import argparse import math import threading from pathlib import Path import numpy as np import torch import torchvision.transforms.functional as TF from PIL import Image from tqdm import tqdm def rotate_normal_map(normal_map, angle_deg): angle_rad = angle_deg * (torch.pi / 180.0) normal_map = normal_map * 2.0 - 1.0 # Convert to [-1, 1] normal_map = normal_map.unsqueeze(0) # Add batch dimension # Rotate the Vectors rotation_matrix = torch.tensor([[math.cos(angle_rad), -math.sin(angle_rad), 0], [math.sin(angle_rad), math.cos(angle_rad), 0], [0, 0, 1]], device=normal_map.device) # Reshape for batch matrix multiplication reshaped_normal_map = normal_map.view(1, 3, -1) # Reshape to [1, 3, H*W] rotation_matrix = rotation_matrix.view(1, 3, 3) # Add batch dimension # Rotate the vectors rotated_vectors = torch.bmm(rotation_matrix, reshaped_normal_map) rotated_vectors = rotated_vectors.view(1, 3, normal_map.size(2), normal_map.size(3)) rotated_vectors = rotated_vectors / 2.0 + 0.5 # Convert back to [0, 1] return rotated_vectors[0] def process_map(map, mat_dest): map_name = map.stem img = Image.open(map) img = TF.to_tensor(img).cuda() img = TF.resize(img, (4096, 4096), antialias=True) img = img.repeat(1, 3, 3) img = TF.center_crop(img, (5793, 5793)) for rot_angle in range(0, 360, 45): crop_i = 0 if "normal" in map_name: rot_img = rotate_normal_map(img, axis='z', angle_deg=rot_angle) rot_img = TF.rotate(rot_img, rot_angle) else: rot_img = TF.rotate(img, rot_angle) rot_img = TF.center_crop(rot_img, (4096, 4096)) for crop_res in [4096, 2048, 1024]: # split into crops crops = rot_img.unfold(1, crop_res, crop_res).unfold(2, crop_res, crop_res) crops = crops.permute(1, 2, 0, 3, 4) crops = crops.reshape(-1, crops.size(2), crop_res, crop_res) for crop in crops: crop_dir = mat_dest / f"rot_{rot_angle:03d}_crop_{crop_i:03d}" crop_dir.mkdir(parents=True, exist_ok=True) crop = TF.resize(crop, (1024, 1024), antialias=True) if map_name in ["height", "displacement"]: crop = crop.permute(1, 2, 0).cpu().numpy() crop = crop.astype(np.uint16) crop = Image.fromarray(crop[..., 0]) crop.save(crop_dir / f"{map_name}.png") else: TF.to_pil_image(crop).save(crop_dir / f"{map_name}.png") crop_i += 1 if __name__ == "__main__": # Create argument parser parser = argparse.ArgumentParser(description="Make dataset crops.") parser.add_argument("--source_dir", required=True, help="Directory where the original 4K maps are stored.") parser.add_argument("--dest_dir", required=True , help="Destination directory to store the 1K crops.") args = parser.parse_args() source_dir = Path(args.source_dir) dest_dir = Path(args.dest_dir) # Find all materials in the source directory for file in tqdm([x for x in source_dir.glob("**/basecolor.png")]): mat_dir = file.parent name = mat_dir.stem category = mat_dir.parent.stem split = mat_dir.parent.parent.stem mat_dest = dest_dir / split / category / name mat_dest.mkdir(parents=True, exist_ok=True) thread = [] for map in mat_dir.glob("*.png"): t = threading.Thread(target=process_map, args=(map, mat_dest)) t.start() thread.append(t) for t in thread: t.join()