Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,598 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
(* Author: Tobias Nipkow *)
section "Computable Abstract Interpretation"
theory Abs_Int1
imports Abs_State
begin
text\<open>Abstract interpretation over type \<open>st\<close> instead of
functions.\<close>
context Gamma
begin
fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where
"aval' (N n) S = num' n" |
"aval' (V x) S = lookup S x" |
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"
lemma aval'_sound: "s : \<gamma>\<^sub>f S \<Longrightarrow> aval a s : \<gamma>(aval' a S)"
by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def lookup_def)
end
text\<open>The for-clause (here and elsewhere) only serves the purpose of fixing
the name of the type parameter @{typ 'av} which would otherwise be renamed to
@{typ 'a}.\<close>
locale Abs_Int = Gamma where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set"
begin
fun step' :: "'av st option \<Rightarrow> 'av st option acom \<Rightarrow> 'av st option acom" where
"step' S (SKIP {P}) = (SKIP {S})" |
"step' S (x ::= e {P}) =
x ::= e {case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))}" |
"step' S (c1;; c2) = step' S c1;; step' (post c1) c2" |
"step' S (IF b THEN c1 ELSE c2 {P}) =
(let c1' = step' S c1; c2' = step' S c2
in IF b THEN c1' ELSE c2' {post c1 \<squnion> post c2})" |
"step' S ({Inv} WHILE b DO c {P}) =
{S \<squnion> post c} WHILE b DO step' Inv c {Inv}"
definition AI :: "com \<Rightarrow> 'av st option acom option" where
"AI = lpfp\<^sub>c (step' \<top>)"
lemma strip_step'[simp]: "strip(step' S c) = strip c"
by(induct c arbitrary: S) (simp_all add: Let_def)
text\<open>Soundness:\<close>
lemma in_gamma_update:
"\<lbrakk> s : \<gamma>\<^sub>f S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^sub>f(update S x a)"
by(simp add: \<gamma>_st_def lookup_update)
text\<open>The soundness proofs are textually identical to the ones for the step
function operating on states as functions.\<close>
lemma step_preserves_le:
"\<lbrakk> S \<subseteq> \<gamma>\<^sub>o S'; c \<le> \<gamma>\<^sub>c c' \<rbrakk> \<Longrightarrow> step S c \<le> \<gamma>\<^sub>c (step' S' c')"
proof(induction c arbitrary: c' S S')
case SKIP thus ?case by(auto simp:SKIP_le map_acom_SKIP)
next
case Assign thus ?case
by (fastforce simp: Assign_le map_acom_Assign intro: aval'_sound in_gamma_update
split: option.splits del:subsetD)
next
case Seq thus ?case apply (auto simp: Seq_le map_acom_Seq)
by (metis le_post post_map_acom)
next
case (If b c1 c2 P)
then obtain c1' c2' P' where
"c' = IF b THEN c1' ELSE c2' {P'}"
"P \<subseteq> \<gamma>\<^sub>o P'" "c1 \<le> \<gamma>\<^sub>c c1'" "c2 \<le> \<gamma>\<^sub>c c2'"
by (fastforce simp: If_le map_acom_If)
moreover have "post c1 \<subseteq> \<gamma>\<^sub>o(post c1' \<squnion> post c2')"
by (metis (no_types) \<open>c1 \<le> \<gamma>\<^sub>c c1'\<close> join_ge1 le_post mono_gamma_o order_trans post_map_acom)
moreover have "post c2 \<subseteq> \<gamma>\<^sub>o(post c1' \<squnion> post c2')"
by (metis (no_types) \<open>c2 \<le> \<gamma>\<^sub>c c2'\<close> join_ge2 le_post mono_gamma_o order_trans post_map_acom)
ultimately show ?case using \<open>S \<subseteq> \<gamma>\<^sub>o S'\<close> by (simp add: If.IH subset_iff)
next
case (While I b c1 P)
then obtain c1' I' P' where
"c' = {I'} WHILE b DO c1' {P'}"
