B$ is a [[Definition:Set|set]] and $\RR$ is [[Definition:Set-Like Relation|set-like]] then $B'$ is a [[Definition:Set|set]]. That is, $B'$ is the [[Definition:Relational Closure|relational closure]] of $B$ under $\RR$. +\end{theorem} + +\begin{proof} +=== $B'$ is $\RR$-transitive === +Let $x \in B'$ and $y \in A$, and let $y \mathrel \RR x$. +If $x \in B$, then by the definition of [[Definition:Transitive Closure (Relation Theory)|transitive closure]]: +:$y \mathrel {\RR^+} x$ +so: +:$y \in B'$ +Let $x \in \map {\paren {\RR^+}^{-1} } B$. +Then: +:$x \mathrel {\RR^+} b$ +for some $b \in B$. +Since $\RR \subseteq \RR^+$, it follows that: +:$y \mathrel {\RR^+} x$ +Since $\RR^+$ is [[Definition:Transitive Relation|transitive]]: +:$y \mathrel {\RR^+} b$ +That is: +:$y \in \map {\paren {\RR^+}^{-1} } B$ +so $y \in B'$. +As this holds for all such $x$ and $y$, $B'$ is [[Definition:Transitive with Respect to a Relation|$\RR$-transitive]]. +{{qed|lemma}} +=== $B' \subseteq C$ === +Let $x \in B'$. +Then $x \in B$ or $x \in \map {\paren {\RR^+}^{-1} } B$. +Let $x \in B$. +Then because $B \subseteq C$: +:$x \in C$ +Suppose that $x \in \map {\paren {\RR^+}^{-1} } B$. +Then for some $b \in B$: +:$x \mathrel \RR b$ +By the definition of [[Definition:Transitive Closure (Relation Theory)/Finite Chain|transitive closure]]: +:for some $n \in \N_{>0}$ there exist $a_0, a_1, \dots, a_n$ such that: +::$x = a_0 \mathrel \RR a_1 \mathrel \RR \cdots \mathrel \RR a_n = b$ +{{explain|Expand to full argument.}} +Thus by the [[Principle of Mathematical Induction]]: +:$x \in C$ +{{qed|lemma}} +=== Set-like implies set === +Let $B$ be a [[Definition:Set|set]]. +Let $\RR$ be [[Definition:Set-Like Relation|set-like]]. +Then by [[Inverse Image of Set under Set-Like Relation is Set]]: +:$\paren {\RR^+}^{-1}$ is a [[Definition:Set|set]]. +Thus $B'$ is a [[Definition:Set|set]] by the [[Axiom:Axiom of Unions|Axiom of Unions]]. +{{qed}} +[[Category:Relational Closures]] +a96d1ujc5xam9piqm5vf9dw2yfd416c +\end{proof}<|endoftext|> +\section{Minimal WRT Restriction} +Tags: Restrictions + +\begin{theorem} +Let $A$ be a [[Definition:Set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $\mathcal R$ be a [[Definition:Endorelation|relation]] on $A$. +Let $B$ be a [[Definition:Subset|subset]] or [[Definition:Subclass|subclass]] of $A$. +Let $\mathcal R'$ be the [[Definition:Restriction|restriction]] of $\mathcal R$ to $B$. +Let $m \in B$. +Then: +:$m$ is [[Definition:Minimal Element under Relation|$\mathcal R$-minimal]] in $B$ +{{iff}}: +:$m$ is [[Definition:Minimal Element under Relation|$\mathcal R'$-minimal]] in $B$. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $m$ be [[Definition:Minimal Element under Relation|$\mathcal R$-minimal]] in $B$. +Let $x$ be any [[Definition:Element|element]] of $B$. +Suppose [[Proof by Contradiction|for the sake of contradiction]] that $x \mathrel {\mathcal R'} m$. +Then since $\mathcal R' \subseteq \mathcal R$: +:$x \mathrel{\mathcal R} m$ +contradicting the fact that $m$ is [[Definition:Minimal Element under Relation|$\mathcal R$-minimal]] in $B$. +Thus: +:$\lnot \left({x \mathrel{\mathcal R'} m}\right)$ +As this holds for all $x \in B$, $m$ is [[Definition:Minimal Element under Relation|$\mathcal R'$-minimal]] in $B$. +{{qed|lemma}} +=== Necessary Condition === +Let $m$ be [[Definition:Minimal Element under Relation|$\mathcal R'$-minimal]] in $B$. +Let $x \in B$. +Suppose [[Proof by Contradiction|for the sake of contradiction]] that $x \mathrel{\mathcal R} m$. +Then $x, m \in B$. +Therefore: +:$\left({x, m}\right) \in B \times B$ +Thus: +:$\left({x, m}\right) \in \mathcal R \cap \left({B \times B}\right) = \mathcal R'$ +so $x \mathrel{\mathcal R'} m$ +This contradicts the fact that $m$ is [[Definition:Minimal Element under Relation|$\mathcal R'$-minimal]] in $B$. +Thus: +:$\lnot \left({x \mathrel{\mathcal R} m}\right)$ +As this holds for all $x \in B$, it follows that $m$ is [[Definition:Minimal Element under Relation|$\mathcal R$-minimal]] in $B$. +{{qed}} +[[Category:Restrictions]] +7apan44wwcbfxgntcgd88jt1jz9mpw0 +\end{proof}<|endoftext|> +\section{Intersection of Ordinals is Ordinal} +Tags: Ordinals + +\begin{theorem} +Let $A$ be a non-empty [[Definition:Class (Class Theory)|class]] of [[Definition:Ordinal|ordinals]]. +Then $\bigcap A$ is an ordinal. +\end{theorem} + +\begin{proof} +Let $i = \bigcap A$. +=== Set === +By [[Intersection of Non-Empty Class is Set]], $i$ is a [[Definition:set|set]]. +{{qed|lemma}} +=== Transitive === +Let $n \in i$ and let $m \in n$. +Let $a \in A$. +By the definition of [[Definition:Intersection of Set of Sets|intersection]], $n \in a$. +Since $a$ is an [[Definition:ordinal|ordinal]], it is [[Definition:Transitive Set|transitive]]. +Thus $m \in a$. +As this holds for all $a \in A$, $m \in i$. +Thus $i$ is transitive. +{{qed|lemma}} +=== $\in$-connected === +Let $x,y \in i$. +Since $A$ is non-empty, it has an element $a$. +By the definition of [[Definition:Intersection of Set of Sets|intersection]], $x, y \in a$. +Since $a$ is an [[Definition:ordinal|ordinal]], it is [[Definition:Connected Relation|$\in$-connected]]. +Thus $x \in y$ or $y \in x$. +As this holds for all $x, y \in i$, $i$ is $\in$-connected. +{{qed|lemma}} +=== Well-founded === +Let $b$ be a non-empty [[Definition:subset|subset]] of $i$. +Let $a \in A$ (such exists because $A$ is non-empty). +By [[Intersection is Largest Subset]], $b \subseteq a$. +Since $a$ is an [[Definition:ordinal|ordinal]] it is [[Definition:Well-Founded Set|well-founded]]. +Thus $b$ has an element $x$ such that $x \cap b = \varnothing$. +As this holds for all such $b$, $i$ is well-founded. +{{qed}} +[[Category:Ordinals]] +i2frgc6mpmaln0n9etgjv69mtis7d0u +\end{proof}<|endoftext|> +\section{Meet with Complement is Bottom} +Tags: Boolean Algebras + +\begin{theorem} +Let $\struct {S, \vee, \wedge, \neg}$ be a [[Definition:Boolean Algebra/Definition 2|Boolean algebra, defined as in Definition 2]]. +Then: +:$\exists \bot \in S: \forall a \in S: a \wedge \neg a = \bot$ +where $\wedge$ denotes the [[Definition:Boolean Algebra|meet operation in $S$]]. +This element $\bot$ is [[Definition:Unique|unique]] for any given $S$, and is named '''bottom'''. +\end{theorem} + +\begin{proof} +Let $\exists r, s \in S: r \wedge \neg r = a, \ s \wedge \neg s = b$ +Then: +{{begin-eqn}} +{{eqn | l = a + | r = r \wedge \neg r + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{eqn | r = \paren {s \wedge \neg s} \vee \paren {r \wedge \neg r} + | c = [[Definition:Boolean Algebra/Axioms/Definition 2|Boolean Algebra: Axiom $(BA_2 \ 5)$]] +}} +{{eqn | r = \paren {r \wedge \neg r} \vee \paren {s \wedge \neg s} + | c = [[Definition:Boolean Algebra/Axioms/Definition 2|Boolean Algebra: Axiom $(BA_2 \ 1)$]] +}} +{{eqn | r = s \wedge \neg s + | c = [[Definition:Boolean Algebra/Axioms/Definition 2|Boolean Algebra: Axiom $(BA_2 \ 5)$]] +}} +{{eqn | r = b + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{end-eqn}} +Thus, whatever $r$ and $s$ may be: +: $r \wedge \neg r = s \wedge \neg s$ +This [[Definition:Unique|unique]] element can be assigned the [[Definition:Symbol|symbol]] $\bot$ and named '''bottom''' as required. +{{qed}} +\end{proof}<|endoftext|> +\section{Join with Complement is Top} +Tags: Boolean Algebras + +\begin{theorem} +Let $\struct {S, \vee, \wedge, \neg}$ be a [[Definition:Boolean Algebra/Definition 2|Boolean algebra, defined as in Definition 2]]. +Then: +:$\exists \top \in S: \forall a \in S: a \vee \neg a = \top$ +where $\wedge$ denotes the [[Definition:Boolean Algebra|meet operation in $S$]]. +This element $\top$ is [[Definition:Unique|unique]] for any given $S$, and is named '''top'''. +\end{theorem} + +\begin{proof} +Let $\exists r, s \in S: r \vee \neg r = a, \ s \vee \neg s = b$ +Then: +{{begin-eqn}} +{{eqn | l = a + | r = r \vee \neg r + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{eqn | r = \paren {s \vee \neg s} \wedge \paren {r \vee \neg r} + | c = [[Definition:Boolean Algebra/Axioms/Definition 2|Boolean Algebra: Axiom $(\text {BA}_2 \ 5)$]] +}} +{{eqn | r = \paren {r \vee \neg r} \wedge \paren {s \vee \neg s} + | c = [[Definition:Boolean Algebra/Axioms/Definition 2|Boolean Algebra: Axiom $(\text {BA}_2 \ 1)$]] +}} +{{eqn | r = s \vee \neg s + | c = [[Definition:Boolean Algebra/Axioms/Definition 2|Boolean Algebra: Axiom $(\text {BA}_2 \ 5)$]] +}} +{{eqn | r = b + | c = [[Definition:By Hypothesis|by hypothesis]] +}} +{{end-eqn}} +Thus, whatever $r$ and $s$ may be: +:$r \vee \neg r = s \vee \neg s$ +This [[Definition:Unique|unique]] element can be assigned the [[Definition:Symbol|symbol]] $\top$ and named '''top''' as required. +{{qed}} +\end{proof}<|endoftext|> +\section{Ordering is Equivalent to Subset Relation/Lemma} +Tags: Order Theory + +\begin{theorem} +Let $\struct {S, \preceq}$ be an [[Definition:Ordered Set|ordered set]]. +Then: +: $\forall a_1, a_2 \in S: \paren ({a_1 \preceq a_2 \implies {a_1}^\preceq \subseteq {a_2}^\preceq}$ +where ${a_1}^\preceq$ denotes the [[Definition:Lower Closure of Element|lower closure]] of $a_1$. +\end{theorem} + +\begin{proof} +Let $a_1 \preceq a_2$. +Then by the definition of [[Definition:Lower Closure of Element|lower closure]]: +:$a_1 \in {a_2}^\preceq$ +Let $a_3 \in {a_1}^\preceq$. +Then by definition: +:$a_3 \preceq a_1$ +As an [[Definition:Ordering|ordering]] is [[Definition:Transitive Relation|transitive]], it follows that: +:$a_3 \preceq a_2$ +and so: +:$a_3 \in {a_2}^\preceq$ +This holds for all $a_3 \in {a_1}^\preceq$. +Thus by definition of [[Definition:Subset|subset]]: +:${a_1}^\preceq \subseteq {a_2}^\preceq$ +{{qed}} +[[Category:Order Theory]] +lut06i1dlqz5c71uz5dlnzd7qpxmw5f +\end{proof}<|endoftext|> +\section{Smallest Element WRT Restricted Ordering} +Tags: Order Theory + +\begin{theorem} +Let $S$ be a [[Definition:set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $\preceq$ be an [[Definition:ordering|ordering]] on $S$. +Let $T$ be a [[Definition:subset|subset]] or [[Definition:subclass|subclass]] of $S$. +Let $\preceq'$ be the [[Definition:Restriction|restriction]] of $\preceq$ to $T$. +Let $m \in T$. +Then $m$ is the [[Definition:Smallest Element|$\preceq$-smallest element]] of $T$ [[Definition:iff|iff]] $m$ is the $\preceq'$-smallest element of $T$. +\end{theorem} + +\begin{proof} +{{proof wanted|The same sort of utterly trivial thing as at Minimal WRT Restriction}} +[[Category:Order Theory]] +7cev1xljea73ba870wn6hnwi9wa5yg8 +\end{proof}<|endoftext|> +\section{Restriction to Subset of Strict Total Ordering is Strict Total Ordering} +Tags: Order Theory + +\begin{theorem} +Let $S$ be a [[Definition:Set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $\prec$ be a [[Definition:Strict Total Ordering|strict total ordering]] on $A$. +Let $T$ be a [[Definition:Subset|subset]] or [[Definition:Subclass|subclass]] of $A$. +Then the [[Definition:Restriction of Relation|restriction]] of $\prec$ to $B$ is a [[Definition:Strict Total Ordering|strict total ordering]] of $B$. +\end{theorem} + +\begin{proof} +Follows from: +: [[Restriction of Transitive Relation is Transitive]] +: [[Restriction of Antireflexive Relation is Antireflexive]] +: [[Restriction of Connected Relation is Connected]] +{{qed}} +[[Category:Order Theory]] +5xe55ko8u2svkmxnc3vzi33rnk4odei +\end{proof}<|endoftext|> +\section{Restriction of Well-Founded Ordering} +Tags: Order Theory + +\begin{theorem} +Let $S$ be a [[Definition:set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $T$ be a [[Definition:subset|subset]] or [[Definition:subclass|subclass]] of $S$. +Let $\preceq$ be a [[Definition:Well-Founded|well-founded]] [[Definition:ordering|ordering]] of $A$. +Let $\preceq'$ be the [[Definition:Restriction of Ordering|restriction]] of $\preceq$ to $T$. +Then $\preceq'$ is a well-founded ordering of $T$. +\end{theorem} + +\begin{proof} +By [[Restriction of Ordering is Ordering]], $\preceq'$ is an [[Definition:Ordering|ordering]]. +Let $A$ be a non-empty [[Definition:subset|subset]] of $T$. +{{explain}} +Then $A$ is a non-empty subset of $S$. +Since $\preceq$ is [[Definition:Well-Founded|well-founded]], $A$ has a [[Definition:Minimal Element|minimal element]] $m$ with respect to $\preceq$. +Let $x \in A$ and suppose $x \preceq' m$. +Then by the definition of [[Definition:Restriction of Ordering|restriction]], $x \preceq m$. +Thus by the definition of a minimal element, $x = m$. +As this holds for all $x \in A$, $m$ is minimal in $A$ with respect to $\preceq'$. +As this holds for all subsets $A$ of $T$, $\preceq'$ is a well-founded ordering of $T$. +{{qed}} +[[Category:Order Theory]] +gxz77g5woviyhcod6vl0y0nmzpwee3y +\end{proof}<|endoftext|> +\section{Restriction of Well-Ordering is Well-Ordering} +Tags: Well-Orderings + +\begin{theorem} +Let $S$ be a [[Definition:set|set]] or [[Definition:Class (Class Theory)|class]]. +Let $\preceq$ be a [[Definition:Well-Ordering/Definition 2|well-ordering]] of $S$. +Let $T$ be a [[Definition:subset|subset]] or [[Definition:subclass|subclass]] of $S$. +Let $\preceq'$ be the [[Definition:Restriction of Ordering|restriction]] of $\preceq$ to $T$. +Then $\preceq'$ well-orders $T$. +\end{theorem} + +\begin{proof} +By the definition of [[Definition:Well-Ordering/Definition 2|well-ordering]], $\preceq$ is a [[Definition:Well-Founded|well-founded]] [[Definition:Total Ordering|total ordering]]. +By [[Restriction of Total Ordering is Total Ordering]], $\preceq'$ is a [[Definition:Total Ordering|total ordering]]. +By [[Restriction of Well-Founded Ordering]], $\preceq'$ is [[Definition:Well-Founded|well-founded]]. +Thus $\preceq'$ is a [[Definition:Well-Ordering/Definition 2|well-ordering]]. +{{qed}} +[[Category:Well-Orderings]] +2ao0noil1turi1fr4eb23cc72f8hj8v +\end{proof}<|endoftext|> +\section{Ordering is Equivalent to Subset Relation/Proof 2} +Tags: Ordering is Equivalent to Subset Relation + +\begin{theorem} +{{:Ordering is Equivalent to Subset Relation}} +Specifically: +Let +:$\mathbb S := \set {a^\preceq: a \in S}$ +where $a^\preceq$ is the [[Definition:Lower Closure of Element|lower closure]] of $a$. +That is: +:$a^\preceq := \set {b \in S: b \preceq a}$ +Let the [[Definition:Mapping|mapping]] $\phi: S \to \mathbb S$ be defined as: +:$\map \phi a = a^\preceq$ +Then $\phi$ is an [[Definition:Order Isomorphism|order isomorphism]] from $\struct {S, \preceq}$ to $\struct {\mathbb S, \subseteq}$. +\end{theorem} + +\begin{proof} +From [[Subset Relation is Ordering]], we have that $\struct {\mathbb S, \subseteq}$ is an [[Definition:Ordered Set|ordered set]]. +We are to show that $\phi$ is an [[Definition:Order Isomorphism/Definition 2|order isomorphism]]. +$\phi$ is clearly [[Definition:Surjection|surjective]], as every $a^\preceq$ is defined from some $a \in S$. +By the [[Ordering is Equivalent to Subset Relation/Lemma|Lemma]], $\phi$ is [[Definition:Order-Preserving Mapping|order-preserving]]. +Suppose that ${a_1}^\preceq \subseteq {a_2}^\preceq$. +We have that: +:$a_1 \in {a_1}^\preceq$ +Thus by definition of [[Definition:Subset|subset]]: +:$a_1 \in {a_2}^\preceq$ +By definition of ${a_2}^\preceq$: +:$a_1 \preceq a_2$ +Thus $\phi$ is also [[Definition:Order-Reflecting Mapping|order-reflecting]]. +Thus it follows that $\phi$ is an [[Definition:Order Isomorphism|order isomorphism]] between $\struct {S, \preceq}$ and $\struct {\mathbb S, \subseteq}$. +{{qed}} +\end{proof}<|endoftext|> +\section{Event Space contains Sample Space} +Tags: Event Spaces + +\begin{theorem} +:$\Omega \in \Sigma$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \Sigma + | o = \ne + | r = \O + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 1)$}} +}} +{{eqn | ll= \leadsto + | lo= \exists A: + | l = A + | o = \in + | r = \Sigma + | c = {{Defof|Empty Set}} +}} +{{eqn | ll= \leadsto + | l = \Omega \setminus A + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 2)$}} +}} +{{eqn | ll= \leadsto + | l = A \cup \paren {\Omega \setminus A} + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 3)$}} +}} +{{eqn | ll= \leadsto + | l = \Omega + | o = \in + | r = \Sigma + | c = [[Union with Relative Complement]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Event