import csv import sys import datasets from typing import List csv.field_size_limit(sys.maxsize) _CITATION = """\ @inproceedings{trotta-etal-2021-itacola, author = {Trotta, Daniela and Guarasci, Raffaele and Leonardelli, Elisa and Tonelli, Sara}, title = {Monolingual and Cross-Lingual Acceptability Judgments with the Italian {CoLA} corpus}, journal = {Arxiv preprint}, year = {2021}, } """ _DESCRIPTION = """\ The Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from linguistic literature with a binary annotation made by the original authors themselves. The work is inspired by the English Corpus of Linguistic Acceptability (CoLA) by Warstadt et al. Part of the dataset has been manually annotated to highlight 9 linguistic phenomena. """ _HOMEPAGE = "https://github.com/dhfbk/ItaCoLA-dataset" _LICENSE = "None" _SPLITS = ["train", "test"] class ItaColaConfig(datasets.BuilderConfig): """BuilderConfig for ItaCoLA.""" def __init__( self, features, data_url, **kwargs, ): """ Args: features: `list[string]`, list of the features that will appear in the feature dict. Should not include "label". data_url: `string`, url to download the zip file from. **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.data_url = data_url self.features = features class ItaCola(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ ItaColaConfig( name="scores", features=["unique_id", "source", "acceptability", "sentence"], data_url="https://raw.githubusercontent.com/dhfbk/ItaCoLA-dataset/main/ItaCoLA_dataset.tsv" ), ItaColaConfig( name="phenomena", features=[ "unique_id", "source", "acceptability", "sentence", "cleft_construction", "copular_construction", "subject_verb_agreement", "wh_islands_violations", "simple", "question", "auxiliary", "bind", "indefinite_pronouns", ], data_url="https://github.com/dhfbk/ItaCoLA-dataset/raw/main/ItaCoLA_dataset_phenomenon.tsv" ), ] DEFAULT_CONFIG_NAME = "scores" def _info(self): features = {feature: datasets.Value("int32") for feature in self.config.features} features["source"] = datasets.Value("string") features["sentence"] = datasets.Value("string") return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_file = dl_manager.download_and_extract(self.config.data_url) if self.config.name == "scores": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_file, "split": "train", "features": self.config.features, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_file, "split": "test", "features": self.config.features, }, ), ] else: return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_file, "split": "train", "features": self.config.features, }, ), ] def _generate_examples(self, filepath: str, split: str, features: List[str]): """Yields examples as (key, example) tuples.""" with open(filepath, encoding="utf8") as f: for id_, row in f: if id_ == 0: continue ex_split = None fields = row.strip().split("\t") if len(fields) > 5: fields, ex_split = fields[:-1], fields[-1] if ex_split.strip() != split: continue yield id_, { k:v.strip() for k,v in zip(features, fields) }