"I \<subseteq> \<gamma>\<^sub>o I'" "P \<subseteq> \<gamma>\<^sub>o P'" "c1 \<le> \<gamma>\<^sub>c c1'"
by (fastforce simp: map_acom_While While_le)
moreover have "S \<union> post c1 \<subseteq> \<gamma>\<^sub>o (S' \<squnion> post c1')"
using \<open>S \<subseteq> \<gamma>\<^sub>o S'\<close> le_post[OF \<open>c1 \<le> \<gamma>\<^sub>c c1'\<close>, simplified]
by (metis (no_types) join_ge1 join_ge2 le_sup_iff mono_gamma_o order_trans)
ultimately show ?case by (simp add: While.IH subset_iff)
qed
lemma AI_sound: "AI c = Some c' \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c c'"
proof(simp add: CS_def AI_def)
assume 1: "lpfp\<^sub>c (step' \<top>) c = Some c'"
have 2: "step' \<top> c' \<sqsubseteq> c'" by(rule lpfpc_pfp[OF 1])
have 3: "strip (\<gamma>\<^sub>c (step' \<top> c')) = c"
by(simp add: strip_lpfpc[OF _ 1])
have "lfp (step UNIV) c \<le> \<gamma>\<^sub>c (step' \<top> c')"
proof(rule lfp_lowerbound[simplified,OF 3])
show "step UNIV (\<gamma>\<^sub>c (step' \<top> c')) \<le> \<gamma>\<^sub>c (step' \<top> c')"
proof(rule step_preserves_le[OF _ _])
show "UNIV \<subseteq> \<gamma>\<^sub>o \<top>" by simp
show "\<gamma>\<^sub>c (step' \<top> c') \<le> \<gamma>\<^sub>c c'" by(rule mono_gamma_c[OF 2])
qed
qed
from this 2 show "lfp (step UNIV) c \<le> \<gamma>\<^sub>c c'"
by (blast intro: mono_gamma_c order_trans)
qed
end
subsection "Monotonicity"
locale Abs_Int_mono = Abs_Int +
assumes mono_plus': "a1 \<sqsubseteq> b1 \<Longrightarrow> a2 \<sqsubseteq> b2 \<Longrightarrow> plus' a1 a2 \<sqsubseteq> plus' b1 b2"
begin
lemma mono_aval': "S \<sqsubseteq> S' \<Longrightarrow> aval' e S \<sqsubseteq> aval' e S'"
by(induction e) (auto simp: le_st_def lookup_def mono_plus')
lemma mono_update: "a \<sqsubseteq> a' \<Longrightarrow> S \<sqsubseteq> S' \<Longrightarrow> update S x a \<sqsubseteq> update S' x a'"
by(auto simp add: le_st_def lookup_def update_def)
lemma mono_step': "S \<sqsubseteq> S' \<Longrightarrow> c \<sqsubseteq> c' \<Longrightarrow> step' S c \<sqsubseteq> step' S' c'"
apply(induction c c' arbitrary: S S' rule: le_acom.induct)
apply (auto simp: Let_def mono_update mono_aval' mono_post le_join_disj
split: option.split)
done
end
subsection "Ascending Chain Condition"
abbreviation "strict r == r \<inter> -(r^-1)"
abbreviation "acc r == wf((strict r)^-1)"
lemma strict_inv_image: "strict(inv_image r f) = inv_image (strict r) f"
by(auto simp: inv_image_def)
lemma acc_inv_image:
"acc r \<Longrightarrow> acc (inv_image r f)"
by (metis converse_inv_image strict_inv_image wf_inv_image)
text\<open>ACC for option type:\<close>
lemma acc_option: assumes "acc {(x,y::'a::preord). x \<sqsubseteq> y}"
shows "acc {(x,y::'a::preord option). x \<sqsubseteq> y}"
proof(auto simp: wf_eq_minimal)
fix xo :: "'a option" and Qo assume "xo : Qo"
let ?Q = "{x. Some x \<in> Qo}"
show "\<exists>yo\<in>Qo. \<forall>zo. yo \<sqsubseteq> zo \<and> ~ zo \<sqsubseteq> yo \<longrightarrow> zo \<notin> Qo" (is "\<exists>zo\<in>Qo. ?P zo")
proof cases
assume "?Q = {}"
hence "?P None" by auto
moreover have "None \<in> Qo" using \<open>?Q = {}\<close> \<open>xo : Qo\<close>
by auto (metis not_Some_eq)
ultimately show ?thesis by blast
next
assume "?Q \<noteq> {}"
with assms show ?thesis
apply(auto simp: wf_eq_minimal)
apply(erule_tac x="?Q" in allE)
apply auto
apply(rule_tac x = "Some z" in bexI)
by auto
