import csv from ast import literal_eval import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ @inproceedings{aghajani-etal-2021-parstwiner, title = "{P}ars{T}wi{NER}: A Corpus for Named Entity Recognition at Informal {P}ersian", author = "Aghajani, MohammadMahdi and Badri, AliAkbar and Beigy, Hamid", booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.wnut-1.16", pages = "131--136", abstract = "As a result of unstructured sentences and some misspellings and errors, finding named entities in a noisy environment such as social media takes much more effort. ParsTwiNER contains about 250k tokens, based on standard instructions like MUC-6 or CoNLL 2003, gathered from Persian Twitter. Using Cohen{'}s Kappa coefficient, the consistency of annotators is 0.95, a high score. In this study, we demonstrate that some state-of-the-art models degrade on these corpora, and trained a new model using parallel transfer learning based on the BERT architecture. Experimental results show that the model works well in informal Persian as well as in formal Persian.", } """ _DESCRIPTION = """""" _DOWNLOAD_URLS = { "train": "https://huggingface.co/datasets/hezarai/parstwiner/resolve/main/parstwiner_train.csv", "test": "https://huggingface.co/datasets/hezarai/parstwiner/resolve/main/parstwiner_test.csv", } class ParsTwiNERConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(ParsTwiNERConfig, self).__init__(**kwargs) class ParsTwiNER(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ ParsTwiNERConfig( name="ParsTwiNER", version=datasets.Version("1.0.0"), description=_DESCRIPTION, ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-POG", "I-POG", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-NAT", "I-NAT", "B-LOC", "I-LOC", "B-EVE", "I-EVE", ] ) ), } ), homepage="https://github.com/overfit-ir/parstwiner", citation=_CITATION, ) def _split_generators(self, dl_manager): """ Return SplitGenerators. """ train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"]) test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} ), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True) next(csv_reader, None) for id_, row in enumerate(csv_reader): tokens, ner_tags = row # Optional preprocessing here tokens = literal_eval(tokens) ner_tags = literal_eval(ner_tags) yield id_, {"tokens": tokens, "ner_tags": ner_tags}