# Copyright 2023 GTTS (http://gtts.ehu.eus) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Albayzin 2024 Bilingual Basque-Spanish Speech to Text Challenge (BBS-S2TC), dataset""" import datasets from datasets.utils.py_utils import size_str import os import csv from tqdm import tqdm from .languages import LANGUAGES from .release_stats import STATS _CITATION = """\ """ _HOMEPAGE = "https://huggingface.co/datasets/gttsehu/Albayzin-2024-BBS-S2T-eval" _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" _DESCRIPTION = ( f"blah blah blah..." f"blah blah blah..." f"blah blah blah..." ) _BASE_URL = "https://huggingface.co/datasets/gttsehu/Albayzin-2024-BBS-S2T-eval/resolve/main/" _AUDIO_URL = _BASE_URL + "audio/{split}_{shard_idx}.tar" _METADATA_URL = _BASE_URL + "metadata/{split}.tsv" class Albayzin2024BBSS2TEvalConfig(datasets.BuilderConfig): """BuilderConfig for Albayzin2024BBSS2TEval.""" def __init__(self, name, version, **kwargs): self.language = kwargs.pop("language", None) self.release_date = kwargs.pop("release_date", None) self.num_clips = kwargs.pop("num_clips", None) self.num_speakers = kwargs.pop("num_speakers", None) self.validated_hr = kwargs.pop("validated_hr", None) self.total_hr = kwargs.pop("total_hr", None) self.size_bytes = kwargs.pop("size_bytes", None) self.size_human = size_str(self.size_bytes) description = _DESCRIPTION super(Albayzin2024BBSS2TEvalConfig, self).__init__( name = name, version = datasets.Version(version), description = _DESCRIPTION, **kwargs, ) class Albayzin2024BBSS2TEval(datasets.GeneratorBasedBuilder): """Evaluation corpus for Albayzin 2024 Bilingual Basque-Spanish Speech to Text Challenge (BBS-S2TC).""" DEFAULT_CONFIG_NAME = "all" BUILDER_CONFIGS = [ Albayzin2024BBSS2TEvalConfig( name=lang, version=STATS["version"], language=LANGUAGES[lang], release_date=STATS["date"], num_clips=lang_stats["clips"], num_speakers=lang_stats["users"], total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, ) for lang, lang_stats in STATS["locales"].items() ] def _info(self): description = ( f"blah blah blah..." f"blah blah blah..." f"blah blah blah..." ) features = datasets.Features( { "path": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=16_000), "sentence": datasets.Value("string"), "speaker_id": datasets.Value("string"), "language": datasets.Value("string"), "PRR": datasets.Value("float32"), "length": datasets.Value("float32"), } ) return datasets.DatasetInfo( description = _DESCRIPTION, features = features, supervised_keys = None, homepage = _HOMEPAGE, license = _LICENSE, citation = _CITATION, version = self.config.version, ) def _split_generators(self, dl_manager): lang = self.config.name audio_urls = {} splits = ("eval",) for split in splits: if split == "train_clean": continue audio_urls[split] = [ _AUDIO_URL.format(split=split, shard_idx=i) for i in range(STATS["n_shards"][split]) ] archive_paths = dl_manager.download(audio_urls) local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} metadata_urls = {split: _METADATA_URL.format(lang=lang, split=split) for split in splits} metadata_paths = dl_manager.download_and_extract(metadata_urls) split_generators = [] split_names = { "eval": datasets.NamedSplit("eval"), } for split in splits: split_generators.append( datasets.SplitGenerator( name=split_names.get(split, split), gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths.get(split), "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], "metadata_path": metadata_paths[split], }, ), ) return split_generators def _generate_examples(self, local_extracted_archive_paths, archives, metadata_path): lang = self.config.name data_fields = list(self._info().features.keys()) metadata = {} with open(metadata_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) metadata = { row["path"]:row for row in tqdm(reader, desc="Reading metadata...") } excluded = 0 for i, audio_archive in enumerate(archives): for path, file in audio_archive: if path not in metadata : excluded += 1 continue result = dict(metadata[path]) if lang == "all" or lang == result["language"] : # set the audio feature and the path to the extracted file path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path result["audio"] = {"path": path, "bytes": file.read()} result["path"] = path yield path, result print(excluded,'audio files not found in metadata')