qed
qed
text\<open>ACC for abstract states, via measure functions.\<close>
lemma measure_st: assumes "(strict{(x,y::'a::SL_top). x \<sqsubseteq> y})^-1 <= measure m"
and "\<forall>x y::'a::SL_top. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m x = m y"
shows "(strict{(S,S'::'a::SL_top st). S \<sqsubseteq> S'})^-1 \<subseteq>
measure(%fd. \<Sum>x| x\<in>set(dom fd) \<and> ~ \<top> \<sqsubseteq> fun fd x. m(fun fd x)+1)"
proof-
{ fix S S' :: "'a st" assume "S \<sqsubseteq> S'" "~ S' \<sqsubseteq> S"
let ?X = "set(dom S)" let ?Y = "set(dom S')"
let ?f = "fun S" let ?g = "fun S'"
let ?X' = "{x:?X. ~ \<top> \<sqsubseteq> ?f x}" let ?Y' = "{y:?Y. ~ \<top> \<sqsubseteq> ?g y}"
from \<open>S \<sqsubseteq> S'\<close> have "\<forall>y\<in>?Y'\<inter>?X. ?f y \<sqsubseteq> ?g y"
by(auto simp: le_st_def lookup_def)
hence 1: "\<forall>y\<in>?Y'\<inter>?X. m(?g y)+1 \<le> m(?f y)+1"
using assms(1,2) by(fastforce)
from \<open>~ S' \<sqsubseteq> S\<close> obtain u where u: "u : ?X" "~ lookup S' u \<sqsubseteq> ?f u"
by(auto simp: le_st_def)
hence "u : ?X'" by simp (metis preord_class.le_trans top)
have "?Y'-?X = {}" using \<open>S \<sqsubseteq> S'\<close> by(fastforce simp: le_st_def lookup_def)
have "?Y'\<inter>?X <= ?X'" apply auto
apply (metis \<open>S \<sqsubseteq> S'\<close> le_st_def lookup_def preord_class.le_trans)
done
have "(\<Sum>y\<in>?Y'. m(?g y)+1) = (\<Sum>y\<in>(?Y'-?X) \<union> (?Y'\<inter>?X). m(?g y)+1)"
by (metis Un_Diff_Int)
also have "\<dots> = (\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1)"
using \<open>?Y'-?X = {}\<close> by (metis Un_empty_left)
also have "\<dots> < (\<Sum>x\<in>?X'. m(?f x)+1)"
proof cases
assume "u \<in> ?Y'"
hence "m(?g u) < m(?f u)" using assms(1) \<open>S \<sqsubseteq> S'\<close> u
by (fastforce simp: le_st_def lookup_def)
have "(\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1) < (\<Sum>y\<in>?Y'\<inter>?X. m(?f y)+1)"
using \<open>u:?X\<close> \<open>u:?Y'\<close> \<open>m(?g u) < m(?f u)\<close>
by(fastforce intro!: sum_strict_mono_ex1[OF _ 1])
also have "\<dots> \<le> (\<Sum>y\<in>?X'. m(?f y)+1)"
by(simp add: sum_mono2[OF _ \<open>?Y'\<inter>?X <= ?X'\<close>])
finally show ?thesis .
next
assume "u \<notin> ?Y'"
with \<open>?Y'\<inter>?X <= ?X'\<close> have "?Y'\<inter>?X - {u} <= ?X' - {u}" by blast
have "(\<Sum>y\<in>?Y'\<inter>?X. m(?g y)+1) = (\<Sum>y\<in>?Y'\<inter>?X - {u}. m(?g y)+1)"
proof-
have "?Y'\<inter>?X = ?Y'\<inter>?X - {u}" using \<open>u \<notin> ?Y'\<close> by auto
thus ?thesis by metis
qed
also have "\<dots> < (\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?g y)+1) + (\<Sum>y\<in>{u}. m(?f y)+1)" by simp
also have "(\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?g y)+1) \<le> (\<Sum>y\<in>?Y'\<inter>?X-{u}. m(?f y)+1)"
using 1 by(blast intro: sum_mono)
also have "\<dots> \<le> (\<Sum>y\<in>?X'-{u}. m(?f y)+1)"
by(simp add: sum_mono2[OF _ \<open>?Y'\<inter>?X-{u} <= ?X'-{u}\<close>])
also have "\<dots> + (\<Sum>y\<in>{u}. m(?f y)+1)= (\<Sum>y\<in>(?X'-{u}) \<union> {u}. m(?f y)+1)"
using \<open>u:?X'\<close> by(subst sum.union_disjoint[symmetric]) auto
also have "\<dots> = (\<Sum>x\<in>?X'. m(?f x)+1)"
using \<open>u : ?X'\<close> by(simp add:insert_absorb)
finally show ?thesis by (blast intro: add_right_mono)
qed
finally have "(\<Sum>y\<in>?Y'. m(?g y)+1) < (\<Sum>x\<in>?X'. m(?f x)+1)" .
