🧪 This pipeline is for research purposes only.
VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation is by Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, Tieniu Tan.
The abstract from the paper is:
A diffusion probabilistic model (DPM), which constructs a forward diffusion process by gradually adding noise to data points and learns the reverse denoising process to generate new samples, has been shown to handle complex data distribution. Despite its recent success in image synthesis, applying DPMs to video generation is still challenging due to high-dimensional data spaces. Previous methods usually adopt a standard diffusion process, where frames in the same video clip are destroyed with independent noises, ignoring the content redundancy and temporal correlation. This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis. The denoising pipeline employs two jointly-learned networks to match the noise decomposition accordingly. Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation. We further show that our decomposed formulation can benefit from pre-trained image diffusion models and well-support text-conditioned video creation.
You can find additional information about Text-to-Video on the project page, original codebase, and try it out in a demo. Official checkpoints can be found at damo-vilab and cerspense.
Let’s start by generating a short video with the default length of 16 frames (2s at 8 fps):
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe = pipe.to("cuda")
prompt = "Spiderman is surfing"
video_frames = pipe(prompt).frames
video_path = export_to_video(video_frames)
video_path
Diffusers supports different optimization techniques to improve the latency and memory footprint of a pipeline. Since videos are often more memory-heavy than images, we can enable CPU offloading and VAE slicing to keep the memory footprint at bay.
Let’s generate a video of 8 seconds (64 frames) on the same GPU using CPU offloading and VAE slicing:
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.enable_model_cpu_offload()
# memory optimization
pipe.enable_vae_slicing()
prompt = "Darth Vader surfing a wave"
video_frames = pipe(prompt, num_frames=64).frames
video_path = export_to_video(video_frames)
video_path
It just takes 7 GBs of GPU memory to generate the 64 video frames using PyTorch 2.0, “fp16” precision and the techniques mentioned above.
We can also use a different scheduler easily, using the same method we’d use for Stable Diffusion:
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
prompt = "Spiderman is surfing"
video_frames = pipe(prompt, num_inference_steps=25).frames
video_path = export_to_video(video_frames)
video_path
Here are some sample outputs:
![]() | ![]() |
Zeroscope are watermark-free model and have been trained on specific sizes such as 576x320
and 1024x576
.
One should first generate a video using the lower resolution checkpoint cerspense/zeroscope_v2_576w
with TextToVideoSDPipeline,
which can then be upscaled using VideoToVideoSDPipeline and cerspense/zeroscope_v2_XL
.
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
# memory optimization
pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
pipe.enable_vae_slicing()
prompt = "Darth Vader surfing a wave"
video_frames = pipe(prompt, num_frames=24).frames
video_path = export_to_video(video_frames)
video_path
Now the video can be upscaled:
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
# memory optimization
pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
pipe.enable_vae_slicing()
video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]
video_frames = pipe(prompt, video=video, strength=0.6).frames
video_path = export_to_video(video_frames)
video_path
Here are some sample outputs:
![]() |
( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet3DConditionModel scheduler: KarrasDiffusionSchedulers )
Parameters
CLIPTextModel
) —
Frozen text-encoder (clip-vit-large-patch14). CLIPTokenizer
) —
A CLIPTokenizer to tokenize text. unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. Pipeline for text-to-video generation.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( prompt: typing.Union[str, typing.List[str]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_frames: int = 16 num_inference_steps: int = 50 guidance_scale: float = 9.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None callback_steps: int = 1 cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None clip_skip: typing.Optional[int] = None ) → TextToVideoSDPipelineOutput or tuple
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The height in pixels of the generated video. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The width in pixels of the generated video. int
, optional, defaults to 16) —
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video. int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference. float
, optional, defaults to 7.5) —
A higher guidance scale value encourages the model to generate images closely linked to the text
prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
. str
or List[str]
, optional) —
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
). int
, optional, defaults to 1) —
The number of images to generate per prompt. float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) from the DDIM paper. Only applies
to the DDIMScheduler, and is ignored in other schedulers. torch.Generator
or List[torch.Generator]
, optional) —
A torch.Generator
to make
generation deterministic. torch.FloatTensor
, optional) —
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random generator
. Latents should be of shape
(batch_size, num_channel, num_frames, height, width)
. torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument. str
, optional, defaults to "np"
) —
The output format of the generated video. Choose between torch.FloatTensor
or np.array
. bool
, optional, defaults to True
) —
Whether or not to return a TextToVideoSDPipelineOutput instead
of a plain tuple. Callable
, optional) —
A function that calls every callback_steps
steps during inference. The function is called with the
following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
. int
, optional, defaults to 1) —
The frequency at which the callback
function is called. If not specified, the callback is called at
every step. dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in
self.processor
. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Returns
TextToVideoSDPipelineOutput or tuple
If return_dict
is True
, TextToVideoSDPipelineOutput is
returned, otherwise a tuple
is returned where the first element is a list with the generated frames.
