Inspired by Stochastic Sampler from Karras et. al. Scheduler ported from @crowsonkb’s https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to Katherine Crowson
( num_train_timesteps: int = 1000 beta_start: float = 0.00085 beta_end: float = 0.012 beta_schedule: str = 'linear' trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = None prediction_type: str = 'epsilon' use_karras_sigmas: typing.Optional[bool] = False noise_sampler_seed: typing.Optional[int] = None )
Parameters
int
) — number of diffusion steps used to train the model. beta_start (float
): the
beta
value of inference. beta_end (float
) — the final beta
value. beta_schedule (str
):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
linear
or scaled_linear
.
np.ndarray
, optional) —
option to pass an array of betas directly to the constructor to bypass beta_start
, beta_end
etc.
str
, default epsilon
, optional) —
prediction type of the scheduler function, one of epsilon
(predicting the noise of the diffusion
process), sample
(directly predicting the noisy sample) or
v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
bool
, optional, defaults to False
) —
This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the
noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence
of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf.
int
, optional, defaults to None
) —
The random seed to use for the noise sampler. If None
, a random seed will be generated.
Implements Stochastic Sampler (Algorithm 2) from Karras et al. (2022). Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/41b4cb6df0506694a7776af31349acf082bf6091/k_diffusion/sampling.py#L543
~ConfigMixin takes care of storing all config attributes that are passed in the scheduler’s __init__
function, such as num_train_timesteps
. They can be accessed via scheduler.config.num_train_timesteps
.
SchedulerMixin provides general loading and saving functionality via the SchedulerMixin.save_pretrained() and
from_pretrained() functions.
(
sample: FloatTensor
timestep: typing.Union[float, torch.FloatTensor]
)
→
torch.FloatTensor
( num_inference_steps: int device: typing.Union[str, torch.device] = None num_train_timesteps: typing.Optional[int] = None )
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
(
model_output: typing.Union[torch.FloatTensor, numpy.ndarray]
timestep: typing.Union[float, torch.FloatTensor]
sample: typing.Union[torch.FloatTensor, numpy.ndarray]
return_dict: bool = True
s_noise: float = 1.0
)
→
SchedulerOutput or tuple
Parameters
Returns
SchedulerOutput or tuple
SchedulerOutput if return_dict
is True, otherwise a tuple
. When
returning a tuple, the first element is the sample tensor.