An AutoClass
automatically infers the model architecture and downloads pretrained configuration and weights. Generally, we recommend using an AutoClass
to produce checkpoint-agnostic code. But users who want more control over specific model parameters can create a custom 🤗 Transformers model from just a few base classes. This could be particularly useful for anyone who is interested in studying, training or experimenting with a 🤗 Transformers model. In this guide, dive deeper into creating a custom model without an AutoClass
. Learn how to:
A configuration refers to a model’s specific attributes. Each model configuration has different attributes; for instance, all NLP models have the hidden_size
, num_attention_heads
, num_hidden_layers
and vocab_size
attributes in common. These attributes specify the number of attention heads or hidden layers to construct a model with.
Get a closer look at DistilBERT by accessing DistilBertConfig to inspect it’s attributes:
>>> from transformers import DistilBertConfig
>>> config = DistilBertConfig()
>>> print(config)
DistilBertConfig {
"activation": "gelu",
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
DistilBertConfig displays all the default attributes used to build a base DistilBertModel. All attributes are customizable, creating space for experimentation. For example, you can customize a default model to:
activation
parameter.attention_dropout
parameter.>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
>>> print(my_config)
DistilBertConfig {
"activation": "relu",
"attention_dropout": 0.4,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
Pretrained model attributes can be modified in the from_pretrained() function:
>>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4)
Once you are satisfied with your model configuration, you can save it with save_pretrained(). Your configuration file is stored as a JSON file in the specified save directory:
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
To reuse the configuration file, load it with from_pretrained():
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
You can also save your configuration file as a dictionary or even just the difference between your custom configuration attributes and the default configuration attributes! See the configuration documentation for more details.
The next step is to create a model. The model - also loosely referred to as the architecture - defines what each layer is doing and what operations are happening. Attributes like num_hidden_layers
from the configuration are used to define the architecture. Every model shares the base class PreTrainedModel and a few common methods like resizing input embeddings and pruning self-attention heads. In addition, all models are also either a torch.nn.Module
, tf.keras.Model
or flax.linen.Module
subclass. This means models are compatible with each of their respective framework’s usage.
Load your custom configuration attributes into the model:
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
>>> model = DistilBertModel(my_config)
This creates a model with random values instead of pretrained weights. You won’t be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training.
Create a pretrained model with from_pretrained():
>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased")
When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you’d like:
>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config)
Load your custom configuration attributes into the model:
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
This creates a model with random values instead of pretrained weights. You won’t be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training.
Create a pretrained model with from_pretrained():
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you’d like:
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config)
At this point, you have a base DistilBERT model which outputs the hidden states. The hidden states are passed as inputs to a model head to produce the final output. 🤗 Transformers provides a different model head for each task as long as a model supports the task (i.e., you can’t use DistilBERT for a sequence-to-sequence task like translation).
For example, DistilBertForSequenceClassification is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs.
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the DistilBertForQuestionAnswering model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output.
>>> from transformers import DistilBertForQuestionAnswering
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
For example, TFDistilBertForSequenceClassification is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs.
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the TFDistilBertForQuestionAnswering model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output.
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
The last base class you need before using a model for textual data is a tokenizer to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers:
Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens.
Not every model supports a fast tokenizer. Take a look at this table to check if a model has fast tokenizer support.
If you trained your own tokenizer, you can create one from your vocabulary file:
>>> from transformers import DistilBertTokenizer
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left")
It is important to remember the vocabulary from a custom tokenizer will be different from the vocabulary generated by a pretrained model’s tokenizer. You need to use a pretrained model’s vocabulary if you are using a pretrained model, otherwise the inputs won’t make sense. Create a tokenizer with a pretrained model’s vocabulary with the DistilBertTokenizer class:
>>> from transformers import DistilBertTokenizer
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
Create a fast tokenizer with the DistilBertTokenizerFast class:
>>> from transformers import DistilBertTokenizerFast
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
By default, AutoTokenizer will try to load a fast tokenizer. You can disable this behavior by setting use_fast=False
in from_pretrained
.
An image processor processes vision inputs. It inherits from the base ImageProcessingMixin class.
To use, create an image processor associated with the model you’re using. For example, create a default ViTImageProcessor if you are using ViT for image classification:
>>> from transformers import ViTImageProcessor
>>> vit_extractor = ViTImageProcessor()
>>> print(vit_extractor)
ViTImageProcessor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTImageProcessor",
"image_mean": [
0.5,
0.5,
0.5
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": 2,
"size": 224
}
If you aren’t looking for any customization, just use the from_pretrained
method to load a model’s default image processor parameters.
Modify any of the ViTImageProcessor parameters to create your custom image processor:
>>> from transformers import ViTImageProcessor
>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTImageProcessor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTImageProcessor",
"image_mean": [
0.3,
0.3,
0.3
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": "PIL.Image.BOX",
"size": 224
}
A feature extractor processes audio inputs. It inherits from the base FeatureExtractionMixin class, and may also inherit from the SequenceFeatureExtractor class for processing audio inputs.
To use, create a feature extractor associated with the model you’re using. For example, create a default Wav2Vec2FeatureExtractor if you are using Wav2Vec2 for audio classification:
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 16000
}
If you aren’t looking for any customization, just use the from_pretrained
method to load a model’s default feature extractor parameters.
Modify any of the Wav2Vec2FeatureExtractor parameters to create your custom feature extractor:
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False)
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": false,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 8000
}
For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps processing classes such as a feature extractor and a tokenizer into a single object. For example, let’s use the Wav2Vec2Processor for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer.
Create a feature extractor to handle the audio inputs:
>>> from transformers import Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
Create a tokenizer to handle the text inputs:
>>> from transformers import Wav2Vec2CTCTokenizer
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
Combine the feature extractor and tokenizer in Wav2Vec2Processor:
>>> from transformers import Wav2Vec2Processor
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, image processor, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.