#!/usr/bin/env python import numpy as np # https://github.com/librosa/librosa import librosa import librosa.display import argparse import os from PIL import Image from PIL import PngImagePlugin import json from spsi import spsi FLAGS = None # ------------------------------------------------------ # get any args provided on the command line parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('filename', type=str, help='Name of log mag spectrogram. Include extension') parser.add_argument('--outdir', type=str, help='Output directory', default='./output') parser.add_argument('--scalemax', type=int, help='Value to use as the max when scaling from png [0,255] to original [min,max]', default=None) parser.add_argument('--scalemin', type=int, help='Value to use as the min when scaling from png [0,255] to original [min,max]', default=None) parser.add_argument('--sr', type=int, help='Samplerate', default=22050) parser.add_argument('--hopsize', type=int, help='Size of frame hop through sample file', default=256) parser.add_argument('--glsteps', type=int, help='Number of Griffin&Lim iterations following SPSI', default=50 ) parser.add_argument('--wavfile', type=str, help='Optional name for output audio file. Unspecified means use the png filename', default=None) FLAGS, unparsed = parser.parse_known_args() print('\n FLAGS parsed : {0}'.format(FLAGS)) def inv_log(img): img = np.exp(img) - 1. return img def PNG2LogSpect(fname,scalemin,scalemax): """ Read png spectrograms, expand to original scale and return numpy array. If not stored in one of png metadata, the values needed to undo previous scaling are required to be specified. """ img = Image.open(fname) #info = PngImagePlugin.PngInfo() try: img.text = img.text lwinfo = json.loads(img.text['meta']) except: print('PNG2LogSpect: no img.text, using user specified values!') lwinfo = {} lwinfo['scaleMin'] = scalemin #require to pass in lwinfo['scaleMax'] = scalemax #info.add_text('meta',json.dumps(lwinfo)) minx, maxx = float(lwinfo['scaleMin']), float(lwinfo['scaleMax']) #minx, maxx = float(lwinfo['oldmin']), float(lwinfo['oldmax']) img = img.convert('L') outimg = np.asarray(img, dtype=np.float32) outimg = (outimg - 0)/(255-0)*(maxx-minx) + minx return np.flipud(outimg), lwinfo D,_ = PNG2LogSpect(FLAGS.filename,FLAGS.scalemin,FLAGS.scalemax) Dsize, _ = D.shape fftsize = 2*(Dsize-1) #infer fftsize from no. of fft bins i.e. height of image magD = inv_log(D) y_out = spsi(magD, fftsize=fftsize, hop_length=FLAGS.hopsize) #print(magD.shape) #print(y_out.shape) if FLAGS.glsteps != 0 : #use spsi result for initial phase x = librosa.stft(y_out, fftsize, FLAGS.hopsize, center=False) p = np.angle(x) #print(x.shape) for i in range(FLAGS.glsteps): S = magD * np.exp(1j*p) y_out = librosa.istft(S, FLAGS.hopsize, center=True) # Griffin Lim, assumes hann window, librosa only does one iteration? p = np.angle(librosa.stft(y_out, fftsize, FLAGS.hopsize, center=True)) scalefactor = np.amax(np.abs(y_out)) #print(np.amin(np.abs(y_out))) #print(y_out[50:70]) print('scaling peak sample, ' + str(scalefactor) + ' to 1') #y_out/=scalefactor if FLAGS.wavfile == None: librosa.output.write_wav(os.path.splitext(FLAGS.filename)[0]+'.wav', y_out, FLAGS.sr) else: librosa.output.write_wav(FLAGS.wavfile, y_out, FLAGS.sr)