} thus ?thesis by(auto simp add: measure_def inv_image_def)
qed
text\<open>ACC for acom. First the ordering on acom is related to an ordering on
lists of annotations.\<close>
(* FIXME mv and add [simp] *)
lemma listrel_Cons_iff:
"(x#xs, y#ys) : listrel r \<longleftrightarrow> (x,y) \<in> r \<and> (xs,ys) \<in> listrel r"
by (blast intro:listrel.Cons)
lemma listrel_app: "(xs1,ys1) : listrel r \<Longrightarrow> (xs2,ys2) : listrel r
\<Longrightarrow> (xs1@xs2, ys1@ys2) : listrel r"
by(auto simp add: listrel_iff_zip)
lemma listrel_app_same_size: "size xs1 = size ys1 \<Longrightarrow> size xs2 = size ys2 \<Longrightarrow>
(xs1@xs2, ys1@ys2) : listrel r \<longleftrightarrow>
(xs1,ys1) : listrel r \<and> (xs2,ys2) : listrel r"
by(auto simp add: listrel_iff_zip)
lemma listrel_converse: "listrel(r^-1) = (listrel r)^-1"
proof-
{ fix xs ys
have "(xs,ys) : listrel(r^-1) \<longleftrightarrow> (ys,xs) : listrel r"
apply(induct xs arbitrary: ys)
apply (fastforce simp: listrel.Nil)
apply (fastforce simp: listrel_Cons_iff)
done
} thus ?thesis by auto
qed
(* It would be nice to get rid of refl & trans and build them into the proof *)
lemma acc_listrel: fixes r :: "('a*'a)set" assumes "refl r" and "trans r"
and "acc r" shows "acc (listrel r - {([],[])})"
proof-
have refl: "!!x. (x,x) : r" using \<open>refl r\<close> unfolding refl_on_def by blast
have trans: "!!x y z. (x,y) : r \<Longrightarrow> (y,z) : r \<Longrightarrow> (x,z) : r"
using \<open>trans r\<close> unfolding trans_def by blast
from assms(3) obtain mx :: "'a set \<Rightarrow> 'a" where
mx: "!!S x. x:S \<Longrightarrow> mx S : S \<and> (\<forall>y. (mx S,y) : strict r \<longrightarrow> y \<notin> S)"
by(simp add: wf_eq_minimal) metis
let ?R = "listrel r - {([], [])}"
{ fix Q and xs :: "'a list"
have "xs \<in> Q \<Longrightarrow> \<exists>ys. ys\<in>Q \<and> (\<forall>zs. (ys, zs) \<in> strict ?R \<longrightarrow> zs \<notin> Q)"
(is "_ \<Longrightarrow> \<exists>ys. ?P Q ys")
proof(induction xs arbitrary: Q rule: length_induct)
case (1 xs)
{ have "!!ys Q. size ys < size xs \<Longrightarrow> ys : Q \<Longrightarrow> \<exists>ms. ?P Q ms"
using "1.IH" by blast
} note IH = this
show ?case
proof(cases xs)
case Nil with \<open>xs : Q\<close> have "?P Q []" by auto
thus ?thesis by blast
next
case (Cons x ys)
let ?Q1 = "{a. \<exists>bs. size bs = size ys \<and> a#bs : Q}"
have "x : ?Q1" using \<open>xs : Q\<close> Cons by auto
from mx[OF this] obtain m1 where
1: "m1 \<in> ?Q1 \<and> (\<forall>y. (m1,y) \<in> strict r \<longrightarrow> y \<notin> ?Q1)" by blast
then obtain ms1 where "size ms1 = size ys" "m1#ms1 : Q" by blast+
hence "size ms1 < size xs" using Cons by auto
let ?Q2 = "{bs. \<exists>m1'. (m1',m1):r \<and> (m1,m1'):r \<and> m1'#bs : Q \<and> size bs = size ms1}"
have "ms1 : ?Q2" using \<open>m1#ms1 : Q\<close> by(blast intro: refl)
from IH[OF \<open>size ms1 < size xs\<close> this]
