Alexnet

Introduction

In this chapter we will take a look at AlexNet, the network that began the revolution of deep convolutional neural network Architechture that revolutionized the field of computer vision.It was introduced by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in their 2012 paper ImageNet Classification with Deep Convolutional Neural Networks and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. The ImageNet dataset consisted of more than 15 million high resolution images.

Architechture of Alexnet

The AlexNet architecture consists of the following layers:

  1. Convolutional Layers:

2.Fully Connected Layers:

3.Softmax Layer:

4.Normalization Layers:

5.ReLU Activation:

Key features

Example implementation using Pytorch

import torch
import torch.nn as nn

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
            nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
            nn.Conv2d(256, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x