// The Claw // Solution by Jacob Plachta #define DEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x<0 ? -x : x); } template T Sqr(T x) { return(x*x); } string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #if DEBUG #define GETCHAR getchar #else #define GETCHAR getchar_unlocked #endif bool Read(int &x) { char c,r=0,n=0; x=0; for(;;) { c=GETCHAR(); if ((c<0) && (!r)) return(0); if ((c=='-') && (!r)) n=1; else if ((c>='0') && (c<='9')) x=x*10+c-'0',r=1; else if (r) break; } if (n) x=-x; return(1); } #define LIM 2100000 PR P[LIM],R[LIM],S[LIM]; vector YP[LIM]; vector YR[LIM]; int sz; int tree[LIM],lazy[LIM]; void Prop(int i) { tree[i]+=lazy[i]; if (i>1; if (a<=m) Update(c,r1,m,a,b,v); if (b>m) Update(c+1,m+1,r2,a,b,v); Prop(c),Prop(c+1); tree[i]=max(tree[c],tree[c+1]); } int main() { if (DEBUG) freopen("in.txt","r",stdin); // vars int T,t; int N,M,K; int i,j,k,s,y,a,b,p,d; LL ans; // testcase loop Read(T); Fox1(t,T) { // init Fox(i,LIM) YP[i].clear(),YR[i].clear(); // input Read(N),Read(M); ans=M; Fox(i,N) { Read(P[i].x),Read(P[i].y); ans-=P[i].y; YP[P[i].y].pb(P[i].x); if (i) R[i-1]=mp(max(P[i-1].x,P[i].x),min(P[i-1].x,P[i].x)); } // associate intervals with their max contained heights sort(P,P+N); sort(R,R+N-1); j=s=0; Fox(i,N-1) { a=R[i].y,b=R[i].x; // maintain convex hull of max heights so far while ((j