The OLMo model was proposed in OLMo: Accelerating the Science of Language Models by Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, Hannaneh Hajishirzi.
OLMo is a series of Open Language Models designed to enable the science of language models. The OLMo models are trained on the Dolma dataset. We release all code, checkpoints, logs (coming soon), and details involved in training these models.
The abstract from the paper is the following:
Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.
This model was contributed by shanearora. The original code can be found here.
( vocab_size = 50304 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 use_cache = True pad_token_id = 1 bos_token_id = None eos_token_id = 50279 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 clip_qkv = None **kwargs )
Parameters
int
, optional, defaults to 50304) —
Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling OlmoModel int
, optional, defaults to 4096) —
Dimension of the hidden representations. int
, optional, defaults to 11008) —
Dimension of the MLP representations. int
, optional, defaults to 32) —
Number of hidden layers in the Transformer decoder. int
, optional, defaults to 32) —
Number of attention heads for each attention layer in the Transformer decoder. int
, optional) —
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
num_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
num_attention_heads`. str
or function
, optional, defaults to "silu"
) —
The non-linear activation function (function or string) in the decoder. int
, optional, defaults to 2048) —
The maximum sequence length that this model might ever be used with. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True
. int
, optional, defaults to 1) —
Padding token id. int
, optional) —
Beginning of stream token id. int
, optional, defaults to 50279) —
End of stream token id. bool
, optional, defaults to False
) —
Whether to tie weight embeddings float
, optional, defaults to 10000.0) —
The base period of the RoPE embeddings. Dict
, optional) —
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
{"type": strategy name, "factor": scaling factor}
. When using this flag, don’t update
max_position_embeddings
to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions. bool
, defaults to False
, optional, defaults to False
) —
Whether to use a bias in the query, key, value and output projection layers during self-attention. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional) —
If not None
, elements of query, key and value attention states are clipped so that their
absolute value does not exceed this value. This is the configuration class to store the configuration of a OlmoModel. It is used to instantiate an OLMo model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the allenai/OLMo-7B-hf.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
>>> from transformers import OlmoModel, OlmoConfig
>>> # Initializing a OLMo 7B style configuration
>>> configuration = OlmoConfig()
>>> # Initializing a model from the OLMo 7B style configuration
>>> model = OlmoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( config: OlmoConfig )
Parameters
The bare Olmo Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a OlmoDecoderLayer
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Union = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
Cache
or tuple(tuple(torch.FloatTensor))
, optional) —
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values
returned by the model at a previous stage of decoding, when use_cache=True
or config.use_cache=True
.
Two formats are allowed:
tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy
cache format.The model will output the same cache format that is fed as input. If no past_key_values
are passed, the
legacy cache format will be returned.
If past_key_values
are used, the user can optionally input only the last input_ids
(those that don’t
have their past key value states given to this model) of shape (batch_size, 1)
instead of all input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (sequence_length)
, optional) —
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids
,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length. The OlmoModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
Cache
or tuple(tuple(torch.FloatTensor))
, optional) —
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values
returned by the model at a previous stage of decoding, when use_cache=True
or config.use_cache=True
.
Two formats are allowed:
tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy
cache format.The model will output the same cache format that is fed as input. If no past_key_values
are passed, the
legacy cache format will be returned.
If past_key_values
are used, the user can optionally input only the last input_ids
(those that don’t
have their past key value states given to this model) of shape (batch_size, 1)
instead of all input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (sequence_length)
, optional) —
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids
,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
Args —
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional):
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
Returns
transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (OlmoConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The OlmoForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, OlmoForCausalLM
>>> model = OlmoForCausalLM.from_pretrained("allenai/OLMo-1B-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'