--- license: apache-2.0 task_categories: - feature-extraction language: - en tags: - Out-of-Distribution Detection - Multimodal Learning pretty_name: MultiOOD size_categories: - 100K

MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities

Hao Dong1Yue Zhao2Eleni Chatzi1Olga Fink3
1ETH Zurich, 2University of Southern California, 3EPFL

arXiv

--- MultiOOD is the first-of-its-kind benchmark for Multimodal OOD Detection, characterized by diverse dataset sizes and varying modality combinations. ## Code https://github.com/donghao51/MultiOOD ## MultiOOD Benchmark MultiOOD is based on five public action recognition datasets (HMDB51, UCF101, EPIC-Kitchens, HAC, and Kinetics-600). ### Prepare Datasets 1. Download HMDB51 video data from [link](https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/#Downloads) and extract. Download HMDB51 optical flow data from [link](https://huggingface.co/datasets/hdong51/MultiOOD/blob/main/hmdb51_flow_mp4.tar.gz) and extract. The directory structure should be modified to match: ``` HMDB51 ├── video | ├── catch | | ├── *.avi | ├── climb | | ├── *.avi | |── ... ├── flow | ├── *_flow_x.mp4 | ├── *_flow_y.mp4 | ├── ... ``` 2. Download UCF101 video data from [link](https://www.crcv.ucf.edu/data/UCF101/UCF101.rar) and extract. Download UCF101 optical flow data from [link](https://huggingface.co/datasets/hdong51/MultiOOD/blob/main/ucf101_flow_mp4.tar.gz) and extract. The directory structure should be modified to match: ``` UCF101 ├── video | ├── *.avi | |── ... ├── flow | ├── *_flow_x.mp4 | ├── *_flow_y.mp4 | ├── ... ``` 3. Download EPIC-Kitchens video and optical flow data by ``` bash utils/download_epic_script.sh ``` Download audio data from [link](https://polybox.ethz.ch/index.php/s/PE2zIL99OWXQfMu). Unzip all files and the directory structure should be modified to match: ``` EPIC-KITCHENS ├── rgb | ├── train | | ├── D3 | | | ├── P22_01.wav | | | ├── P22_01 | | | | ├── frame_0000000000.jpg | | | | ├── ... | | | ├── P22_02 | | | ├── ... | ├── test | | ├── D3 ├── flow | ├── train | | ├── D3 | | | ├── P22_01 | | | | ├── frame_0000000000.jpg | | | | ├── ... | | | ├── P22_02 | | | ├── ... | ├── test | | ├── D3 ``` 4. Download HAC video, audio and optical flow data from [link](https://polybox.ethz.ch/index.php/s/3F8ZWanMMVjKwJK) and extract. The directory structure should be modified to match: ``` HAC ├── human | ├── videos | | ├── ... | ├── flow | | ├── ... | ├── audio | | ├── ... ├── animal | ├── videos | | ├── ... | ├── flow | | ├── ... | ├── audio | | ├── ... ├── cartoon | ├── videos | | ├── ... | ├── flow | | ├── ... | ├── audio | | ├── ... ``` 5. Download Kinetics-600 video data by ``` wget -i utils/filtered_k600_train_path.txt ``` Extract all files and get audio data from video data by ``` python utils/generate_audio_files.py ``` Download Kinetics-600 optical flow data (kinetics600_flow_mp4_part_*) from [link](https://huggingface.co/datasets/hdong51/MultiOOD/tree/main) and extract (run `cat kinetics600_flow_mp4_part_* > kinetics600_flow_mp4.tar.gz` and then `tar -zxvf kinetics600_flow_mp4.tar.gz`). Unzip all files and the directory structure should be modified to match: ``` Kinetics-600 ├── video | ├── acting in play | | ├── *.mp4 | | ├── *.wav | |── ... ├── flow | ├── acting in play | | ├── *_flow_x.mp4 | | ├── *_flow_y.mp4 | ├── ... ``` ### Dataset Splits The splits for Multimodal Near-OOD and Far-OOD Benchmarks are provided in https://github.com/donghao51/MultiOOD under `HMDB-rgb-flow/splits/` for HMDB51, UCF101, HAC, and Kinetics-600, and under `EPIC-rgb-flow/splits/` for EPIC-Kitchens. ## Methodology
--- An overview of the proposed framework for Multimodal OOD Detection. We introduce A2D algorithm to encourage enlarging the prediction discrepancy across modalities. Additionally, we propose a novel outlier synthesis algorithm, NP-Mix, designed to explore broader feature spaces, which complements A2D to strengthen the OOD detection performance. ## Contact If you have any questions, please send an email to donghaospurs@gmail.com ## Citation If you find our work useful in your research please consider citing our paper: ``` @article{dong2024multiood, author = {Hao Dong and Yue Zhao and Eleni Chatzi and Olga Fink}, title = {{MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities}}, journal = {arXiv preprint arXiv:2405.17419}, year = {2024}, } ```