Space contains Empty Set} +Tags: Event Spaces + +\begin{theorem} +:$\O \in \Sigma$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = \Sigma + | o = \ne + | r = \O + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 1)$}} +}} +{{eqn | ll= \leadsto + | lo= \exists A: + | l = A + | o = \in + | r = \Sigma + | c = {{Defof|Empty Set}} +}} +{{eqn | ll= \leadsto + | l = A \setminus A + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 2)$}} +}} +{{eqn | ll= \leadsto + | l = \O + | o = \in + | r = \Sigma + | c = [[Set Difference with Self is Empty Set]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Power Set of Sample Space is Event Space} +Tags: Event Spaces, Power Set of Sample Space is Event Space + +\begin{theorem} +Let $\EE$ be an [[Definition:Experiment|experiment]] whose [[Definition:Sample Space|sample space]] is $\Omega$. +Let $\powerset \Omega$ be the [[Definition:Power Set|power set]] of $\Omega$. +Then $\powerset \Omega$ is an [[Definition:Event Space|event space]] of $\EE$. +\end{theorem} + +\begin{proof} +Let $\powerset \Omega := \Sigma$. +;[[Definition:Event Space|Event Space Axiom $(\text {ES} 1)$]]: +From [[Empty Set is Subset of All Sets]] we have that $\O \subseteq \Omega$. +By the definition of [[Definition:Power Set|power set]]: +:$\O \in \Sigma$ +thus fulfilling [[Definition:Event Space|axiom $(\text {ES} 1)$]]. +{{qed|lemma}} +;[[Definition:Event Space|Event Space Axiom $(\text {ES} 2)$]]: +Let $A \in \Sigma$. +Then by the definition of [[Definition:Power Set|power set]]: +:$A \subseteq \Omega$ +From [[Set with Relative Complement forms Partition]]: +:$\Omega \setminus A \subseteq \Omega$ +and so by the definition of [[Definition:Power Set|power set]]: +:$\Omega \setminus A \in \Sigma$ +thus fulfilling [[Definition:Event Space|axiom $(\text {ES} 2)$]]. +{{qed|lemma}} +;[[Definition:Event Space|Event Space Axiom $(\text {ES} 3)$]]: +Let $\sequence {A_i}$ be a [[Definition:Countable Set|countably infinite]] [[Definition:Sequence|sequence]] of [[Definition:Set|sets]] in $\Sigma$. +Then from [[Power Set is Closed under Countable Unions]]: +:$\ds \bigcup_{i \mathop \in \N} A_i \in \Sigma$ +thus fulfilling [[Definition:Event Space|axiom $(\text {ES} 3)$]]. +{{qed|lemma}} +All the [[Definition:Event Space|event space axioms]] are seen to be fulfilled by $\powerset \Omega$. +Hence the result. +{{qed}} +\end{proof} + +\begin{proof} +For $\powerset \Omega$ to be an [[Definition:Event Space|event space]] of $\EE$, it needs to fulfil the following properties: +:$(1): \quad \powerset \Omega \ne \O$, that is, an event space can not be [[Definition:Empty Set|empty]]. +:$(2): \quad$ If $A \in \powerset \Omega$, then $\relcomp \Omega A \in \powerset \Omega$, that is, the [[Definition:Relative Complement|complement of $A$ relative to $\Omega$]], is also in $\powerset \Omega$. +:$(3): \quad$ If $A_1, A_2, \ldots \in \powerset \Omega$, then $\ds \bigcup_{i \mathop = 1}^\infty A_i \in \powerset \Omega$, that is, the [[Definition:Set Union|union]] of any [[Definition:Countable|countable]] collection of [[Definition:Element|elements]] of $\powerset \Omega$ is also in $\powerset \Omega$. +These all follow directly from [[Power Set is Sigma-Algebra]]. +{{qed}} +\end{proof}<|endoftext|> +\section{Event Space from Single Subset of Sample Space} +Tags: Probability Theory + +\begin{theorem} +Let $\EE$ be an [[Definition:Experiment|experiment]] whose [[Definition:Sample Space|sample space]] is $\Omega$. +Let $\O \subsetneqq A \subsetneqq \Omega$. +Then $\Sigma := \set {\O, A, \Omega \setminus A, \Omega}$ is an [[Definition:Event Space|event space]] of $\EE$. +\end{theorem} + +\begin{proof} +;[[Definition:Event Space|Event Space Axiom $(\text {ES} 1)$]]: +From its definition: +:$\Sigma \ne \O$ +thus fulfilling [[Definition:Event Space|axiom $(\text {ES} 1)$]]. +{{qed|lemma}} +;[[Definition:Event Space|Event Space Axiom $(\text {ES} 2)$]]: +From [[Set Difference with Empty Set is Self]]: +:$\Omega \setminus \O = \Omega \in \Sigma$ +From [[Set