Прежде, чем перейти к трансформерам, сделаем быстрый обзор того, что такое обработка естественного языка (NLP), и почему мы заинтересованы в этой сфере.
NLP - область лингвистики и машинного обучения, которая изучает все, что связано с естественными языками. Главная цель NLP не просто понимать отдельные слова, но и иметь возможность понимать контекст, в котором эти слова находятся.
Список типичных NLP-задач с некоторыми примерами:
NLP не ограничивается только письменным текстом. Есть множество сложных задач, связанных с распознаванием речи и компьютерным зрением, таких как транскрибирование аудио или описание изображений.
Компьютеры не обрабатывают информацию так же, как люди. Например, когда мы читаем предложение «Я голоден», мы можем легко понять его значение. Точно так же, имея два предложения, такие как «Я голоден» и «Мне грустно», мы можем легко определить, насколько они похожи. Для моделей машинного обучения (ML) такие задачи сложнее. Текст должен быть обработан так, чтобы модель могла учиться на нем. А поскольку язык сложен, нам нужно тщательно продумать, как должна выполняться эта обработка. Было проведено много исследований того, как представлять текст, и мы рассмотрим некоторые методы в следующей главе.