The VGG architecture was developed in 2014 by Karen Simonyan and Andrew Zisserman from the Visual Geometry Group -and hence named VGG- at Oxford University. The model demonstrated significant improvements over the past models at that time- to be specific 2014 Imagenet challange also known as ILSVRC.
Below you can find the PyTorch implementation of VGG19.
import torch.nn as nn
class VGG19(nn.Module):
def __init__(self, num_classes=1000):
super(VGG19, self).__init__()
# Feature extraction layers: Convolutional and pooling layers
self.feature_extractor = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1), # 3 input channels, 64 output channels, 3x3 kernel, 1 padding
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # Max pooling with 2x2 kernel and stride 2
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
# Fully connected layers for classification
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096), # 512 channels, 7x7 spatial dimensions after max pooling
nn.ReLU(),
nn.Dropout(0.5), # Dropout layer with 0.5 dropout probability
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096, num_classes), # Output layer with 'num_classes' output units
)
def forward(self, x):
x = self.feature_extractor(x) # Pass input through the feature extractor layers
x = x.view(x.size(0), -1) # Flatten the output for the fully connected layers
x = self.classifier(x) # Pass flattened output through the classifier layers
return x