Difference with Self is Empty Set]]: +:$\Omega \setminus \Omega = \O \in \Sigma$ +By definition: +:$\Omega \setminus A \in \Sigma$ +From [[Relative Complement of Relative Complement]]: +:$\Omega \setminus \paren {\Omega \setminus A} = A \in \Sigma$ +Thus [[Definition:Event Space|axiom $(\text {ES} 2)$]] is fulfilled. +{{qed|lemma}} +;[[Definition:Event Space|Event Space Axiom $(\text {ES} 3)$]]: +From [[Union with Empty Set]]: +:$\forall X \in \Sigma: X \cup \O = X \in \Sigma$ +From [[Union with Superset is Superset]]: +:$\forall X \in \Sigma: X \cup \Sigma = \Sigma \in \Sigma$ +From [[Union is Idempotent]]: +:$\forall X \in \Sigma: X \cup X = X \in \Sigma$ +From [[Union with Relative Complement]]: +:$A \cup \paren {\Omega \setminus A} = \Sigma \in \Sigma$ +It follows that [[Definition:Event Space|axiom $(\text {ES} 3)$]] is fulfilled. +{{qed}} +\end{proof}<|endoftext|> +\section{Intersection of Events is Event} +Tags: Intersections of Events, Event Spaces + +\begin{theorem} +:$A, B \in \Sigma \implies A \cap B \in \Sigma$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = A, B + | o = \in + | r = \Sigma + | c= +}} +{{eqn | ll= \leadsto + | l = \Omega \setminus A, \ \Omega \setminus B + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 2)$}} +}} +{{eqn | ll= \leadsto + | l = \paren {\Omega \setminus A} \cup \paren {\Omega \setminus A} + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 3)$}} +}} +{{eqn | ll= \leadsto + | l = \Omega \setminus \paren {A \cap B} + | o = \in + | r = \Sigma + | c = [[De Morgan's Laws (Set Theory)/Set Difference/Difference with Intersection|De Morgan's Laws: Difference with Intersection]] +}} +{{eqn | ll= \leadsto + | l = \Omega \setminus \paren {\Omega \setminus \paren {A \cap B} } + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 2)$}} +}} +{{eqn | ll= \leadsto + | l = A \cap B + | o = \in + | r = \Sigma + | c = [[Relative Complement of Relative Complement]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Set Difference of Events is Event} +Tags: Event Spaces + +\begin{theorem} +:$A, B \in \Sigma \implies A \setminus B \in \Sigma$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = A, B + | o = \in + | r = \Sigma + | c= +}} +{{eqn | ll= \leadsto + | l = A, \Omega \setminus B + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 2)$}} +}} +{{eqn | ll= \leadsto + | l = A \cap \paren {\Omega \setminus B} + | o = \in + | r = \Sigma + | c = [[Intersection of Events is Event]] +}} +{{eqn | ll= \leadsto + | l = A \setminus B + | o = \in + | r = \Sigma + | c = [[Set Difference as Intersection with Relative Complement]] +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Composition of Affine Transformations is Affine Transformation} +Tags: Affine Geometry + +\begin{theorem} +Let $\EE$, $\FF$ and $\GG$ be [[Definition:Affine Space|affine spaces]] with [[Definition:Difference Space|difference spaces]] $E$, $F$ and $G$ respectively. +Let $\LL: \EE \to \FF$ and $\MM: \FF \to \GG$ be [[Definition:Affine Transformation|affine transformations]]. +Let $L$ and $M$ be the [[Definition:Tangent Map of Affine Transformation|tangent maps]] of $\LL$ and $\MM$ respectively. +Then the [[Definition:Composition of Mappings|composition]] $\MM \circ \LL: \EE \to \FF$ is an [[Definition:Affine Transformation|affine transformation]] with [[Definition:Tangent Map of Affine Transformation|tangent map]] $M \circ L$. +\end{theorem} + +\begin{proof} +Let $\NN = \MM \circ \LL : \EE \to \GG$ be the [[Definition:Composition of Mappings|composition]]. +We want to show that for any $p, q \in \EE$ +:$\map \GG Q = \map \GG p + \map {M \circ L} {\vec {p q} }$ +We find that: +{{begin-eqn}} +{{eqn | l = \map \GG q + | r = \map {\MM \circ \LL} q +}} +{{eqn | r = \map \MM {\map \LL p} + \map L {\vec{p q} } + | c = $\LL$ is an [[Definition:Affine Transformation|Affine Transformation]] +}} +{{end-eqn}} +Now let: +:$p' = \map \LL p$ +and: +:$q' = \map \LL p + \map L {\vec {p q} }$ +so: +:$\vec {p' q'} = \map L {\vec {p q} }$ +Then: +{{begin-eqn}} +{{eqn | l = \map \GG q + | r = \map \MM {q'} +}} +{{eqn | r = \map \MM {p'} + \map M {\vec {p' q'} } + | c = $\MM$ is an [[Definition:Affine Transformation|Affine Transformation]] +}} +{{eqn | r = \map \MM {\map \LL p} + \map M {\map L {\vec {p q} } } + | c = Definitions of $p'$ and $q'$ +}} +{{eqn | r = \map {\MM \circ \LL} p + \map {M \circ L} {\vec {p q} } + | c = +}} +{{end-eqn}} +as required. +{{Qed}} +[[Category:Affine Geometry]] +k8rj2qi1mssvk7sdmw9vohrdxlizzmu +\end{proof}<|endoftext|> +\section{Symmetric Difference of Events is Event} +Tags: Event Spaces + +\begin{theorem} +:$A, B \in \Sigma \implies A \ast B \in \Sigma$ +\end{theorem} + +\begin{proof} +{{begin-eqn}} +{{eqn | l = A, B + | o = \in + | r = \Sigma + | c= +}} +{{eqn | ll= \leadsto + | l = A \cup B + | o = \in + | r = \Sigma + | c = {{Defof|Event Space|Event Space: Axiom $(\text {ES} 3)$}} +}} +{{eqn | lo= \land + | l = A \cap B + | o = \in + | r = \Sigma + | c = [[Intersection of Events is Event]] +}} +{{eqn | ll= \leadsto + | l = \paren {A \cup B} \setminus \paren {A \cap B} + | o = \in + | r = \Sigma + | c = [[Set Difference of Events is Event]] +}} +{{eqn | ll= \leadsto + | l = A \ast B + | o = \in + | r = \Sigma + | c = {{Defof|Symmetric Difference|index = 2}} +}} +{{end-eqn}} +{{qed}} +\end{proof}<|endoftext|> +\section{Characterization of Affine Transformations} +Tags: Affine Geometry + +\begin{theorem} +Let $\mathcal E$ and $\mathcal F$ be [[Definition:Affine Space|affine spaces]] over a [[Definition:Field (Abstract Algebra)|field]] $k$. +Let $\mathcal L: \mathcal E \to \mathcal F$ be a [[Definition:Mapping|mapping]]. +Then $\mathcal L$ is an [[Definition:Affine Transformation|affine transformation]] {{iff}} for all points $p, q \in \mathcal E$ and all $\lambda \in k$: +:$\mathcal L \left({\lambda p + \left({1 - \lambda}\right) q}\right) = \lambda \mathcal L \left({p}\right) + \left({1 - \lambda}\right) \mathcal L \left({q}\right)$ +where $\lambda p + \left({1 - \lambda}\right) q$ and $\lambda \mathcal L \left({p}\right) + \left({1 - \lambda}\right) \mathcal L \left({q}\right)$ denote [[Definition:Barycenter|barycenters]]. +\end{theorem} + +\begin{proof} +=== Sufficient Condition === +Let $\mathcal L$ be an affine transformation. +Let $L$ be the [[Definition:Tangent Map of Affine Transformation|tangent map]]. +Let $r \in \mathcal E$ be any point. +Then by definition we have: +:$\lambda p + \left({1 - \lambda}\right) q = r + \lambda \vec{r p} + \left({1 - \lambda}\right) \vec{r q}$ +Thus we find: +{{begin-eqn}} +{{eqn | l = \mathcal L \left({\lambda p + \left({1 - \lambda}\right) q}\right) + | r = \mathcal L \left({r}\right) + L \left({\lambda p + \left({1 - \lambda}\right) q}\right) + | c = Definition of [[Definition:Affine Transformation|Affine Transformation]] +}} +{{eqn | r = \mathcal L \left({r}\right) + \lambda L \left({p}\right) + \left({1 - \lambda}\right) L \left({q}\right) + | c = since $L$ is [[Definition:Linear Transformation|linear]] +}} +{{eqn | r = \lambda \mathcal L \left({p}\right) + \left({1 - \lambda}\right) \mathcal L \left({q}\right) + | c = Definition of [[Definition:Barycenter|Barycenter]] +}} +{{end-eqn}} +{{qed|lemma}} +=== Necessary Condition === +Suppose that for all points $p, q \in \mathcal E$ and all $\lambda \in \R$: +:$\mathcal L \left({\lambda p + \left({1 - \lambda}\right) q}\right) = \lambda \mathcal L \left({p}\right) + \left({1 - \lambda}\right) \mathcal L \left({q}\right)$ +Let $E$ be the [[Definition:Difference Space|difference space]] of $\mathcal E$. +[[Definition:Fixed Point|Fix a point]] $p \in \mathcal E$, and define for all $u \in E$: +:$L\left(u\right) = \mathcal L\left(p + u\right) - \mathcal L\left(p\right)$ +Let $q = p + u$. +Then: +:$\mathcal L \left({q}\right) = \mathcal L \left({p}\right) + L \left({u}\right)$ +So to show that $\mathcal L$ is affine, we are required to prove that $L$ is [[Definition:Linear Transformation|linear]]. +That is, we want to show that for all $\lambda \in k$ and all $u, v \in E$: +:$L \left({\lambda u}\right) = \lambda