В этом курсе вы научитесь основам обработки естесственного языка (NLP) с использованием библиотек от Hugging Face. Экосистема состоит из: моделей (🤗 Transformers), датасетов (🤗 Datasets), вспомогательных бибилиотек (🤗 Accelerate, 🤗 Tokenizers), а также репозитория Hugging Face Hub. Это полностью бесплатно!
Краткое описание курса:
Этот курс:
После прохождения текущего курса мы рекомендуем ознакомиться со специализацией от DeepLearning.AI: Natural Language Processing Specialization, которая покрывает широкий спектр традиционных моделей NLP: от наивного Байеса до LSTM-сетей!
Об авторах:
Matthew Carrigan - ML-инженер в Hugging Face. Живет в Дублине, Ирландия, и ранее работал инженером по машинному обучению в Parse.ly, а до этого — научным сотрудником в Тринити-колледже в Дублине. Он не верит, что мы сможем достичь реализовать теорию сильного искусственного интеллекта за счет масштабирования существующих архитектур, но все равно возлагает большие надежды на бессмертие роботов.
Lysandre Debut - ML-инженер в Hugging Face, работает над библиотекой 🤗 Transformers с самых ранних этапов разработки. Его цель — сделать NLP доступным для всех, разработав инструменты с очень простым API.
Sylvain Gugger – инженер-исследователь в Hugging Face и один из ключевых участников разработки библиотеки 🤗 Transformers. Ранее работал научным сотрудником в fast.ai и написал книгу в соавторстве с Jeremy Howard: Deep Learning for Coders with fastai and PyTorch. Основное внимание в его исследованиях уделяется тому, чтобы сделать глубокое обучение более доступным путем разработки и улучшения методов, позволяющих моделям быстро обучаться с ограниченными ресурсами.
Merve Noyan - developer advocate в Hugging Face, работает над разработкой инструментов и созданием контента на их основе, чтобы машинное обучение более доступным.
Lucile Saulnier - ML-инженер в Hugging Face, разрабатывающая и поддерживающая использование инструментов с открытым исходным кодом. Она также активно участвует во многих исследовательских проектах в области NLP, таких как совместное обучение и BigScience.
Lewis Tunstall - ML-инженер в Hugging Face, сосредоточен на разработке инструментов с открытым исходным кодом и обеспечении их доступности для более широкого сообщества. Соавтор будущей книги O’Reilly book on Transformers.
Leandro von Werra - ML-инженер в команде, работающей над открытым исходным кодом Hugging Face и соавтор будушей будущей книги O’Reilly book on Transformers. Обладает большим опытом реализации NLP-проектов в промышленности.
Вы готовы начать? В этой главе вы узнаете:
pipeline()
для решения NLP-задач генерации и классификации текста