Introduction

Ask a Question

Bienvenue au cours 🤗 !

Ce cours vous apprendra à utiliser les bibliothèques de NLP de l’écosystème Hugging Face : 🤗 Transformers, 🤗 Datasets, 🤗 Tokenizers et 🤗 Accelerate, ainsi que le Hub. C’est totalement gratuit et sans publicité.

Ă€ quoi s'attendre ?

Voici un bref aperçu du cours :

Bref aperçu du contenu du cours.

Ce cours :

Après avoir terminé ce cours, nous vous recommandons de suivre la Spécialisation en NLP dispensée par DeepLearning.AI, qui couvre une grande partie des modèles traditionnels de NLP comme le Bayésien naïf et les LSTMs qui sont importants à connaître !

Qui sommes-nous ?

Ă€ propos des auteurs de ce cours :

Abubakar Abid a obtenu son doctorat en apprentissage automatique appliqué à Stanford. Pendant son doctorat, il a fondé Gradio, une bibliothèque Python open source qui a été utilisée pour construire plus de 600 000 démos d’apprentissage automatique. Gradio a été rachetée par Hugging Face, où Abubakar occupe désormais le poste de responsable de l’équipe d’apprentissage automatique.

Matthew Carrigan est ingénieur en apprentissage machine chez Hugging Face. Il vit à Dublin en Irlande. Il a travaillé auparavant comme ingénieur en apprentissage machine chez Parse.ly et avant cela comme chercheur postdoctoral au Trinity College Dublin. Il ne croit pas que nous arrivions à l’AGI en mettant à l’échelle les architectures existantes mais a tout de même beaucoup d’espoir dans l’immortalité des robots.

Lysandre Debut est ingénieur en apprentissage machine chez Hugging Face et a travaillé sur la bibliothèque 🤗 Transformers depuis les premières phases de développement. Son but est de rendre le NLP accessible à tous en développant des outils disposant d’une API très simple.

Sylvain Gugger est ingénieur de recherche chez Hugging Face et un des principaux responsables de la bibliothèque 🤗 Transformers. Avant cela, il était chercheur en apprentissage machine chez fast.ai et a écrit le livre Deep Learning for Coders with fastai and PyTorch avec Jeremy Howard. Son but est de rendre l’apprentissage profond plus accessible en développant et en améliorant des techniques permettant aux modèles d’apprendre rapidement sur des ressources limitées.

Dawood Khan est un ingénieur en apprentissage automatique chez Hugging Face. Il vient de New York et est diplômé en informatique de l’Université de New York. Après avoir travaillé comme ingénieur iOS pendant quelques années, Dawood a quitté son poste pour créer Gradio avec ses cofondateurs. Gradio a finalement été acquis par Hugging Face.

Merve Noyan est développeuse advocate chez Hugging Face et travaille à la création d’outils et de contenus visant à démocratiser l’apprentissage machine pour tous.

Lucile Saulnier est ingénieure en apprentissage machine chez Hugging Face et travaille au développement et à l’implémentation de nombreux outils open source. Elle est également activement impliquée dans de nombreux projets de recherche dans le domaine du NLP comme l’entraînement collaboratif de modèles et le projet BigScience.

Lewis Tunstall est ingénieur en apprentissage machine chez Hugging Face et dévoué au développement d’outils open source avec la volonté de les rendre accessibles à une communauté plus large. Il est également co-auteur du livre Natural Language Processing with Transformers.

Leandro von Werra est ingénieur en apprentissage machine dans l’équipe open source d’Hugging Face et également co-auteur du livre Natural Language Processing with Transformers. Il a plusieurs années d’expérience dans l’industrie où il a pu déployer des projets de NLP en production et travailler sur toutes les étapes clefs du déploiement.

FAQ

Voici quelques réponses aux questions fréquemment posées :

Link to the Hugging Face forums

Notez qu’une liste d’idées de projets est également disponible sur le forum si vous souhaitez pratiquer davantage une fois le cours terminé.

Link to the Hugging Face course notebooks

A noter que pour la version en français du cours, deux choix s’offrent à vous lorsque vous cliquez sur la bannière. Le premier est de sélectionner le notebook utilisant des modèles en anglais. L’intérêt est qu’il s’agit de celui sur lequel sont basées les explications du cours (interprétation des résultats, etc.). Le second est de sélectionner le notebook utilisant des modèles en français. Il s’agit alors d’une proposition d’adaptation (un modèle parmi tous ceux existant en français est utilisé).

Si vous souhaitez accéder à l’ensemble des notebooks Jupyter du cours, il existe deux possibilités. La première est de cloner le dépôt huggingface/notebooks et de consulter les notebooks contenus dans le dossier course. La seconde est de générer les notebooks localement en suivant les instructions dans le README du dépôt course sur GitHub.

@misc{huggingfacecourse,
  author = {Hugging Face},
  title = {The Hugging Face Course, 2022},
  howpublished = "\url{https://huggingface.co/course}",
  year = {2022},
  note = "[Online; accessed <today>]"
}

C'est parti !

ĂŠtes-vous prĂŞt Ă  commencer ? Dans ce chapitre, vous apprendrez :