How to use the ONNX Runtime for inference

🤗 Optimum provides a Stable Diffusion pipeline compatible with ONNX Runtime.

Installation

Install 🤗 Optimum with the following command for ONNX Runtime support:

pip install optimum["onnxruntime"]

Stable Diffusion Inference

To load an ONNX model and run inference with the ONNX Runtime, you need to replace StableDiffusionPipeline with ORTStableDiffusionPipeline. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set export=True.

from optimum.onnxruntime import ORTStableDiffusionPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipe = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]
pipe.save_pretrained("./onnx-stable-diffusion-v1-5")

If you want to export the pipeline in the ONNX format offline and later use it for inference, you can use the optimum-cli export command:

optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 sd_v15_onnx/

Then perform inference:

from optimum.onnxruntime import ORTStableDiffusionPipeline

model_id = "sd_v15_onnx"
pipe = ORTStableDiffusionPipeline.from_pretrained(model_id)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]

Notice that we didn’t have to specify export=True above.

You can find more examples in optimum documentation.

Known Issues