Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,809 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
(*
        Author: Thomas C. Hales, 2003

        GCD_CONV takes two HOL-light terms (NUMERALs) a and b and
        produces a theorem of the form
                |- GCD a b = g

        (In particular, the arguments cannot be negative.)

*)


prioritize_num();;

let DIVIDE = new_definition(`DIVIDE a b = ?m. (b = m*a )`);;

parse_as_infix("||",(16,"right"));;

override_interface("||",`DIVIDE:num->num->bool`);;

(* Now prove the lemmas *)

let DIV_TAC t =   EVERY[ REP_GEN_TAC;
   REWRITE_TAC[DIVIDE];
   DISCH_ALL_TAC;
   REPEAT (FIRST_X_ASSUM CHOOSE_TAC);
   TRY (EXISTS_TAC t)];;


let DIVIDE_DIVIDE = prove_by_refinement(
  `!a b c. (((a || b) /\ (b || c)) ==> (a || c))`,
   [
   DIV_TAC `m'*m`;
   ASM_REWRITE_TAC[MULT_ASSOC]
   ]);;

let DIVIDE_EQ = prove_by_refinement(
   `! a b. (((a || b) /\ (b || a)) ==> (a = b))`,
  [
  DIV_TAC `1`;
  FIRST_X_ASSUM (fun th -> (POP_ASSUM MP_TAC) THEN REWRITE_TAC[th]);
  ASM_CASES_TAC `b=0`;
  ASM_REWRITE_TAC[];
  ARITH_TAC;
  REWRITE_TAC[ARITH_RULE `(b = m*m'*b) = (1*b = m*m'*b)`];
  ASM_REWRITE_TAC[MULT_ASSOC;EQ_MULT_RCANCEL];
  DISCH_THEN (fun th -> MP_TAC (REWRITE_RULE[MULT_EQ_1] (GSYM th)) );
  DISCH_THEN (fun th -> REWRITE_TAC[CONJUNCT2 th] THEN ARITH_TAC);
  ]);;

let DIVIDE_SUM = prove_by_refinement(
  `!a b h. (((h || a) /\ (h||b)) ==> (h || (a+b)))`,
  [
  DIV_TAC `m+m'`;
  ASM_REWRITE_TAC[ARITH;RIGHT_ADD_DISTRIB];
  ]);;

let DIVIDE_SUMMAND = prove_by_refinement(
  `!a b h. (((h|| b) /\ (h || (a+b))) ==> (h|| a))`,
   [
   DIV_TAC `m'-m`;
   REWRITE_TAC[RIGHT_SUB_DISTRIB];
   REPEAT (FIRST_X_ASSUM  (fun th -> REWRITE_TAC[GSYM th]));
   ARITH_TAC;
   ]);;

let DIVIDE_PROD = prove_by_refinement(
   `!a b h. (((h|| a) ==> (h || (b*a))))`,
   [
   DIV_TAC `b*m`;
   ASM_REWRITE_TAC[MULT_ASSOC];
   ]);;

let DIVIDE_PROD2 = prove_by_refinement(
   `!a b h. (((h|| a) ==> (h || (a*b))))`,
   [
   DIV_TAC `b*m`;
   ASM_REWRITE_TAC[MULT_AC]
   ]);;

let GCD = new_definition(`GCD a b = @g.
        ((g || a) /\ (g || b) /\
        (!h. (((h || a) /\ (h || b)) ==> (h || g))))`);;

let gcd_certificate = prove(`!a b g. ((? r s r' s' a' b'.
        ((a = a'*g) /\ (b = b'*g) /\ (g +r'*a+s'*b= r*a + s*b)))
        ==> (GCD a b = g))`,
        let tac1 = (
        (REPEAT GEN_TAC)
        THEN (DISCH_TAC)
        THEN (REPEAT (POP_ASSUM CHOOSE_TAC))
        THEN (REWRITE_TAC[GCD])
        THEN (MATCH_MP_TAC SELECT_UNIQUE)
        THEN BETA_TAC
        THEN GEN_TAC
        THEN EQ_TAC) and

        ygbranch = (
        DISCH_TAC
        THEN (MATCH_MP_TAC DIVIDE_EQ)
        THEN CONJ_TAC) and

        ydivg_branch = (
        (SUBGOAL_TAC (` (y || (r*a + s*b))/\ (y || (r'*a +s'*b))`))
        THENL [((ASM MESON_TAC)[DIVIDE_SUM;DIVIDE_PROD]);
        ((ASM MESON_TAC)[DIVIDE_SUMMAND])]
        ) and

        gdivy_branch = (
        (UNDISCH_TAC
          (`(y||a) /\ (y ||b) /\ (!h. (((h||a)/\(h||b))==> (h||y)))`))
        THEN (TAUT_TAC (` (A ==> B) ==> ((C /\ D/\ A)==> B)`))
        THEN (DISCH_TAC)
        THEN (POP_ASSUM MATCH_MP_TAC)
        THEN (REWRITE_TAC[DIVIDE])
        THEN (CONJ_TAC)
        THEN ((ASM MESON_TAC)[])
                ) and