The call function to the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import TextToVideoSDPipeline
>>> from diffusers.utils import export_to_video
>>> pipe = TextToVideoSDPipeline.from_pretrained(
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "Spiderman is surfing"
>>> video_frames = pipe(prompt).frames
>>> video_path = export_to_video(video_frames)
>>> video_path
Disables the FreeU mechanism if enabled.
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
( s1: float s2: float b1: float b2: float )
Parameters
float
) —
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) —
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) — Scaling factor for stage 1 to amplify the contributions of backbone features. float
) — Scaling factor for stage 2 to amplify the contributions of backbone features. Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the official repository for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )
Parameters
str
or List[str]
, optional) —
prompt to be encoded
device — (torch.device
):
torch device int
) —
number of images that should be generated per prompt bool
) —
whether to use classifier free guidance or not str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is
less than 1
). torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument. float
, optional) —
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Encodes the prompt into text encoder hidden states.
( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet3DConditionModel scheduler: KarrasDiffusionSchedulers )
Parameters
CLIPTextModel
) —
Frozen text-encoder (clip-vit-large-patch14). CLIPTokenizer
) —
A CLIPTokenizer to tokenize text. unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. Pipeline for text-guided video-to-video generation.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( prompt: typing.Union[str, typing.List[str]] = None video: typing.Union[typing.List[numpy.ndarray], torch.FloatTensor] = None strength: float = 0.6 num_inference_steps: int = 50 guidance_scale: float = 15.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None callback_steps: int = 1 cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None clip_skip: typing.Optional[int] = None ) → TextToVideoSDPipelineOutput or tuple
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
. List[np.ndarray]
or torch.FloatTensor
) —
video
frames or tensor representing a video batch to be used as the starting point for the process.
Can also accept video latents as image
, if passing latents directly, it will not be encoded again. float
, optional, defaults to 0.8) —
Indicates extent to transform the reference video
. Must be between 0 and 1. video
is used as a
starting point, adding more noise to it the larger the strength
. The number of denoising steps
depends on the amount of noise initially added. When strength
is 1, added noise is maximum and the
denoising process runs for the full number of iterations specified in num_inference_steps
. A value of
1 essentially ignores video
. int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference. float
, optional, defaults to 7.5) —
A higher guidance scale value encourages the model to generate images closely linked to the text
prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
. str
or List[str]
, optional) —
The prompt or prompts to guide what to not include in video generation. If not defined, you need to
pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
). float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) from the DDIM paper. Only applies
to the DDIMScheduler, and is ignored in other schedulers. torch.Generator
or List[torch.Generator]
, optional) —
A torch.Generator
to make
generation deterministic. torch.FloatTensor
, optional) —
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random generator
. Latents should be of shape
(batch_size, num_channel, num_frames, height, width)
. torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument. str
, optional, defaults to "np"
) —
The output format of the generated video. Choose between torch.FloatTensor
or np.array
. bool
, optional, defaults to True
) —
Whether or not to return a TextToVideoSDPipelineOutput instead
of a plain tuple. Callable
, optional) —
A function that calls every callback_steps
steps during inference. The function is called with the
following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
. int
, optional, defaults to 1) —
The frequency at which the callback
function is called. If not specified, the callback is called at
every step. dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in
self.processor
. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Returns
TextToVideoSDPipelineOutput or tuple
If return_dict
is True
, TextToVideoSDPipelineOutput is
returned, otherwise a tuple
is returned where the first element is a list with the generated frames.
The call function to the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
>>> from diffusers.utils import export_to_video
>>> pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.to("cuda")
>>> prompt = "spiderman running in the desert"
>>> video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
>>> # safe low-res video
>>> video_path = export_to_video(video_frames, output_video_path="./video_576_spiderman.mp4")
>>> # let's offload the text-to-image model
>>> pipe.to("cpu")
>>> # and load the image-to-image model
>>> pipe = DiffusionPipeline.from_pretrained(
... "cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/15"
... )
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # The VAE consumes A LOT of memory, let's make sure we run it in sliced mode
>>> pipe.vae.enable_slicing()
>>> # now let's upscale it
>>> video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]
>>> # and denoise it
>>> video_frames = pipe(prompt, video=video, strength=0.6).frames
>>> video_path = export_to_video(video_frames, output_video_path="./video_1024_spiderman.mp4")
>>> video_path
Disables the FreeU mechanism if enabled.
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
( s1: float s2: float b1: float b2: float )
Parameters
float
) —
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) —
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) — Scaling factor for stage 1 to amplify the contributions of backbone features. float
) — Scaling factor for stage 2 to amplify the contributions of backbone features. Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the official repository for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )
Parameters
str
or List[str]
, optional) —
prompt to be encoded
device — (torch.device
):
torch device int
) —
number of images that should be generated per prompt bool
) —
whether to use classifier free guidance or not str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is
less than 1
). torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument. float
, optional) —
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Encodes the prompt into text encoder hidden states.
( frames: typing.Union[typing.List[numpy.ndarray], torch.FloatTensor] )
Output class for text-to-video pipelines.