To see all options to serve your models, run the following:
text-embeddings-router --help
Usage: text-embeddings-router [OPTIONS]
Options:
--model-id <MODEL_ID>
The name of the model to load. Can be a MODEL_ID as listed on <https://hf.co/models> like `thenlper/gte-base`.
Or it can be a local directory containing the necessary files as saved by `save_pretrained(...)` methods of
transformers
[env: MODEL_ID=]
[default: thenlper/gte-base]
--revision <REVISION>
The actual revision of the model if you're referring to a model on the hub. You can use a specific commit id
or a branch like `refs/pr/2`
[env: REVISION=]
--tokenization-workers <TOKENIZATION_WORKERS>
Optionally control the number of tokenizer workers used for payload tokenization, validation and truncation.
Default to the number of CPU cores on the machine
[env: TOKENIZATION_WORKERS=]
--dtype <DTYPE>
The dtype to be forced upon the model
[env: DTYPE=]
[possible values: float16, float32]
--pooling <POOLING>
Optionally control the pooling method for embedding models.
If `pooling` is not set, the pooling configuration will be parsed from the model `1_Pooling/config.json` configuration.
If `pooling` is set, it will override the model pooling configuration
[env: POOLING=]
Possible values:
- cls: Select the CLS token as embedding
- mean: Apply Mean pooling to the model embeddings
- splade: Apply SPLADE (Sparse Lexical and Expansion) to the model embeddings. This option is only available if the loaded model is a `ForMaskedLM` Transformer model
--max-concurrent-requests <MAX_CONCURRENT_REQUESTS>
The maximum amount of concurrent requests for this particular deployment.
Having a low limit will refuse clients requests instead of having them wait for too long and is usually good
to handle backpressure correctly
[env: MAX_CONCURRENT_REQUESTS=]
[default: 512]
--max-batch-tokens <MAX_BATCH_TOKENS>
**IMPORTANT** This is one critical control to allow maximum usage of the available hardware.
This represents the total amount of potential tokens within a batch.
For `max_batch_tokens=1000`, you could fit `10` queries of `total_tokens=100` or a single query of `1000` tokens.
Overall this number should be the largest possible until the model is compute bound. Since the actual memory
overhead depends on the model implementation, text-embeddings-inference cannot infer this number automatically.
[env: MAX_BATCH_TOKENS=]
[default: 16384]
--max-batch-requests <MAX_BATCH_REQUESTS>
Optionally control the maximum number of individual requests in a batch
[env: MAX_BATCH_REQUESTS=]
--max-client-batch-size <MAX_CLIENT_BATCH_SIZE>
Control the maximum number of inputs that a client can send in a single request
[env: MAX_CLIENT_BATCH_SIZE=]
[default: 32]
--hf-api-token <HF_API_TOKEN>
Your HuggingFace hub token
[env: HF_API_TOKEN=]
--hostname <HOSTNAME>
The IP address to listen on
[env: HOSTNAME=]
[default: 0.0.0.0]
-p, --port <PORT>
The port to listen on
[env: PORT=]
[default: 3000]
--uds-path <UDS_PATH>
The name of the unix socket some text-embeddings-inference backends will use as they communicate internally
with gRPC
[env: UDS_PATH=]
[default: /tmp/text-embeddings-inference-server]
--huggingface-hub-cache <HUGGINGFACE_HUB_CACHE>
The location of the huggingface hub cache. Used to override the location if you want to provide a mounted disk
for instance
[env: HUGGINGFACE_HUB_CACHE=/data]
--json-output
Outputs the logs in JSON format (useful for telemetry)
[env: JSON_OUTPUT=]
--otlp-endpoint <OTLP_ENDPOINT>
[env: OTLP_ENDPOINT=]
--cors-allow-origin <CORS_ALLOW_ORIGIN>
[env: CORS_ALLOW_ORIGIN=]