        yghyp_branch = (
        (DISCH_TAC)
        THEN (let x t = REWRITE_TAC[t] in (POP_ASSUM x))
        THEN (CONJ_TAC)
        THENL [((ASM MESON_TAC)[DIVIDE]);ALL_TAC]
        THEN (CONJ_TAC)
        THENL [((ASM MESON_TAC)[DIVIDE]);ALL_TAC]
        THEN GEN_TAC
        THEN DISCH_TAC
        THEN (SUBGOAL_TAC (` (h || (r*a + s*b))/\ (h || (r'*a+s'*b))`))
        THENL [((ASM MESON_TAC)[DIVIDE_SUM;DIVIDE_PROD]);
                ((ASM MESON_TAC)[DIVIDE_SUMMAND])]
                ) in
        tac1 THENL [ygbranch THENL [ydivg_branch;gdivy_branch];yghyp_branch]);;

(* Now compute gcd with CAML num calculations,
   then check the answer in HOL-light *)
let gcd_num x1 x2 =
        let rec gcd_data (a1,b1,x1,a2,b2,x2) =
        if (x1 < (Int 0)) then
                gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2)
        else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num
        b2,minus_num x2)
        else if (x1 = (Int 0)) then (a2,b2,x2)
        else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1)
        else (
                let r = (quo_num x2 x1) in
                gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1)
             ) in
        gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);;

let gcd_num x1 x2 =
        let rec gcd_data (a1,b1,x1,a2,b2,x2) =
        if (x1 < (Int 0)) then
                gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2)
        else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num
        b2,minus_num x2)
        else if (x1 = (Int 0)) then (a2,b2,x2)
        else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1)
        else (
                let r = (quo_num x2 x1) in
                gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1)
             ) in
        gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);;

        (* g = gcd, (a',b') = (a,b)/g, g +r1'*a+s1'*b = r1*a+s1*b *)
let gcd_numdata a b =
        let a = abs_num a in
        let b = abs_num b in
        let Z = Int 0 in
        let (r,s,g) = gcd_num a b in
        let a' = if (g=Z) then Z else round_num(a//g) in
        let b' = if (g=Z) then Z else round_num(b//g) in
        let _ = if not(a=a'*/g) then failwith "GCD_CONV a" else 0 in
        let _ = if not(b=b'*/g) then failwith "GCD_CONV b" else 0 in
        let _ = if not(g=r*/a+/s*/b) then failwith "GCD_CONV g" else 0 in
        let (r1,r1') = if (r >/ Z) then (r,Z) else (Z,minus_num r) in
        let (s1,s1') = if (s >/ Z) then (s,Z) else (Z,minus_num s) in
        (g,a,b,a',b',r1',s1',r1,s1);;

(* Here is the conversion.
        Example:
                GCD_CONV (`66`) (`144`)

*)
let GCD_CONV at bt =
        let a = dest_numeral at in
        let b = dest_numeral bt in
        let (g,a,b,a',b',r1',s1',r1,s1) = gcd_numdata a b in
        prove(parse_term("GCD "^(string_of_num a)^" "^(string_of_num b)^" = "^
                (string_of_num g)),
                (MATCH_MP_TAC gcd_certificate)
                THEN (EXISTS_TAC (mk_numeral r1))
                THEN (EXISTS_TAC (mk_numeral s1))
                THEN (EXISTS_TAC (mk_numeral r1'))
                THEN (EXISTS_TAC (mk_numeral s1'))
                THEN (EXISTS_TAC (mk_numeral a'))
                THEN (EXISTS_TAC (mk_numeral b'))
                THEN (ARITH_TAC));;

(* Example:
        hol_gcd 66 144

   This version can overflow on CAML integers before it reaches hol-light.
   Example:
        hol_gcd 1000000000000000000 10000000000000000000000
        - : thm = |- GCD 660865024 843055104 = 262144
*)

let hol_gcd a b = GCD_CONV (mk_small_numeral a) (mk_small_numeral b);;

remove_interface ("||");;
pop_priority();;


(* test code *)

exception Test_suite_num_ext_gcd of string;;

(* For the tests we use integers a and b.  These can overflow if
   a and b are too large, so that we should confine ourselves to
   tests that are not too large.
*)

let test_num_ext_gcd (a, b) =
  let a1 = string_of_int (abs a) in
  let b1 = string_of_int (abs b) in
  let c = gcd a b in
  let c1 = string_of_int (abs c) in
  let th = GCD_CONV (mk_small_numeral a) (mk_small_numeral b) in
  if (not (hyp th = ([]:term list))) then raise
    (failwith ("num_ext_gcd test suite failure "^a1^" "^b1))
  else if (not (concl th = (parse_term ("GCD "^a1^" "^b1^"="^c1))))
    then raise (failwith ("num_ext_gcd test suite failure "^a1^" "^b1))
  else ();;


let test_suite_num_ext_gcd  =
  let _ =
    map test_num_ext_gcd
      [(0,0);(0,1);(1,0);(-0,-0);
       (2,3);(4,6);
       (0,2);(2,0);
       (10,100);(100,10);(17,100);(100,17)] in
   print_string "num_ext_gcd loaded\n";;

let divide = DIVIDE and
    gcd = GCD and
    gcd_conv = GCD_CONV;;