第1章で見たように、Transformerのモデルは通常、非常に大きなものです。数百万から数百億のパラメータを持つこれらのモデルをトレーニングし、デプロイすることは複雑な仕事です。さらに、ほぼ毎日新しいモデルがリリースされ、それぞれが独自の実装を持っているため、それらをすべて試すことは簡単なことではありません。
🤗 Transformersライブラリはこの問題を解決するために作成されました。その目的は、どんなTransformerモデルでもロード、学習、保存ができる単一のAPIを提供することです。このライブラリの主な機能は以下の通りです。
nn.Module
またはTensorFlowのtf.keras.Model
クラスであり、それぞれの機械学習(ML)フレームワークの他のモデルと同様に扱うことができます!この最後の特徴が🤗 Transformersを他のMLライブラリとは全く違うものにしています。モデルはファイル間で共有されるモジュールで構築されるのではなく、その代わり、各モデルはそれ自身のレイヤーを持っています。モデルをより親しみやすく理解しやすくすることに加えて、これにより、他のモデルに影響を与えることなく、一つのモデルで簡単に実験することができます。
この章ではまず、第1章 で紹介した pipeline()
関数を再現するために、モデルとトークナイザを一緒に使ったエンドツーエンドの例を紹介します。次に、モデルAPIについて説明します。モデルとコンフィギュレーションについて詳しく説明し、モデルをロードする方法と、モデルがどのように数値入力を処理して予測を出力するかを説明します。
次に、pipeline()
関数のもう一つの主要な構成要素であるトークナイザーAPIについて見ていきます。トークナイザは、テキストからニューラルネットワークの数値入力への変換を処理し、必要に応じてテキストに戻す、最初と最後の処理ステップを担います。最後に、複数の文章をバッチ処理でモデルに送る方法を紹介し、tokenizer()
関数を詳しく見て、まとめに移ります。