# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Google Wellformed Query Dataset""" import datasets _CITATION = """\ @misc{faruqui2018identifying, title={Identifying Well-formed Natural Language Questions}, author={Manaal Faruqui and Dipanjan Das}, year={2018}, eprint={1808.09419}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ Google's query wellformedness dataset was created by crowdsourcing well-formedness annotations for 25,100 queries from the Paralex corpus. Every query was annotated by five raters each with 1/0 rating of whether or not the query is well-formed. """ _URL = "https://raw.githubusercontent.com/google-research-datasets/query-wellformedness/master/{}.tsv" class GoogleWellformedQuery(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"rating": datasets.Value("float"), "content": datasets.Value("string")}), supervised_keys=None, homepage="https://github.com/google-research-datasets/query-wellformedness", citation=_CITATION, ) def _split_generators(self, dl_manager): tr_file = dl_manager.download_and_extract(_URL.format("train")) tst_file = dl_manager.download_and_extract(_URL.format("test")) dev_file = dl_manager.download_and_extract(_URL.format("dev")) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": tr_file, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": tst_file, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": dev_file, }, ), ] def _generate_examples(self, filepath): """ Yields examples. """ with open(filepath, "r", encoding="utf-8") as file: reader = file.read().split("\n") for idx, row in enumerate(reader): row = row.split("\t") if len(row) == 1: continue yield idx, {"rating": row[1], "content": row[0]}