StarCoder2 is a family of open LLMs for code and comes in 3 different sizes with 3B, 7B and 15B parameters. The flagship StarCoder2-15B model is trained on over 4 trillion tokens and 600+ programming languages from The Stack v2. All models use Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and were trained using the Fill-in-the-Middle objective. The models have been released with the paper StarCoder 2 and The Stack v2: The Next Generation by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
The abstract of the paper is the following:
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
License
The models are licensed under the BigCode OpenRAIL-M v1 license agreement.
The StarCoder2 models can be found in the HuggingFace hub. You can find some examples for inference and fine-tuning in StarCoder2’s GitHub repo.
These ready-to-use checkpoints can be downloaded and used via the HuggingFace Hub:
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder2-7b", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder2-7b")
>>> prompt = "def print_hello_world():"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=10, do_sample=False)
>>> tokenizer.batch_decode(generated_ids)[0]
'def print_hello_world():\n print("Hello World!")\n\ndef print'
( vocab_size = 49152 hidden_size = 3072 intermediate_size = 12288 num_hidden_layers = 30 num_attention_heads = 24 num_key_value_heads = 2 hidden_act = 'gelu_pytorch_tanh' max_position_embeddings = 4096 initializer_range = 0.018042 norm_epsilon = 1e-05 use_cache = True bos_token_id = 50256 eos_token_id = 50256 rope_theta = 10000.0 sliding_window = None attention_dropout = 0.0 residual_dropout = 0.0 embedding_dropout = 0.0 use_bias = True **kwargs )
Parameters
int
, optional, defaults to 49152) —
Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling Starcoder2Model int
, optional, defaults to 3072) —
Dimension of the hidden representations. int
, optional, defaults to 12288) —
Dimension of the MLP representations. int
, optional, defaults to 30) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 24) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 2) —
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
num_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
8`. str
or function
, optional, defaults to "gelu_pytorch_tanh"
) —
The non-linear activation function (function or string) in the decoder. int
, optional, defaults to 4096) —
The maximum sequence length that this model might ever be used with. Starcoder2’s sliding window attention
allows sequence of up to 4096*32 tokens. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1e-05) —
Epsilon value for the layer norm bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True
. int
, optional, defaults to 50256) —
The id of the “beginning-of-sequence” token. int
, optional, defaults to 50256) —
The id of the “end-of-sequence” token. float
, optional, defaults to 10000.0) —
The base period of the RoPE embeddings. int
, optional) —
Sliding window attention window size. If not specified, will default to None
(no sliding window). float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
Residual connection dropout value. float
, optional, defaults to 0.0) —
Embedding dropout. bool
, optional, defaults to True
) —
Whether to use bias term on linear layers of the model. This is the configuration class to store the configuration of a Starcoder2Model. It is used to instantiate a Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the bigcode/starcoder2-7b_16k model.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
>>> from transformers import Starcoder2Model, Starcoder2Config
>>> # Initializing a Starcoder2 7B style configuration
>>> configuration = Starcoder2Config()
>>> # Initializing a model from the Starcoder2 7B style configuration
>>> model = Starcoder2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( config: Starcoder2Config )
Parameters
The bare Starcoder2 Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a Starcoder2DecoderLayer
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
Cache
or tuple(tuple(torch.FloatTensor))
, optional) —
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values
returned by the model at a previous stage of decoding, when use_cache=True
or config.use_cache=True
.
Two formats are allowed:
tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy
cache format.The model will output the same cache format that is fed as input. If no past_key_values
are passed, the
legacy cache format will be returned.
If past_key_values
are used, the user can optionally input only the last input_ids
(those that don’t
have their past key value states given to this model) of shape (batch_size, 1)
instead of all input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. The Starcoder2Model forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
Cache
or tuple(tuple(torch.FloatTensor))
, optional) —
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values
returned by the model at a previous stage of decoding, when use_cache=True
or config.use_cache=True
.
Two formats are allowed:
tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy
cache format.The model will output the same cache format that is fed as input. If no past_key_values
are passed, the
legacy cache format will be returned.
If past_key_values
are used, the user can optionally input only the last input_ids
(those that don’t
have their past key value states given to this model) of shape (batch_size, 1)
instead of all input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple.
Args —
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional):
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
Returns
transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (Starcoder2Config) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The Starcoder2ForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, Starcoder2ForCausalLM
>>> model = Starcoder2ForCausalLM.from_pretrained("bigcode/starcoder2-7b_16k")
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder2-7b_16k")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
( config )
Parameters
The Starcoder2 Model transformer with a sequence classification head on top (linear layer).
Starcoder2ForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
pad_token_id
is defined in the configuration, it finds the last token that is not a padding token in each row. If
no pad_token_id
is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when inputs_embeds
are passed instead of input_ids
, it does the same (take the last value in
each row of the batch).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Union = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
Cache
or tuple(tuple(torch.FloatTensor))
, optional) —
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values
returned by the model at a previous stage of decoding, when use_cache=True
or config.use_cache=True
.
Two formats are allowed:
tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy
cache format.The model will output the same cache format that is fed as input. If no past_key_values
are passed, the
legacy cache format will be returned.
If past_key_values
are used, the user can optionally input only the last input_ids
(those that don’t
have their past key value states given to this model) of shape (batch_size, 1)
instead of all input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If
config.num_labels > 1
a classification loss is computed (Cross-Entropy). The Starcoder2ForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.