L \left({u}\right)$ +and: +:$L \left({u + v}\right) = L \left({u}\right) + L \left({v}\right)$ +First of all: +{{begin-eqn}} +{{eqn | l = L \left({\lambda u}\right) + | r = \mathcal L \left({p + \lambda u}\right) - \mathcal L \left({p}\right) + | c = Definition of $L$ +}} +{{eqn | r = \mathcal L \left({\left({1 - \lambda}\right) + \lambda \left({p + u}\right)}\right) + | c = Definition of [[Definition:Barycenter|Barycenter]] +}} +{{eqn | r = \left({1 - \lambda}\right) \mathcal L \left({p}\right) + \lambda \mathcal L \left({p + u}\right) - \mathcal L \left({p}\right) + | c = [[Definition:By Hypothesis|By Hypothesis]] on $\mathcal L$ +}} +{{eqn | r = \lambda \left({\mathcal L \left({p + u}\right) - \mathcal L \left({p}\right)}\right) + | c = +}} +{{eqn | r = \lambda L \left({u}\right) + | c = Definition of $L$ +}} +{{end-eqn}} +Now it is to be shown that +:$L \left({u + v}\right) = L \left({u}\right) + \left({v}\right)$ +First: +:$p + u + v = \dfrac 1 2 \left({p + 2 u}\right) + \dfrac 1 2 \left({p + 2 v}\right)$ +Now: +{{begin-eqn}} +{{eqn | l = \mathcal L \left({p + u + v}\right) + | r = \mathcal L \left({\frac 1 2 \left({p + 2 u}\right) + \frac 1 2 \left({p + 2 v}\right)}\right) + | c = +}} +{{eqn | r = \frac 1 2 \mathcal L \left({p + 2 u}\right) + \frac 1 2 \mathcal L \left({p + 2 v}\right) + | c = [[Definition:By Hypothesis|By Hypothesis]] on $\mathcal L$ +}} +{{eqn | r = \frac 1 2 \left({\mathcal L \left({p + 2 u}\right) - \mathcal L \left({p}\right)}\right) + \frac 1 2 \left({ \mathcal L \left({p + 2 v}\right) - \mathcal L \left({p}\right)}\right) + \mathcal L \left({p}\right) + | c = +}} +{{eqn | r = \frac 1 2 L \left({2 u}\right) + \frac 1 2 L \left({2 v}\right) + \mathcal L \left({p}\right) + | c = Definition of $L$ +}} +{{eqn | r = L \left({u}\right) + L \left({v}\right) + \mathcal L \left({p}\right) + | c = as $L$ preserves scalar multiples +}} +{{end-eqn}} +From the above calculation: +:$L \left({u + v}\right) = \mathcal L \left({p + u + v}\right) - \mathcal L \left({p}\right) = L \left({u}\right) + L \left({v}\right)$ +This shows that $L$ is linear, and therefore concludes the proof. +{{Qed}} +[[Category:Affine Geometry]] +9splhjisbqidaxnnz69xjkwpx8v7k1c +\end{proof}<|endoftext|> +\section{Probability of Empty Event is Zero} +Tags: Probability Theory + +\begin{theorem} +:$\map \Pr \O = 0$ +\end{theorem} + +\begin{proof} +From the conditions for $\Pr$ to be a [[Definition:Probability Measure|probability measure]], we have: +:$(1): \quad \forall A \in \Sigma: 0 \le \map \Pr A$ +:$(2): \quad \map \Pr \Omega = 1$ +:$(3): \quad \displaystyle \map \Pr {\bigcup_{i \mathop \ge 1} A_i} = \sum_{i \mathop \ge 1} \map \Pr {A_i}$ where all $A_i$ are [[Definition:Pairwise Disjoint|pairwise disjoint]]. +From the definition of [[Definition:Event Space|event space]], we have: +:$\Omega \in \Sigma$ +:$A \in \Sigma \implies \relcomp \Omega A \in \Sigma$ +From [[Intersection with Empty Set]]: +:$\O \cap \Omega = \O$ +Therefore $\O$ and $\Omega$ are [[Definition:Pairwise Disjoint|pairwise disjoint]]. +From [[Union with Empty Set]]: +:$\O \cup \Omega = \Omega$ +Therefore we have: +{{begin-eqn}} +{{eqn | l = \map \Pr \Omega + | r = \map \Pr {\O \cup \Omega} + | c = +}} +{{eqn | r = \map \Pr \O + \map \Pr \Omega + | c = +}} +{{end-eqn}} +As $\map \Pr \Omega = 1$, it follows that $\map \Pr \O = 0$. +{{qed}} +\end{proof}<|endoftext|> +\section{Ordinal Membership is Asymmetric} +Tags: Ordinals + +\begin{theorem} +Let $m$ and $n$ be [[Definition:Ordinal|ordinals]]. +Then it is not the case that $m \in n$ and $n \in m$. +\end{theorem} + +\begin{proof} +Suppose [[Proof by Contradiction|for the sake of contradiction]] that $m \in n$ and $n \in m$. +Since $m$ is an [[Definition:Ordinal/Definition 1|ordinal]], it is [[Definition:Transitive Set|transitive]]. +Thus since $m \in n$ and $n \in m$, it follows that $m \in m$. +But this contradicts [[Ordinal is not Element of Itself]]. +{{qed}} +[[Category:Ordinals]] +ldio46x87kr5fy460pxnmroieab85jd +\end{proof} \ No newline at end of file