obtain ms where 2: "?P ?Q2 ms" by auto
then obtain m1' where m1': "(m1',m1) : r \<and> (m1,m1') : r \<and> m1'#ms : Q"
by blast
hence "\<forall>ab. (m1'#ms,ab) : strict ?R \<longrightarrow> ab \<notin> Q" using 1 2
apply (auto simp: listrel_Cons_iff)
apply (metis \<open>length ms1 = length ys\<close> listrel_eq_len trans)
by (metis \<open>length ms1 = length ys\<close> listrel_eq_len trans)
with m1' show ?thesis by blast
qed
qed
}
thus ?thesis unfolding wf_eq_minimal by (metis converse_iff)
qed
lemma le_iff_le_annos: "c1 \<sqsubseteq> c2 \<longleftrightarrow>
(annos c1, annos c2) : listrel{(x,y). x \<sqsubseteq> y} \<and> strip c1 = strip c2"
apply(induct c1 c2 rule: le_acom.induct)
apply (auto simp: listrel.Nil listrel_Cons_iff listrel_app size_annos_same2)
apply (metis listrel_app_same_size size_annos_same)+
done
lemma le_acom_subset_same_annos:
"(strict{(c,c'::'a::preord acom). c \<sqsubseteq> c'})^-1 \<subseteq>
(strict(inv_image (listrel{(a,a'::'a). a \<sqsubseteq> a'} - {([],[])}) annos))^-1"
by(auto simp: le_iff_le_annos)
lemma acc_acom: "acc {(a,a'::'a::preord). a \<sqsubseteq> a'} \<Longrightarrow>
acc {(c,c'::'a acom). c \<sqsubseteq> c'}"
apply(rule wf_subset[OF _ le_acom_subset_same_annos])
apply(rule acc_inv_image[OF acc_listrel])
apply(auto simp: refl_on_def trans_def intro: le_trans)
done
text\<open>Termination of the fixed-point finders, assuming monotone functions:\<close>
lemma pfp_termination:
fixes x0 :: "'a::preord"
assumes mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" and "acc {(x::'a,y). x \<sqsubseteq> y}"
and "x0 \<sqsubseteq> f x0" shows "\<exists>x. pfp f x0 = Some x"
proof(simp add: pfp_def, rule wf_while_option_Some[where P = "%x. x \<sqsubseteq> f x"])
show "wf {(x, s). (s \<sqsubseteq> f s \<and> \<not> f s \<sqsubseteq> s) \<and> x = f s}"
by(rule wf_subset[OF assms(2)]) auto
next
show "x0 \<sqsubseteq> f x0" by(rule assms)
next
fix x assume "x \<sqsubseteq> f x" thus "f x \<sqsubseteq> f(f x)" by(rule mono)
qed
lemma lpfpc_termination:
fixes f :: "(('a::SL_top)option acom \<Rightarrow> 'a option acom)"
assumes "acc {(x::'a,y). x \<sqsubseteq> y}" and "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
and "\<And>c. strip(f c) = strip c"
shows "\<exists>c'. lpfp\<^sub>c f c = Some c'"
unfolding lpfp\<^sub>c_def
apply(rule pfp_termination)
apply(erule assms(2))
apply(rule acc_acom[OF acc_option[OF assms(1)]])
apply(simp add: bot_acom assms(3))
done
context Abs_Int_mono
begin
lemma AI_Some_measure:
assumes "(strict{(x,y::'a). x \<sqsubseteq> y})^-1 <= measure m"
and "\<forall>x y::'a. x \<sqsubseteq> y \<and> y \<sqsubseteq> x \<longrightarrow> m x = m y"
shows "\<exists>c'. AI c = Some c'"
unfolding AI_def
apply(rule lpfpc_termination)
apply(rule wf_subset[OF wf_measure measure_st[OF assms]])
apply(erule mono_step'[OF le_refl])
apply(rule strip_step')
done
end
end
|